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Abstract. GIMPS and PrimeGrid are large-scale distributed projects
dedicated to searching giant prime numbers, usually of special forms
like Mersenne and Proth primes. The numbers in the current search-
space are millions of digits large and the participating volunteers need
to run resource-consuming primality tests. Once a candidate prime N
has been found, the only way for another party to independently verify
the primality of N used to be by repeating the expensive primality
test. To avoid the need for second recomputation of each primality test,
these projects have recently adopted certifying mechanisms that enable
e�cient veri�cation of performed tests. However, the mechanisms presently
in place only detect benign errors and there is no guarantee against
adversarial behavior: a malicious volunteer can mislead the project to
reject a giant prime as being non-prime.
In this paper, we propose a practical, cryptographically-sound mechanism
for certifying the non-primality of Proth numbers. That is, a volunteer
can � parallel to running the primality test for N � generate an e�ciently
veri�able proof at a little extra cost certifying that N is not prime.
The interactive protocol has statistical soundness and can be made non-
interactive using the Fiat-Shamir heuristic.
Our approach is based on a cryptographic primitive called Proof of
Exponentiation (PoE) which, for a groupG, certi�es that a tuple (x, y, T ) ∈
G2 × N satis�es x2T = y (Pietrzak, ITCS 2019 and Wesolowski, J.
Cryptol. 2020). In particular, we show how to adapt Pietrzak's PoE at a
moderate additional cost to make it a cryptographically-sound certi�cate
of non-primality.



1 Introduction

The search for giant primes has long focussed on primes of special forms due
to the availability of faster, custom primality tests.Two of the most well-known
examples are

Mersenne numbers of the form Mn = 2n − 1, for some n ∈ N, which can be
tested using the Lucas-Lehmer or the Lucas-Lehmer-Reisel test [25,23,35];
and

Proth numbers of the form Pk,n = k2n + 1, for some n ∈ N and odd k ∈ N,
which can be tested using Proth's theorem [33].

To harness the computational resources required for �nding giant primes, there
are massive distributed projects like GIMPS (Great Internet Mersenne Prime
Search) and PrimeGrid dedicated to the search for giant primes of special forms,
including the ones above. A volunteer in such a distributed project can download
an open-source software that locally carries out primality tests on candidate
numbers, at the end of which, a candidate is either rejected as a composite
number or con�rmed as a new prime. The largest-known prime as of now is a
Mersenne prime (282,589,933−1) with 24,862,048 decimal digits found by GIMPS
[16].

Testing primality of giant numbers. The search for large primes is a time-
consuming process: the GIMPS website warns that a single primality test could
take up to a month. The reason for this is that these tests � whenever the prime
candidate has no small prime factors5 � require the computation of a very long
sequence modulo an extremely large number. For example, Proth's theorem [33]
states that Pk,n = k2n + 1 is prime if and only if, for a quadratic non-residue x
modulo Pk,n, it holds that

xk2n−1

≡ −1 mod Pk,n. (1)

To date, the largest-known Proth prime is 10223 · 231,172,165 + 1 [31]. Since
n is of the order of magnitude 107 and the square-and-multiply algorithm is
the fastest way currently known to carry out exponentiation, the test roughly
requires 107 squarings modulo a 107-digit modulus. Unfortunately, performing
this test does not yield an immediate witness that certi�es the correctness of
the result � in particular, if Pk,n is composite, the test does not �nd a divisor of
Pk,n.

6 Until very recently, the standard way for another party to independently
validate the test result was by recomputing the result of Equation (1). In 2020,
Pavel Atnashev demonstrated that a cryptographic primitive called Proof of

5 GIMPS �rst tests by trial division whether a candidate number has any prime
divisors of size up to a bound between 266 and 281. Only when this is not the case
is that they run a more expensive specialized primality test: details can be found on
this page.

6 Note that some primality tests, like, e.g., Miller-Rabin [27,34], can be modi�ed to
(sometimes) yield factors in case the number being tested is not a prime.
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Exponentiation (PoE) might be applicable in the context of these specialized
primality tests to avoid the costly second recomputation.7

PoEs and e�cient veri�cation of primality tests. For a group G, a PoE [28,39]
is an interactive protocol for the language

LG :=
{
(x, y, T ) ∈ G×G× N : x2T = y over G

}
. (2)

In case the PoE is public-coin, it can be transformed into a non-interactive
PoE using the Fiat-Shamir heuristic [14]. A PoE enables e�cient veri�cation of
costly iterated exponentiation even without the knowledge of the order of the
underlying group. Since the primality test using Proth's theorem amounts to
iterated exponentiation, it seems immediate that one would attempt to exploit
PoEs also towards e�cient veri�ability in the context of primality tests for
giant numbers. The idea is for the volunteer to use the (non-interactive) PoE to
compute � alongside the result of the test � a proof that helps any other party
verify the result. For this approach to be feasible,

1. computing the proof should not require much more additional resource (relative
to the iterated exponentiation induced by the specialized primality test), and

2. the cost of verifying a proof should be signi�cantly lower than that of
recomputing the exponentiation.

Recently, this approach has been deployed in both GIMPS [17] and PrimeGrid
[32], where (non-interactive) Pietrzak's PoE [28] is used to certify (both primality
and non-primality) of Mersenne and Proth numbers when used along with Lucas-
Lehmer-Riesel test and Proth's theorem, respectively. In fact, one of the recently-
found Proth primes, 68633 · 22715609 + 1, has been certi�ed so.

However, PoEs were constructed for groups whose order is hard to compute
like, e.g., RSA group [36] or class group [11]. In such groups, the only known way

to compute x2T is via T sequential squaring. On the other hand, if one party
knows the group order, they can not only speed up this exponentiation8 but also
(in many groups) construct false Pietrzak PoEs that lead a veri�er to accept
proofs for false statements. In the context of primality testing the underlying
group is ZPk,n

, so the group order is known whenever Pk,n is prime. While this
does not speed up the computation of the primality test (since the modulus is
larger than the exponent), it removes the soundness guarantee of the protocol.
As we discuss next, a malicious prover can falsely convince a veri�er that any
Proth prime is composite using Pietrzak's protocol in those groups.

