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Abstract. A private set membership (PSM) protocol allows a “receiver”
to learn whether its input x is contained in a large database DB held
by a “sender”. In this work, we define and construct credible private set
membership (C-PSM) protocols: in addition to the conventional notions
of privacy, C-PSM provides a soundness guarantee that it is hard for
a sender (that does not know x) to convince the receiver that x ∈ DB.
Furthermore, the communication complexity must be logarithmic in the
size of DB.
We provide 2-round (i.e., round-optimal) C-PSM constructions based on
standard assumptions:

– We present a black-box construction in the plain model based on
DDH or LWE.

– Next, we consider protocols that support predicates f beyond string
equality, i.e., the receiver can learn if there exists w ∈ DB such
that f(x,w) = 1. We present two results with transparent setups:
(1) A black-box protocol, based on DDH or LWE, for the class of
NC1 functions f which are efficiently searchable. (2) An LWE-based
construction for all bounded-depth circuits. The only non-black-box
use of cryptography in this construction is through the bootstrapping
procedure in fully homomorphic encryption.

As an application, our protocols can be used to build enhanced round-
optimal leaked password notification services, where unlike existing solu-
tions, a dubious sender cannot fool a receiver into changing its password.

1 Introduction

A two-party private set membership (PSM) protocol is an interactive protocol
between a receiver holding an input x and a sender holding a database DB.
The goal is that at the end of the interaction, the receiver only learns whether
x ∈ DB while the sender learns nothing about x. Similar to private information
retrieval [8], a desirable feature for PSM is efficiency of the receiver, which
states that the communication complexity and also the computational complexity



of the receiver is sublinear (or more preferably logarithmic) in the size of DB.
PSM and its closely related variant private set intersection (PSI) have found
numerous applications such as contact discovery [17] and exposed password
notification [11,16,2].

In the exposed password notification use-case, a user and a service provider
run a PSM protocol to determine whether the user’s password is exposed in any
leaked database. An often neglected aspect in this setting is whether the protocol
provides a credible guarantee to the user that its password was actually leaked.
In fact, a dubious sender might potentially keep falsely suggesting to the user
that its password was exposed, causing the user to go through the process of
updating its password.

A potential approach to enforce credibility might be requiring the sender
to send its whole database in an encrypted format. It is plausible that such
an approach, specially when implemented through protocols based on oblivious
pseudorandom functions (OPRF) [11,2], can provide credibility. However, sending
the whole database would obviously make the protocol’s communication and the
receiver’s computational complexity linear in the size of the database, and thus
violates efficiency. Another approach may be using generic cryptographic succinct
zero-knowledge arguments of knowledge. Such solutions incur an unsatisfactory
computational overhead due to the use of non-black-box techniques. Therefore,
we ask

Can we construct asymptotically efficient black-box credible PSM
protocols?

1.1 Our Contributions

Defining C-PSM. In this work we initiate the study of credibility in PSM
protocols. We define the notion of credible private set membership (C-PSM).
Informally, a C-PSM for a relation R is a two party protocol between a receiver
and a sender where both the receiver and the sender have access to a common
reference string (CRS). The receiver has an input x and the sender has a large
database DB. The sender wants to convince the receiver that the database
contains a witness w such that (x,w) ∈ R. We require the following properties:

– The protocol consists of only two rounds.

– The communication and also the receiver’s computational complexity is at
most logarithmic in the size of DB.

– The receiver’s input x remains hidden from the sender.

– The sender’s database remains private, i.e., a (malicious) receiver does not
learn anything more than the fact that the database contains a valid witness.

– The protocol is sound, i.e., if the sender does not have a witness in the
database, then, it is computationally hard for it to make the receiver accept.
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We focus on black-box protocols, i.e., protocols which only make black-box
use of their underlying cryptographic tools. For the soundness property to be
meaningful and achievable in 2 rounds, we require the input x to have high
entropy. Otherwise, if x is predictable, the sender can always include a valid
witness for x in its database and convince the receiver. For the same reason we
consider relations R which are instance entropic. Roughly speaking, this means
that any witness only satisfies a negligible fraction of instances. For example, the
string equality relation is instance entropic.

C-PSM for String Equality. We start by considering the basic string equality
relation, where the receiver wants to check if x ∈ DB. For this relation we
construct a black-box 2-round C-PSM protocol in the plain model from either of
the DDH or LWE assumption.

Theorem 1 (Informal). Assuming the hardness of either of DDH or LWE,
there exists a black-box 2-round C-PSM protocol in the plain model for the string
equality relation.

C-PSM for Efficiently Searchable Relations. We then turn to instance
entropic relations beyond string equality. Specifically, we will consider the scenario
where for some function f , the receiver wants to check whether DB contains c
entries w1, · · · , wc such that f(x, {wi}i∈[c]) = 1. We first consider the class of
efficiently searchable functions, i.e., functions which are in NC1, and, for any
input x, searching DB for witnesses can be implemented by a branching program
of length logarithmic in DB. We construct a fully black-box 2-round C-PSM
protocol for the class of efficiently searchable functions assuming either of DDH
or LWE.

Theorem 2 (Informal). Assuming the hardness of either of DDH or LWE, for
every searchable function there exists a black-box 2-round C-PSM protocol with
transparent setup.

Next, we construct a C-PSM from LWE which is not restricted to efficiently
searchable functions and supports all bounded-depth circuits. While this construc-
tion is not fully black-box, however, its non-black-use of cryptography is limited
to the bootstrapping procedure in its underlying homomorphic encryption.

Theorem 3 (Informal). Assuming the hardness of LWE, there exists a 2-round
C-PSM protocol with transparent setup for every (bounded-depth) circuit. The only
non-black-box use of cryptography in this C-PSM protocol is through bootstrapping
in homomorphic encryption.

We mention that all of our C-PSM protocols satisfy statistical sender privacy.
This means that, our constructions guarantee the privacy of the sender even
against computationally unbounded malicious receivers. Additionally, in our
constructions which need a setup, receiver privacy is guaranteed even if the CRS
is maliciously generated.
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Applications. Our construction for string equality immediately gives a credible
protocol for password exposure notification. In fact, since the C-PSM protocol
in this construction only consists of two rounds, the receiver can publish its
first message and wait for senders to inform him/her of a password exposure via
C-PSM second message.

With our black-box construction for efficiently searchable relations, we can
have protocols that perform more complicated tasks. For instance, consider a
situation where the sender’s database consists of pairs of usernames and candidate
passwords. A receiver wants to learn whether the database has an entry consisting
of its username paired with a closely matching password (closely matching can
for example mean having an edit distance no bigger than half the length of the
password). We observe that our black-box construction supports this functionality.
This is because given a username and password pair, the following branching
program whose length is logarithmic in the size of the database can implement
the corresponding search functionality:

1. First, search the database for an entry with a matching username. Note that
this step can be implemented by a logarithmic length branching program
through using the trie data structure.

2. Next, given an entry with a matching username, check whether the candidate
password in the entry closely matches the input password. This step is
independent of the size of the database and can be implemented by an NC1

circuit, and consequently by a polynomial sized branching program.

1.2 Related Work

The notion of zero-knowledge sets [19] allows a sender to convince a receiver
whether an element exist in its database or not by sending a short proof. Our
work differs from zero-knowledge sets in two aspects. First, we consider 2-round
protocols whereas zero-knowledge sets consist of protocols having 3 rounds, where,
in the first round the sender commits to its database and publishes a digest of
this commitments. Second, there is no receiver privacy in zero-knowledge sets,
i.e., the receiver sends its input in the clear.

A line of work [7,6,9] constructed concretely efficient unbalanced PSI protocols,
i.e., PSI protocols where the sender’s set is considerably larger than the receiver’s
set, from FHE. The PSI protocols constructed in these works provide sender
privacy, receiver privacy and and communication sub-linear in the size of the
sender’s set. While exposed password notification seems to be one of the main
applications of the PSI protocols constructed in these works, however, they do
not provide credibility. In fact [6] considers a heuristic approach to make it more
difficult for a dubious sender to cheat. Roughly speaking, the proposal in [6]
requires a sender to include the hash of the receiver’s input in the FHE ciphertext
that it outputs. Then, it sets the FHE parameters such that it does not support
computing this hash function. Our construction for string equality in section 4
can be seen as a dual of this idea, where, we use the output of a one-way function
as the input and treat the original input as the label. Unlike [6], we are able to
formally prove the credibility of our construction.
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Another work [15] considers oblivious polynomial evaluation (OPE). In this
setting, the receiver wants to learn the image of its private input under a secret
high-degree polynomial that is held by the sender. Notice that an instance of PSM
can be converted into an instance of OPE where the degree of the polynomial is
equal to the size of the database. The protocol in [15] provides receiver privacy,
sender privacy and communication sub-linear in the degree of the polynomial.
Additionally, this construction ensures that the evaluated value that receiver
obtains truly corresponds to the polynomial that is held by the sender. While
the latter property can be viewed as credibility, however, the way [15] enforces
this property is by requiring the sender to send a commitment to its polynomial
to the receiver. Consequently, this protocol needs three rounds.
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1.4 Techniques

C-PSM for string equality. We start by providing an overview of our C-PSM
construction for the basic string equality functionality. Since we are aiming
to keep the receiver’s complexity independent of the size of the database, it
is natural to consider using homomorphic encryption (HE). However, a naive
scheme where the receiver sends its input x encrypted under FHE, and the sender
homomorphically searches its database, does not satisfy the properties of C-PSM:

– First and foremost, this construction is not credible because the sender can
simply send a homomorphically encrypted positive answer regardless of its
database.

