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Abstract. The dream of software obfuscation is to take programs, as
they are, and then generically compile them into obfuscated versions that
hide their secret inner workings. In this work we investigate notions of
obfuscations weaker than virtual black-box (VBB) but which still allow
obfuscating cryptographic primitives preserving their original function-
alities as much as possible.
In particular we propose two new notions of obfuscations, which we call
oracle-differing-input obfuscation (odiO) and oracle-indistinguishability
obfuscation (oiO). In a nutshell, odiO is a natural strengthening of differing-
input obfuscation (diO) and allows obfuscating programs for which it is
hard to find a differing-input when given only oracle access to the pro-
grams. An oiO obfuscator allows to obfuscate programs that are hard to
distinguish when treated as oracles.
We then show applications of these notions, as well as positive and neg-
ative results around them. A few highlights include:
– Our new notions are weaker than VBB and stronger than diO.
– As it is the case for VBB, we show that there exist programs that

cannot be obfuscated with odiO or oiO.
– Our new notions allow to generically compile several flavours of

secret-key primitives (e.g., SKE, MAC, designated verifier NIZK)
into their public-key equivalent (e.g., PKE, signatures, publicly ver-
ifiable NIZK) while preserving one of the algorithms of the origi-
nal scheme (function-preserving), or the structure of their outputs
(format-preserving).

1 Introduction

Obfuscation and its (dream) applications. Obfuscation—the ability of run-
ning a program hiding its inner working—is a cryptographer’s dream. This is
especially true of its most powerful instantiation, virtual black-box (VBB) ob-
fuscation: anything a VBB-obfuscated program leaks can be simulated through
oracle access to the function it computes [8]. It follows that one important ap-
plication of VBB is to generically transform secret-key cryptographic primitives
into their public-key counterparts (an approach sometimes referred to as white-
box cryptography). For example, the seminal work of Diffie and Hellman [25]



already imagined compiling secret key encryption (SKE) into public key en-
cryption (PKE) by letting the public key consist of the obfuscated encryption
program Enc(k, ·). Note that this compiler has the advantage of preserving the
format of the underlying ciphertext, as well as the function used to perform
decryption.

Transforming primitives, nicely. In this paper, we are interested in obfu-
cators that allow generic structure preserving transformation of large classes of
cryptographic primitives, i.e., obfuscators that allow to compile cryptographic
primitives while preserving parts of the original primitive. In particular, with the
term structure-preserving, we refer to two main classes of transformations (from
secret-key to public-key primitives), dubbed function-preserving and format-
preserving transformations:

– Function-preserving. This first type of transformation does not alter the al-
gorithms (one of which is then obfuscated during the transformation) of
the secret-key primitive. An example of such a transformation is the one
described by Diffie and Hellman, i.e., compile a SKE into a PKE by obfus-
cating (without any modification) the encryption algorithm and keep the
decryption one unchanged.

– Format-preserving. This other type of transformation modifies the algo-
rithms of the original secret-key primitive but it preserves the format of
the output.3 For example, in order to convert a SKE into a PKE, a format-
preserving transformation may require to modify both (before obfuscating)
the encryption and decryption algorithm. However, these modifications do
not alter the format of ciphertexts (i.e., the ciphertexts of the resulting PKE
is of the same format as the original SKE one).

We see this as an interesting design approach to transformation of primitives,
worth of study of its own. Structure-preserving compilers are desirable because
of: (i) reusability/retrocompatibility and (ii) efficiency. First, with function-
preserving transformations we can reuse existing code, programs, libraries, con-
structions and their cryptanalysis. Cryptographic primitives deployed in hard-
ware could reuse that same hardware for the transformed primitive, instead
of having to be redesigned from scratch and possibly replaced in a produc-
tion environment. Moreover, transformations that preserve the format of their
output allow to reuse parsing-related software and to be retrocompatible with
older standards (particularly important for legacy systems). Also, function- and
format-preserving transformations maintain some of the scheme’s original effi-
ciency guarantees such as preserving the running time of the (possibly heavily
optimized) original function and its communication complexity, respectively.