7 More details can be found in this thread of mersenneforum.org. An implementation
due to Atnashev is available on GitHub. The idea of using PoEs for certifying giant
primes has been discussed also by Mihai Preda in another thread in the same forum
already in August 2019

8 If the order of the group is known, then x2T can be computed e�ciently using the
shortcut: y = xe (over G) for e = 2T mod ord(G).
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1.1 Our Contribution

The statistical security guarantee of Pietrzak's PoE applies only to groups without
low-order elements.9 In groups with low-order elements, one additionally requires
the low-order assumption [8] to hold, i.e., it must be computationally hard to
�nd a group element of low order. Boneh, Bünz, and Fisch [8] described an
attack on the soundness of Pietrzak's PoE when implemented in groups where
low-order elements are easy to �nd (see Section 1.2). This presents an issue with
its usage in the GIMPS and PrimeGrid projects since there are no guarantees on
the structure of the group in these applications. In fact, if Pk,n is prime, the order
of the group is Pk,n − 1 = k2n so low-order elements (e.g., of order 2) do exist
and can be found without much e�ort. We show in Appendix A how a malicious
volunteer can exploit the attack from [8] to generate a proof that �certi�es� an
arbitrary Proth prime as composite with constant probability. Indeed, people at
GIMPS and PrimeGrid were aware of this [3] and Pietrzak's PoE is currently
employed in these projects more-or-less as a checksum to catch benign errors
(e.g., hardware errors). When a volunteer is malicious and deliberately tries
to mislead the project, there are no guarantees. This could force the volunteer
network to waste additional computation and possibly postpone the discovery
of another giant prime by years.

Are Cryptographically-Sound Certi�cates Possible? In our work, we
explore whether any cryptographic guarantee for practical proofs is possible in
the above scenarios. Whilst it is theoretically possible to use existing results to
certify non-primality, these measures, as we discuss in Section 1.1, turn out to be
too expensive. As a �rst step towards practical proofs, we show how to achieve
soundness for proving non-primality of Proth numbers. That is, we construct an
interactive protocol for the language

L :=
{
(k, n) ∈ N2 : k is odd and Pk,n = k2n + 1 is not a prime

}
. (3)

While ideally, one would want to certify both primality and non-primality, the
latter is much more important for projects like GIMPS and PrimeGrid: they
worry about missing out on primes rather than false claims stating that a
composite is a prime. Primes are very sparse10, so double checking claims of
primality is not a problem, but performing each primality check twice to catch
benign errors or a malicious volunteer is almost twice as expensive as using a
sound non-primality test as suggested in this work.

9 Recall that the order of an element g ∈ G, denoted ord(g), is the least integer
such that gord(g) = 1. An example of a group without low-order elements is signed
quadratic residues QR+

N , where N is sampled as the product of safe primes [15,21].
This is also the algebraic setting used in Pietrzak's VDF [28].

10 For N ∈ N, let π(N) denote the number of primes less than N . By prime number
theorem, asymptotically π(N) approaches N/ log(N). For the case of Proth numbers,
however, even the question of whether there are in�nitely many of them is open [9].
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Our interactive protocol has statistical soundness: if the candidate number
to be tested is indeed a Proth prime, then even a computationally unbounded
malicious prover (a malicious volunteer) will not be able to convince the veri�er
(say a server run by the project) that it is composite.

Theorem 1 (Informal). There is a practical public-coin statistically-sound
interactive proof for the non-primality of Proth numbers.

We provide an overview of our interactive protocol in the next section. Since
it is public-coin, our interactive protocol can be made non-interactive via the
Fiat-Shamir transform [14]. In general, the Fiat-Shamir transform only works
for constant round protocols, which is not the case for our protocol, so showing
that Fiat-Shamir works in our case needs a proof.

Corollary 1 (Informal). In the random-oracle model, there is a practical statistically-
sound non-interactive proof for the non-primality of Proth numbers.

Concrete E�ciency We defer exact details about the complexity of our protocol
to Section 4.3. Here, we provide concrete (worst-case) numbers for our non-
interactive proof using the largest Proth prime known to date as the candidate:
10223 · 231172165 + 1 [31]. For k = 10223, n = 31172165 and security parameter
λ = 80:

� the prover (additionally) stores 5584 group elements (which is around 20GB)
and performs 13188 multiplications;

� the veri�er performs 10046 multiplications; and
� the proof size is 26 elements of size 31172179, i.e., around 102 MB.

Note that recomputing the result of the primality test would take n = 31172165
multiplications, so our protocol reduces the number of multiplications by a factor
of ⌊31172165/(13188 + 10046)⌋ = 1341. Note that this takes the order of hours
rather than days. In Section 4.4, we show that the additional cost of our protocol
compared to the one that is being used now (which is not cryptographically
sound) is moderate: In the above example, the prover performs 2021 and the
veri�er 4046 multiplications more than in the current implementation.

Applicability of Existing Statistically-Sound PoEs. The issue with low-
order elements when using Pietrzak's PoE out-of-the-box can be resolved using
alternative PoEs that are statistically sound in arbitrary groups.11 Indeed, such
PoEs were recently proposed [6,20]. [6] can be regarded as a parallel-repeated
variant of Pietrzak's protocol but, to achieve statistical soundness, the number
of repetitions is as large as the security parameter. This leads to signi�cant
overhead in terms of both proof-size and computation. For example, to compute
the PoE of [6] for the Proth prime from Section 1.1, the prover needs to perform

11 One could also use SNARGs [22,26] for this purpose but, being a general-purpose
primitive, the resulting schemes would not be practically e�cient.

5



893312 multiplications and it takes the veri�er 318800 multiplications to verify
the proof consisting of 2080 group elements (i.e., 8160 MB). This means that
our protocol reduces the number of multiplications of [6] by a factor of 52 and
the proof size by a factor of 80. The overall approach in [20] is similar to that in
[6], but it improves on the complexity of [6] whenever it is possible to choose the
exponent to be a large q of a special form. In the primality testing application,
we do not have the freedom to choose the exponent and, for the case of q = 2,
the complexity of [20] is comparable to that of [6].

1.2 Technical Overview

Our starting point is Pietrzak's PoE (PPoE, Figure 2), which is a statistically-
sound log(T )-round interactive protocol for the language LG from Equation (2).
We start with its overview (which is adapted from [20]). The protocol in [28] is
recursive in the parameter T and involves log(T ) rounds of interaction. To prove
a (true) statement (x, y, T ), the (honest) prover P, in the �rst round, sends

the �midpoint� z := x2T/2

to the veri�er V. This results in two intermediate
statements (x, z, T/2) and (z, y, T/2). Next, V sends a random challenge r to
P, and they merge these two intermediate statements into a new statement
(xr · z, zr · y, T/2). The above steps constitute the �halving� sub-protocol, which
is repeated log(T ) times, halving the parameter T each time, until P and V
arrive at a (base) statement for T = 1. At this point, V can e�ciently check the
correctness on its own by performing a single squaring.