– Furthermore, this construction does not provide sender privacy because
homomorphic evaluation might reveal extra information about the sender’s
database.

Our insight to solve the first issue is noticing that the receiver’s input has high
entropy and therefore it is hard to invert its image under a one-way function.
Specifically, the receiver, instead of sending an encryption of its input, sends
an encryption of the image y = f(x) of its input under a one-way function
f . The sender computes the images of all entries in its database under f and
proceeds to homomorphically search these images for y. If found, the sender
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can homomorphically include the pre-image x in the ciphertext it sends to the
receiver.

To add sender privacy, we will use a homomorphic encryption scheme with a
property known in the literature as malicious function privacy [21]. Informally,
this notion states that the evaluated ciphertexts reveal nothing beyond the
value they are encrypting, and in particular they hide the function that was
homomorphically evaluated. While the malicious function private HE construction
in [21] makes extensive non-black-box use of cryptography, however, fortunately,
we can instantiate the OT-based black-box HE construction in [14] with the
recent rate-1 statistical sender private OT [1], which can be based on either
LWE or DDH, to get a black-box malicious function private HE for branching
programs.

Beyond string equality. We now describe how we build a C-PSM supporting
predicates beyond string equality. For the ease of exposition, we present a 4-round
protocol and then briefly sketch how we compress it to 2 rounds. Recall that
in this setting, the receiver holds an input x and the sender wants to convince
the receiver that its database contains a witness w such that f(x,w) = 1 for
a specific predicate f . Our starting idea is to use homomorphic encryption for
encrypting the the receiver’s input, a black-box commit-and-prove system for
committing to the sender’s database and generating zero-knowledge proofs, and
Merkle trees [18] for creating a digest of this database. In more detail, similar
to the string quality construction, the receiver encrypts its input under HE and
sends the ciphertext to the sender. The sender then works as follows:

– First, it commits to the database using the commit and prove system, i.e., it
secret shares each entry in the database and commits to these shares.

– Next, it hashes these commitments using a Merkle tree.
– Then, it homomorphically searches the database to find a valid witness w

along with a Merkle hash opening for its corresponding commitment (or ⊥
if the database does not contain such a witness). Note that this does not
involve any hash computations under the hood of HE. All hashes can be
computed “outside,” and then moved to under the hood of HE.

– Next, the sender homomorphically generates the first prover message in the
commit-and-prove system and sends it to the receiver.

– Finally, upon receiving a challenge from the receiver, the sender homomor-
phically opens a subset of the commitments produced in the first message
and sends them to the receiver.

While this approach has succinct communication complexity, keeps the re-
ceiver’s input private, and is black-box thanks to the MPC-in-the-head [13]
paradigm, however, it fails to protect against a malicious sender. In fact, a
malicious sender whose database does not contain a valid witness can homomor-
phically cook up a database containing a witness and proceed to deceive the
receiver. A straightforward approach to provide security against malicious senders
is to require the sender to attach (in plain) a succinct non-interactive argument
of knowledge (SNARK), showing that the evaluated ciphertext is the result of an
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honest evaluation using an actual database known by the sender. However, in
addition to relying on unfalsifiable assumptions, this approach results in a very
prohibitive solution and involves expensive non-black-box use of cryptography.
For string equality we were able to overcome this issue by using deterministic
encryption, but for richer functionalities this idea does not seem to be applicable.
In summary, with the goal of avoiding expensive cryptography, the main challenge
we face is “how do we tie the hands of a malicious sender to prevent it from
cooking up a database under the hood of homomorphic encryption?”

First Attempt: Attaching the hash root “outside.” Our first starting
idea for tying the hands of the malicious sender is to have it send something
“outside” the homomorphic encryption wrapper. The sender could cook up stuff
under homomorphic encryption but cannot do so outside! The receiver could
then compare the information obtained under the hood of HE and check if it is
consistent with the information provided “outside.” The hope is that given that
a malicious sender cannot cook up stuff depending on receiver’s input “outside,”
consistency is only possible if a valid witness exists in the database.

In particular, if we require the sender to include the root of the Merkle tree
in clear, then, the homomorphic database cooking up attack that we described in
the previous paragraph does not seem to work. Intuitively, the hash root seems
to bind the prover to a database in clear, and if this database (and consequently
the hash root) depends on the receiver’s input, then, a cheating prover has to
somehow break the security of HE.

However, unfortunately, it is unclear how to prove security of this strategy. In
other words, it is unclear how we could reduce the ability of the sender to break
soundness to breaking the security of HE or the Merkle hash. A key issue is that
the hash root does not have any extractable information to help with breaking
the security of HE.

Using SSB hashing to make a random point extractable. In order to fix
the above issue, while avoiding expensive tools, we try for a very simple approach.
In particular, we replace the generic Merkle Hash with a somewhere statistically
binding (SSB) hash [12]. At a high level, SSB hash is a Merkle tree with an
additional binding property. In more detail, in a SSB hash, the hashing key can
be generated for binding to a specific position i in the input. The guarantee is
that, the hash root now statistically binds to commitments to the value of the
database at position i, which remains computationally hidden by the index hiding
property. We assume a stronger extractability guarantee from our SSB hash.
Namely, we assume that it is possible to extract the ith value given only the hash
root and a extraction trapdoor which is generated along with the hashing key.
Fortunately, these objects can be built based on any rate-1 OT using previous
known techniques [12,20].

Somewhat surprising, though with a subtle argument, this simple change
allows us to reduce a malicious sender’s ability to cheat to break the security
of HE or violate the index-hiding property of the SSB hash. We now sketch
how using extractable SSB hashing we can reduce the security of HE to the
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soundness of C-PSM. Our reduction simply generates a SSB hash key binding
to a uniformally random position and puts it in the CRS. First, observe that
the index hiding property of SSB hash ensures that, during the execution, with
noticeable probability, this random position is the same position that the cheating
sender opens under the hood of HE. Clearly, if the adversary can somehow always
avoid the random position encoded in the SSB hash key then that adversary can
be used to break the index hiding property of SSB with probability better than a
random guess. In the final step, we show a reduction that uses the value extracted
from the SSB hash root — which from the prior step we know is correlated with
the encrypted value under HE with a small probability — to directly break the
security of HE.

Instantiating HE. Similar to our construction for string equality, we can use
the malicious circuit private HE for branching programs that can be instantiated
by combining [1] and [14]. For achieving compact communication complexity
when using this instantiation of HE, searching the database for a witness should
be implementable with a branching program whose length is logarithmic in the
size of the database. That is, the predicate should be efficiently searchable. This
is because in the [14] HE construction, the size of evaluated ciphertexts grow
linearly in the length of the evaluated branching programs.

Another option is to use the LWE-based malicious circuit private HE in [10].
With this HE, our C-PSM construction can support every instance entropic
predicate that can be implemented by a (bounded-depth) circuit. However, the
HE in [10] is not fully black-box as it performs bootstrapping for every evaluation.

Black-box commitment generation. A delicate issue is that, the sender
algorithm, as currently described, would be non-black-box, because, generating
the first prover message for the commit-and-prove system involves generating
new commitments. We avoid this non-black-box step via the following trick: the
sender generates many fresh commitments to 0 and 1 in the clear and then,
obliviously brings these fresh commitments under HE based on the message the
prover commits to.

4-Round to 2-round. Finally, we describe how to compress the described
4-round C-PSM to a 2-round protocol. To do this, the receiver sends its challenge
via OT in the first round. In the second round, the sender prepares a C-PSM
sender’s message for each possible challenge and sends them to the receiver
through OT response.

2 Preliminaries

We denote the security parameter by λ. For any ` ∈ N, we denote the set of the
first ` positive integers by [`]. For a set S, x← S denotes sampling a uniformly
random element x from S. For a distribution D, x ← D denotes sampling an
element x from D.
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2.1 Oblivious Transfer

We review the definition of rate-1 statistical sender private oblivious transfer.

Definition 1 (Rate-1 Statistical Sender Private Oblivious Transfer). A
(string) 1-out-of-2 OT consists of three algorithms: (OT1,OT2,OT3).