3 Note that a function-preserving transformation is also format-preserving. This is
because the former does not modify the algorithms of the original primitive. Hence,
the format of the output is preserved by definition.
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Nice transformations from weaker obfuscation? The seminal work in [7, 8]
has shown that the “dream version” of obfuscation, VBB, is in general impos-
sible, i.e., there exist programs that cannot be obfuscated through VBB. Since
then cryptographers have defined new, weaker notions of obfuscations that could
hopefully be constructed. One of the plausible weaker candidates in this sense is
indistinguishability obfuscation (iO) that guarantees the indistinguishability of
a pair obfuscated programs, only if the latter have the exact same input-output
behavior. It is truly surprising that a notion of obfuscation as weak as iO has
managed to generate so many applications [41]. However, most of the applica-
tions of iO are out of the spectrum of the “design once; obfuscate later”-approach
that was dreamed in the beginning, i.e., generically compile an existing secret-
key primitive that it has been designed without the intend of being obfuscated
later in time. In fact, most iO-based constructions are quite involved and they
are not generic since only carefully designed programs can be successfully ob-
fuscated through iO. A clear example is [41] that leverages puncturable PRFs
and pseudorandom generators (PRG) to build (from scratch) a SKE scheme that
satisfies very specific properties (e.g., puncturability) which, in turn, allows iO to
convert it into a PKE scheme. Intuitively, this is far from having a generic trans-
formation since the SKE is built with the intent of being obfuscated through iO.
It is therefore natural to ask the following question:

Can we obtain generic structure-preserving transformations from notions of
obfuscation weaker than VBB?

Our results: new primitives, compilers, connections to prior notions.
In this work we propose two new definitions of obfuscation, oracle-differing-input
obfuscation (odiO) and oracle-indistinguishability obfuscation (oiO), and apply
them to structure-preserving transformations for several classes of primitives.

Recall that iO [8] only guarantees indistinguishability of obfuscations between
pair of programs that have the exact same input/output behaviour. Differing-
input obfuscation (diO) [8, 1, 17] is a stronger kind of obfuscation which guaran-
tees the same indistinguishability property of iO but for pair of programs which
might have different input/output behaviour, as long as it is computationally
hard to find inputs on which the output of the programs differ, even when look-
ing at the code of the programs. Our first notion, odiO, enriches the class of
programs that can be securely obfuscated including any pair of programs for
which it is hard to find differing-inputs, but when the distinguisher is given only
oracle access to the programs. oiO then takes it a step further and allows to
obfuscate any pair of programs that are indistinguishable when given as oracle.

In the paper we formally study the relationship between our new notions of
obfuscation and the existing one. Note that:

VBB > oiO > odiO > diO > iO

meaning that a VBB-obfuscator is also an oiO-obfuscator, and so on. Intuitively,
the separation are strict. Again, focusing only on the first inequality: while a
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Fig. 1: The transformations (1)-(5) of this work: function-preserving on top row;
format-preserving on bottom row. By odiO/oiO we denote an algorithm obtained
through direct obfuscation of the one on the left; by ≡ one that is completely
unchanged; by ∼= one with minor changes but still able to take the same input;
by (PPRF) we denote where we modify the algorithm through puncturable PRFs
before obfuscation.

VBB-obfuscator cannot leak anything about the program that cannot be learned
by the oracle version of the program, an oiO-obfuscator is allowed to leak any
secret contained in its circuit, as long as these secrets do not allow to distinguish
between the oracle programs. Focusing on oiO, odiO, diO, and iO, we have that
all these notions provide the same flavor of security (i.e., two obfuscations are in-
distinguishable) but for different classes of circuits, each progressively contained
into the other. For this reason, we have that oiO > odiO > diO > iO.

Note that odiO is stronger than diO. Hence, as considered by previous works
for diO, this work assumes that current candidates of iO obfuscators are candi-
dates obfuscators for odiO and oiO.

Still, since oiO and odiO are weaker than VBB, it is plausibly easier to build
oiO and odiO obfuscators than VBB ones, at least for specific classes of programs:
For example, it is known that point functions can be VBB-obfuscated, despite
the general impossibility results for VBB; similarly, programs that differ in a
single input (or polynomial number of inputs) can be diO-obfuscated, even if we
believe that diO is unlikely to exist in general. In the same spirit, our results can
be interpreted as showing that we can lift certain symmetric-key primitives to
public-key primitives as long as specific functions (e.g., verification algorithms)
can be odiO-obfuscated.

