
POLKA: Towards Leakage-Resistant Post-
Quantum CCA-Secure Public Key Encryption

Clément Hoffmann1, Benôıt Libert2⋆, Charles Momin1,
Thomas Peters1, François-Xavier Standaert1

1 Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium.
2 Zama, France.

Abstract. As for any cryptographic algorithm, the deployment of post-
quantum CCA-secure public key encryption schemes may come with the
need to be protected against side-channel attacks. For existing post-
quantum schemes that have not been developed with leakage in mind,
recent results showed that the cost of these protections can make their
implementations more expensive by orders of magnitude. In this paper,
we describe a new design, coined POLKA, that is specifically tailored to re-
duce this cost. It leverages various ingredients in order to enable efficient
side-channel protected implementations such as: (i) the rigidity property
(which intuitively means that the de-randomized encryption and decryp-
tion are injective functions) to avoid the very leaky re-encryption step of
the Fujisaki-Okamoto transform, (ii) the randomization of the decryp-
tion thanks to the incorporation of a dummy ciphertext, removing the
adversary’s control of its intermediate computations and making these
computations ephemeral, (iii) key-homomorphic computations that can
be masked against side-channel attacks with overheads that scale linearly
in the number of shares, (iv) hard physical learning problems to argue
about the security of some critical unmasked operations. Furthermore,
we use an explicit rejection mechanism (returning an error symbol for
invalid ciphertexts) to avoid the additional leakage caused by implicit
rejection. As a result, the operations of POLKA can be protected against
leakage in a cheaper way than state-of-the-art designs, opening the way
towards schemes that are both quantum-safe and leakage-resistant.

1 Introduction

Recent research efforts showed that designing post-quantum chosen-ciphertext-
secure public-key encryption (PKE) schemes that allow efficient implementa-
tions offering side-channel security guarantees is extremely challenging with ex-
isting techniques. One well-documented issue arises from the Fujisaki-Okamoto
(FO) transform that is frequently used for building key encapsulation mecha-
nisms (KEMs) with chosen-ciphertext (IND-CCA) security from PKE schemes
or KEMs that only provide weak security notions like one-wayness under pas-
sive attacks (OW-CPA security) [42, 43]. The FO transformation and its vari-
ants are, for example, used in the NIST post-quantum finalists KYBER [4, 20]

⋆ This work was done when this author was a CNRS researcher at Laboratoire LIP
(UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668), Lyon, France.

and SABER [10, 31], where the CCA-secure KEM is combined with a secret-key
(authenticated) encryption scheme into a hybrid PKE system.

Recall that a KEM system (Keygen,Encaps,Decaps) is a PKE scheme that
does not take any plaintext as input, but rather computes an encryption of a
random symmetric key K. To encrypt a plaintext M via the hybrid KEM/DEM
framework [63], the Encaps algorithm often samples a random m, which is used
to derive a symmetric key K and random coins r from a random oracle (K, r)←
H(m) before deterministically encapsulating K as ckem = Encapspk(m, r). Next,
a secret-key scheme (E,D) (a.k.a. data encapsulation mechanism, or DEM) is
used to compute csym = EK(M) in order to obtain a hybrid PKE ciphertext c =
(ckem, csym). The receiver can then recover m = Decapssk(ckem) and (K, r) ←
H(m) before obtainingM = DK(csym). It is known that the hybrid construction
provides IND-CCA security if the underlying KEM is itself IND-CCA-secure
and if the DEM satisfies a similar security notion in the secret-key setting [63].
In order to secure the KEM part against chosen-ciphertext attacks, the FO
transform usually checks the validity of the incoming ckem by testing if ckem =
Encapspk(m, r) (a step known as “re-encryption”) after having recovered the
random coins r from (K, r)← H(m) upon decryption.

In the FO transform, the first computation during a decryption attempt is
Decapssk(ckem), where Decaps is the underlying decapsulation of the OW-CPA
secure KEM. While this has no impact in a black-box security analysis, in the
context of side-channel chosen-ciphertext attacks the adversary remains able to
target this component using many ckem values of its choice [57,60,64], leaving an
important source of vulnerabilities. Indeed, the adversary is free to adaptively
feed Decapssk with (invalid) ciphertexts and craft ckem in such a way that an
internal message m with only few unknown bits is re-encrypted via the FO
transform. This allows side-channel attacks to directly exploit the leakage of

these bits obtained during the re-encryption test ckem
?
= Encapspk(m, r) to infer

information about sk. This task is surprisingly easy since all the leakage samples
of the deterministic re-encryption can be exploited for this purpose (i.e., much
more than the few rounds of leakage that are typically exploited in divide-and-
conquer side-channel attacks against symmetric encryption schemes) [53].

In parallel, several pieces of work started to analyze masked implementations
of KYBER and SABER [11,17,21,22,41]. These works typically indicate large over-
heads when high security levels are required, which can be directly connected to
a large amount of leaking intermediate computations [5]. In particular, these im-
plementations all consider a uniform protection level for all their operations, that
is in contrast with the situation of symmetric cryptography where so-called lev-
eled implementations, in which different (more or less sensitive) parts of a mode
of operation are protected with different (more or less expensive) side-channel
countermeasures, can lead to important performance gains [14].

In this paper, we therefore initiate the study of quantum-safe CCA-secure
public-key encryption schemes that have good features for leakage-resistant (LR)
implementations. For this purpose, we propose to combine the different seed in-
gredients. First, we leverage the rigidity property introduced by Bernstein and

2

Persichetti [15], as it allows building CCA-secure encryption schemes without
relying on re-encryption nor on the FO transform. Despite removing an impor-
tant source of leakage, getting rid of the FO transform is not yet sufficient to
enable leveled implementations for KYBER (or SABER), since the rest of their oper-
ations remains expensive to protect [5]. Therefore, we also propose to randomize
the decryption process by incorporating a “dummy ciphertext”. It brings the
direct benefit of removing the adversary’s control on all intermediate computa-
tions that are dummied, while making these computations ephemeral, which is
in general helpful against leakage. This second step already allows an interesting
leveling between computations that require security against simple power analy-
sis (SPA) and differential power analysis (DPA) attacks.1 Eventually, we observe
that the structure of the KEM’s remaining DPA target shares similarities with
the key-homomorphic re-keying schemes used in symmetric cryptography to pre-
vent side-channel attacks [36, 40, 55]. Building on this observation, we propose
to implement this DPA target such that only its key-homomorphic parts are
(efficiently) protected thanks to masking, by relying on the recently introduced
Learning With Physical Rounding (LWPR) assumption [39]. In short, the LWPR
assumption is a physical version of the crypto dark matter introduced by Boneh
et al. [19]. The latter assumes that low-complexity PRFs can be obtained by
mixing linear mappings over different small moduli. LWPR further leverages the
possibility that one of these mappings is computed by a leakage function.

We additionally observe that by carefully instantiating the symmetric au-
thenticated encryption of the DEM as an Encrypt-then-MAC scheme with a
one-time key-homomorphic MAC, the overheads due to the side-channel coun-
termeasures can be reduced to linear in the number of shares used for masking
for this part of the computation as well. And we finally combine these different
ingredients into a new efficient post-quantum CCA-secure public-key encryption
scheme, called POLKA (standing for POst-quantum Leakage-resistant public Key
encryption Algorithm), that simultaneously provides excellent features against
leakage and a proof of IND-CCA security (in the sense of the standard definition
without leakage) under the standard RLWE assumption.

Without leakage, we show that POLKA provides CCA security in the quantum
random oracle model (QROM) [18]. Our construction is a hybrid KEM-DEM
encryption scheme built upon a variant of a public-key encryption scheme due
to Lyubashevsky, Peikert and Regev (LPR) [52], which is well-known to provide
IND-CPA security under the ring learning-with-errors (RLWE) assumption. In
order to obtain a KEM, we modify the LPR system so as to recover the sender’s
random coins upon decryption. In contrast with the FO transformation and
its variants, this is achieved without de-randomizing an IND-CPA system, by
deriving the sender’s random coins. Instead of encrypting a random message m
to derive our symmetric keyK, we always “encrypt” 0 and hash the random coins
consisting of a tuple (r, e1, e2) ∈ R of small-norm ring elements sampled from the

1 Informally, SPAs are side-channel attacks where the adversary can only observe the
leakage of a few inputs to the target operation for a given secret. DPAs are attacks
where the adversary can observe the leakage of many such inputs.

3

noise distribution. These elements (r, e1, e2) are then encoded into a pair ckem =
(a · r+ e1, b · r+ e2) ∈ R2

q , where a, b ∈ Rq are random-looking elements included
in the public key. Using its secret key, the decryptor can extract (r, e1, e2) from
ckem and check their smallness. This verification/extraction step is designed in
such a way that decapsulation natively provides rigidity [15] without relying on
re-encryption. Namely, due to the way to recover (r, e1, e2) from ckem, we are
guaranteed that deterministically re-computing ckem = (a ·r+e1, b ·r+e2) would
yield the incoming ciphertext. This allows dispensing with the need to explicitly
re-compute ckem in the real scheme, thus eliminating an important source of
side-channel vulnerability that affects KYBER and SABER.

In a black-box security analysis, our KEM can be seen as an injective trap-
door function that maps (r, e1, e2) ∈ R3 to (a · r + e1, b · r + e2). As long as we
sample (r, e1, e2) from a suitable distribution, ckem is pseudorandom under the
RLWE assumption. However, to ease the use of efficient side-channel counter-
measures upon decryption, we also leverage the fact that our injection satisfies
a (bounded) form of additive homomorphism for appropriate parameters. That
is, if we generate what we call a dummy ciphertext c′kem by having the decryp-
tor honestly run the basic encapsulation step using its own random coins, the
decapsulation of c̄kem = ckem + c′kem should give the sum of the random coins
chosen by the sender and the receiver. Then, we can easily remove the additional
dummy random coins after some additional tests. Introducing c̄kem in the de-
cryption process removes the adversary’s freedom of forcing the computation of
Decapssk(ckem) to take place on a ckem under its control, which helps us pro-
tecting the secret key. Moreover, the underlying coins of ckem are now split into
two shares upon decryption and they are only recombined in a step where we
can safely derive K. To implement this idea, we prove the CCA security of our
scheme in its variant endowed with a probabilistic decryption algorithm.

With leakage, we argue that POLKA offers a natural path towards efficient
leveled implementations secured against side-channel attacks. For this purpose,
we first use a methodology inspired from [14] to identify the level of security
required for all its intermediate computations. We then focus on how to secure
the polynomial multiplication used in POLKA against DPA, by combining mask-
ing for its key-homomorphic parts and a variant of the aforementioned LWPR
assumption after the shares recombination. Our contributions in this respect are
twofold. On the one hand, we define the LWPR variant on which POLKA relies and
discuss its difference from the original one. Given that LWPR is an admittedly
recent assumption and in view of the important performance gains it can lead to,
we additionally specify instances to serve as cryptanalysis targets. On the other
hand, we describe a hardware architecture for these masked operations, which
confirms these excellent features (e.g., simplicity to implement them securely,
performance overheads that are linear in the number of shares). Overall, protect-
ing the long-term secret of our leveled implementation only needs to combine the
masking of key-homomorphic computations (which has linear overheads in the
number of shares) with SPA security for other computations, which is directly
obtained thanks to parallelism in hardware. Protecting the message confiden-

4

tiality additionally requires protecting its symmetric cryptographic components
(i.e., hash function and authenticated encryption) against DPA.