– OT1(1λ, b), on input a security parameter λ ∈ N and a choice bit b ∈ {0, 1},
outputs a protocol message ot1 and a state st.

– OT2(ot1, (m0,m1)), on input ot1, and two sender inputs (m0,m1) of the
same length, outputs a response ot2.

– OT3(st, ot2), on input a state st and ot2, outputs a message m.

We require the following properties:

1. Correctness, for all security parameters λ, bits b ∈ {0, 1}, and sender inputs
m0,m1 ∈ {0, 1}∗:

Pr

y = mb

∣∣∣∣∣∣
(ot1, st)← OT1(1λ, b)
ot2 ← OT2(ot1, (m0,m1))
y ← OT3(st, ot2)

 = 1.

2. Receiver Security, ot
c
≈ ot′, where (ot, ∗) ← OT1(1λ, 0) and (ot′, ∗) ←

OT1(1λ, 1).
3. Statistical Sender Privacy, there exists an unbounded simulator S such that

for all (not necessarily honestly generated) ot1 there exists a bit b, such that
for all sender inputs m0,m1 ∈ {0, 1}∗:

OT2(ot1, (m0,m1))
s
≈ Sim(1λ, ot1,mb)).

4. Rate-1: There exists a fixed polynomial poly such that for all polynomials n :=
n(λ), for all first-round messages ot1 and for all (m0,m1) ∈ {0, 1}n×{0, 1}n,
|ot2| = n+ poly(λ), where ot2 ← OT2(ot1, (m0,m1)).

Theorem 4 ([1]). Assuming either DDH or LWE, there exists a black-box
construction of rate-1 statistical sender private OT.

We also consider the following dual-mode variation of OT. Notice that this
variation is not rate-1.

Definition 2 (Dual-mode OT). Let C be a constant. A 1-out-of-C dual mode
OT is a tuple of algorithms (Setup,FakeSetup,Extract,OT1,OT2,OT3), with the
following syntax:

– Setup(1λ), takes as input a security parameter, and outputs a crs.
– FakeSetup(1λ), takes as input a security parameter, and outputs a crsS and

a trapdoor td that can be used to extract the sender’s input.
– Extract(td, ot2), takes as input the trapdoor td, and any OT2 message ot2,

outputs the sender’s input {mc}c∈C .
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– OT1,OT2,OT3 have the same syntax as in Definition 1, except that they also
take crs as input.

The correctness, receiver security and statistical sender privacy properties are
the same as Definition 1. We additionally require the following properties:

1. CRS Indistinguishability, we have

crs
c
≈ crsS ,

where crs is generated by Setup, and crsS is generated by FakeSetup.
2. Extraction Correctness, for any receiver’s input b ∈ [C] and any unbounded

adversary A, we have

Pr
(crsS ,td)←FakeSetup(1λ),

(ot1,st)←OT1(crs,b)
ot∗2←A(crs,ot1)

[
y ← OT3(crs, st, ot∗2), {m∗c}c∈[C] ← Extract(td, ot∗2) : y = m∗b

]
= 1.

Theorem 5 ([22]). Assuming hardness of either LWE or DDH, there exists a
black-box construction of dual-mode oblivious transfer.

2.2 Dual-Mode Commitments

We recall the definition of a dual-mode public key encryption system [22]. Since
in our application the default mode these crypto systems are instantiated in is
the lossy mode, we refer to them by dual-mode commitments.

Definition 3. A dual-mode commitment is a tuple of PPT algorithms Com =
(Gen,FakeGen,Commit,Extract) having the following interface

– Gen(1λ), on input a security parameter λ, outputs a common reference string
crs.

– FakeGen(1λ), on input a security parameter λ, outputs a common reference
string crs and an extraction trapdoor td.

– Commit(crs, b), on input a bit b ∈ {0, 1}, outputs a commitment com.
– Extract(td, t̃), on input an extraction trapdoor td, and a commitment com,

outputs a bit b ∈ {0, 1}.
We require the scheme to satisfy the following properties

1. Extraction Correctness, for any λ ∈ N and b ∈ {0, 1},

Pr[Extract(td, t̃) = b] = 1,

where, (crs, td)← Gen(1λ) and t̃← Commit(crs, b).
2. Indistinguishable CRS Modes, we have

{crs : crs← Gen(1λ)}λ∈N
c
≈ {crs : (crs, td)← FakeGen(1λ)}λ∈N

3. Statistical Hiding, the following two distributions are statistically indistin-
guishable

{Commit(crs, 0) : crs← Gen(1λ)}λ∈N
s
≈ {Commit(crs, 1) : crs← Gen(1λ)}λ∈N

Theorem 6 ([22]). Assuming hardness of either LWE or DDH, there exists a
black-box construction of dual-mode commitments.
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2.3 Commit-and-Prove

We formulate the properties and the interface that we need from a commit-and-
prove system. Then, we observe that the MPC-in-the-head paradigm can be used
to build a commit-and-prove system with these properties.

Definition 4. A commit-and-prove system with challenge space C for a language
L ∈ NP, is a tuple of algorithms Π = (Setup,FakeSetup,Com,GenFresh,P1,P2,Verify,Extract)
having the following interface

– Setup(1λ), on input a security parameter λ, outputs a common reference
string crs.

– FakeSetup(1λ), on input a security parameter λ, outputs a common reference
string crs and an extraction trapdoor td.

– Com(crs, w; r) on input a bitstring w ∈ {0, 1}W outputs a commitment w̃.
– GenFresh(crs), on input a common reference string crs, outputs a sequence

of fresh commitments along with their corresponding randomness Γ .
– P1(crs, x,w, r, Γ ; rP ), on input a common reference string crs, an instance
x ∈ {0, 1}`, a witness w = {wi ∈ {0, 1}W }i∈[c], initial commitment ran-
domness r = {ri}i∈[c], fresh commitments and their randomness Γ , and the
random coins rP , outputs the first part of proof string π1.

– P2(crs, x,w, r, Γ, rP , ch), on input the same parameters of P1, the random
coins used by P1, and the challenge ch, outputs the second part of the proof
string π2.

– Verify(crs, x, {w̃i}i∈[c], ch, π1, π2), on input a common reference string crs,

an instance x ∈ {0, 1}`, a sequence of commitments {w̃i}i∈[c], a challenge
ch ∈ C, and a proof string (π1, π2), either accepts or rejects.

– Extract(td, t̃), on input an extraction trapdoor td, and a commitment t̃, outputs
a plaintext t ∈ {0, 1}W .

We further require the commit and proof system to satisfy the following
properties.

– Completeness, for any instance x ∈ L, and any tuple of strings (w1, w2, . . . , wc) ∈
{0, 1}c×W which is a witness for x, let w̃i ← Com(crs, wi) be commitments
to wi, we have

Pr
crs←Setup(1λ)
P1(crs,x,w,r,Γ )

ch←C
π2←P2(ch,st)

[
Verify(crs, x, {w̃i}i∈[c], ch, π1, π2) accepts

]
= 1.

– Indistinguishable CRS modes, we have

crs
c
≈ crs′,

where crs is generated by the genuine setup Setup(1λ), and crs′ is generated
by the fake setup FakeSetup(1λ).
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– Statistical Hiding, for any two sequences of bitstrings w0 = {w0}λ∈N, w1 =
{w1}λ∈N, the commitments are statistically indistinguishable under the gen-
uine setup, namely,

{Com(crs, w0
λ) : crs← Setup(1λ)}λ∈N

s
≈ {Com(crs, w1

λ) : crs← Setup(1λ)}λ∈N.

– ε-Soundness, let R be the NP-relation for the language L. For any unbounded
adversary (P1∗,P2∗), after the following procedure,
• Generate the fake CRS with trapdoor (crs, td)← FakeSetup(1λ)
• (x, {w̃i}i∈[c], π1, st)← P1∗(crs)
• Sample a random challenge ch← C
• π2 ← P2∗(ch, st)

we have

Pr
[
R(x, {Extract(td, w̃i)}i∈[c]) 6= 1 ∧ Verify(crs, x, {w̃i}i∈[c], ch, π1, π2) accepts

]
< ε.

– Special Statistical Zero-Knowledge, there exists a simulator algorithm Sim,
such that, under any crs sampled by the genuine Setup algorithm, for any
family of instances {xλ} with xλ ∈ L, any witness {wλ,i}i∈[c] for xλ, any
challenge ch ∈ C, we have

(Com(crs, {wλ,i}i∈[c]; r), π1, π2)
s
≈ (c′, π′1, π

′
2),

where π1, π2 are the outputs of the honest prover’s algorithm for the instance
xλ, witness {wλ,i}i∈[c], initial commitment randomness r, and challenge ch,
and (c′, π′1, π

′
2)← Sim(xλ, ch) is output by the simulator.