We then show that our new notions of obfuscation are enough for generic
structure-preserving transformations of important cryptographic primitives. In
particular we provide the following transformation (see also Figure 1):

1. A function-preserving transformation from selectively sound succinct des-
ignated verifier non-interactive argument systems (dv-SNARG) into pub-
licly verifiable ones (pv-SNARG) (Section 5.1); The same transformation al-
lows transforming non-interactive argument systems that satisfy straight-line
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knowledge soundness, i.e., it is possible to extract (through a trapdoor) a
valid witness from verifying proofs without interacting with the adversary;4

2. A function-preserving transformation from strong existentially unforgeable
MACs into digital signatures that remains strongly unforgeable only in the
presence of adversaries that can ask signatures of arbitrary messages in a
selective fashion;

3. A format-preserving transformation that leverages puncturable PRFs to con-
vert selectively existentially unforgeable MACs into selectively existentially
unforgeable digital signatures. In constrast to the previous (MACs to signa-
tures) transformation, this is only format-preserving but achieves existential
unforgeability under the standard notion of chosen message attacks (i.e., the
adversary has adaptive oracle access to the signature algorithm);

4. A format-preserving transformation that leverages puncturable PRFs to con-
vert IV-based selectively secure SKEs into selectively IND-CPA secure PKEs.
Here, IV-based SKEs refer to encryption schemes of the form Enc(k,m; iv) =
(iv, c) where iv is the initialization vector (i.e., randomness) used to encrypt
a message m. Note that most SKE used in practice are IV-based e.g., those
based on block ciphers mode operations such as AES-CBC-mode, AES-CTR-
mode, and so on.

5. A function-preserving transformation from any semantically secure and key
indistinguishable SKE into a selective IND-CPA PKE (Section 5.2). Here,
the SKE’s key indistinguishability property must hold under chosen message
randomness attacks, i.e., it is infeasible to determine under which key a
target message has been encrypted even if the adversary has oracle access
to Enc(k, ·; ·) that accepts adversarially chosen messages and randomnesses.

Note that only the last transformation requires oiO (in order to use the key
indistinguishability property of the SKE) whereas odiO is sufficient to achieve the
other ones. Also, all the transformations that use puncturable PRFs are (only)
format-preserving, i.e., the programs/algorithms of the compiled primitive are
(slightly) modified but the format of the output is preserved.5 We anticipate that
all our transformations require odiO/oiO and they cannot be implemented using
iO (or diO). In a nutshell, this is because we focus on generic transformations from
secret-key to public-key primitives. In order to be generic, we need to eventually
reduce the security of the transformation to the security of the original secret-
key primitive. If we wish to accomplish this reduction using either iO or diO, we
need to put, into the obfuscated circuit, the key sk of the original (secret-key)

4 As for straight-line knowledge soundness, we do not consider succinctness (i.e., we
do not cover dv-SNARG/pv-SNARG) since, in order to have a straight-line extraction,
the size of the proof is proportional to the size of the witness.

5 We will elaborate on this later, but intuitively this is because the obfuscated program
will use the puncturable PRF to generate a fresh symmetric key for different input
(e.g., messages, initialization vectors). Hence, on decryption/verification, the receiver
needs to evaluate the same PRF in order to recompute the symmetric key used to
decrypt/verify a particular ciphertext/signature.
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primitive. However, this is not possible. During the reduction sk is sampled and
kept secret by the challenger. We provide more details in Section 1.1.

Although both odiO and oiO are weaker than VBB, this does not tell us
anything about the plausibility of these new notions of obfuscation (and their
applications). As a last contribution, we investigate whether VBB’s impossibility
results of Barak et al. [7, 8] extends to either odiO or oiO (or both). In particular,
Barak et al. [7, 8] shows the following two impossibility results regarding VBB.
(i) The first states an universal VBB obfuscator does not exist, i.e. there exists
(not necessarily natural) computations that cannot be obfuscated through VBB.
(ii) The second states that even the specific applications/transformations of VBB
we can naturally hope for are impossible (e.g., converting any SKE into a PKE).

What about the above and odiO/oiO? We answer this question as follows:

– Result (i) does apply to odiO and oiO. This does not say much about how
useful they are, so in the paper we explore result (ii) as well (see Section 6.1).