As a last result to confirm the generality of our findings, we also show in
the ePrint report [46] that they apply to an LR variant of the NTRU cryptosys-
tem [27], which satisfies the rigidity property, can be enhanced with a dummy
mechanism and has internal computations that also generate LWPR samples.

2 Technical Overview & Cautionary Note

Technical overview. Our construction can be seen as a rigid and randomness-
recovering version of the RLWE-based encryption scheme described in [52]. By
“randomness-recovering,” we mean that the decryption procedure recovers the
message and the sender’s random coins. A randomness-recovering encryption
scheme is rigid [15] if, when the decryptor obtains a message m and random-
ness r, running the encryption algorithm on input of (m, r) necessarily yields
the incoming ciphertext. While rigidity can always be achieved by adding a re-
encryption step (as pointed out in [47]), this generally introduces one-more place
of potential side-channel vulnerabilities, which is precisely exploited in [57,60,64].
In order to eliminate the need for an explicit re-encryption step, it is thus desir-
able to have a decryption algorithm which is natively injective (when seen as a
deterministic function). The first difficulty is thus to build a rigid, randomness-
recovering PKE/KEM under the standard RLWE assumption. Our goal is to
achieve this without sacrificing the efficiency of the original LPR system in or-
der to remain reasonably competitive with NIST finalists.

The LPR cryptosystem is not randomness-recovering. In a cyclotomic ring
R = Z[X]/(Xn + 1), it involves a public key containing a pair (a, b = a · s+ e),
where a ∈ R/(qR) is uniform, s ∈ R is the secret key and e is a noise. To
encrypt m ∈ R/(pR) (for some moduli p < q), the sender chooses small-norm
randomness r, e1, e2 ∈ R and computes (c1, c2) = (a ·r+e1, b ·r+e2+m · ⌊q/p⌉),
so that the receiver can obtain c2 − c1 · s mod q = m · ⌊q/p⌉ + small. While m
is then computable, there is no way to recover (r, e1, e2) from the “decryption
error” term small. To address this problem, a folklore solution is to introduce
distinct powers of p. Suppose we want to build a randomness-recovering en-
cryption of 0 (which is sufficient to build a KEM). The sender can then com-
pute (c1, c2) = (p2 · a · r + p · e1, p2 · b · r + e2), which allows the receiver to
obtain µ = c2 − c1 · s mod q = p2er − pe1s + e2. Since the right-hand-side
member is small, the receiver can efficiently decode (r, e1, e2) ∈ R3 from µ.
Unfortunately, the latter construction is not rigid. Suppose that an adversary
can somehow compute a non-trivial pair (u, u · s) ∈ R2 given (a, a · s + e). It
can then faithfully compute (c1, c2) = (p2 · a · r + p · e1, p2 · b · r + e2) and
turn it into (c′1, c

′
2) = (c1 + u, c2 + u · s), which yields a “decryption collision”

µ = c2 − c1 · s = c′2 − c′1 · s. Besides, as shown in [32], computing a pair (u, u · s)
(for an arbitrary, possibly non-invertible u ̸= 0) given (a, a · s + e) can only
be hard in rings R/(qR) ∼= Zq[X]/(Φ1(X))× · · · × Zq[X]/(Φt(X)) that have no
small-degree factors, which rules out NTT-friendly rings. Even for rings where

5

Φ(X) = Xn + 1 splits into degree-n/2 factors, the problem (called SIP-LWE
in [32]) is non-standard and its hardness is not known to be implied by RLWE.2

Here, we take a different approach since we aim at rigidity without relying on
stronger assumptions than RLWE and without forbidding fully splitting rings.

We modify the original LPR system in the following way. The public key
contains a random a ∈ R/(qR) and a pseudorandom b ∈ R/(qR), which is now
of the form b = p · (a ·s+e), for small secrets s, e ∈ R and a public integer p such
that ∥e∥∞ < p/2. We also require b to be invertible over R/(qR), so that the key
generation phase must be repeated with new candidates (s, e) until b is a unit.
To compute an encapsulation, we sample Gaussian ring elements r, e1, e2 ∈ R
and compute ckem = (c1, c2) = (a · r + e1, b · r + e2), where K = H(r, e1, e2) is
the encapsulated key. Decapsulation is performed by using s ∈ R to compute
µ = c2−p ·c1 ·s mod q, which is a small-norm element µ = e2+p · small ∈ R that
reveals e2 = µ mod p. Given e2, the receiver then obtains r = (c2− e2) · b−1 and
e1 = c1−a · r, and checks the smallness of (r, e1, e2). The decapsulation phase is
natively rigid (without re-encryption) as it outputs small-norm (r, e1, e2) ∈ R3

if and only if (c1, c2) = (a · r + e1, b · r + e2).
Our hybrid encryption scheme builds on a variant of the above KEM with

explicit rejection, where the decapsulation phase returns an error symbol ⊥ on
input of an invalid ckem. It thus departs from NIST finalists that all rely on
KEMs with implicit rejection, where the decapsulation algorithm never outputs
⊥, but rather handles invalid encapsulations ckem by outputting a random key
K ′ ← H(z, ckem) derived from an independent long-term secret z.3 While our
scheme could have relied on implicit rejection in a similar way, we chose to
avoid additional computations involving an extra long-term secret z. The reason
is that, if we were to introduce additional key material z, it should be DPA-
protected with possibly heavy side-channel countermeasures (cf. Section 5.1).

When it comes to proving security in the QROM, the use of an explicit-
rejection KEM introduces some difficulty as it is not clear how to deal with
invalid ciphertexts. While the classical ROM allows inspecting all random oracle
queries and determining if one of them explains a given ciphertext, we cannot
use this approach in the QROM because RO-queries are made on superpositions
of inputs. Our solution is to use an implicit-rejection KEM only in the security
proof. In a sequence of games, we first modify the decryption oracle so as to
make the rejection process implicit. Then, we argue that, as long as the DEM
component is realized using an authenticated symmetric encryption scheme, the
modified decryption oracle is indistinguishable from the real one. After having
modified the decryption oracle, we can adapt ideas from Saito et al. [62] in order
to tightly relate the security of the hybrid scheme to the RLWE assumption.

2 D’Anvers et al. [32] defined a homogeneous variant of SIP-LWE which is uncondition-
ally hard, even in fully splitting rings. Still, relying on this variant incurs a partial
re-encryption to enforce the equality c2 = c′2.

3 When the hybrid KEM-DEM framework is instantiated with an implicit rejection
KEM, invalid ciphertexts are usually rejected during the symmetric decryption step
as decrypting csym with a random key K′ yields ⊥.

6

As mentioned earlier, avoiding re-encryption does not suffice to ensure side-
channel resistance. As another improvement, we modify the decapsulation step
and add a dummy ciphertext (c′1, c

′
2) = (a · r′ + e′1, b · r′ + e′2) for fresh receiver-

chosen randomness r′, e′1, e
′
2 to (c1, c2) before proceeding with the decapsulation

of (c̄1, c̄2) = (c1 + c′1, c2 + c′2). This simple trick prevents the adversary from
controlling the ring elements that multiply the secret key s at the only step
where it is involved. We even show in Section 5 how this computation can be
protected against DPA with minimum overheads by combination the masking
countermeasure and a LWPR assumption. Additionally, the choice of (c′1, c

′
2)

as an honestly generated encapsulation allows continuing the decryption pro-
cess as if (c̄1, c̄2) was the ciphertext computed from the (still) small-norm coins
(r̄, ē1, ē2) = (r + r′, e1 + e′1, e2 + e′2). That is, we do not have to remove the
noise terms as we can retrieve r̄, ē1 and ē2 and test their smallness. Since r′, e′1
and e′2 do have small norm, if the decryption succeeds until this step, then r, e1
and e2 must be small as well (with a small constant slackness factor 3). There-
fore, the dummy ciphertext/KEM makes it possible to eliminate an exponential
amount of invalid ciphertexts without having ever tried to re-compute the cor-
rect (r, e1, e2). In case of an early rejection, and because the secret key s is now
protected with a hidden and pseudorandom (c̄1, c̄2), the leakage only provides
limited information related to the ephemeral values in (r′, e′1, e

′
2) which were

sampled independently of the adversary’s view. If no rejection occurs, (r′, e′1, e
′
2)

has components of (small but) sufficiently large norm to hide (at least most of
the bits of) (r, e1, e2) if the adversary gets the full leakage of (r̄, ē1, ē2). At that
time, we can safely recover (r, e1, e2) and check their norm (to eliminate the
slackness) for technical reasons. This computation can only be repeated through
many decryption queries on fixed inputs, and therefore only require SPA secu-
rity (with averaging), which is cheaper to ensure than DPA security. As for the
DEM, the general solutions outlined in [14] are a natural option. But we show
an even cheaper one that leverages a key-homomorphic MAC.

Cautionary note. Advances in leakage-resistant cryptography usually com-
bine progresses following two main movements. On the one hand, theoretical
works aim to specify sufficient conditions of security in abstract models. On
the other hand, practical works rather aim to study heuristic countermeasures
against concrete attacks (i.e., necessary security conditions). The long-term goal
of such researches is therefore to “meet in the middle”, which can occur either
by making sufficient security conditions empirically falsifiable or by making the
heuristic study of countermeasures more and more general. Reaching this goal
is challenging due to the continuous and device-specific nature of physical leak-
ages. In the case of symmetric cryptography, such movements are for example
witnessed by definitional efforts like [45] and instances of (initially) more heuris-
tic designs like ISAP [34] or Ascon [35], while their match has been recently
discussed in [14]. In the case of asymmetric post-quantum cryptography, it is
expected to be even more challenging since algorithms come with more versatile
building blocks that will in turn require a finer-grain analysis (than just rely-
ing on block ciphers or permutations, for example). Given the amplitude of the

7

challenge, the approach we follow is a bottom-up one. That is, we aim to show
that considering the need for side-channel countermeasures as a design criterion
can lead to encryption schemes that are easier to protect. For this purpose, we
focus our analysis on intuitive design tweaks (for which we can explain how they
avoid certain attack vectors) and on their necessary security conditions. We hope
the design of POLKA can serve as a trigger for more formal analyses leading to
identify sufficient security conditions for (part of) its design or improvements
thereof, and that this formal analysis will be easier than for encryption schemes
that did not consider leakage to guide their design, like KYBER or SABER.