Theorem 7 (Black-Box Commit-and-Prove from MPC-in-the-Head).
There exists a commit-and-prove protocol with constant soundness error. Fur-
thermore, the honest prover’s algorithms (P1,P2) only use information-theoretic
building-blocks. Moreover, if the NP-relation of L can be verified by a circuit of
depth d, then the algorithms P1,P2 can also be computed by a circuit of depth
O(d).

Proof (Proof Sketch). The work [13] constructed zero-knowledge from secure
multiparty computation protocols. We use their zero-knowledge protocol to build
a commit-and-prove system, and prove that it only makes black-box use of
cryptography. We now describe the main algorithms.

– Com(crs, w; r): Let n = O(1) be a constant. First, it secret shares the witness
w = w1⊕w2⊕ . . . wn to n shares, and then commits to each share separately
using a dual-mode commitment scheme.

– P1(crs, x,w, r, Γ ; rP ): Let R(·, ·) be the relation circuit of the language L.
It uses a semi-honest information theoretic multiparty computation scheme
(MPC) in the dishonest majority setting [4] for n parties. For every i ∈ [n],
the ith party holds wi as its input. The prover runs the MPC “in its head” to
jointly compute R(x,w1 ⊕ w2 ⊕ . . .⊕ wn) = 1, and obtains the view of each
party View1,View2, . . . ,Viewn. Then, it outputs commitments to the views.
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– ch← C: The challenge ch represent two random parties ch← [n]× [n].
– P2(crs, x,w, r, Γ, rP , ch): The prover does the same computation as P1, and

then opens the commitment of the views specified by ch, and also opens the
commitments to the shares specified by ch.

– Verify: The verifier checks
• The openings of the commitments are correct.
• The views are consistent. Namely, the messages sent and received have

the same values.

The zero-knowledge and the soundness property follow from the security and
the correctness of the underlying MPC scheme. Now, we show that the construc-
tion only makes black-box use of cryptography. Since the MPC is information
theoretic, the only part that uses cryptography is the commitments in P1. To
make P1 information theoretic, we provide it a series of fresh commitments to
0 and 1 and their randomness in Γ . Then we have the prover choose which
commitment it needs to use. This makes P1 information theoretic.

Now we analyze the depth of P1. Let the depth of the circuit R be d. Since
we only have a constant number of parties, the secret sharing of w needs a
constant depth circuit. For each gate in R, we only need a constant depth circuit
to compute the corresponding messages in the MPC. Hence, the computation of
the views View1,View2, · · · ,Viewn can be done in depth O(d).

The depth of P2 can also be bounded by O(d). This is because it does the
same computation as P1, and an additional commitment opening in the end. The
commitment opening is selecting the commitment randomness specified by ch.
Hence, it can be computed by a constant depth circuit.

2.4 Maliciously Function Private Homomorphic Encryption

We review the definition of maliciously function private homomorphic encryption.
Notice that in our abstraction of homomorphic encryption, secret keys are
generated corresponding to fresh ciphertexts, and can only decrypt the evaluated
versions of their corresponding fresh ciphertexts. The reason we choose this
abstraction is that we want it to be consistent with the construction in [14]. We
mention that this abstraction is sufficient for our use-case.

Definition 5 ([21]). Let F = {Fλ,L}λ,L∈N be a family of boolean functions,
where for each λ, L ∈ N, the functions in Fλ,L have input size `(λ, L). A mali-
ciously function private homomorphic encryption (HE) scheme for F is a tuple
of algorithms
HE = (Enc,Eval,Dec,Sim), where, except for Sim the rest of the algorithms are
PPT, having the following interfaces

– Enc(1λ, 1L,m), given a security parameter λ ∈ N, a function family index
L ∈ N, and a message m ∈ {0, 1}`, outputs a ciphertext ct ∈ {0, 1}`ct(λ,L)
and a private key sk.

– Eval(ct, f), given a ciphertext ct, and a boolean function f : {0, 1}` → {0, 1},
outputs an evaluated ciphertext cteval ∈ {0, 1}`eval .
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– Dec(sk, ct), given a secret key sk and a ciphertext ct, outputs a bit b ∈ {0, 1}.
– Sim(ct∗, b), on input a ciphertext ct∗ ∈ {0, 1}`ct(λ,L), and a bit b, outputs a

simulated ciphertext ctsim.

We consider HE schemes that satisfy the following properties:

1. Completeness, for every λ, L ∈ N, every function f ∈ Fλ,L and every input
m ∈ {0, 1}`,

Pr[Dec(sk, cteval) = f(m)] = 1,

where,(ct, sk)← Enc(1λ, 1L,m), and cteval ← Eval(ct, f).

2. Compactness, there exists a fixed polynomial `eval = `eval(λ, L) such that
evaluated ciphertexts have size `eval(λ, L), i.e., the size of evaluated ciphertexts
only depend on the index of the family of functions being evaluated.

3. Semantic Security, for every non-uniform polynomial-size adversary A, every
L ∈ N, and every two sequence of message m0 = {m0

λ ∈ {0, 1}`(λ,L)}λ∈N and
m1 = {m1

λ ∈ {0, 1}`(λ,L)}λ∈N the probabilities

Pr[A(ct) = 1], (1)

in the following two experiments differ by only negl(λ):

– in experiment 0, (ct, sk)← Enc(1λ, 1L,m0
λ)

– in experiment 1, (ct, sk)← Enc(1λ, 1L,m1
λ)

4. Malicious Function Privacy, for every L ∈ N, and every ciphertext ct∗ ∈
{0, 1}`ct(λ,L), there exists a m∗ ∈ {0, 1}`(λ,L) such that, for every function
f ∈ Fλ,L,

Eval(ct∗, f)
s
≈ Sim(ct∗, f(m∗))

.

If we instantiate the rate-1 OT-based HE construction of [14] with the recent
rate-1 statistical sender private OT of [1] we get a malicious function private HE
for branching programs.

Theorem 8 ([14,1]). Assuming either DDH or LWE, there exists a black-box
construction of maliciously function private homomorphic encryption scheme
for the function family B = {BL}L∈N, where for each L ∈ N, BL is the set of
branching programs of length L.

If we slightly relax the black-box requirement, we can have a lattice-based leveled
maliciously function private FHE scheme, i.e., a maliciously function private HE
scheme supporting all bounded-depth polynomial circuits.

Theorem 9 ([10]). Assuming LWE, there exists a leveled maliciously function
private homomorphic encryption scheme. The non-black-box use of cryptography
in this scheme is restricted to bootstrapping (which is needed for every evaluation).
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2.5 Somewhere Statistically Binding Hash

Here we define a variant of somewhere statistically binding hashes [12].

Definition 6. Fix a word size W = W (λ). A somewhere statistical binding hash
scheme is a tuple of PPT algorithms SSB = (Gen,Hash,Verify,Extract) with the
following syntax.

– Gen(1λ, N, S), on input a security parameter λ, a database size N , and a
subset of indices S ⊆ [N ], outputs a hash key hk along with a trapdoor td.

– Hash(hk,DB), on input a hash key hk and a database DB of N words of size
W , outputs a hash value h along with N openings {τi}i∈[N ].

– Verify(hk, h, i, x, τ), on input a hash key hk, a hash value h, an index i, a
word x, and an opening ρ, either accepts or rejects.

– Extract(td, h), on input a hash value h , and a trapdoor td, outputs entries
{xi}i∈S .

We require the scheme to satisfy the following properties:

1. Correctness, for all λ,N ∈ N, any subset of indices S ⊆ [N ], any index
i ∈ [N ], and any database DB of size N , we have

Pr[Verify(hk, h, i,DBi, τi) accepts] = 1,

where, (hk, td)← Gen(1λ, N, S) and (h, {τi}i∈[N ]) := Hash(hk,DB).
2. Index Hiding, for any two sets S1, S2 of the same size, we have

crs1
c
≈ crs2,

where crs1 is generated by Gen(1λ, N, S1), and crs2 is generated by Gen(1λ, N, S2).
3. Extraction Correctness, for all λ,N ∈ N, any subset of indices S ⊆ [N ], any

index i ∈ [N ], any database DB of size N , and any hash h, we have

Pr[Verify(hk, h, i,DBi, τi) accepts ∧ xi 6= DBi] = 0,

where, (hk, td)← Gen(1λ, N, S) and {xi}i∈[S] := Extract(td, h).
4. Efficiency: any hash key hk and opening τ corresponding to size N databases

and index sets of size |S|, are of size |S| · log(N) · poly(λ). Further, Verify
can be implemented by a circuit of size |S| · log(N) · poly(λ).