Problem with low-order elements. The soundness argument in groups without
low-order elements proceeds in a round-by-round manner as follows: when starting
with a false statement, it is guaranteed that at least one of the two intermediate
statements is false and one can argue that the new statement is false with high
probability (over the choice of r). In groups that have easy-to-compute low-order
elements, the above argument fails and we recall the attack described in [8]. In
the following discussion, by a �µ-false� statement, we refer to a statement that
is o� a true statement by a factor of µ ∈ G. Suppose that µ ∈ G has order 2
and let (x, y, T ) be a true statement. For the µ-false statement (x, yµ, T ), the
cheating prover simply sends µz as its �rst message and the claim is that the new
statement at the end of the �rst halving sub-protocol is true with probability
1/2. To see this, note that the new statement is (xr · µz, (µz)r · y, T/2) and
whenever r is odd, it reduces to the true statement (µ · xr · z, µ · zr · y, T/2)
(since µ vanishes when exponentiated to an even power T/2). Thus, the veri�er
eventually accepts. Therefore, applying PPoE out-of-the-box as a certi�cate of
non-primality for a Proth number Pk,n is not sound since the group Z∗Pk,n

might
have easy-to-�nd elements of low order. We show in Appendix A that this is
indeed the case and it is not hard to generate PPoE proofs that �certify� a prime
Pk,n as composite.

Working around low-order elements. The way low-order elements are dealt with
in [6,20] is via parallel repetition and/or by working with exponents q of a
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Fig. 1. Overview of the protocol in Figure 3. All computations are done in the group
Z∗
N , where N = k2n + 1.

particular form. As explained in Section 1.1, we cannot exploit either of these
techniques because of e�ciency reasons and the restriction on the exponent
placed by the primality test. Nevertheless, our interactive protocol, described in
Figures 1 and 3, builds on some of the ideas in [28,20] to get around the issue
of low-order elements for the speci�c exponentiation considered in Proth's test
(Equation (1)). Below, we give an overview of how this is accomplished � we
refer the readers to Section 4 for a more detailed overview.

For a prime N := Pk,n, suppose that x ∈ Z∗N is a quadratic non-residue.12

Suppose that a malicious prover P∗ tries to convince the veri�er V that

xk2n−1

≡ −µ mod N, 1 ̸= µ ∈ Z∗N . (4)

Since N is a prime and the result must be −1 by Proth's theorem, the statement
(x,−µ, k2n−1) corresponding to Equation (4) is µ-false. Our protocol exploits

the fact that V does not care about the exact value of xk2n−1

and it rejects as
long as the correct result is not equal to −1. This observation greatly simpli�es

12 In the actual protocol, we explain how the veri�er can check if the Jacobi symbol of
x is −1 (Step 1 in Figure 3).
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the task for V. As we show, it is su�cient to perform a few e�cient checks on the
order of µ, depending on which V can choose a sound method for veri�cation.
For ease of exposition, we restrict this overview to the case where k itself is
prime.

� Our starting point is the case where ord(µ) is �large�, by which we mean
ord(µ) ∤ k2λ log(n) (Step 3). We show in this case that it is possible to
use PPoE out of the box to prove the statement (xk,−µ, n − 1), which is
equivalent to the statement in Equation (4). Key to proving this is the
following observation on the �ne-grained nature of soundness of PPoE: the
�falseness� of a statement in each round of the sub-protocol cannot decrease
by too much. More precisely, if the cheating prover starts with an α-false
statement then the new statement is β-false for some β whose order cannot
be much smaller than α's. Therefore, if the cheating prover starts o� with
a statement that is su�ciently false, which turns out to be when ord(α) =
k2λ log(n), then the statement in the �nal round remains false with overwhelming
probability and is rejected by the PPoE veri�er. We formalise this observation
in Lemma 1 and point out that, while a similar lemma was proved in [20],
there are some crucial di�erences: see Remark 3.

� Next is the case where ord(µ) is �small and odd� (Step 2), i.e., in this overview
ord(µ) = k. In this case, V can verify the statement in Equation (4) without
any help from P∗ as follows: �nd the inverse of 2n modulo k and raise µ2 to
that element.13 By Equation (4), this yields the same element as xk if the
prover is honest. If N is prime, this will yield a di�erent element than xk as
we show in Section 4.2. This quick veri�cation is only possible since k and
2n are coprime, so it can only be used in this case.

� Finally, consider the case where the order is �small and even�, by which we
mean ord(µ) | 2λ log(n) (Step 4). Here, we are in a situation where PPoE

does not guarantee soundness (since the statement is not �false enough�).
However, as in [20], it is possible to reduce the task of checking Equation (4)
to that of verifying, using PPoE, the �smaller� statement obtained by taking
the 2λ log(n)-th root of Equation (4). To be precise, P and V verify the
statement (xk, y, n − 1 − λ log(n)) using PPoE and, if convinced, V then

checks whether y2
λ log(n)

= −µ, by itself, using a �nal exponentiation. This
�nal exponentiation forces a malicious prover P∗ to cheat with an element
of high enough order during the PPoE. To see this, assume for example that

P∗ sends the honest result y = x2n−1−λ log(n)

. Then, V's �nal exponentiation
leads to outright rejection since

y2
λ log(n)

= (xk2n−1−λ log(n)

)2
λ log(n)

= xk2n−1

̸= −µ.

On the other hand, P∗ cheating with an element of such high order during
the PPoE makes the veri�er reject this PPoE with overwhelming probability
(as in the �rst case).

13 Note that if µ has order k, then −µ has order 2k (which is not coprime to 2n−1),
which is the reason we have to square the statement in Equation (4) before computing
the inverse of the exponent.
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We refer the reader to Sections 3 and 4 for the formal analysis.

1.3 Related Work

General-purpose primality testing. Pratt showed that primality testing (of arbitrary
integers) lies in the class NP, via the eponymous Pratt certi�cates [30] (an
alternative certi�cate of primality is the Atkin-Goldwasser-Kilian-Morain certi�cate
[2,18]). Coupled with the fact that non-primality has succinct certi�cates in the
form of factorization (which can be e�ciently checked by integer multiplication)
placed primality testing inNP∩co-NP. Probabilistic tests like Solovay-Strassen
[38], Miller-Rabin [27,34] and Baillie�PSW [4,29] soon followed, which placed
primality testing in classes like BPP, RP or ZPP.14 Finally, Agrawal, Kayal,
and Saxena [1] settled the question by showing that primality testing is in P.
We refer the readers to [1] for a more detailed exposition on (general-purpose)
primality testing.