In this context, one can naturally wonder why we do not provide a compre-
hensive comparison of POLKA with KYBER or SABER. The short answer is that the
current state-of-the-art does not allow such comparisons yet. That is, a sound
comparison between post-quantum encryption schemes against side-channel at-
tacks would require assessing their cost vs. security tradeoff. But while there are
several works that evaluate the (high) cost of masking KYBER or SABER, none
of them come with a quantitative security evaluation against worst-case adver-
saries (e.g., as done in [24] for the AES). Therefore, we are for now left with the
more quantitative analysis of Section 5.1, where we identify the parts of POLKA
that must be protected against DPA and the ones that only require protections
against SPA, together with the observation of Section 5.2 and 5.3 that the DPA
security of some critical operations in POLKA can be obtained with overheads
that scale linearly in the number of shares (vs. quadratic for KYBER or SABER).
As in the context of symmetric cryptography, it is naturally expected that POLKA
comes with overheads in case leakage is not a concern. However, considering for
simplicity that they are dominated by the cost of the NTTs and multiplications,
the larger polynomials (e.g., n = 1024 vs. n = 512 for KYBER) and modulus (e.g.,
16-bit vs. 12-bit for KYBER) of POLKA should not decrease performances by large
factors. For example, assuming NTTs have complexity in O(n log(n)) and multi-
plications have complexity in O(log(q)2), while taking into account the number
of such operations, the factor of overheads of POLKA over KYBER would be around
two. Besides, POLKA makes a sparser use of symmetric cryptography and its
design (without FO transform) should require less shares for its masked imple-
mentations to provide the same security level. We informally illustrate the cycle
counts of POLKA and KYBER in function of the number of shares of their masked
implementation in Figure 1, where the black (quadratic) curve is from [22] and
the red (linear) ones assume POLKA is from twice to (a conservative) five times
more expensive than KYBER without countermeasures. Turning this qualitative
analysis into a quantitative one in order to determine the target security level
(and number of shares) that makes POLKA or improvements thereof a relevant
alternative to existing schemes is an interesting scope for further investigations.
As for the aforementioned quest towards analyzing sufficient security conditions
for leakage-resistant post-quantum encryption schemes, we therefore hope our
results can serve as a trigger towards evaluating the worst-case side-channel
security level of masked post-quantum encryption schemes.

Additional related works are discussed in the ePrint report [46].

8

Fig. 1: Informal comparison between masked POLKA (n=1024, 16-bit modulus,
≈191 bits of security – see Section 4.3) and KYBER768 (196 bits of security).

3 Background

3.1 Lattices and Discrete Gaussian Distributions

An n-dimensional lattice Λ ⊆ Rn is the set Λ = {
∑n

i=1 zi · bi | z ∈ Zn} of
all integer linear combinations of a set of linearly independent basis vectors
B = {b1, . . . ,bn} ⊆ Rn. Let Σ ∈ Rn×n be a symmetric positive definite matrix,
and c ∈ Rn. The n-dimensional Gaussian function on Rn is defined as ρ√Σ,c(x) =

exp(−π(x − c)⊤Σ−1(x − c)). In the special case where Σ = σ2 · In and c = 0,
we denote it by ρσ. For any lattice Λ ⊂ Rn, the discrete Gaussian distribution

DΛ,
√
Σ,c has probability mass PrX∼DΛ,

√
Σ,c

[X = x] =
ρ√

Σ,c(x)

ρ√
Σ,c(Λ) for any x ∈ Λ.

When c = 0 and Σ = σ2 · In we denote it by DΛ,σ.

Lemma 1 ([56, Lemma 4.4]). For σ = ω(
√
log n) there is a negligible func-

tion ε = ε(n) such that Prx∼DZn,σ
[∥x∥ > σ

√
n] ≤ 1+ε

1−ε · 2
−n.

3.2 Rings and Ideal Lattices.

Let n a power of 2 and define the rings R = Z[X]/(Xn+1) and Rq = R/qR. Each
element of R is a (n−1)-degree polynomial in Z[X] and can be interpreted as an
element of Z[X] via the natural coefficient embedding that maps the polynomial

a =
∑n−1

i=0 aiX
i ∈ R to (a0, a1, . . . , an−1) ∈ Zn. An element of Rq can similarly

be viewed as a degree-(n − 1) polynomial over Zq[X] and represented as an n-
dimensional vector with coefficients in the range {−(q − 1)/2, . . . , (q − 1)/2}.

The Euclidean and infinity norms of an element of a ∈ R are defined by
viewing elements of R as elements of Zn via the coefficient embedding.

The ring R can also be identified as the subring of anti-circulant matrices in
Zn×n by viewing each a ∈ R as a linear transformation r → a · r. This implies
that, for any a, b ∈ R, ∥a · b∥∞ ≤ ∥a∥ · ∥b∥ by the Cauchy-Schwartz inequality.

As in [50], for any lattice Λ, Dcoeff
Λ,σ denotes the distribution of a ring element

9

a =
∑n−1

i=0 aiX
i ∈ R of which the coefficient vector (a0, . . . , an−1)

⊤ ∈ Zn is
sampled from the discrete Gaussian distribution DΛ,σ.

We now recall the ring variant of the Learning-With-Errors assumption [61].
The ring LWE (RLWE) problem is to distinguish between a polynomial number
of pairs of the form (ai, ai · s+ ei), where ai ∼ U(Rq) and s, ei ∈ R are sampled
from some distribution χ of bounded-magnitude ring elements, and random pairs
(ai, bi) ∼ U(R2

q). In Definition 1, the number of samples k is made explicit.

Definition 1. Let λ ∈ N a security parameter. Let positive integers n = n(λ),
k = k(λ), and a prime q = q(n) > 2. Let an error distribution χ = χ(n) over
R. The RLWEn,k,q,χ assumption says that the following distance is a negligible
function for any PPT algorithm A,

AdvA,RLWE
n,k,q,χ (λ) :=

∣∣Pr[A(1λ, {(ai, vi)}ki=1) = 1]

− Pr[A(1λ, {(ai, ais+ ei)}ki=1) = 1]
∣∣,

where a1, . . . , ai, v1, . . . , vk ←↩ U(Rq), s←↩ χ, e1, . . . , ei ←↩ χ.

For suitable parameters, the RLWE assumption is implied by the hardness of
worst-case instances of the approximate shortest vector problem in ideal lattices.

Lemma 2 ([52]). Let n a power of 2. Let Φm(X) = Xn+1 the m-th cyclotomic
polynomial where m = 2n, and R = Z[X]/(Φm(X)). Let q = 1 mod 2n. Let
also r = ω(

√
log n) Then, there is a randomized reduction from 2ω(logn) · (q/r)-

approximate R-SVP to RLWEn,poly(n),q,χ where χ = Dcoeff
Zn,r.

4 POLKA: Rationale and Specifications

Our starting point is a variant of the LPR cryptosystem [52], which builds on
a rigid randomness-recovering KEM. As in [52], the public key contains a ran-
dom ring element a ∈ Rq and a pseudorandom b ∈ Rq. Here, b is of the form
b = p·(a·s+e) (instead of b = a·s+e as in [52]), for secret s, e ∈ R sampled from
the noise distribution and where p is an integer such that ∥e∥∞ < p. Another
difference with [52] is that decryption requires b to be invertible over Rq.

The encryptor samples ring elements r, e1, e2 ∈ R from a Gaussian distribu-
tion and uses them to derive a symmetric keyK = H(r, e1, e2). The latter is then
encapsulated by computing a pair (c1, c2) = (a · r+ e1, b · r+ e2). The decryption
algorithm uses s ∈ R to compute µ = c2 − p · c1 · s ∈ Rq, which is a small-norm
ring element µ = e2 + p · (er − e1s) ∈ R. This allows recovering e2 = µ mod p,
which in turn reveals r = (c2 − e2) · b−1 ∈ Rq and e1 = c1 − a · r ∈ Rq. Af-
ter having checked the smallness of (r, e1, e2), the decryption procedure obtains
K = H(r, e1, e2). The scheme provides the rigidity property of [15] as the de-
cryptor obtains (r, e1, e2) ∈ R3 such that ∥r∥, ∥e1∥, ∥e2∥ ≤ B, for some norm
bound B, if and only if (c1, c2) = (a · r + e1, b · r + e2). This ensures that no
re-encryption is necessary to check the validity of the input pair (c1, c2).

Our hybrid encryption scheme builds on a KEM with explicit rejection (as

10

per [47, 59]), meaning that invalid encapsulations are rejected as soon as they
are noticed in decryption. In the security proof, we will switch to an implicit
rejection mechanism (as defined [59, Section 5.3]), where the decapsulation algo-
rithm outputs a random key on input of an invalid encapsulation. The rejection
of malformed encapsulations is then deferred to the symmetric decryption.

4.1 The Scheme With an Additive Mask

We now describe a version of the scheme that has good features for side-channel
resistant implementation, where the decryption algorithm first adds a “dummy
ciphertext” to (c1, c2) before proceeding with the actual decryption.

Keygen(1λ): Given a security parameter λ ∈ N,
1. Choose a dimension n ∈ N, a prime modulus q = 1 mod 2n. Let the rings
R = Z[X]/(Xn + 1) and Rq = R/(qR) such that Φ(X) = Xn + 1 splits
into linear factors over Rq. Let R

×
q the set of units in Rq.

2. Choose a noise parameter α ∈ (0, 1), and let a norm bound B = αq
√
n.

Choose an integer p ∈ N such that 4B < p < q
8(B2+1) .

3. Sample a←↩ U(Rq) and s, e←↩ Dcoeff
Zn,αq and compute b = p · (a · s+ e). If

b ̸∈ R×
q , restart step 3.

4. Choose an authenticated symmetric encryption schemeΠsym = (K,E,D)
with key length κ ∈ poly(λ) and message space {0, 1}ℓm .

5. Let a domain DE := {(r, e1, e2) ∈ R3 : ∥r∥, ∥e1∥, ∥e2∥ ≤ B}. Choose a
hash function H : DE → {0, 1}κ modeled as a random oracle.

Return the key pair (PK,SK) where

PK :=
(
n, q, p, α, a ∈ Rq, b ∈ R×

q , Π
sym, H, B

)
and SK := s ∈ R.

Optionally, one can add b−1 in PK (to avoid computing an inverse in decryption).

Encrypt(PK,M): Given a public key PK and a message M ∈ {0, 1}ℓm :

1. Sample r, e1, e2 ←↩ Dcoeff
Zn,αq and compute

c1 = a · r + e1 ∈ Rq, c2 = b · r + e2 ∈ Rq

together with K = H(r, e1, e2) ∈ {0, 1}κ.
2. Compute c0 = EK(M).

Output the ciphertext C = (c0, c1, c2).

Decrypt(SK,C): Given SK = s ∈ R and C = (c0, c1, c2), do the following:

1. Sample r′, e′1, e
′
2 ←↩ Dcoeff

Zn,αq and return ⊥ if ∥r′∥ > B, or ∥e′1∥ > B, or
∥e′2∥ > B. Otherwise, compute c′1 = a · r′ + e′1 and c′2 = b · r′ + e′2.

2. Compute c̄1 = c1 + c′1 and c̄2 = c2 + c′2.
3. Compute µ̄ = c̄2 − p · c̄1 · s over Rq.
4. Compute ē2 = µ̄ mod p. If ∥ē2∥ > 2B, return ⊥.
5. Compute r̄ = (c̄2 − ē2) · b−1 ∈ Rq. If ∥r̄∥ > 2B, return ⊥.