Our definition is slightly stronger than the one in [12] in that (i) our hashing key
is binding to a subset of indices instead of binding to a single index and, (ii) we
need perfect extractable binding instead of just statistical binding, i.e., there is
a trapdoor that allows extracting the ith value for each binding index i. We can
get the former property by repeating any single-index binding scheme multiple
times in parallel. For the latter property, we notice that the HE-based construction
in [12] already achieves this property, however, it is non-black-box due to the use
of bootstrapping in the underlying HE. We observe that if we use a rate-1 OT
scheme instead of HE, then, we have a black-box construction satisfying all the
requirements in Definition 6.Please refer to the full version for a sketch of the
construction.
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Theorem 10. Assuming hardness of either DDH or LWE, there exists a black-
box construction of somewhere statistically binding hash satisfying the properties
listed in Definition 6.

3 Defining C-PSM

First, we formally define the relations we consider in our protocols.

Definition 7 (H-Instance Entropic Relations). Let X and Y be two sets.
Let R ⊆ X × Y be a relation. For any distribution D on X, we say R is
H-instance entropic with respect to D, if, for every w ∈ Y ,

Pr
x←D

[(x,w) ∈ R] ≤ 2−H .

Next, we define the search functionality.

Definition 8 (Search function). Fix parameters `, c,W,N ∈ N. The procedure
Search takes as input a boolean function f : {0, 1}` × {0, 1}c·W → {0, 1}, a
bitstring x ∈ {0, 1}`, and a database DB consisting of N words of size W . It
either outputs the lexicographically first c indices i1, · · · , ic ∈ [N ] such that
f(x,DBi1 , · · · ,DBic) = 1 or ⊥ if no such c indices exist.

We are now ready to define C-PSM.

Definition 9 (2-Round C-PSM). Let ` = `(λ), c = c(λ),W = W (λ) and H =
H(λ) be integer parameters. Let D be a distribution on {0, 1}`. Fix a family of H-
instance entropic boolean functions f = {fλ : {0, 1}`(λ)×{0, 1}c(λ)·W (λ) → {0, 1}}
with respect to D. A credible private set membership protocol for f , denoted by
C-PSM, is a protocol between a sender and a receiver described by a tuple of PPT
algorithms (Setup,R,S,Verify), with the following syntax:

– Setup(1λ, N), on input a security parameter λ and database size N , outputs
a CRS crs.

– R(crs, x), given a CRS crs and an input x, outputs a receiver message α and
an internal state st.

– S(crs, α,DB), on input a CRS crs, receiver message α, and database DB,
outputs a sender message β.

– Verify(β, st), on input a sender message β and internal state st, either accepts
or rejects.

We require the protocol to satisfy the following properties

1. Correctness, for every λ,N ∈ N, every input x ∈ {0, 1}`, and every database
DB of size N such that Search(f, x,DB) 6= ⊥, we have

Pr
crs←Setup(1λ,N)
(α,st)←R(crs,x)
β←S(crs,α,DB)

[Verify(β, st) accepts] = 1.
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2. δ-Soundness, for every non-uniform malicious sender S∗ = {S∗λ}λ∈N, and
every λ,N ∈ N,

Pr
crs←Setup(1λ,N)

x←D
(α,st)←R(crs,x)
β←S∗(crs,α)

[Verify(β, st) accepts] ≤ δ(λ) + 2−H(λ)

3. Receiver Privacy, for any sequence of CRS strings crs = {crsλ}λ∈N, and for
any two sequence of input strings x0 = {x0λ}λ∈N, x1 = {x1λ}λ∈N,

{crsλ, α : (α, st)← R(crsλ, x
0
λ)}λ∈N

c
≈ {crsλ, α : (α, st)← R(crsλ, x

1
λ)}λ∈N.

4. Statistical Malicious Sender Privacy, there is a (possibly unbounded) simulator
algorithm Sim, such that, for every sequence of first message strings α =
{αλ}λ∈N, there exists a sequence of inputs x∗ = {x∗λ}, such that for any
N ∈ N, and for every database DB of N records, the following two distributions
are statistically indistinguishable,

– first, generate crs← Setup(1λ, N), output Sim(crsλ, αλ, x
∗
λ,Search(f, x∗λ,DB)),

– first, generate crs← Setup(1λ, N), output S(crs, αλ,DB).
5. Efficiency, both R and Verify have runtime poly(λ, `, c,W, log(N)).

Remark 1. Notice that the notion of sender privacy in in Definition 9 does not
prevent leaking the indices for the witness in the database. This is W.L.O.G and
merely for the ease of exposition. To prevent this leakage, the sender can simply
randomly shuffle the entries in its database.

4 Construction for String Equality

Here we present the simplest version of our construction where the predicate is
simply string equality, that is, the receiver wants to learn whether its input is in the
sender’s database. The resulting protocol has 2 rounds, achieves negl(λ)-soundness
in a single repetition, and, does not depend on a CRS. For this construction,
let the input size and the database word size be equal, i.e., `(λ) = W (λ) ≥ λ.
Also, define D to be the uniform distribution on {0, 1}`. Observe that for strings
of length `, the string equality relation is an `-instance entropic relation with
respect to D.

We new describe the ingredients in our construction.

– The first ingredient is a one-way function f : {0, 1}∗ → {0, 1}∗. We assume f
maps `(λ)-bit inputs to m(λ)-bit outputs.

– The second ingredient is a maliciously circuit private homomorphic encryption
scheme HE = (Enc,Eval,Dec,Sim) for the class of branching programs B =
{BL}λ,L∈N. Where, for each L ∈ N , BL consists of all branching programs of
length L.

Construction 1. Let L := L(λ,N) be the length of the branching program
computing the function Find described in Figure 1. The construction is as follows:
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– R(x):
• Compute the image of x under f to obtain y := f(x).
• Encrypt y under HE to produce (ct, sk)← HE.Enc(1λ, 1L, y).
• Output α := ct and store internal state st := sk.

– S(α,DB):
• Parse α := ct.
• Apply f to every entry in DB to obtain D̃B = {D̃Bi := f(DBi)}i∈[N ].
• Homomorphically evaluate the function Find

D̃B,DB
on ct to obtain

cteval ← HE.Eval(ct,Find
D̃B,DB

, ).
• Output β := cteval.

– Verify(β, st):
• Parse β and st as β = cteval and st = sk respectively.
• Decrypt cteval to obtain x̃ := HE.Dec(sk, cteval).
• Accept iff f(x̃) equals f(x).

procedure FindD̃B,DB(y)

if y 6∈ D̃B then
Output ⊥

else
Find the smallest index i such that D̃Bi = y.
Output DBi.

Fig. 1: Description of the labeled-PSM functionality Find

Correctness and receiver privacy of Construction 1 immediately follows from
the correctness and semantic security of HE. For efficiency, we have to argue that
the length of the branching program computing Find is logarithmic in N . To do
this, as shown in [5], we can convert the database DB to a trie, and essentially
implement Find by a branching program of length `.

We now prove the soundness of Construction 1.

Theorem 11. Assuming f is one-way, Construction 1 is negl(λ)-sound.

Proof. Let S∗ be a malicious sender. Denote the success probability of S∗ by p.
In more detail, p is defined as

p := Pr
x←D

(ct,sk)←HE.Enc(1λ,1L,f(x))
β←S∗(ct)

x̃:=HE.Dec(sk,β)

[f(x̃) = f(x)].

We use S∗ to build a PPT adversary A which breaks the one-wayness of f with
probability p. A works as follows, on input an image y, it first encrypts y by HE
to obtain (ct, sk)← HE.Enc(1λ, 1L, y). It then runs S∗ on input ct to get cteval ←
S∗(ct). Finally, A decrypts cteval using sk and outputs x̃ := HE.Dec(sk, cteval) as
the preimage of y. Now observe that as long as y is an image of an input chosen
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from the distribution D, the view of S∗ when interacting with A is identical to
its view in the soundness game. Therefore,

Pr
x←D
y:=f(x)
x̃←A(y)

[f(x̃) = f(x)] = p.

This completes the proof.

Theorem 12. Assuming HE is maliciously circuit private, Construction 1 satis-
fies statistical malicious sender privacy.

Proof. Let α be an arbitrary first message and DB be any database of size N ∈ N.
We only describe the simulator algorithm Sim, the theorem follows instantly from
the malicious function privacy of HE.

– Sim receives as input a first message α := ct, and a bitstring x∗.
– Using the HE simulator it computes cteval ← HE.Sim(ct, x∗).
– It outputs cteval.

5 Construction for Predicates Beyond String Equality

Now we consider richer families of predicates. Fix input length ` = `(λ), word
size W = W (λ), function arity c = c(λ), distribution D on {0, 1}`, and entropy
parameter H = H(λ). Let f : {0, 1}` × {0, 1}c·W → {0, 1} be an H-instance
entropic function with respect to D.

In the rest of the paper, we construct a 2-round C-PSM protocol in three
steps.

– First, we construct a 4-round protocol satisfying a weaker notion of soundness,
where, it is only required that an adversary cannot convince a verifier for any
fixed set of indices.

– Then, using dual-mode 2-round OT, we show how to compress the 4-round
protocol to a 2-round protocol which still has weak soundness.