– Result (ii) applies only to transformation (5) for oiO. Moreover, we need to
rework the original result (ii) from [7, 8] to extend it to transformation (5)
since it does not apply as it is (see Section 6.2).

– Result (ii) does not apply at all to the applications/trasformations we have
for odiO and there seems no natural way to extend it to them. Hence, all
our odiO-based transformations remain plausible.

Summing up, while the first result (i) applies to both our proposed notions,
odiO is not at all subject to the second result (ii) (impossibility of applications),
which is the most limiting one.

Expanding more about the above results, we provide two different nega-
tive results by adapting the techniques of [7, 8] to the case of odiO and oiO.
First, we show that there exists an ensemble of circuits that neither odiO nor
oiO cannot obfuscate, unconditionally (Section 6.1). Second, we show that the
oiO-based function-preserving transformation (5) from any semantically secure
and key indistinguishable SKEs into selective IND-CPA secure PKEs is inher-
ently impossible (no matter what type of obfuscator is used to implement it).6

We elaborate further on this in the technical overview (Section 1.1) and in the
related Section 6.

Why study these new notions if they are still subject to the [7, 8]
impossibility results? There are multiple responses to that (some of which
we expand below):

1. The work of Barak et al. [7, 8] does not really say much about how useful
odiO/oiO are (see also technical overview). Indeed, [7, 8] shows two types

6 Note that Barak et al. [8] demonstrates the impossibility of transforming a SKE into
a PKE (through the obfuscation of its encryption algorithm Enc(k, ·)) by building a
(contrived) secure SKE that, after applying the transformation, yields an insecure
PKE. However, their contrived SKE is not key indistinguishable. For this reason,
in order to prove the impossibility of our oiO-based transformation (5) (from key
indistinguishable SKE to PKE) we need to rework their result.
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of impossibility results, i.e., impossibility of an universal obfuscator and im-
possibility of applications. As we mentioned above, these impossibilities do
not equally extend to both notions, e.g., impossibility of applications do not
extend to our odiO-based transformations.

2. It is still important to study foundational aspects of obfuscation. We think
ours are natural questions and natural notions to propose and to turn our
attention to. As it is often the case in theoretical research, these notions
may be connected to others in the future in unexpected ways. They might
also motivate further work on notions that will turn out to be achievable
(the [7, 8] prompted the quest for iO and other notions related to VBB).

3. Related to the above, both odiO and oiO might be useful for many “proof-
of-concept” type of results that rely on VBB-obfuscation. In cases where
these weaker definitions might suffice, the proposed notions could shed light
on what security property is actually needed from the obfuscator to im-
ply security of the overall construction.7 As an example, our results can be
interpreted as follows: If a particular circuit (e.g., secret-key verification/en-
cryption algorithm) can be odiO-obfuscated (resp. oiO-obfuscated) then we
can lift a particular secret-key primitive into its public-key flavor (e.g., MAC
to signatures, SKE to PKE).

4. VBB and odiO/oiO are still distinct notions and with distinct flavors of
security (simulation- vs indistinguishability-based). Moreover, nonetheless
the known impossibility results, research on VBB is still active such as
identifying specific and interesting class of circuits that can be securely
VBB-obfuscated [45, 33, 43]. The same can be investigated for the case of
odiO/oiO. For example, there could exist a specific class of circuits that
can be oiO-/odiO-obfuscated but not VBB-obfuscated. Or there could exist
circuit classes that are VBB-obfuscatable, but that can still be odiO/oiO-
obfuscated more efficiently or from significantly weaker assumptions.

Lastly, we stress that odiO/oiO may have other interesting applications. This
work focuses on secret-key to public-key transformations since these are most
prominent applications of VBB and, we believe that studying odiO/oiO in the
same context provides a better understanding about the relations between odiO/oiO
and VBB, including their limitations.