11

6. Compute ē1 = c̄1 − a · r̄ ∈ Rq. If ∥ē1∥ > 2B, return ⊥.
7. Compute r = r̄ − r′, e1 = ē1 − e′1 and e2 = ē2 − e′2. If ∥r∥ > B, or
∥e1∥ > B, or ∥e2∥ > B, then return ⊥.

8. Compute K = H(r, e1, e2) ∈ {0, 1}κ and return

M = DK(c0) ∈ {0, 1}ℓm ∪ {⊥}.

The use of fully splitting rings may require multiple attempts to find an
invertible b ∈ R×

q as step 3 of Keygen. The proof of Lemma 7 shows that, unless
the RLWE assumption is false, a suitable b can be found after at most ⌈λ/ log n⌉
iterations, except with negligible probability 2−λ. In practice, a small number
of attempts suffices since a random ring element is invertible with probability
1− n/q, which is larger than 1− 1/n with our choice of parameters.

Correctness. Let r̄ = r + r′, ē1 = e1 + e′1 and ē2 = e2 + e′2 over R. At step 2,
Decrypt computes c̄1 = a·r̄+ē1, c̄2 = b·r̄+ē2 over Rq, where ∥r̄∥, ∥ē1∥, ∥ē2∥ ≤ 2B
with probability 1 − 2−Ω(n) over the randomness of Encrypt and Decrypt (by
Lemma 1). At step 3, the decryptor obtains

µ̄ = c̄2 − p · c̄1 · s mod q

= (b · r̄ + ē2)− p · (a · r̄ + ē1) · s mod q

= p · (as+ e) · r̄ + ē2 − p · ar̄s− p · ē1s mod q

= ē2 + p · er̄ − p · ē1s,

where the last equality holds over R with overwhelming probability over the
randomness of Keygen, Encrypt and Decrypt. Indeed, Lemma 1 implies that
∥s∥, ∥e∥ ≤ αq

√
n with probability 1 − 2−Ω(n) over the randomness of Keygen.

With probability 1−2−Ω(n) over the randomness of Encrypt and Decrypt, we also
have ∥r̄∥, ∥ē1∥, ∥ē2∥ ≤ 2αq

√
n. Then, the Cauchy-Schwartz inequality implies

∥ē2 + p · er̄ − p · ē1s∥∞ < 2αq
√
n+ 4p · (αq)2n (1)

< 4p(B2 + 1) < q/2.

Since p/2 > 2αq
√
n, step 4 recovers ē2 with overwhelming probability. Since

b ∈ R×
q , Decrypt obtains r̄ at step 5 and ē1 at step 6. Therefore, it also recovers

(r, e1, e2) at step 7 and the correct symmetric key K = H(r, e1, e2) at step 8.
Correctness thus follows from the correctness of Πsym.

Remark 1. We note that correctness is guaranteed whenever ∥s∥, ∥e∥ ≤ B and
∥r̄∥, ∥ē1∥, ∥ē2∥ ≤ 2B, as it is a sufficient condition to have inequalities (1).

Rigidity. By direct inspection of the decryption algorithm, given the KEM part
(c1, c2), if it can extract a triple (r, e1, e2) in the domain, later called DE , where
each component has Euclidean norm bounded by B, the decapsulation is valid. If
the decapsulation is valid we have r = (c2−e2)/b and e1 = c1−a ·r by definition
(after removing the masks r′, e′1, e

′
2). Hence, c1 = a · r + e1 and c2 = b · r + e2,

which is the public encapsulation part on input (r, e1, e2).

On Decryption Failures. Due to the rigidity and randomness recovery prop-
erties of the scheme, the probability of decryption failure does not depend on the

12

specific secret key s in use as long as ∥s∥ ≤ B. If (r, e1, e2) ∈ DE and ∥s∥ ≤ B,
we always have ∥µ̄∥∞ ≤ q/2, where µ̄ = c̄2−p · c̄1 ·s mod q = p · (e · r̄− ē1 ·s)+ ē2
unless the ciphertext is rejected at step 1 (which does not depend on s). If
(r, e1, e2) ̸∈ DE , then either: (i) we still have ∥µ̄∥∞ ≤ q/2 and Decrypt obtains
(r, e1, e2), which are necessarily rejected; or (ii) ∥µ̄∥∞ > q/2 but the extracted

(r†, e†1, e
†
2) cannot land in DE since, otherwise, the rigidity property would imply

(c1, c2) = (a · r†+ e†1, b · r†+ e
†
2), in which case we would have ∥µ̄∥∞ ≤ q/2 unless

the ciphertext is rejected at step 1. Hence, if Decrypt does not return ⊥ at step
1, it computes (r, e1, e2) ∈ DE if and only if (c1, c2) = (a · r + e1, b · r + e2) no
matter which s of norm ∥s∥ ≤ B is used at step 2.

In contrast, when m = 0 is encrypted in the LPR cryptosystem, we have
µ = c2− c1 · s mod q = e · r− e1 · s+ e2. An adversary can then fix a small (r, e2)
and play with many e1’s until it triggers a decryption failure when ∥µ∥∞ > q/2.
The probability that this happens depends on the secret s (as a different s′ may
not cause rejection for a fixed (r, e1, e2)). In KYBER and SABER, the FO transform
allows restricting the adversary’s control over e1 (which is derived from a ran-
dom message m using a random oracle and re-computed for verification upon
decryption) so as to make such attacks impractical. The FO transform is thus
crucial to offer a sufficient security margin against attacks like [30,33].

4.2 Black-Box Security Analysis

Our security proof uses ideas from Saito et al. [62, Section 4] to prove (tight)
security in the QROM. Their approach exploits the implicit rejection mechanism
of their KEM. Namely, when the incoming encapsulation (c1, c2) is found invalid
upon decryption in [62], the decapsulated symmetric key K is replaced by a
random-looking K = H ′(u, (c1, c2)), where u is a random string included in the
secret key and H ′ is an independent random oracle.

Here, in order to simplify the analysis of side-channel leakages in the real
scheme, it is desirable to minimize the amount of secret key operations in the
decryption algorithm and the amount of key material to protect against leakage.
Therefore we refrain from introducing an additional secret key component u
(cf. Section 5.1). Instead, our security proof will first switch (in Game2) to a
modified decryption algorithm where the rejection mechanism goes implicit and
the decapsulation procedure computes K as a random function of (c1, c2). At
this point, we will be able to apply the techniques from [62].

Since the implicit/explicit decapsulation mechanisms are used as part of a
hybrid encryption system, we can argue that they are indistinguishable by relying
on the ciphertext integrity of the symmetric encryption scheme. This is the
reason why we are considering the CCA security of the hybrid combination as a
whole, rather than that of its KEM component.4 We note that similar ideas were

4 The underlying explicit rejection KEM can be proven CCA-secure secure in the
ROM but we do not prove it CCA-secure in the QROM as we only consider the
CCA security of the hybrid PKE scheme.

13

previously used in the security proofs of hybrid PKE schemes [1,48], but usually
in the opposite direction (to go from implicit rejection to explicit rejection).

For the rest, the proof in the ROM carries over to the QROM since it avoids
ROM techniques that do not work in the QROM: we do not rely on the extraction
of encryption randomness by inspecting the list of RO queries to answer decryp-
tion queries, which is not possible when queries are made on superpositions of
inputs, and the RO is programmed identically for all queries.

Theorem 1. If Πsym is a symmetric authenticated encryption scheme, the con-
struction specified in Section 4.1 provides IND-CCA security in the QROM under
the ring learning-with-errors (RLWE) assumption.

Proof. The proof considers a sequence of hybrid games, which is similar to
that of [62, Theorem 4.2] from Game3 to Game5. For each i, we denote by Wi

the event that the adversary wins (i.e., d′ = d) in Gamei. We also denote by
Encaps(PK, (r, e1, e2)) the deterministic algorithm that takes as inputs PK and
explicit randomness (r, e1, e2) ∈ R3, and outputs (c1, c2) = (a · r+ e1, b · r+ e2).

Game0: This is the real IND-CCA game. The challenger faithfully answers
(quantum) random oracle queries. All (classical) decryption queries are an-
swered by running the real decryption algorithm. Note that a decryption
query triggers a random oracle query at step 8 of Decrypt. In the chal-
lenge phase, the adversary A outputs messages M0,M1 and obtains a chal-
lenge C⋆ = (c⋆0, c

⋆
1, c

⋆
2), where c⋆1 = a · r⋆ + e⋆1, c

⋆
2 = b · r⋆ + e⋆2, with

r⋆, e⋆1, e
⋆
2 ←↩ Dcoeff

Zn,αq, and c
⋆
0 = EK⋆(Md) for some d←↩ U({0, 1}). Eventually,

A outputs b′ ∈ {0, 1} and its advantage is Adv(A) := |Pr[W0]− 1/2|.
Game1: In this game, the challenger aborts and replacesA’s output by a random

bit d′ ∈ {0, 1} in the event that ∥s∥ > B or ∥e∥ > B at step 3 of Keygen. By
Lemma 1, we have |Pr[W1]− Pr[W0]| ≤ 2−Ω(n).

Game2: We modify the decryption algorithm. Throughout the game, the chal-
lenger uses an independent random oracle HQ : R2

q → {0, 1}κ that is only
accessible to A via decryption queries (i.e., A has no direct access to HQ).
This random oracle is used to run the following decryption algorithm.

Decrypt2: Given SK = s and C = (c0, c1, c2), initialize a Boolean variable
flag = 0. Then, do the following.

1. Sample r′, e′1, e
′
2 ←↩ Dcoeff

Zn,αq. If ∥r′∥ > B, or ∥e′1∥ > B, or ∥e′2∥ > B,

then set flag = 1 and return ⊥.5 Otherwise, compute c′1 = a · r′ + e′1
and c′2 = b · r′ + e′2.

2. Compute c̄1 = c1 + c′1 and c̄2 = c2 + c′2.
3. Compute µ̄ = c̄2 − p · c̄1 · s over Rq.
4. Compute ē2 = µ̄ mod p. If ∥ē2∥ > 2B, set flag = 1.

5 Decrypt2 still uses explicit rejection at step 1 because the secret key is not needed at
this step and the goal of implicit rejection is to handle validity checks that depend
on the secret key and the ciphertext.

14

5. Compute r̄ = (c̄2 − ē2) · b−1 ∈ Rq. If ∥r̄∥ > 2B, set flag = 1.
6. Compute ē1 = c̄1 − a · r̄ ∈ Rq. If ∥ē1∥ > 2B, set flag = 1.
7. Compute r = r̄ − r′, e1 = ē1 − e′1 and e2 = ē2 − e′2. If ∥r∥ > B, or
∥e1∥ > B, or ∥e2∥ > B, then set flag = 1.

8. If flag = 0, compute K = H(r, e1, e2) ∈ {0, 1}κ. Otherwise, compute
K = HQ(c1, c2).

9. Compute and return M = DK(c0) ∈ {0, 1}ℓm ∪ {⊥}.

Lemma 3 shows that, if the adversary can distinguish Game2 from Game1,
we can turn it into an adversary against the ciphertext integrity of Πsym (of
which the definition is recalled in the ePrint report [46]).