Giant prime numbers and custom primality tests. In addition to Mersenne
numbers Mn and Proth numbers Pk,n, numbers of special form that have been
targetted in the search for giant primes include Fermat numbers Fn := 22

n

+
1 (which are a special case of Proth numbers), generalised Fermat numbers
Fa,b,n := a2

n

+ b2
n

and Woodall numbers Wn := n · 2n − 1. We refer the readers
to PrimePages for a more comprehensive list. These numbers of special forms
are amenable to custom primality tests that run faster than general-purpose
primality tests. For example, the Lucas-Lehmer (LL) test [25,23] is a determinstic
primality test for Mn that runs in time O(n · µ(n)), where µ(n) denotes the
complexity of multiplying two n-bit integers.15 In comparison, for Mn, the
complexity of deterministic AKS primality test is Õ(n6) and the complexity
of probabilistic Miller-Rabin test is O(λn · µ(n)) (for a statistical error of 2−λ).
GIMPS relies on the Lucas-Lehmer-Riesel [35] test, which is a generalization of
the Lucas-Lehmer test for numbers of the form k2n − 1. PrimeGrid performs a
variety of primality tests including Proth's theorem [33] for Proth numbers. They
were �rst to realize that (Pietrzak's) PoE can be used to certify the results of
Proth's primality test [32]. They also noticed that low-order elements can a�ect
the soundness of the protocol and, therefore, included some checks on the order
of the result [3]. For Proth number Pk,n, given a quadratic non-residue modulo
Pk,n, the complexity of Proth's test [33] is O(log(k) · nµ(n)); otherwise it is a
Las Vegas test (since we currently know how to generate a quadratic non-residue
only in expected polynomial-time). An alternative is to use the deterministic
Brillhart-Lehmer-Selfridge test [10].

More Related Work on PoE. PoE was introduced in the context of another
cryptographic primitive called Veri�able Delay Function (VDF) [7]. The VDFs

14 In fact, Miller's test [27] runs in strict polynomial time assuming the Generalised
Riemann Hypothesis.

15 Since these numbers have a succinct representation, the complexity of these tests is,
strictly-speaking, exponential in the size of the input (which is n for Mn).
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of Pietrzak [28] and Wesolowski [39], both, implicitly involve the construction
of a PoE: an overview and comparison of these PoE protocols can be found in
[8]. The soundness of these PoEs relies on new hardness assumptions called low-
order assumption and, the stronger, adaptive root assumption, respectively [8],
i.e., strictly-speaking, these are arguments of exponentiation. Pietrzak's PoE [28]
is, however, statistically-sound in groups with the syntactic guarantee that no
elements of low order exist, e.g., a subgroup of quadratic residues of RSA group.
In addition, there are two more statistically-sound PoE constructions currently
known: [6] and [20]. [6] can be seen as a elaborate parallel repetition of [28]
that is statistically sound in any group. However, this repetition increases the
complexity of the protocol by a multiplicative factor λ, where λ is a statistical
security parameter. [20] improves on the construction in [6] and reduces the
complexity by almost one order of magnitude whenever one can freely choose
the exponent in the exponentiation. Finally, PoEs have recently been used as
a crucial building block in constructing space-e�cient general-purpose succinct
non-interactive arguments of knowledge (SNARKs) [12,6], thus establishing a
converse relationship with SNARGs (since SNARGs trivially imply PoEs). Recently,
Rotem studied the problem of batching PoEs in his work on batching VDFs [37].

2 Preliminaries

Interactive protocols. Let Σ be an alphabet. For ℓ ∈ N, an interactive protocol
consists of a pair (P,V) of interactive Turing machines called prover and veri�er,
respectively. In an ℓ-round (i.e., (2ℓ− 1)-message) interactive protocol, P and V
run on a common input x and proceed as follows: in each round i ∈ [1, ℓ], �rst P
sends a message αi ∈ Σa to V and then V sends a message βi ∈ Σb to P, where
Σ is a �nite alphabet. At the end of the interaction, V runs a (deterministic)
Turing machine on input {x, (β1, . . . , βℓ), (α1, . . . , αℓ)}. The interactive protocol
is public-coin if βi is a uniformly distributed random string in Σb.

Interactive proofs. The notion of an interactive proof for a language L is due to
Goldwasser, Micali and Racko� [19].

De�nition 1. An interactive protocol (P,V) is an ϵ-sound interactive proof
system for L if:

� Completeness: For every x ∈ L, if V interacts with P on common input
x, then V accepts with probability 1.

� Soundness: For every x ̸∈ L and every cheating prover strategy P̃, the
veri�er V accepts when interacting with P̃ with probability at most ϵ(|x|),
where ϵ = ϵ(n) is called the soundness error of the proof system.

In particular, the interactive protocol is a statistically-sound proof if the soundness
holds against computationally-unbounded cheating prover strategies and the soundness
error is negligible (in the input-length).
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Non-interactive proofs in the random-oracle model. A non-interactive protocol
involves the prover sending a single message to the veri�er. We are interested in
non-interactive proofs in the random-oracle model instead of the more standard
non-interactive arguments in the common reference string (CRS) model. Therefore,
we now have to consider oracle interactive Turing machines P(·) and V(·) for the
prover and veri�er.

De�nition 2. A pair of oracle machines (P(·),V(·)) is an ϵ-sound non-interactive
proof system for a language L in the random-oracle model if the following
properties hold:

� Completeness: For every x ∈ L,

Pr
O←O

[
VO(x,PO(x)) = 1

]
= 1,

where the probability is over the random choice of the oracle O ∈ O.
� Soundness: For every (computationally-unbounded) cheating prover strategy

P̃,
Pr

O←O
(x,π̃)←P̃O

[
VO(x, π̃) = 1 ∧ x ̸∈ L

]
≤ ϵ(|x|).

Remark 1 (On the complexity of the honest prover and veri�er). In standard
de�nitions, the prover is either unbounded and deterministic, or given additional
information (e.g., the witness when the language is inNP), whereas the veri�er is
polynomially-bounded and randomised. We prefer a more �ne-grained de�nition
where the (deterministic) prover is stronger than the (randomised) veri�er, but
both parties can be polynomially-bounded.

Remark 2. The de�nition of interactive PoEs and non-interactive PoEs in the
random-oracle model can be recovered by restricting De�nitions 1 and 2 to the
language LG from Equation (2).

3 Pietrzak's PoE in Groups of Known Order

In this section, we recall Pietrzak's PoE (PPoE) [28] and some of its properties.
The protocol is presented in Figure 2. By inspection of the protocol we see that
it has perfect completeness. Pietrzak proved the following complexity results in
[28]:

Proposition 1 ([28, Section 6.2]). On instance (x, y, T,G) PPoE has the
following e�ciency properties:

1. V performs 3λ log T multiplications in G.
2. P performs 2

√
T multiplications in G and stores

√
T group elements to

compute the proof.
3. The size of the proof is log T elements of G.