– Finally, we amplify the soundness of the 2-round protocol by parallel repetition
to achieve a (strongly) sound 2-round protocol.

5.1 Weakly-Sound 4-Round Protocol

We first construct a weakly-sound 4-round protocol with constant soundness.
Where a weakly-sound 4-round C-PSM protocol is defined as follows:

Definition 10 (Weakly-Sound 4-Round C-PSM). A credible private set
membership protocol with challenge space C for f is a protocol between a sender
and a receiver described by a tuple of PPT algorithms (Setup,R,S1,S2,Verify),
with the following syntax:

– Setup(1λ, N), on input a security parameter λ and database size N , outputs
a CRS crs.
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– R(crs, x), given a CRS crs and an input x, outputs a receiver message α and
an internal state stR.

– S1(crs, α,DB), on input a CRS crs, a receiver message α, and a database
DB, outputs a sender message β1 and an internal state stS.

– S2(crs, ch, stS), on input a CRS crs, a challenge ch, and an internal state
stS, outputs a sender message β2.

– Verify(β1, ch, β2, stR) on input sender messages β1, β2, challenge ch, and
internal state stR, either accepts and outputs a sequence S = {ik}k∈[c] of
indices, or, rejects.

We require the protocol to satisfy the following properties

1. Correctness, for every λ,N ∈ N, every input x ∈ {0, 1}`, every database DB
of size N such that Search(f, x,DB) 6= ⊥, and every challenge ch ∈ C, we
have

Pr
crs←Setup(1λ,N)
(α,stR)←R(crs,x)

(β1,stS)←S1(crs,α,DB)
β2←S2(crs,ch,stS)

[Verify(β1, ch, β2, stR) accepts] = 1.

2. Weak δ-Soundness, for every non-uniform malicious sender S∗ = {(S1∗λ,S2
∗
λ)}λ∈N,

every λ,N ∈ N, and every sequence of indices I∗ = {i∗k}k∈[c] of size c,

Pr
crs←Setup(1λ,N)

x←D
(α,stR)←R(crs,x)

(β1,stS)←S1∗(crs,α)
ch←C

β2←S2∗(crs,ch,stS)

[Verify(β1, ch, β2, stR) = I∗] ≤ δ(λ) + 2−H(λ)

3. Receiver Privacy, for any sequence of CRS strings crs = {crsλ}λ∈N, and for
any two sequence of input strings x0 = {x0λ}λ∈N, x1 = {x1λ}λ∈N,

{crsλ, α : (α, st)← R(crsλ, x
0
λ)}λ∈N

c
≈ {crsλ, α : (α, st)← R(crsλ, x

1
λ)}λ∈N.

4. Special Statistical Malicious Sender Privacy, there is a simulator algorithm
Sim, such that, for every sequence of first message strings α = {αλ}λ∈N,
there exists a sequence of inputs x∗ = {x∗λ}, such that for every database
DB, and for every ch ∈ C, the following two distributions are statistically
indistinguishable

– sample crs← Setup(1λ, N), then, output Sim(crs, x∗λ, ch,Search(f, x∗λ,DB))
– sample crs← Setup(1λ, N), then, generate (β1, st)← S1(crs, αλ), next,

compute β2 ← S2(crs, ch, st), finally, output (β1, β2).

5. Efficiency, both R and Verify have runtime poly(λ, `, c,W, log(N)).

Our construction uses the following ingredients:

– A commit-and-prove systemΠ = (Setup,FakeSetup,Com,GenFresh,P,Verify,Extract)
for the language specified by f .
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– A maliciously circuit private homomorphic encryption scheme HE = (Enc,Eval,Dec,Sim)
for a class of functions F = {FL}L∈N.

– A somewhere statistically binding hash SSB = (Gen,Hash,Verify,Extract)
satisfying the properties in Definition 6.

Construction 2 (Weakly-Sound 4-Round C-PSM). Let L := L(λ,N) be
a function family index such that FL includes both G1 and G2 for databases DB
of size N . The construction is as follows:

– Setup(1λ, N):
• Generate a CRS for Π, crsΠ ← Π.Setup(1λ).
• Generate an SSB hash key binding to the first c indices (or any other

arbitrary sequence of c indices), (hk, td)← SSB.Gen(1λ, N, {i}i∈[c]).
• Output crs := (crsΠ , hk).

– R(crs, x):
• Encrypt x under HE to produce (ct, sk)← HE.Enc(1λ, 1L, x).
• Output α := ct and store internal state st := sk.

– S1(crs, α,DB):
• Parse crs and α as (crsΠ , hk) and ct respectively.

• Commit to every entry in DB to produce D̃B = {D̃Bi ← Π.Com(crsΠ ,DBi; r
com
i )}i∈[N ].

• Hash D̃B using SSB to obtain (h, {τi}i∈[N ]) := SSB.Hash(hk, D̃B).
• Produce fresh commitments and their randomness Γ ← Π.GenFresh(crsΠ).
• Sample random coins rP for Π.P1.
• Homomorphically evaluate the function G1 on ct to obtain
cteval,1 ← HE.Eval(crsΠ , ct, G

1
DB,D̃B,{τi}i∈[N],{rcomi }i∈[N],Γ,rP

).

• Output β1 := (h, cteval,1) and store internal state st := (x,DB, {rcomi }i∈[N ], Γ, rP ).
– S2(crs, ch, st):
• Parse crs and st as (crsΠ , hk) and (x,DB, {rcomi }i∈[N ], Γ, rP ) respec-

tively.
• Homomorphically evaluate the function G2 on ct to obtain
cteval,2 ← HE.Eval(crsΠ , ct, G

2
crsΠ ,DB,{rcomi }i∈[N],Γ,rP ,ch

).

• Output β2 := cteval,2.
– Verify(crs, β1, ch, β2, st):
• Parse crs,β1,β2 and st as (crsΠ , hk), (h, cteval,1), cteval,2 and sk respec-

tively.
• Decrypt cteval,1 to obtain ({ik}k∈[c], {w̃k}k∈[c], π1, {τk}k∈[c]) := HE.Dec(sk, cteval,1).
• Decrypt cteval,2 to obtain π2 := HE.Dec(sk, cteval,2).
• Accept and output {ik}k∈[c] iff Π.Verify(crsΠ , x, {w̃k}k∈[c], ch, π1, π2) ac-

cepts and
∀k ∈ [c] : SSB.Verify(hk, h, ik, w̃k, τk) accepts.

We first prove δ-soundness and special statistical malicious sender privacy
of Construction 2.

Theorem 13. Assuming SSB is index-hiding, Π has indistinguishable CRS
modes, HE has semantic security, and Π is δ-sound, Construction 2 is weakly
(δ + γ)-sound for any positive constant (or any non-negligible function) γ.
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procedure G1

crsΠ ,DB,D̃B,{τi}i∈[N],Γ,rP
(x)

Let out := Search(x, f,DB)
if out == ⊥ then

Output ⊥
else

Parse out as out = (i1, · · · , ic).
Generate the first prover message:

π1 ← P1(crsΠ , x, {DBik}k∈[c], {rik}k∈[c], Γ ; rP ).

Output ({ik}k∈[c], {D̃Bik}k∈[c], π1, {τik}k∈[c]).

Fig. 2: Description of G1

procedure G2
crsΠ ,DB,{rcomi }i∈[N],Γ,rP ,ch

(x)

Let out := Search(x, f,DB)
if out == ⊥ then

Output ⊥
else

Parse out as out = (i1, · · · , ic).
Generate the second prover message:

π2 ← P2(crsΠ , x, {DBik}k∈[c], {rik}k∈[c], Γ, rP , ch).

Output the second prover message π2.

Fig. 3: Description of G2

Proof. Let S∗ = (S1∗,S2∗) be a malicious sender and let I∗ = {i∗k}k∈[c] be any
sequence of indices of size c. For each hybrid Hj , define the probability pj as
follows:

pj := Pr[Π.Verify(crsΠ , x, {w̃k}k∈[c], π1, ch, π2) accepts ∧∀k ∈ [c] : SSB.Verify(hk, h, i∗k, w̃k, τk) accepts].

where in each hybrid we describe how crsΠ , x, {w̃k}k∈[c], π1, ch, π2, hk, h, and
{τk}k∈[c] are defined.

Hybrid H0: This is the soundness experiment. In more detail, here,

– crsΠ ← Π.Setup(1λ),

– (hk, tdSSB)← SSB.Gen(1λ, N, {k}k∈[c]),
– x← D,

– (ct, sk)← HE.Enc(1λ, 1L, x),

– ((h, cteval,1), st)← S1∗((crsπ, hk), ct),

– ch← C,
– cteval,2 ← S2∗(crs, ch, st),

– ({ik}k∈[c], {w̃k}k∈[c], π1, {τk}k∈[c]) := HE.Dec(sk, ct1,eval),

– and π2 := HE.Dec(sk, cteval,2).
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Hybrid H1: This is identical to H0 except that here hk is generated binding to
indices i∗1, · · · , i∗c , i.e., (hk, tdssb)← SSB.Gen(1λ, N, {i∗k}k∈[c]). The index hiding

property of SSB implies that H0
c
≈ H1. Consequently, |p0 − p1| = negl(λ).