Game3: We now simulate the random oracle6 H : DE → {0, 1}κ as

H(r, e1, e2) = H ′
Q

(
Encaps(PK, (r, e1, e2))

)
(2)

where H ′
Q : R2

q → {0, 1}κ is another random oracle to which A has no
direct access. At each decryption query, Decrypt2 consistently computes
K as per (2) when flag = 0. In the computation of C⋆ = (c⋆0, c

⋆
1, c

⋆
2),

the symmetric key K⋆ is similarly obtained as K⋆ = H ′
Q

(
c⋆1, c

⋆
2

)
, where

(c⋆1, c
⋆
2) = Encaps(PK, (r⋆, e⋆1, e

⋆
2)). Lemma 4 shows that, from A’s view,

Game3 is identical to Game2, so that we have Pr[W3] = Pr[W2].

Game4: This game is like Game3 except that the random oracle H is now sim-
ulated as H(r, e1, e2) = HQ

(
Encaps(PK, (r, e1, e2))

)
, where HQ : R2

q →
{0, 1}κ is the random oracle introduced in Game2. In the computation of
the challenge ciphertext C⋆ = (c⋆0, c

⋆
1, c

⋆
2), the symmetric key K⋆ is similarly

obtained as K⋆ = HQ

(
c⋆1, c

⋆
2

)
, where (c⋆1, c

⋆
2) = Encaps(PK, (r⋆, e⋆1, e

⋆
2)), and

K is computed in the same way when flag = 0 at step 8 of Decrypt2. That is,
Game4 is identical to Game3 except that H ′

Q has been replaced by HQ in the
simulation of H. Lemma 5 shows that Pr[W4] = Pr[W3] as the two games
are perfectly indistinguishable.

Game5: This game is like Game4 except that we modify the decryption oracle.
At each query C = (c0, c1, c2), if flag = 0 at the end of step 1, then the
decryption oracle computes K = HQ(c1, c2) and returns M = DK(c0) ∈
{0, 1}ℓm ∪{⊥} (i.e., it ignores steps 2-7 of Decrypt2 and jumps to step 8 after
having set flag = 1). Lemma 6 shows that Pr[W5] = Pr[W4].

Game6: We now remove the change introduced in Game1. Namely, Game6 is like
Game5, but we no longer replace A’s output by a random bit if ∥s∥ > B or
∥e∥ > B at the end of Keygen. By Lemma 1, |Pr[W6]− Pr[W5]| ≤ 2−Ω(n).

In Game6, we note that the decryption oracle does not use the secret s anymore.

Game7: We modify the generation of PK. The challenger initially samples
a1, . . . , ak ←↩ U(Rq), e1, . . . , ek ←↩ Dcoeff

Zn,αq, where k = ⌈λ/ log n⌉, and com-

putes bi = ai · s + ei for each i ∈ [k]. If none of the obtained {bi}ki=1 is

6 We may assume that H outputs ⊥ on input of a triple (r, e1, e2) ̸∈ DE . A hash
function can always check domain membership before any computation.

15

invertible, the challenger aborts and replaces B’s output by a random bit.
Otherwise, it determines the first index i ∈ [k] such that bi ∈ R×

q and de-
fines the public key by setting a = ai and b = p · bi. Lemma 7 shows that,
under the RLWE assumption, this modified key generation procedure does
not affect A’s view and we have |Pr[W7]− Pr[W6]| ≤ AdvRLWE(λ) + 2−λ.

Game8: We change again the generation of the public key. We replace the pseu-
dorandom ring elements {bi = ai · s + ei}ki=1 of Game7 by truly random
b1, . . . , bk ←↩ U(Rq) at the beginning of the game. Under the RLWE assump-
tion, this change goes unnoticed and a straightforward reduction shows that
|Pr[W8]−Pr[W7]| ≤ AdvRLWE(λ). As a result, since gcd(p, q) = 1, the public
key is now distributed so that a ∼ U(Rq) and b ∼ U(R×

q).
Game9: We change the generation of the challenge C⋆ = (c⋆0, c

⋆
1, c

⋆
2). In this

game, instead of computing c⋆1 = a · r⋆+ e⋆1, c⋆2 = b · r⋆+ e⋆2 with r⋆, e⋆1, e
⋆
2 ←↩

Dcoeff
Zn,αq, we now sample c⋆1, c

⋆
2 ←↩ U(Rq) uniformly. Then, we compute c⋆0 as a

symmetric encryption ofMd under the keyK
⋆ = HQ(c

⋆
1, c

⋆
2). Lemma 8 shows

that Game9 is indistinguishable from Game8 under the RLWE assumption.

In Game9, A can no longer query H on short ring elements (r⋆, e⋆1, e
⋆
2) that

underlie (c⋆1, c
⋆
2) (in which case we would have HQ(c

⋆
1, c

⋆
2) = H(r⋆, e⋆1, e

⋆
2)). With

overwhelming probability 1− 2−Ω(n), there exist no r⋆, e⋆1, e
⋆
2 ∈ R of norm ≤ B

such that c⋆1 = a · r⋆ + e⋆1 and c⋆2 = b · r⋆ + e⋆2. Since A has no direct access to
HQ(·), this means that HQ(c

⋆
1, c

⋆
2) is now independent of A’s view.

Game10: In this game, we modify the decryption oracle that now rejects all
ciphertexts of the form C = (c0, c

⋆
1, c

⋆
2) with c0 ̸= c⋆0 after the challenge

phase. Game10 is identical to Game9 until the event E10 that A queries
the decryption of a ciphertext C = (c0, c

⋆
1, c

⋆
2) that would not have been

rejected in Game9. Since c
⋆
0 = EK⋆(Md) is encrypted under a random key

K⋆ = HQ(c
⋆
1, c

⋆
2) that is independent of A’s view, E10 would imply an attack

against the ciphertext integrity ofΠsym (as defined in the ePrint report [46]).
We have |Pr[W10] − Pr[W9]| ≤ Pr[E10] ≤ 2−Ω(n) +AdvAE-INT(λ), where Q
is the number of decryption queries.

In Game10, the challenge C⋆ = (c⋆0, c
⋆
1, c

⋆
2) is obtained by encrypting c⋆0 under

a random key K⋆ which is never used anywhere but in the computation of
c⋆0 = EK⋆(Md). At this point, the adversary is essentially an adversary against
the indistinguishability (under passive attacks) of the authenticated encryption
scheme Πsym. We have |Pr[W10]− 1/2| ≤ AdvAE-IND(λ).

Putting the above altogether, we can bound the advantage of an IND-CCA
adversary as

Advcca(A) ≤ 3

1− 2−λ
·AdvB,RLWE

n,⌈λ/ logn⌉,q,χ(λ) + Q(Q+ 1) ·AdvAE-INT(λ) (3)

+ AdvAE-IND(λ) +
1

2Ω(n)
,

where Q is the number of decryption queries. ⊓⊔

16

Lemma 3. Game2 is indistinguishable from Game1 as long as the authenticated
encryption scheme Πsym provides ciphertext integrity. Concretely, we have the

inequality |Pr[W2]− Pr[W1]| ≤ Q·(Q+1)
2 ·AdvAE-INT(λ).

Proof. See the ePrint report [46].

Lemma 4. If q > 8p(αq)2n and p > 4αq
√
n, Game3 is perfectly indistinguish-

able from Game2.

Proof. See the ePrint report [46].

Lemma 5. Game4 is perfectly indistinguishable from Game3.

Proof. See the ePrint report [46].

Lemma 6. Game5 is perfectly indistinguishable from Game4.

Proof. See the ePrint report [46].

Lemma 7. Under the RLWEn,k,q,χ assumption where χ = Dcoeff
Zn,αq and k =

⌈λ/ log n⌉, Game7 is indistinguishable from Game6 if q > n2. Concretely, there

is a PPT algorithm B such that |Pr[W7]− Pr[W6]| ≤ AdvB,RLWE
n,k,q,χ (λ) + 2−λ.

Proof. the ePrint report [46].

Lemma 8. Under the RLWE assumption, Game9 is indistinguishable from Game8.
We have |Pr[W9] − Pr[W8]| ≤ (1 − 2−λ)−1 ·AdvB,RLWE

n,k,q,χ (λ), where χ = Dcoeff
Zn,αq

and k = 2⌈λ/ log n⌉ is the number of samples.

Proof. See the ePrint report [46].

We note that bound (3) tightly relates the security of the scheme to the RLWE
assumption. On the other hand, it loses a quadratic factor O(Q2) with respect
to the ciphertext integrity of the symmetric authenticated encryption scheme.
However, the term Q(Q + 1) · AdvAE-INT(λ) becomes statistically negligible if
Πsym is realized using an information-theoretically secure one-time MAC, as we
discuss in the following instantiation section.

4.3 Parameters and Instantiations

Parameters. In an instantiation in fully splitting rings Rq (which allows faster
multiplications using the NTT in Encrypt), we use Φ(X) = Xn +1, where n is a
power of 2, with a modulus q = 1 mod 2n.

For correctness, we need to choose α ∈ (0, 1), q and p such that p/2 > 2B
and 4p(B2 + 1) < q/2, which satisfy the requirements of Lemma 4. To apply
Lemma 2, we can set α ∈ (0, 1) so that αq = Ω(

√
n). To satisfy all conditions,

we may thus set p = Θ(n), q = Θ(n3) and α−1 = Θ(n2.5).

Concrete proposals. Around the 128-bit security level, n has to be some-
where between 512 and 1024. In order to get a more efficient implementation,

17

we sample s, e, r, e1, e2 from a centered binomial distributions as previously sug-
gested in [3, 20, 38] and set the parameters according to the concrete hardness
against known attacks via the heuristic LWE estimator [2]. Precisely, we consider

the noise distribution ψn
k defined over Zn as {

∑k
i=1(ai−bi) | ai, bi ←↩ U({0, 1}n)}

instead of a Gaussian distribution. As in [38], we use the distribution ψ̄n
2 obtained

by reducing ψn
2 mod 3. We then obtain ciphertexts of 4Kb by setting n = 1024,

p = 5 and q = 59393, and an estimated security level of 191 bits. This modifica-
tion of POLKA only entails minor modifications in the security proof, which are
detailed in the ePrint report [46] and is next used as our main instance.

In order to push optimizations even further, we could use rings where n does
not have to be a power of 2, as suggested in [38]. For example, the cyclotomic
polynomial Φ3n = Xn − Xn/2 + 1 with q = 1 mod 3n and n = 2i3j still gives
a fully splitting Rq = Zq[X]/(Φ3n). This allows choosing n = 768, p = 5 (so
that ∥ē2∥∞ ≤ (p − 1)/2), and q = 28 · 3n + 1 = 64513. Correctness is ensured
since we have ∥a · b∥∞ ≤ 2∥a∥∥b∥ for any a, b ∈ R = Z[X]/(Φ3n), so that
∥ē2+ p · (e · r̄− ē1 · s)∥∞ ≤ (p− 1)/2+8 · p ·n ≤ (q− 1)/2. We would then obtain
a ciphertext (c1, c2) that only takes 3Kb to represent.

In all instantiations, the public key can compressed down to roughly 50% of
the ciphertext size if we derive the random a ∈ Rq from a hash function modeled
as a random oracle (as considered by many NIST candidates).