11



Instance: (x, y, T,G), where x, y ∈ G and T ∈ N is even

Parameters: statistical security parameter λ

Statement: x2T = y in G

Protocol:

1. For T = 1:
� If x2 = y, output accept.
� Else, output reject.

2. For T > 1:
(a) P sends v = x2T/2

to V.
(b) If v ̸∈ G, V outputs reject. Otherwise, V samples r ← {0, 1, . . . , 2λ − 1}

uniformly at random and sends it to P.
(c) P and V compute x′ := xrv and y′ := vry in G.
(d) If T/2 is even, P and V run the protocol on instance (x′, y′, T/2,G). If

T/2 is odd, P and V run the protocol on instance (x′, y′2, (T + 1)/2,G).

Fig. 2. PPoE.

Furthermore, Pietrzak proved that the PoE is statistically sound in groups
without low-order elements, in particular safe prime RSA groups. Boneh et al.
later proved computational soundness in groups where it is hard to �nd low-
order elements (the low-order assumption) [8]. Ideally, we would like to use PPoE
in a group of known order, where an adversary can �nd low-order elements
in polynomial time. However, Boneh et al. showed that this is not sound by
presenting an attack with low-order elements in [8]. In the following section, we
analyze in what way these low-order elements a�ect the soundness of PPoE.

3.1 (Non-)Soundness

We analyze the soundness of PPoE in groups of known order. Assume that the

correct result of an exponentiation is x2T = y mod N but P̃ claims that for

some α ̸= 1 mod N it is x2T = yα mod N . We sometimes call α the �bad�
element and say that the second statement is α-false. Note that the prover's
statement is of this form without loss of generality because every element has
an inverse in a group. This means that if the prover claims that the result is
some group element β, we can always �nd a group element α such that β = yα.
Soundess of PPoE only depends on the order of this bad element α. If its order
only has small prime divisors with small exponents, the probability that repeated
exponentiation of this element with a random exponent decreases its order to
one, and thus the veri�er's check for T = 1 passes, is not negligible.

The following lemma bounds the probability that the order of the bad element
�drops� by a factor pℓ in one round of PPoE. It will be the main tool in proving
soundness of our non-primality certi�cate later on.

12



Lemma 1. Let (x, yα, T,G) be an α-false statement for some α ∈ G, µ ∈ G
an arbitrary group element, pe any prime power that divides the order of α and
let r ← {0, 1, . . . , 2λ − 1} be sampled uniformly at random. Assume that the
statement (xrµ, µryα, T/2,G) is β-false for some β ∈ G. For any ℓ ≤ e, the
probability that pe−ℓ+1 does not divide the order of β is at most 1/pℓ.

Proof. If the statement (xrµ, µryα, T/2) is β-false, we have µ = γx2T/2

such

that β = αγr−2T/2

. We want to bound the following probability

Pr
r
[βpe−ℓs = αpe−ℓsγ(r−2T/2)pe−ℓs = 1] = Pr

r
[γ(r−2T/2)pe−ℓs = α−p

e−ℓs]

≤ 1

ord(γpe−ℓs)
+

1

2λ

=
gcd(d, pe−ℓs)

d
+

1

2λ
, (5)

where d denotes the order of γ and s is any positive integer not divisible by p.
The inequality follows from the fact that the size of the randomness space is 2λ.

Now assume that the above event holds. Then we have γpe−ℓsm = α−p
e−ℓs for

some integer m, hence

ord(α−p
e−ℓs) = ord(γpe−ℓsm) =

d

gcd(d, pe−ℓsm)

and equivalently

d = ord(α−p
e−ℓs) gcd(d, pe−ℓsm) ≥ pℓ gcd(d, pe−ℓsm).

Plugging into (5) we get

Pr[αpe−ℓsγ(r−2T/2)pe−ℓs = 1] ≤ gcd(d, pe−ℓs)

pℓ gcd(d, pe−ℓsm)
+

1

2λ
≤ 1

pℓ
+

1

2λ
.

Remark 3. A lemma of �avour similar to Lemma 1 was proven in [20, Lemma
1] for a parallel-repeated variant of PPoE. However, there are major di�erences
between these: (i) the new statements in the protocol in [20] (and also [6]) are
obtained in a slightly di�erent way, using multiple random coins and (ii) [20,
Lemma 1] was only proven for restricted choices of numbers p and e. Hence,
Lemma 1 does not follow from [20, Lemma 1].

Corollary 2. Let (x, yα, T,G) be an α-false statement for some α ∈ G and 2e

any power of 2 that divides the order of α. The probability that 2e−ℓ does not
divide the order of the bad element after one round of PPoE is at most 1/2ℓ.

Proof. By Lemma 1 we know that the probability that 2e−ℓ+1 does not divide
the order of the bad element of the instance (x′, y′, T/2,G) is at most 1/2ℓ. Now
if T is odd, the new instance of the protocol is (x′, y′2, (T +1)/2,G), so the bad
element is squared once. This reduces its order by a factor of 2, which yields the
claim.
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4 Certifying Non-Primality of Proth Primes

In this section, we present the interactive protocol for verifying that a Proth
number N = k2n + 1 is not prime, i.e., that xk2n−1

= −µ mod N for some
µ ̸= 1 and x a small prime number that is a quadratic non-residue modulo N .
This means that from now on all group operations will be performed in the group
Z∗N .

The protocol presented in Figure 3 consists of four steps in which V performs
di�erent checks on the order of the element µ and then chooses the best method
for veri�cation accordingly. An overview can be found in Figure 1.

In the �rst step, V checks if x has Jacobi symbol −1 modulo N since the
primality test is only conclusive if x is a quadratic non-residue. To this end,
V �rst computes a := N mod x and, if a ̸= 0, checks if the Jacobi symbol
( x
N ) = ( ax ) is −1. If a = 0 we know that x is a divisor of N and hence N is
composite, so V can already accept in Step 1. If the Jacobi symbol is 1, it is
unclear if x is a quadratic residue mod N so V rejects the proof. If the Jacobi
symbol is −1, the protocol moves on to the next step.

In the second step, V checks if the element µ has small odd order dividing
k2n, i.e., order dividing k, by computing µ̃ := µk mod N . If µ̃ ̸= 1, the order of
µ does not divide k and V goes on to the next step. If µ̃ = 1, V can easily �nd the
order d of µ by factoring the (small) integer k. Then V can verify the statement
without any message from P. In fact, V only veri�es the statement xk2n = µ2 by
computing the 2n-th root of µ2. Unfortunately we can not compute the 2n−1-th
root of −µ because −µ has order 2d and the inverse of 2n−1 modulo 2d does not
exist. This additional squaring step eliminates potential �bad� elements of order
2, so this check only proves that xk2n−1

= −µ ·α mod N , for some element α of
order 2 or α = 1. Luckily, this is enough information for V since we only want to
rule out the possibility that the result of the exponentiation is −1 and µ−1 ̸= α
since µ has odd order.