Hybrid H2: The only difference between this hybrid and H1 is that here, crsΠ is
generated along with a trapdoor tdΠ via (crsΠ , tdΠ)← Π.FakeSetup(1λ). Since

Π has indistinguishable CRS modes, H1
c
≈ H2. Therefore, |p1 − p2| = negl(λ).

Lemma 1. Assuming HE is semantically secure, p2 − (δ + 2−H) = negl(λ).

Proof. Using S∗ we build an adversary A against the semantic security of HE. A
works as follows:

– It generates crsΠ , hk, and tdssb exactly as in H2.
– It samples two elements x0 ← D,x1 ← D.
– A sends x0, x1 to the semantic security challenger of HE.
– It receives as response an HE ciphertext ct from the HE semantic security

challenger. The ciphertext ct either encrypts x0 or x1 under an honestly
generated HE key sk.

– A runs S1∗ to obtain ((h, cteval,1), st)← S1∗((crsΠ , hk), ct)
– A receives a random challenge ch← C.
– A runs S2∗ to obtain cteval,2 ← S2∗((crsΠ , hk), st).
– Using tdssb it recovers commitments {w̃∗k}k∈[c] := SSB.Extract(tdssb, h). Using
tdcom, for each k ∈ [c] it recovers w∗k := Com.Extract(tdcom, w̃

∗
k).

– If f(x0, {w∗k}k∈[c]) = 1, it outputs 1. Otherwise, it outputs 0.

Now we analyze the success probability of A in breaking the semantic security of
HE. Let

({ik}k∈[c], {w̃k}k∈[c], π1, {τk}k∈[c]) := HE.Dec(sk, cteval,1).

First, we consider the case where ct encrypts x0. In this case with probability at
least p2,

∀k ∈ [c] : SSB.Verify(hk, h, i∗k, w̃k, τk) accepts, (2)

and
Π.Verify(crsΠ , x0, {w̃k}k∈[c], π1, ch, π2) accepts. (3)

By extractability of SSB, the former implies that ∀k ∈ [c] : w̃k = w̃∗k. Consequently,
by δ-soundness of Π, with probability at least p2 − δ, f(x0, {w∗k}k∈[c]) = 1. We
conclude that in this case A outputs 1 with probability at least p2 − δ. Now we
turn to the other case where ct encrypts x1. In this case, x0 maintains all of its
entropy , therefore, since f is H-instance entropic,

Pr[f(x0, {w∗k}k∈[c]) = 1] = 2−H ,

i.e., A outputs 1 with probability 2−H . We showed that A breaks the semantic
security of HE with probability at least p2 − δ − 2−H .
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This concludes the proof.

Theorem 14. Assuming HE is maliciously circuit private, Π satisfies special
statistical zero-knowledge, and Π has statistically hiding commitments, Construc-
tion 2 satisfies special statistical malicious sender privacy.

Proof. Let α be an arbitrary first message, ch ∈ C be any challenge, DB be any
database of size N ∈ N, and let crs← Setup(1λ, N) be a crs generated through
Setup. First, we describe the simulator algorithm Sim.

– Sim receives as input a CRS parsed as crs := (crsΠ , hk), a first message
α := ct, a bitstring x∗, and indices {i∗k}k∈[c] (W.L.O.G assume that the
indices are not ⊥).

– Using the zero-knowledge simulator for Π, it computes ({w̃∗k}k∈[c], π∗1 , π∗2)←
Π.Sim(crsΠ , x, ch).

– For each i ∈ [N ]/{i∗k}k∈[c], Sim computes a commitment D̃Bi ← Π.Commit(crscom,0).

For each k ∈ [c] it sets the i∗kth commitment to be equal to D̃Bik∗ := w̃∗k.

– It hashes D̃B to obtain (h, {τi}i∈[N ]) := SSB.Hash(hk, D̃B).
– Using the HE simulator it computes

cteval,1 ← HE.Sim(ct, ({i∗k}k∈[c], {w̃∗k}k∈[c], π∗1 , {τi∗k}k∈[c])).

– Using the HE simulator it computes

cteval,2 ← HE.Sim(ct, π∗2)

– It outputs (h, cteval,1, cteval,2).

We now proceed via a series of hybrids to show that the output of Sim is
statistically indistinguishable from an honestly generated sender message.

Hybrid H0: This hybrid corresponds to generating the sender messages β1, β2
honestly through (β1, st) := (h, cteval) ← S1(crs, α,DB) and β2 := cteval ←
S2(crs, ch, st).

Hybrid H1: This hybrid uses HE.Sim to produce cteval,1 and cteval,2. In more
detail, given ct, we know that there exists an x∗ such that,

HE.Eval(ct,G1
crsΠ ,DB,D̃B,{τi}i∈[N],Γ,rP

)
s
≈ HE.Sim(ct,G1

crsΠ ,DB,D̃B,{τi}i∈[N],Γ,rP
(x∗)),

and

HE.Eval(ct,G2
crsΠ ,DB,{rcomi }i∈[N],Γ,rP ,ch

)
s
≈ HE.Sim(ct,G2

crsΠ ,DB,{rcomi }i∈[N],Γ,rP ,ch
(x∗)).

In this hybrid, cteval,1 and cteval,2 are generated as

cteval,1 ← HE.Sim(ct,G1
crsΠ ,DB,D̃B,{τi}i∈[N],Γ,rP

(x∗)),
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and
cteval,2 ← HE.Sim(ct,G2

crsΠ ,DB,{rcomi }i∈[N],Γ,rP ,ch
(x∗)).

It follows from the malicious circuit privacy of HE that H0
s
≈ H1.

Hybrid H2: The difference between this hybrid and the previous hybrid is only
syntactical. In this hybrid, to generate cteval,1 and cteval,2, first, the (lexicograph-
ically) smallest indices {i∗k}k∈[c] such that f(x∗, {DBi∗k}k∈[c]) = 1 are computed.
Next, π1 and π2 are computed as

π1 ← P1(crsΠ , x, {DBi∗k}k∈[c], {ri∗k}k∈[c], Γ ; rP )

and
π2 ← P2(crsΠ , x, {DBi∗k}k∈[c], {rik}k∈[c], Γ, rP , ch).

Finally, cteval,1 and cteval,2 are computed as

cteval,1 ← HE.Sim(ct, ({i∗k}k∈[c], {D̃Bi∗k}k∈[c], π1, {τi∗k}k∈[c])),

and
cteval,2 ← HE.Sim(ct, π2).

As already stated H1 and H2 are identical.

Hybrid H3: In this hybrid we modify how D̃B is generated. Here, for each k ∈ [c],

D̃Bi∗k ← Π.Commit(crsΠ ,DBi∗k ; rcomi∗k )

as before, but the rest of the commitments are generated as

{D̃Bi ← Π.Commit(crsΠ ,0)}i∈[N ]/{i∗k}k∈[c] .

Notice that we don’t modify the commitments whose randomness are used
in the HE.Sim algorithm. Therefore, by the statistical hiding property of the

commitments in Π, H2
s
≈ H3.

Hybrid H4: The difference between this hybrid and the previous hybrid is that

here {D̃Bi∗k}k∈[c], π1, and π2 are generated using the simulator for Π, i.e.,

({D̃Bi∗k}k∈[c], π1, π2)← Π.Sim(x∗, ch).

The special zero-knowledge property of Π directly implies that H3
s
≈ H4. Observe

that, H4 corresponds to generating the sender messages via Sim.

Depending on how HE is instantiated, Construction 2 can support different
classes of predicates with different trade-offs in terms of black-box usage of
underlying cryptographic primitives. If we instantiate HE with Theorem 8, we can
have a black-box construction supporting NC1 predicates f where Search(·, f,DB)
can be implemented in by a branching program whose length is logarithmic in
|DB|.
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Theorem 15. Assuming hardness of either of DDH or LWE, there exists a
family of weakly-sound 4-round C-PSM protocols with the following properties:

1. It supports all predicates f such that f can be implemented by an NC1 circuit
and also for every database DB of size N , Search(·, f,DB) can be implemented
by a branching program of length logarithmic in N .

2. It only makes black-box use of the underlying cryptographic primitives.
3. It is receiver private.
4. It is weakly δ-sound.
5. It satisfies special statistical malicious sender privacy.