Instantiating the DEM component. The symmetric authenticated encryp-
tion scheme Πsym can be instantiated with a a leakage-resistant Enc-then-MAC
mode of operation. Candidates for this purpose that rely on a masked block
cipher or permutation can be found in [14]. Yet, POLKA encourages the follow-
ing more efficient solution based on a key-homomorphic one-time MAC. If ℓm
is the message length, we can use a key length κ = λ + 2ℓm and a pseudo-
random generator G : {0, 1}λ → {0, 1}ℓm . To encrypt M ∈ {0, 1}ℓm , we parse
K = H(r, e1, e2) ∈ {0, 1}κ as a triple K = (K0,K1,K2) ∈ {0, 1}λ × ({0, 1}ℓm)2.
Then, we compute a ciphertext c = (c̄, τ) = (M ⊕G(K0),K1 · c̄+K2), where the
one-time MAC τ = K1·c̄+K2 is computed over GF(2ℓm). This specific MAC “an-
nihilates” the quadratic term O(Q2) in the security bound (3). In the ciphertext
integrity experiment (defined in the ePrint report [46]), the adversary’s advan-
tage can then be bounded as (Q+1)/2ℓm ifQ is the number of decryption queries.
To make the termQ(Q+1)·AdvAE-INT(λ) statistically negligible in (3), we can as-

sume that ℓm ≥ λ+3 log2 λ in order to have (Q+1)2Q/2ℓm < 23 log2 λ/2ℓm < 2−λ.
Concretely, if we set λ = 128 and assume Q < 260, we can choose ℓm ≥ 308. In
terms of leakage, the computation K1 · c̄+K2 is linear in the key and can there-
fore be masked with overheads that are linear in the number of shares (rather
than quadratic for a block cipher or permutation). The constraint on the mes-
sage length could be relaxed by hashing the message at the cost of an additional
idealized assumption, which we leave as a scope for further research.

18

5 Side-Channel Security Analysis

We now discuss the leakage properties of POLKA. In Section 5.1 we introduce the
general ideas supporting its leveled implementation and explain how its security
requirements can be efficiently fulfilled. In Section 5.2, we focus on its most novel
part, namely the variant of the LWPR assumption on which this implementation
relies. We also provide cryptanalysis challenges to motivate further research on
hard physical learning problems. In Section 5.3 we describe a hardware archi-
tecture for the most sensitive DPA target of POLKA. Our descriptions borrow
the terminology introduced in [45] for symmetric cryptography. Namely, we de-
note as leakage-resilient implementations of which confidentiality guarantees may
vanish in the presence of leakage, but are restored once leakage is removed from
the adversary’s view; and we denote as leakage-resistant implementations that
preserve confidentiality against leakage even for the challenge encryption.

5.1 Leveled Implementation and Design Goals

The high-level idea behind leveled implementations is that it may not be neces-
sary to protect all the parts of implementation with equally strong (and there-
fore expensive) side-channel countermeasures. In the following, we describe how
POLKA could be implemented in such a leveled manner. For this purpose, and as
a first step, we follow the heuristic methodology introduced in [14] and identify
its SPA and DPA targets in decryption. The resulting leveled implementation
of POLKA is represented in Figure 2. The lighter green-colored (dummied) oper-
ations need to be protected against SPA. The darker green-colored operations
need to be protected against SPA with averaging (avg-SPA), which is a SPA
where the adversary can repeat the measurement of a fixed target intermedi-
ate computation in order to remove the leakage noise. The lighter blue-colored
operations need to be protected against DPA with unknown (dummied) inputs
(UP-DPA). The darker blue-colored operations must be protected against DPA.
Operations become generically more difficult to protect against side-channel at-
tacks when moving from the left to the right of the figure. Eventually, securing
the first four steps in the figure is needed to protect the long-term secret of
POLKA, and therefore to ensure leakage-resilience. By contrast, securing the fifth
step is only needed to ensure leakage-resistance (i.e., the key K can leak in full in
case only leakage-resilience is needed). Next, we first explain how these security
requirements can be efficiently satisfied by hardware designers. We then discuss
the advantages of this implementation over a uniformly protected one.

SPA and DPA protections. All the operations requiring SPA protection (with
or without averaging) can be efficiently implemented thanks to parallelism in
hardware. Typically, we expect that an implementation manipulating 128 bits
or more in parallel is currently difficult to attack via SPA, even when leveraging
advanced analytical strategies [65].7 A bit more concretely, this reference shows

7 As will be clear in conclusions, software implementations are left as an interesting
open problem. In this case, the typical option to obtain security against SPA would
be to emulate parallelism thanks to the shuffling countermeasure [66].

19

st
ep

 5
st

ep
 3

SPA avg-SPA UP-DPA

st
ep

 1
st

ep
 4

st
ep

 2

DPA

le
ak

ag
e-

re
si

st
an

ce
le

ak
ag

e-
re

si
lie

nc
e

Fig. 2: Leveled implementation of POLKA.

that single-trace attacks are possible for Signal-to-Noise Ratios (SNRs) higher
than one. Adversaries targeting a 128-bit secret based on 8-bit (resp., 32-bit)
hypotheses would face an SNR of 1

16 (resp., 1
4). Securing the computations in

steps 1, 3 and 4 of Figure 2 against side-channel attacks should therefore lead to
limited overheads. Note that the dependency on a dummy ciphertext in step 3
prevents the adversary to control the intermediate computations (and for exam-
ple to try canceling the algorithmic noise for those sensitive operations).

Security against DPA is in general expected to be significantly more expen-
sive to reach. The standard approach for this purpose is to mask all the op-
erations that can be targeted, which leads to (roughly) quadratic performance
overheads [49]. Furthermore, implementing masking securely is a sensitive pro-
cess, which requires dealing with composition issues [8,29], physical defaults such
as glitches [54,58] or transitions [6, 28] or even their combination [25,26].

20

The main observation we leverage in POLKA is that its most critical DPA sen-
sitive operation shares similarities with the key-homomorphic re-keying schemes
used in symmetric cryptography to prevent side-channel attacks [36, 39, 40, 55].
Namely, the operation t = (p · c1) · s in step 2 of Figure 2 can indeed be viewed
as the product between a long-term secret s and an ephemeral (secret) value

(p · c1). As a result, it can be directly computed as t =
∑d

i=1(p · c1) · si, where
s = s1 + s2 + . . . sd and the si’s are the additive shares of the long-term secret
s. Besides the linear (rather than quadratic) overheads that such a solution en-
ables, key-homomorphic primitives have two important advantages for masking.
First, their long-term secret can be refreshed with linear randomness require-
ments [9]. Second, their natural implementation offers strong immunity against
composition issues and physical defaults [23]. On top of this, the fact that the
variable input of (p · c1) · si is dummied (hence unknown) implies that it will
need one less share than in a known input attack setting [16].

Even more importantly, and as discussed in the aforementioned papers on
fresh re-keying, it is then possible to re-combine the shares and to perform the
rest of the computations on unshared values, hence extending the interest of a
leveled approach. Various models have been introduced for this purpose in the
literature, depending on the type of multiplication to perform. The first re-keying
schemes considered multiplications in binary fields that require a sufficient level
of noise to be secure [12, 13]. Dziembowski et al. proposed a (more expensive)
wPRF-based re-keying that is secure even if its output is leaked in full [40].
Duval et al. proposed an intermediate solution that only requires the (possibly
noise-free) leakage function to be surjective and “incompatible” with the field
multiplication: they for example show that this happens when combining multi-
plications in prime fields with the Hamming weight leakage function, which they
formalized as the LWPR assumption [39]. Given that the multiplication of POLKA
is based on prime moduli, we next focus on this last model, which provides a
nice intermediate between efficiency and weak physical assumptions.

As for the operations of step 5 of Figure 2, we first observe that despite the
inputs of H being ephemeral, it is possible that an adversary obtains a certain
level of control over them by incrementally increasing c1 or c2. This explains
why it must be secure against DPA (with unknown plaintexts since r, e1 and
e2 are unknown as long as steps 3 and 4 are secure against SPA). Finally, the
protection of the authenticated encryption is somewhat orthogonal to POLKA

since it is needed for any DEM. The standard option for this purpose would be
to use a leakage-resistant mode of operation that ensures side-channel security
with decryption leakage. As discussed in [14], state-of-the-art modes allow the
authenticated encryption scheme to be leveled (i.e., to mix SPA-secure operations
with DPA-secure ones), like the rest of POLKA. But as mentioned in Section 4.3, an
even more efficient solution is to use an Enc-then-MAC scheme with a one-time
key-homomorphic MAC that is linear in the key and therefore easy to mask.

Discussion. The main advantage of POLKA is that its structure allows avoiding
the costly implementation of uniformly protected operations based on masking.
In this respect, it is worth recalling that: (i) the removal of the dummy ciphertext

21

takes place as late as possible in the process (i.e., just before the hashing and
symmetric decryption), and (ii) if only the long-term secret s must be protected
(i.e., if only leakage-resilience is required), step 5 of Figure 2 does not need coun-
termeasures. Overall, these design tweaks strongly limit the side-channel attack
surface and the need to mask non-linear operations compared to algorithms like
KYBER or SABER, at the cost of an admittedly provocative LWPR assumption.

We also remind that the implicit rejection used in schemes like KYBER or
SABER generates a pseudorandom “garbage key” in case of invalid ciphertext,
which implies the manipulation of additional long-term key material that must
be secure against DPA. We avoid such a need by relying on an explicit rejection.
Yet, it is an interesting open question to find out whether the same result could
be obtained with other (implicit) rejection mechanisms or proof techniques.

Overall, Figure 2 highlights that the novelty of POLKA mostly lies in its
leakage-resilient parts (i.e., steps 1 to 4). In order to help their understanding, we
provide an open source piece of code (for now without SPA and DPA counter-
measures that require lower level programming languages, neither ensuring the
leakage-resistance of the authenticated encryption in step 5).8 In general, further
improving the leakage-resistance of POLKA so that it can be ensured with weaker
side-channel security requirements is another interesting research direction.

We finally note that ensuring a constant-time implementation of POLKA re-
quires running a dummy hash function when flag = 1. Without such a dummy
hash, the same granular increase of c1 or c2 as mentioned to justify the DPA
security requirements of H could leak information on e1, e2 and r, by using a
timing channel to detect whether a ⊥ message is generated during step 4 or
step 5 (by the authenticated encryption scheme). This also means that in order
to avoid such a leakage on e1, e2 and r, it should be hard to distinguish whether
the flag is 0 or 1 with SPA. We conjecture the latter is simpler/cheaper than pro-
tecting another long-term secret against DPA (as required with current implicit
rejections), but as mentioned in introduction, POLKA could be adapted with an
implicit rejection as well (in which case, it should also be hard to distinguish
whether the key used to decrypt is a garbage one or not thanks to SPA).