If V gets to the third step, we know that the order of µ does not divide
k. To make sure that it does not divide k times a small power of 2 either, V
checks if µk2λ log n ̸= 1 mod N . If this holds, we know that V can accept a PPoE

for the statement xk2n−1

= −µ mod N because a malicious prover will only be

successful in convincing V with negligible probability. If µk2λ log n

= 1, such a
PoE is not sound, so V goes on to the next step.

If V gets to the last step, we know that the order of µ is too small to soundly
accept a PPoE. However, we now know that the order of µ is even, so we can use
the following trick: Instead of sending a PPoE for the statement xk2n−1

= −µ
mod N , P sends a PPoE for the statement xk2n−1−λ log n

= y mod N for some

element y ∈ Z∗N . Then V checks if y2
λ log n

= −µ. If this holds and the PoE is
correct, V outputs accept. Else, V outputs reject.

Remark 4. The complexity of Steps 3 and 4 of our protocol could be slightly
improved with the following changes:

� Instead of V computing the exponentiation µ̃2λ log n

1 in Step 3, P could send

a proof for the statement µ̃2λ log n

1 ̸= 1. This can be done in a sound manner
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since again V only wants to rule out one result, so P and V can execute
Steps 2-4 recursively. This reduces the work for V but increases the work
for P. However, the PoEs can be batched together similarly to the batching
protocol in [20] so the proof size only grows by one group element.

� If V and P �nd out in Step 3 that µ̃2λ log n

1 = 1, they also know the smallest

integer i such that µ̃2λ log n−i

1 ̸= 1. This means that, in Step 4, P can send a
PoE for the statement

(xk)2
n−1−λ log n+i

= y mod N,

and V only needs to check if y2
λ log n−i

= −µ mod N . This reduces the work
for V by i multiplications.

For simplicity of the analysis and because the improvements are minor, we omit
these changes and analyze the protocol as it is stated in Figure 3.

Instance: (n, k, x, µ), where n ∈ N, 0 < k < 2n−1 an odd integer, µ ∈ Z∗
N

with µ ̸= 1 and x ∈ Z∗
N a small prime number with Jacobi symbol −1 modulo

N := k2n + 1

Parameters: statistical security parameter λ

Statement: xk2n−1

= −µ mod N

Protocol:

1. V computes a := N mod x and if a ̸= 0 the Jacobi symbol ( a
x
).

� If a = 0, output accept.
� If a ̸= 0 and ( a

x
) = −1, go to Step 2.

� Else, output reject.
2. P and V compute µ̃1 := µk mod N

� If µ̃1 ̸= 1, go to Step 3.
� Else, V computes d := ord(µ) and a := 2−n mod d. If xk = µ2a mod N

output accept. Else, output reject.

3. P and V compute µ̃2 := µ̃2λ log n

1 mod N .
� If µ̃2 = 1, go to Step 4.
� Else, P sends PPoE(xk,−µ, n− 1, N). If the PPoE veri�er accepts, output

accept. Else, output reject.
4. (a) P sends a group element y and a PPoE (xk, y, n− 1−λ logn,N) for some

y ∈ Z∗
N . If the PPoE veri�er rejects, output reject. Else, go to Step 4b.

(b) V computes ỹ := y2λ log n

mod N . If ỹ = −µ output accept. Else, output
reject.

Fig. 3. The non-primality certi�cate.
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4.1 Completeness

In this section, we show that V always outputs accept if P is honest.

Theorem 2. The protocol in Figure 3 has perfect completeness.

Proof. We show that if P is honest, V does not output reject in any step and
outputs accept in one of the steps.

Step 1. Assume that x does not divide N since otherwise V accepts in the �rst
step and completeness holds trivially. If P is honest, x has Jacobi symbol
( x
N ) = −1. Furthermore, since x is prime and does not divide N , we have( x

N

)
= (−1)(x−1)k2

n/4

(
N

x

)
=

(
N

x

)
=

(
N mod x

x

)
,

where the �rst equality follows from the law of quadratic reciprocity. Hence,
V does not reject in this step and goes on to the next one.

Step 2. If µ̃1 ̸= 1, V does not output anything in this step and goes on to the
next one. Assume µ̃1 = 1 and let a := 2−n mod d, where d is the order of
µ. Then we have

µ2a = (µ2)2
−n

= ((xk)2
n

)2
−n

= xk mod N

so V accepts if P is honest.
Step 3. If µ̃2 = 1, V does not output anything in this step and goes on to the

next one. If µ̃2 ̸= 1, completeness follows immediately from the completeness
property of PPoE.

Step 4. If P is honest, the veri�er does not reject in Step 4a by the completeness
property of PPoE. In Step 4b, the veri�er checks if

y2
λ log n

= (xk2n−1−λ log n

)2
λ log n

= −µ mod N,

which holds if P is honest.

4.2 Soundness

For our purposes, it is su�cient to consider a relaxed de�nition of soundness. We
only want to rule out the event that a malicious prover P̃ can convince V that a
Proth number is not prime even though it is. This means we do not need to care
about a cheating prover that convinces V of a wrong result of the exponentiation
xk2n−1

mod N as long as the correct result is not −1.

De�nition 3. We call a non-primality certi�cate sound if the probability that
V outputs accept on a statement (n, k, x, µ) for some µ ̸= 1 but xk2n−1

= −1
mod N is negligible. We call that probability the soundness error.

Theorem 3. The protocol in Figure 3 has soundness error at most 2−λ+2 log n.
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Proof. We bound the probability that V falsely accepts an incorrect statement
in each step individually.

Step 1. If V accepts in Step 1, x is a divisor of N so N must be composite.
Assume that this does not hold and x has Jacobi symbol 1 modulo N , i.e.,
( x
N ) = 1. Then, (a

x

)
=

(
N

x

)
= (−1)(x−1)k2

n/4
( x

N

)
= 1,

so V rejects in Step 1.
Step 2. Recall that we consider a relaxed de�nition of soundness (see De�nition 3).

This means that we only need V to reject, when the correct result of the
exponentiation is −1. We show that if this is the case and µ̃1 = 1, V always
rejects in Step 2(b). Assume that N is prime. If V gets to Step 2(b), we know
that d is a divisor of k and hence odd. This means that µ2 has order d. V
computes a := 2−n mod d and checks if xk = (−µ)2a = µ2a mod d.

1. Since N is prime it holds that (xk)2
n−1

= −1 mod N so the order of x
is 2nk. This means that the order of xk is 2n.