Proof. We instantiate Construction 2 with the black-box maliciously circuit pri-
vate homomorphic encryption scheme of Theorem 8 for the class of branching
programs {BL}L∈N. We have already proven weak δ-soundness and special statis-
tical malicious sender privacy of Construction 2. Correctness follows from the
correctness of HE, correctness of Π, and correctness of SSB. Receiver privacy
follows from the semantic security of HE. For efficiency, we need to show that both
G1 and G2 can be evaluated by a branching program of length L = poly(λ, logN).
Observe that both G1 and G2 access the whole database only through the Search
functionality. Therefore, since the Search functionality for f can be implemented
by a branching program of length logarithmic in N , L is also logarithmic in N .
Furthermore, since f is in NC1, by Theorem 7, both P1 and P2 are also in NC1.
Consequently, by Barrington’s theorem [3], P1 and P2 can be implemented by a
polynomial (in λ) length branching program. Therefore, L = poly(λ, logN).

Alternatively, we can instantiate HE with Theorem 9 to get a construction
supporting all bounded depth circuits. While this construction only makes black-
box use of HE, however, the homomorphic encryption scheme constructed in
Theorem 9 is non-black-box due to relying on bootstrapping.

Theorem 16. Assuming hardness of LWE, there exists a family of weakly-sound
4-round C-PSM protocols with the following properties:

1. It supports all predicates f such that f can be implemented by bounded-depth
circuits, i.e., the C-PSM protocol is leveled.

2. Its only non-black-box use of the underlying cryptographic primitives happens
through bootstrapping.

3. It is receiver private.
4. It is weakly δ-sound.
5. It satisfies special statistical malicious sender privacy.

Proof. We instantiate Construction 2 with the maliciously circuit private ho-
momorphic encryption scheme of Theorem 9 for the class of circuits {FL}L∈N,
where for each L ∈ N, FL consists of all circuits of depth at most L. Establishing
weak δ-soundness, special statistical malicious sender privacy, correctness and
receiver privacy is identical to Theorem 15. For efficiency, it is straightforward to
verify that G1 and G2 can be evaluated by circuits of depth L = poly(λ, logN).
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5.2 4-Round to 2-Round Transformation

Here we provide a generic transformation that converts any weakly-sound 4-
round C-PSM protocol to a weakly-sound 2-round protocol. Analogously to
weakly-sound 4-round C-PSM, we define weakly-sound 2-round C-PSM as follows:

Definition 11 (Weakly Sound 2-Round C-PSM). Let `, c,W, f,H,D be
the same as Definition 9. A weakly sound C-PSM for f , is a protocol between a
sender and a receiver described by a tuple of PPT algorithms (Setup,R,S,Verify),
where the interface of Setup,R and S is identical to their interface in Definition 9
and Verify has the following syntax:

– Verify(β, st), on input a sender message β and internal state st, either accepts
and outputs a sequence I = {ik}k∈[c] of indices, or rejects.

Except for δ-soundness we require the protocol to satisfy all properties in Defini-
tion 9. Additionally, we consider the following weaker variant of soundness:

1. Weak δ-Soundness, for every non-uniform malicious sender S∗ = {S∗λ}λ∈N,
every λ,N ∈ N, and every sequence of indices I∗ = {i∗k}k∈[c] of size c,

Pr
crs←Setup(1λ,N)

x←D
(α,st)←R(crs,x)
β←S∗(crs,α)

[Verify(β, st) = I∗] ≤ δ(λ) + 2−H(λ)

Our transformation uses the following ingredients:

– A 4-round weakly sound C-PSM protocol Σ = (Setup,R,S1,S2,Verify).
– A dual-mode statistically sender private OT scheme

OT = (Setup,FakeSetup,Extract,OT1,OT2,OT3).

Construction 3. The construction is as follows:

– Setup(1λ, N):
• Generate a CRS for Σ, crsΣ ← Σ.Setup(1λ, N).
• Generate a CRS for dual-mode OT, crsOT ← OT.Setup(1λ).
• Output crs := (crsΣ , crsOT ).

– R(crs, x):
• Generate a Σ first message for x along with an internal state, (αΣ , stΣ)←
Σ.R(crsΣ , x).

• Sample a random challenge ch← C from the challenge space of Σ.
• Generate an OT first message for ch along with an internal state, (ot1, stOT )←

OT.OT1(crsOT , ch).
• Output first message α := (αΣ , ot1) and internal state st = (x, ch, stΣ , stOT ).

– S(crs, α,DB):
• Parse crs and α as (crsΣ , crsOT ) and (αΣ , ot1) respectively.
• Compute (β1, st)← Σ.S1(crsΣ , αΣ ,DB).
• For each ch ∈ C compute β2,ch ← Σ.S2(crsΣ , st, ch,DB).
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• Compute OT second message ot2 ← OT.OT2(ot1, {β2,ch}ch∈C).
• Output β := (β1, ot2).

– Verify(β, st):

• Parse β and st as (β1, ot2) and (x, ch, stΣ , stOT ) respectively.
• Recover β2,ch as β2,ch := OT.OT3(ot2, stOT ).
• Output whatever Σ.Verify(β1, ch, β2,ch, stΣ) outputs.

The correctness immediately follows from the correctness of Σ and OT. If the size
of the challenge space of C is a constant (or scales logarithmically with N) then,
the efficiency also directly follows from the efficiency of Σ. In the full version of
this paper we prove the following two theorems.

Theorem 17 (Weak δ-Soundness). Assuming Σ satisfies weak δ-soundness,
Construction 3 satisfies weak (δ + γ)-soundness for every constant (or even
non-negligible function) γ > 0.

Theorem 18 (Statistical Malicious Sender Privacy). Assuming OT is
statistical sender private, and Σ satisfies special statistical malicious sender
privacy, Construction 3 is statistically malicious circuit private.

5.3 Weakly δ-Sound to negl(λ)-Sound Transformation

Here we present a generic transformation that for any constant δ > 0 converts
a weakly δ-sound 2-round C-PSM to a negl(λ)-sound 2-round C-PSM. The
transformation is essentially parallel repetition of the weakly-sound protocol, but
the verification algorithm also checks that all the repetitions return the same set
of indices.

For the following construction, let Σ = (Setup,R,S,Verify) be any weakly
sound 2-round C-PSM with δ-soundness.

Construction 4. Let rep := rep(λ,N, c) be a parameter indicating the number
of repetitions.The construction is as follows:

– Setup(1λ, N):

• Generate and output rep independent CRSs for Σ, crs := {crsiΣ ←
Σ.Setup(1λ, N)}i∈[rep].

– R(crs, x):

• Generate rep first messages forΣ along with their internal state, {(αiΣ , stiΣ)←
Σ.R(crsiΣ , x)}i∈[rep].

• Output the first messages α := {αiΣ}i∈[rep] and internal state st =
(x, {stiΣ}i∈[rep]).

– S(crs, α,DB):

• Compute and output rep second messages forΣ, β := {βiΣ ← Σ.S(crsiΣ , α
i
Σ ,DB)}i∈[rep].

– Verify(β, st):

• Accept iff each repetition accepts and outputs a sequence of indices of
size c {Ii := Σ.Verifyβi, sti}i∈[rep] and all the sequences Ii are equal.
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The correctness and statistical malicious sender privacy of Construction 4 imme-
diately follow because the same properties hold in Σ. This construction satisfies
efficiency as long as rep grows at most logarithmically in N .

Theorem 19. If Σ is weakly δ-sound, then, Construction 4 is N c · δrep-sound.

Proof. For each possible sequence I∗, the probability that all of the repetitions
accept and output I∗ is at most δrep. Since we have at most N c different sequences,
the theorem follows.

By setting rep := (λ+ c · log(N))/ log(1/δ) we get 2−λ soundness.

5.4 Putting Everything Together

In this section, we combine the constructions in subsection 5.1 with the trans-
formations in subsection 5.2 and subsection 5.3, to obtain 2-round C-PSM
constructions for richer classes of functionalities.

Theorem 20. Assuming hardness of either of DDH or LWE, there exists a family
of 2-round C-PSM protocols in the CRS model with the following properties:

1. It supports all predicates f such that f can be implemented by an NC1 circuit
and also for every database DB of size N , Search(·, f,DB) can be implemented
by a branching program of length logarithmic in N .

2. It only makes black-box use of the underlying cryptographic primitives.
3. It is receiver private.
4. It is (strongly) sound.
5. It satisfies statistical malicious sender privacy.
6. It has transparent setup, i.e., the CRS is simply a random string.

Theorem 21. Assuming hardness of LWE, there exists a family of 2-round
C-PSM protocols in the CRS model with the following properties:

1. It supports all predicates f such that f can be implemented by bounded-depth
circuits, i.e., the C-PSM protocol is leveled.

2. Its only non-black-box use of the underlying cryptographic primitives happens
through bootstrapping.

3. It is receiver private.
4. It is (strongly) sound.
5. It satisfies statistical malicious sender privacy.
6. It has transparent setup.
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