5.2 Learning With Physical Rounding Assumption

We now move to the main assumption that allows an efficient leveling of POLKA.
Namely, we study the security of step 2 in Figure 2 after the recombination
of the shares. In other words, we study the security of the long-term secret s
assuming that the adversary can observe the leakage of the (unmasked) output
t.9 We start by recalling the LWPR problem introduced at CHES 2021 [39], then
discuss its adaptation to polynomial multiplications used in POLKA. We finally
propose security parameters together with cryptanalysis challenges.
8 https://github.com/cmomin/polka_implem.
9 As mentioned in subsection 5.1, the security of the internal computations of t =∑d

i=1(p · c1) · s
i is obtained thanks to masking. So here, we only need to argue that

the leakage of the recombined t does not lead to strong attacks.

22

https://github.com/cmomin/polka_implem

A. The original LWPR problem can be viewed as an adaptation of the
crypto dark matter proposed by Boneh et al. in [19], which showed that low-
complexity PRFs can be obtained by mixing linear functions over different small
moduli. Duval et al. observed that letting one of these functions being implicitly
computed by a leakage function can lead to strong benefits for masking against
side-channel attacks. Intuitively, it implies that a designer only has to imple-
ment a key-homomorphic function securely (i.e., the first crypto dark matter
mapping), since the second (physical) mapping never has to be explicitly com-
puted: it is rather the leakage function that provides its output to the adversary.
The formal definition of the resulting LWPR problem is given next.

Definition 2 (Learning with physical rounding [39]). Let q, x, y ∈ N∗, q
prime, for a secret κ ∈ Fx×y

q . The LWPRx,y
Lg,q

sample distribution is given by:

DLWPRx,y
Lg,q

:= (r, Lg (κ · r)) for r ∈ Fy
q uniformly random,

where Lg : Fx
q → Rd is the physical rounding function. Given query access to

DLWPRx,y
Lg,q

for a uniformly random κ, the LWPRx,y
Lg,q

problem is (χ, τ, µ, ϵ)-hard to

solve if after the observation of χ LWPR samples, no adversary can recover the
key κ with time complexity τ , memory complexity µ and probability ≥ ϵ.

Concretely, the LWPR problem consists in trying to retrieve a secret key matrix
κ using the information leakage emitted on its product with a random vector r.
It corresponds to a learning problem similar to LWR [7], with the rounding func-
tion instantiated with a leakage function. Its security depends on the dimensions
(q, x, y) and the leakage function considered. In [39], it is argued that this prob-
lem is hard in the case of the Hamming weight leakage function that is frequently
encountered in practice (with a binary representation) if the product is imple-
mented in parallel. By this, we mean that x× log2(q) bits are produced per cycle
by the implementation computing the LWPR samples. This problem can then be
used as the basis of a fresh re-keying mechanism, producing an ephemeral key
∈ Fx

q . The security analysis of Duval et al. shows that the complexity of various
(algebraic and statistical) attacks against such a fresh re-keying scheme grows
exponentially with the (main) security parameter y. The first instance they pro-
pose uses a 31-bit prime modulus p = 231 − 1 with parameters x = 4 and y = 4
(i.e., it assumes that four log2(p)-bit multiplications can be performed in paral-
lel). As can be seen in Figure 2, step 2 of POLKA shares strong similarities with
the aforementioned fresh-re-keying scheme based on LWPR, by simply viewing
the intermediate value t as an ephemeral key. We next discuss the differences
between the original LWPR assumption and the one needed for POLKA.

B. Ring-LWPR. Leveraging the fact that ring variants of learning problems
are common [52], we now describe a ring version of the LWPR problem. Let us
define r := p · c1. Seeing s as a long-term secret (similar to κ in the original
LWPR problem), the t value can be re-written as t = r · s. Further denoting si
(resp., ri) the coefficients of s (resp., r), we can write:

23

r · s =

(
n−1∑
i=0

siX
i

)
·

(
n−1∑
i=0

riX
i

)
=

2n−2∑
i=0

 min(i,n−1)∑
j=max(0,i−n+1)

sjri−j

Xi,

=

n−2∑
i=0

 i∑
j=0

sjri−j

Xi +

n−1∑
j=0

sjri−j

Xn−1 +

2n−2∑
i=n

 n−1∑
j=i−n+1

sjri−j

Xi,

=

n−2∑
i=0

 i∑
j=0

sjri−j

Xi +

n−1∑
j=0

sjri−j

Xn−1 +

n−2∑
i=0

 n−1∑
j=i+1

sjrn+i−j

Xn+i,

=

n−2∑
i=0

 n−1∑
j=i+1

sjri−j −
i∑

j=0

sjrn+i−j

Xi +

n−1∑
j=0

sjri−j

Xn−1.

The above equation highlights the matrix representation of the polynomial mul-
tiplication carried out in POLKA. If we represent polynomials as n-dimension vec-
tors, where the i-th coefficient is the polynomial’s i-th coefficient, the product
r · s can be represented as the following matrix-vector product:



r0 −rn−1 . . . −r2 −r1

r1 r0
. . . −r2

...
. . .

. . .
. . .

...

rn−2
. . .

. . . −rn−1

rn−1 rn−2 . . . r1 r0


·


s0
s1
...

sn−2

sn−1

 ·

n

x

The key is represented as the vector (rather than the matrix) in order to optimize
memory usage when splitting it into shares. This product can therefore be seen
as a large LWPR instance, with two significant differences. First, a circulant
matrix is used instead of one having independent coefficients (which we will
discuss when selecting parameters in the next subsection). Second, the size of
the matrix is (much) larger than the one in the original LWPR. Concretely,
this second difference implies that in practice, these products are unlikely to be
performed in one step: they will rather be decomposed into several submatrix-
subvector products. For this purpose, let x ∈ N be a divider of n, the s matrix
can then be split in n

x (x × n)-submatrices, denoted (Bu)0≤u<n
x
. The product

can then be decomposed into n
x subproducts (illustrated in blue) with x serving

as a parameter to adapt the security vs. performance tradeoff, as in the original
LWPR. For a given k, one can explicitly obtain the coefficient i, j of Bu. For

a proposition P, denote 1P :=

{
1 if P
0 else

. Then, Bi,j
u = (21(ux+i−j)<0 − 1) ·

rux+i−j (mod n) and the (x × n)-submatrices are therefore Toeplitz, determined
by their first line and first column, each other value being equal to their top-left
neighbor. Concretely, the x parameter sets the number of coefficients that are
computed in parallel so that in practice, an adversary will be granted access to
n
x samples given by the leakage function applied to x log2(q) bit-values.

24

Definition 3 (Ring learning with Physical rounding). Let q, x, n ∈ N, q
prime, for a secret s ∈ Rq. The RLWPRn,x

Lg,q
(s) sample distribution is given as:

DRLWPRn,x
Lg,q

(s) :=
(
r, (Lg (Bu · s))0≤u<n

x

)
,

where Lg is the physical rounding function and the (Bu) are submatrices made
of elements of r as defined above. Given query access to DRLWPRn,x

Lg,q
(s) for a

uniformly random s, the RLWPRn,x
Lg,q

(s) problem is (χ, τ, µ, ϵ)-hard to solve if
after the observation of χ RLWPR samples, no adversary can recover the key s
with time complexity τ , memory complexity µ and probability higher than ϵ.

Note that an implementer can also split each (x×n) submatrice into n
y pieces

(e.g., to further trade circuit size for cycles in hardware) but this has no impact
on the security of the RLWPR assumption, since the internal computations are
assumed to be secure thanks to masking, as per Footnote 9. By contrast, more
parallel implementations (reflected by a large y) may increase the level of noise
in the measurements and therefore the security of the masked computations [37].
So overall, the security of the above RLWPR problem only depends on n and x.
For a similar reason, the polynomial multiplication can be implemented naively
or in the NTT domain, as long as the inverse NTT is applied on every share
before recombination. A more efficient solution for the NTT case would be to
recombine the shares in the NTT domain (so that the inverse NTT is computed
only once). This would provide the adversary with leakages having a slightly
different structure than in the above RLWPR problem. We leave the security
analysis of this variant as an interesting scope for further research.

C. Choice of parameters and cryptanalysis challenges. Applying the
security analysis of LWPR described in Part A of this subsection to RLWPR,
we could choose instances based on the main security parameter n using the
parallelism parameter x to obtain security margins (a necessary condition to
reach λ bits of security is that (n+1) log2 q+3 log2 n ≥ λ). However, as mentioned
in Part B of this subsection, the RLWPR problem is not exactly the same as
the LWPR one. Negatively, the (x × n) submatrices are Toeplitz and they are
not independent. While using structured matrices is not unusual in the context
of hard learning problems (see for example [52] for RLWE or [44, 51] for LPN
variants) and we could not identify parts of the analyses in [39] that become easy
in this case, the corresponding problems are less studied, justifying additional
security margins to cover possible cryptanalysis improvements. As for the non-
independence issue, considering that the security of the full RLWPR is at least
as strong as the security of one of its subproducts, we can conservatively assume
that one RLWPR sample will generate at most n

x leakages about this subsecret. So
parameters’ choices covering that the data complexity of attacks against RLWPR
is reduced by this factor compared to attacks against LWPR should be safe.
Positively, the secret s in the leveled implementation of POLKA is not multiplied
with a public r since this r value is dummied. So concretely, the side-channel
adversary will only be provided with the leakage of this ephemeral value.

25

Putting things together, and considering the instances proposed in subsec-
tion 4.3, we propose the sets of parameters in Table 1 as interesting targets for
cryptanalysis with a time complexity of less than 2128 and at most 264 queries
to a RLWPR-bn,x,yHWg,q

(s), assuming a Hamming weight leakage function.

log2(q) n x

Set 1 16 1024 16

Set 2 16 1024 8

Table 1: Proposed sets of parameters.

5.3 Hardware Performance Evaluation

We complete our results with a hardware prototype for the masked computation
of t (i.e., step 2 in Figure 2), which is the most sensitive operation in POLKA.
Due to place constraints, we defer the description of the hardware architecture
we use and its FPGA implementation results in the ePrint report [46]. They
confirm overheads that are linear in the number of shares d. Since based on
similar or larger levels of parallelism as [39], these implementations are expected
to provide similar or larger levels of security against higher-order DPA.

6 Conclusions

The uniform protection of all the operations in recent post-quantum CCA-secure
public key encryption schemes against side-channel attacks is known to be very
expensive. To the best of our knowledge, POLKA is the first scheme for which a
protected implementation can be leveled, mixing operations that only require
SPA security with a few operations that require DPA security, some of them
being easy to mask. We reach this goal by mixing various ideas which we believe
of independent interest. We also believe these techniques are quite generic and
could be exploited for other schemes. For example, a leakage-resistant variant of
the NTRU cryptosystem is discussed in the ePrint report [46].