2. On the other hand, we know that the order of µ2 is d so the order of µ2a

is a divisor of d and hence odd.
1. and 2. together yield that xk ̸= µ2a mod N so the veri�er rejects.

Step 3. If V gets to Step 3 and µ̃2 ̸= 1, we know that the order of the bad element
µ is divisible by 2λ log T . This means that a malicious prover convinces V to
falsely accept if the execution of the PoE reduces the order of the bad element
on average by 2λ per round. In particular, there must be at least one round
where the order drops by at least 2λ. By Corollary 2, this happens with
probability at most 2−λ+2 for a �xed round. Applying a union bound, we
conclude that, in this case, V accepts with probability at most 2−λ+2 log n.16

Step 4. If V gets to Step 4, a malicious prover needs to cheat in Step 4 (a) since
otherwise the check in Step 4 (b) will not go through. This means that the
prover needs to multiply the claim in Step 4 (a) by a bad element α. What
can we say about the order of α? We know that it needs to pass the following
check:

(yα)2
λ log T

= −µ,

where y2
λ log T

= −1. This means that α is of the following form:

α2λ log T

= µ.

It is well known that

ord(α2i) =
ord(α)

gcd(2i, ord(α))
= ord(µ).

16 PrimeGrid has already implemented a check µk·264 = 1? [3]. Our analysis shows that
an exponent of 64 is not su�cient for cryptographic soundness as this only gives
64/ log(n) bits of security �per round�; once we apply the Fiat-Shamir methodology
to make the proof non-interactive, each round can be attacked individually.
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Output in Prover's complexity Veri�er's complexity Proof size

Step 1 0 logn 0
Step 2 1.5 log k 2.5 log k + 2 logn 0
Step 3 1.5 log k + λ logn+ 2

√
n 1.5 log k + (4λ+ 1) logn logn

Step 4 1.5 log k + λ logn+ 2
√
n 1.5 log k + (5λ+ 1) logn logn+ 1

Table 1. Complexity of the protocol in Figure 3 depending on the step in which it
outputs the result. Prover's and Veri�er's complexity are measured in the number of
multiplications and proof-size in the number of group elements. We denote by λ the
statistical security parameter.

(A proof can be found in any standard textbook on group theory, e.g., [13,
Proposition 5]). Now the order of µ is even so we know that ord(α) =
2i ord(µ) for i = λ log T . In particular, we have that 2λ log T is a divisor
of the order of α. We can apply Corollary 2 and a union bound by the same
argument as above and conclude that V accepts with probability at most
2−λ+2 log n in this case.

All the cases together show that V outputs accept with probability at most
2−λ+2 log n whenever N is prime.

Corollary 3. The Fiat-Shamir transform of the protocol in Figure 3 yields a
statistically sound non-interactive protocol in the random oracle model: The
probability that P �nds a non-primality certi�cate for a prime number with up
to Q random oracle queries is at most Q2−λ+2.

Proof. As we have seen in the proof of Theorem 3, a cheating prover P̃ can
convince V to accept a proof of non-primality of a prime number only if P̃
manages to decrease the order of the bad element by at least 2λ in one of the
rounds of a PPoE. By Corollary 2, this happens with probability at most 2−λ+2,
where the probability depends only on the random coins. Assume that P̃ makes
up to Q queries to the random oracle. By the union bound, the probability that
P̃ �nds a query that triggers the above event is at most Q2−λ+2.

4.3 E�ciency

In this section, we analyze the complexity of the Fiat-Shamir transform of the
protocol presented in Figure 3. Note that this complexity depends on the step in
which the protocol returns the output. We summarize the results of this section
in Table 1.

Prover's complexity. We compute the number of multiplications the prover
has to perform additionally to �nding a quadratic non-residue modulo N and
computing the initial exponentiation.

18



Step 1. If the protocol returns the output in Step 1, P does not perform any
additional computations.

Step 2. P checks if µk = 1 via �square and multiply�, which is approximately
1.5 log k multiplications. If this holds, P does not perform any other computations.

Step 3. If the protocol runs until Step 3, P has checked if µk = 1, which did not

hold and now checks if (µk)2
λ log n

, which is λ log n additional multiplications. If
this holds, P computes the proof of PPoE(xk,−µ, n−1, N) which, by Proposition 1,
can be done with 2

√
n multiplications and storage of

√
n group elements.

Step 4. If the protocol runs until Step 4,P has checked if µk = 1 and (µk)2
λ log n

,
which did not hold. Now P computes the proof of PPoE (xk, y, n−1−λ log n,N),
which, by Proposition 1, can be done with 2

√
n− λ log n multiplications and

storage of
√
n− λ log n group elements.

Veri�er's complexity.

Step 1. Computing a := k2n+1 mod x takes approximately log nmultiplications.
Computing the Jacobi symbol (ax ) takes approximately log2 x multiplications.

Since x is a very small prime number in practice, we will ignore the log2 x
multiplications from now on.

Step 2. V checks if µk = 1 via �square and multiply�, which is approximately
1.5 log k multiplications. If this holds, V computes 2−n mod d, where d is the
order of µ. This is another log n+ log k multiplications.

Step 3. If the protocol runs until Step 3, V has checked if µk = 1, which did not

hold and now checks if (µk)2
λ log n

, which is λ log n additional multiplications.
If this holds, V veri�es the proof of PPoE(xk,−µ, n − 1, N) which is 3λ log n
multiplications by Proposition 1.

Step 4. If the protocol runs until Step 4,V has checked if µk = 1 and (µk)2
λ log n

,
which did not hold. Now V veri�es the proof of PPoE (xk, y, n− 1− λ log n,N),
which is 3λ log(n−λ log n) multiplications (by Proposition 1) and then performs
an exponentiation with exponent 2λ logn, which is another λ log nmultiplications.

Proof size.

Step 1. If V already accepts or rejects in Step 1, there is no proof needed.

Step 2. If µk = 1, V can check the result themselves so there is no proof needed.

Step 3. If P sends a proof in this step, the proof size is equal to the size of the
proof of PPoE(xk,−µ, n− 1, N), which is log(n− 1) by Proposition 1.
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Step 4. If P sends a proof in this step, it consists of a group element y and
the proof of PPoE (xk, y, n − 1 − λ log n,N), which is log(n − 1 − λ log n) by
Proposition 1.