Our results lead to a number of interesting research challenges. First, the
RLWPR assumption on which a part of POLKA’s physical security relies is an ad-
mittedly recent one. So further cryptanalysis (e.g., generalized to wide classes
of realistic leakage functions) is an important direction for further investiga-
tions. The study of such hard physical learning problems in increasingly serial
implementations is another promising direction, as it could lead to their ex-
ploitation in a software context. As hinted in [39], this context may require
additional countermeasures like shuffling [66], in order to emulate the leakage of
a parallel implementation. The same holds for a NTT-LWPR variant of RLWPR
that would allow re-combining shares in the NTT domain, therefore leading to
more efficient multiplications and, in general, for efforts towards a more unified

26

/ less specialized view of hard physical learning problems. More related to the
high-level design of POLKA, it would be interesting to study options to further im-
prove its potential for leveling (e.g., by removing the possibility of DPA against
the hash function of step 5). From a theoretical viewpoint, evaluating whether
post-quantum and leakage-resistant schemes could take advantage of ciphertext
compression would be relevant as well. Eventually, the first leakage analysis we
provide in this work is based on the heuristic (attack-based) approach of [14]. So
formalizing and proving the leakage security of POLKA with an appropriate set
of physical assumptions and comparing the concrete security level of its imple-
mentations against the one of KYBER or SABER are necessary long-term goals.

Acknowledgments. The authors thank Tobias Schneider for useful feedback
on the design of POLKA. Thomas Peters and François-Xavier Standaert are re-
spectively research associate and senior research associate of the Belgian Fund
for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by
the European Union through the ERC project 724725 (acronym SWORD) and
the PROMETHEUS project (Horizon 2020 Research and Innovation Program,
grant 780701), and by the Walloon Region Win2Wal project PIRATE.

References

1. M. Abe, R. Gennaro, K. Kurosawa, and V. Shoup. Tag-KEM/DEM: A new frame-
work for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In
Eurocrypt, 2005.

2. M. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with
Errors. Journal of Mathematical Cryptology, 9(3), 2015.

3. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
– a new hope. In USENIX Security Symposium, 2016.

4. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. Schanck,
P. Schwabe, G. Seiler, and D. Damien Stehlé. CRYSTALS-KYBER algorithm
specifications and supporting documentation. NIST PQC Round, 3:42, 2020.

5. M. Azouaoui, O. Bronchain, C. Hoffmann, Y. Kuzovkova, T. Schneider, and
F. Standaert. Systematic study of decryption and re-encryption leakage: The case
of kyber. In COSADE, 2022.

6. J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert. On the cost of
lazy engineering for masked software implementations. In CARDIS, 2014.

7. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, 2012.

8. G. Barthe, S. Beläıd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and R. Zuc-
chini. Strong non-interference and type-directed higher-order masking. In CCS,
2016.

9. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F. Standaert, and P. Strub. Parallel
implementations of masking schemes and the bounded moment leakage model. In
Eurocrypt (1), 2017.

10. A. Basso, J. M. B. Mera, J.-P. D’Anvers, A. Karmakar, S. S. Roy, M. V. Beiren-
donck, and F. Vercauteren. SABER algorithm specifications and supporting doc-
umentation. NIST PQC Round, 3:44, 2020.

27

11. M. V. Beirendonck, J. D’Anvers, A. Karmakar, J. Balasch, and I. Verbauwhede.
A side-channel-resistant implementation of SABER. ACM J. Emerg. Technol.
Comput. Syst., 17(2), 2021.

12. S. Beläıd, J. Coron, P. Fouque, B. Gérard, J. Kammerer, and E. Prouff. Improved
side-channel analysis of finite-field multiplication. In CHES, 2015.

13. S. Beläıd, P. Fouque, and B. Gérard. Side-channel analysis of multiplications in
GF(2128) - application to AES-GCM. In ASIACRYPT (2), 2014.

14. D. Bellizia, O. Bronchain, G. Cassiers, V. Grosso, C. Guo, C. Momin, O. Pereira,
T. Peters, and F. Standaert. Mode-level vs. implementation-level physical secu-
rity in symmetric cryptography - A practical guide through the leakage-resistance
jungle. In Crypto (1), 2020.

15. D. J. Bernstein and E. Persichetti. Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526, 2018.

16. F. Berti, S. Bhasin, J. Breier, X. Hou, R. Poussier, F. Standaert, and B. Udvarhe-
lyi. A finer-grain analysis of the leakage (non) resilience of OCB. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(1), 2022.

17. S. Bhasin, J. D’Anvers, D. Heinz, T. Pöppelmann, and M. V. Beirendonck. Attack-
ing and defending masked polynomial comparison for lattice-based cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3), 2021.

18. D. Boneh, O. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In Asiacrypt, 2011.

19. D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu. Exploring crypto dark
matter: - new simple PRF candidates and their applications. In TCC (2), 2018.

20. J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé. CRYSTALS - Kyber: A CCA-Secure Module-Lattice-
Based KEM. In IEEE EuroS&P , 2018.

21. J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal. Masking
KYBER: First- and higher-order implementations. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(4), 2021.

22. O. Bronchain and G. Cassiers. Bitslicing arithmetic/boolean masking conversions
for fun and profit with application to lattice-based kems, 2022.

23. O. Bronchain, T. Schneider, and F. Standaert. Reducing risks through simplicity:
high side-channel security for lazy engineers. J. Cryptogr. Eng., 11(1):39–55, 2021.

24. O. Bronchain and F. Standaert. Breaking masked implementations with many
shares on 32-bit software platforms or when the security order does not matter.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3), 2021.

25. G. Cassiers, B. Grégoire, I. Levi, and F. Standaert. Hardware private circuits: From
trivial composition to full verification. IEEE Trans. Computers, 70(10), 2021.

26. G. Cassiers and F. Standaert. Provably secure hardware masking in the transition-
and glitch-robust probing model: Better safe than sorry. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(2):136–158, 2021.

27. C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. Schanck, P. Schwabe,
W. Whyte, Z. Zhang, T. Saito, T. Yamakawa, and K. Xagawa. NTRU algorithm
specifications and supporting documentation. NIST PQC Round, 3:41, 2020.

28. J. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. Con-
version of security proofs from one leakage model to another: A new issue. In
COSADE, 2012.

29. J. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In FSE, 2013.

28

30. J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and I. Ver-
bauwhede. Decryption failure attacks on IND-CCA secure lattice-based schemes.
In PKC, 2019.

31. J.-P. D’Anvers, A. Karmakar, S.-S. Roy, and F. Vercauteren. Saber: Module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In Africacrypt,
2018.

32. J.-P. D’Anvers, E. Orsini, and F. Vercauteren. Error term checking: Towards chosen
ciphertext security without re-encryption. In AsiaPKC, 2021.

33. J.-P. D’Anvers, M. Rossi, and F. Virdia. (One) failure is not an option: Boot-
strapping the search for failures in lattice-based encryption schemes. In Eurocrypt,
2020.

34. C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, and
T. Unterluggauer. Isap v2.0. IACR Trans. Symmetric Cryptol., 2020(S1), 2020.

35. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol., 34(3), 2021.

36. C. Dobraunig, F. Koeune, S. Mangard, F. Mendel, and F. Standaert. Towards
fresh and hybrid re-keying schemes with beyond birthday security. In CARDIS,
2015.

37. A. Duc, S. Faust, and F. Standaert. Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In EUROCRYPT (1), 2015.

38. J. Duman, K. Hövelmanns, E. Kiltz, V. Lyubashevsky, G. Seiler, and D. Unruh.
A thorough treatment of highly-efficient NTRU instantiations. Cryptology ePrint
Archive: Report 2021/1352.

39. S. Duval, P. Méaux, C. Momin, and F. Standaert. Exploring crypto-physical dark
matter and learning with physical rounding towards secure and efficient fresh re-
keying. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(1), 2021.

40. S. Dziembowski, S. Faust, G. Herold, A. Journault, D. Masny, and F. Standaert.
Towards sound fresh re-keying with hard (physical) learning problems. In Crypto
(2), 2016.

41. T. Fritzmann, M. V. Beirendonck, D. B. Roy, P. Karl, T. Schamberger, I. Ver-
bauwhede, and G. Sigl. Masked accelerators and instruction set extensions for
post-quantum cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1),
2022.

42. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Crypto, 1999.

43. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Jo. of Cryptology, 226(21), 2013.

44. H. Gilbert, M. J. B. Robshaw, and Y. Seurin. Hb#: Increasing the security and
efficiency of hb+. In EUROCRYPT, 2008.

45. C. Guo, O. Pereira, T. Peters, and F. Standaert. Authenticated encryption with
nonce misuse and physical leakage: Definitions, separation results and first con-
struction - (extended abstract). In LATINCRYPT, 2019.

46. C. Hoffmann, B. Libert, C. Momin, T. Peters, and F. Standaert. Towards leakage-
resistant post-quantum cca-secure public key encryption. IACR Cryptol. ePrint
Arch., page 873, 2022.

47. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In TCC, 2017.

48. D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsu-
lation. In Crypto, 2007.

29

49. Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, 2003.

50. S. Katsumata and S. Yamada. Partitioning via non-linear polynomial functions:
More compact IBEs from ideal lattices and bilinear maps. In Asiacrypt, 2016.

51. E. Kiltz, K. Pietrzak, D. Venturi, D. Cash, and A. Jain. Efficient authentication
from hard learning problems. J. Cryptol., 30(4):1238–1275, 2017.

52. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In Eurocrypt, 2010.

53. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets
of smart cards. Springer, 2007.

54. S. Mangard, T. Popp, and B. M. Gammel. Side-channel leakage of masked CMOS
gates. In CT-RSA, 2005.

55. M. Medwed, F. Standaert, J. Großschädl, and F. Regazzoni. Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In Africacrypt,
2010.

56. D. Micciancio and O. Regev. Worst-case to average-case reductions based on
Gaussian measures. SIAMJC, 37(1):267–302, 2007.

57. K. Ngo, E. Dubrova, Q. Guo, and T. Johansson. A side-channel attack on a masked
IND-CCA secure SABER KEM implementation. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(4), 2021.

58. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptol., 24(2):292–321, 2011.

59. E. Persichetti. Improving the efficiency of code-based cryptography. PhD thesis,
Univ. of Auckland, 2012.

60. P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin. Generic side-channel attacks
on CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(3), 2020.

61. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

62. T. Saito, K. Xagawa, and Y. Yamakawa. Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Eurocrypt, 2018.

63. V. Shoup. A proposal for an ISO standard for public key encryption. Manuscript,
Dec. 2001.

64. R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma. Curse
of re-encryption: A generic power/EM analysis on post-quantum KEMs. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1), 2022.

65. N. Veyrat-Charvillon, B. Gérard, and F. Standaert. Soft analytical side-channel
attacks. In ASIACRYPT (1), 2014.

66. N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F. Standaert. Shuffling
against side-channel attacks: A comprehensive study with cautionary note. In
ASIACRYPT, 2012.

30

	POLKA: Towards Leakage-Resistant Post- Quantum CCA-Secure Public Key Encryption*-0.4cm
	Clément Hoffmann1, Benoît Libert2, Charles Momin1, Thomas Peters1, François-Xavier Standaert1
	Introduction
	Technical Overview & Cautionary Note
	Background
	Lattices and Discrete Gaussian Distributions
	Rings and Ideal Lattices.

	POLKA: Rationale and Specifications
	The Scheme With an Additive Mask
	Black-Box Security Analysis
	Parameters and Instantiations

	Side-Channel Security Analysis
	Leveled Implementation and Design Goals
	Learning With Physical Rounding Assumption
	Hardware Performance Evaluation

	Conclusions