Example. We give a numerical example of the complexity of the protocol when
it outputs the result in Step 4 (the most expensive case) using the largest Proth
prime known to date: 10223 · 231172165+1 [31]. For k = 10223 and n = 31172165
we have ⌈log k⌉ = 14 and ⌈log n⌉ = 25. If we choose the security parameter as λ =
80, we get that the prover stores ⌈

√
31172165⌉ = 5584 group elements, performs

13188 multiplications, the veri�er performs 10046 multiplications and the proof
size is 26 elements of size 31172179, i.e., around 102 MB. Note that recomputing
the result of the primality test would take n = 31172165 multiplications in
the same group, so our protocol reduces the number of multiplications by a
multiplicative factor of ⌊31172165/(13188 + 10046)⌋ = 1341.

Our protocol also achieves signi�cant savings compared to [6]: To compute
the PoE of [6], the prover needs to perform 2λ

√
n = 893312 multiplications

and the veri�er does 2λ2 log n+ 2λ = 318800 multiplications to verify the proof
consisting of λ log n = 2080 group elements (i.e. 8160 MB). This means that our
protocol reduces the number of multiplications of [6] by a factor of 52 and the
proof size by a factor of 80.

4.4 Comparison with Pietrzak's PoE

We saw in Section 4.3 that the complexity of the protocol is the highest, when
it outputs the result in Step 4. Even in this case the additional cost compared
to the naive implementation of PPoE is moderate: Instead of performing 2

√
n

multiplications, P needs 1.5 log k+λ log n+2
√
n multiplications to compute the

proof. Using the numbers from the example in Section 4.3 this is 2021 extra
multiplications on top of the 11168 multiplications that are performed in the
naive implementation. Instead of performing 3λ log n multiplications, V needs
1.5 log k+(5λ+1) log nmultiplications to verify the result. This is 4046 additional
multiplications to the 6000 multiplications of the naive implementation in our
example. The proof size grows by one group element from log n to log n+ 1. In
our example, this corresponds to a proof size of 102 MB instead of 98 MB. If
the protocol outputs the result in Step 1 or Step 2 it is even more e�cient than
PPoE. Recall that the implementation of PPoE in groups of known order does
not have any soundness guarantees and for the groups that we are using, there
are known attacks that break soundness. In contrast, we showed in Section 4.2
that our protocol is statistically sound in these groups. We conclude that our
protocol yields a major soundness improvement at moderate additional costs.

5 Open Problems

In this work, we presented an e�cient protocol that gives a certi�cate of non-
primality for Proth numbers. While we believe that a certi�cate of non-primality
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is more useful than a certi�cate of primality in the context of search for giant
primes, constructing the latter is certainly an intriguing problem. Though, our
techniques are not directly applicable to prove primality of Proth numbers
because our protocol only rules out that the correct result is one speci�c number
(namely −1). Conversely, when proving primality one has to rule out all results
except for one (again −1). Constructing a cryptographic certi�cate of primality
therefore remains an open problem.

Another open problem is to demonstrate the applicability of PoEs towards
certifying (non-)primality of other types of numbers such as, for example, Mersenne
numbers. The primality of Mersenne numbers is tested via Lucas Lehmer test
amounting to computation of long modular recursive sequences. Equivalently, the
test can be performed via exponentiation in a suitable extension ring and, thus,
one could hope to employ PoEs also in the context of Mersenne number. However,
there are some major di�erences to the case of Proth numbers. In particular, the
order of the corresponding group is not necessarily e�ciently computable even
when the candidate is a prime, which is one of the issues preventing the use of
our protocol.

Finally, can our interactive protocol be made non-interactive under assumptions
other than random oracles? Several recent works [24,5] have aimed to derandomise
Pietrzak's protocol and its closely-related variant from [6] using more standard
cryptographic assumptions. It would be interesting to explore whether these
techniques are applicable here.
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Instance: (x, y, T,G), where x, y ∈ G, T ∈ N is even and x2T = y in G

Input to P∗: α ∈ G

Parameters: statistical security parameter λ

Statement: x2T = yα in G

Protocol:

1. For T = 1:
� If x2 = y, V outputs accept.
� Else, V outputs reject.

2. For T > 1:
(a) P∗ sends v = α−1x2T/2

to V.
(b) If v ̸∈ G, V outputs reject. Otherwise, V samples r ← {0, 1, . . . , 2λ − 1}

uniformly at random and sends it to P∗.
(c) P∗ and V compute x′ := xrv and y′ := vry in G.
(d) If T/2 is even, P∗ and V run the protocol on instance (x′, y′, T/2,G)

with input α2T/2−r−1 to P∗. If T/2 is odd, P∗ and V run the protocol

on instance (x′, y′2, (T + 1)/2,G) with input α2(2T/2−r−1) to P∗.

Fig. 4. An attack with success probability at least 1− (1− 1/ ord(α))log T .

A Attacking Pietrzak's Protocol in Proth Number

Groups

In this section we show how a malicious prover P∗ can falsely convince the veri�er
V that a Proth prime is composite when using Pietrzak's PoE. This attack was
�rst described in [8]. Let N = k2n + 1 be prime and x be any quadratic non-

residue modulo N . Since N is prime, it holds that xk2n−1

= −1 mod N . The
easiest way for P∗ to cheat is claiming that the result of this exponentiation
is 1 instead of −1 and then multiplying the honest messages by −1 until the
recombination step (Step 2d of PPoE) yields a correct instance. The probability
that V accepts this false �proof� of non-primality is 1−1/2log(n−1) = 1−(n−1)−1.
To see this, consider the �rst round of the protocol. P∗ multiplies the correct

midpoint v = (xk)2
(n−1)/2

by −1 and sends the message −v to V. V samples a
random coin r and they both compute x′ = −xkrv and y′ = (−v)r to create the

new statement x′2
(n−1)/2

= y′. Plugging in the values for x′, y′ and v, we see that
the new statement is correct whenever r is an odd integer:

x′2
(n−1)/2

= y′

⇔ (−xkrv)2
(n−1)/2

= (−v)r

⇔ v2
(n−1)/2

= (−1)r

⇔ (xk)2
n−1

= (−1)r.
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If r is even, the statement remains false and P∗ does the same in the next round.
V only outputs reject if all of the random coins are even which happens with
probability 1/2log(n−1) = (n − 1)−1 since log(n − 1) is the number of rounds.
Otherwise V outputs accept on a false statement. A generalization of this attack
is shown in Figure 4. Instead of multiplying the correct statement by −1, P∗
multiplies the correct statement by an arbitrary group element α and adapts
its messages accordingly. The success probability can be lower bounded by 1 −
(1 − 1/ ord(α))log(n−1) which is the probability that in at least one round the
bad element is raised to a multiple of the order of α. If ord(α) is not a prime
number, this bound is not tight since the order of the bad element can decrease
during the execution of the rounds, making the success probability even higher.
In the case where N is prime, the prover knows the group order N−1 = k2n and
its factorization and can therefore construct elements of su�ciently low order.
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