1.1 Technical Overview

Oracle-Differing-Input Obfuscation (odiO). The notion of odiO is a variant
of the notion of differing-input obfuscation, or diO. What is common with diO,
for example, is that: (i) we are given a sampler S that outputs two circuits
C0 and C1 and some auxiliary information α; (ii) the output of the sampler
should satisfy some property P (we call such sampler “permissible”); (iii) if the
sampler sastisfies property P then the obfuscated circuits Obf(C0) and Obf(C1)

7 This follows the same spirit of the UCE framework proposed by Bellare et al. [9]
that allows to identify which property of the random oracle model (ROM) is needed
to imply security of the (ROM-based) construction.
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should look indistinguishable to a PPT adversary given also in input α. Also, in
both diO and odiO, the property P corresponds to “no PPT D can find a differing
input x for C0 and C1 (given in input α)”, that is an input x such that C0(x) ̸=
C1(x). Where the two definitions diverge is that in diO algorithm D takes as
input the actual representation (the code) of the two circuits, whereas in odiO
D only has oracle access to the functions computed by C0 and C1.

An example of sampler that is permissible for odiO but not diO is the follow-
ing: consider two programs C0 and C1 where their only (high-entropy) differing
input is encoded as a comment in their code. Given their code it is easy to find
such input, but not with oracle access to them. We provide more examples when
we discuss our transformations below.

Public-key “forgery-based” transformations through odiO. We show
that odiO is particularly suitable for transforming a general class of primitives—
which we informally dub forgery-based—from their secret-key to their public-
key version. By forgery-based we mean a primitive where the security is defined
roughly as follows: “No adversary can produce (forge) a string passing a given
test without knowledge of a certain secret (or if a certain condition does not
hold)”. Straightforward examples of this type of primitives include message-
authentication codes (MACs) and digital signature, but non-interactive proof
systems and signatures of knowledge [24] also capture this intuition.

The properties of odiO are sufficient for compiling the forgery-based prim-
itives (1)-(3) listed above. We now give the main intuitions behind our trans-
formations and their security. Our goal is to transform a primitive allowing
us to verify a string through knowledge of secret into one that can do the
same without such knowledge. Let us denote the first generic verification al-
gorithm by Verify(sk, . . . );8 we aim to transform it into a public key equivalent
Verify′(pk, . . . ). Our construction is straightforward: We define pk as the odiO-
obfuscation of Verify(sk, . . . ), and the program Verify′(pk, . . . ) simply runs the
program encoded in pk.

We now argue that the above is secure in a selective-security-flavored set-
ting. In general, in such a setting, the adversary first claims some input (e.g.,
a message or an NP statement) for which it would like to forge a valid string
(e.g., a signature or a proof). The rest of the intuition is better conveyed be-
ing specific. We thus focus on the setting of non-adaptive (selective) security in
non-interactive proof systems where the verifier has the syntax Verify(vrs, x, π)
and vrs is the (secret) verification key, x is a public statement (allegedly in a
language L), π is the proof. In this security game, for any input x̂ ̸∈ L, the ad-
versary should not be able to forge a corresponding valid proof after seeing the
public parameters (aka, common reference string or crs). We now show how to
reduce the security of the publicly verifiable construction to that of the original
(designated verifier) one applying odiO security. Recall that the security prop-
erty of odiO must refer to a given sampler returning pairs of circuits. We require

8 The rest of the input besides the key is irrelevant for this discussion.
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that our odiO obfuscator is secure against a sampler that returns (C0, C1) (we
ignore the auxiliary input here) where:

– C0 takes as input x and π and returns Verify(vrs, x, π).
– C1 behaves like C0 except that it immediately returns 0 whenever x = x̂.

The two circuits clearly satisfy the odiO permissibility notion since finding a dif-
fering input through oracle access to them would violate the original hypothesis
of soundness (the only differing inputs are valid proofs for x̂).9

Thus we can move to an hybrid where the crs is an obfuscation of C1, and
indistinguishability of the hybrids follows from the security of the odiO obfusca-
tor. But now note that by construction of C1, when crs = Obf(C1), an adversary
by definition cannot produce a valid for x̂. Moreover, we obtain (for free) that
our transformation preserves zero-knowledge since it is function-preserving and
the Prove algorithm is not modified (see Remark 5.3).

The blueprint for the construction and security proof above can be adapted
(with the appropriate care) to the other forgery-settings (2)-(3) for which we
propose transformations. For transformation (2)—which yields selectively-secure
strongly unforgeable signatures—one technical challenge is that we need to sim-
ulate the queries to the signing oracle. Since these queries are selective we can
embed them in one of the circuits we obfuscate during the hybrid arguments.
Transformation (3) requires additional care since it yields a signature scheme
secure against an adversary with adaptive queries to the signing oracle. To do
so we slightly modify the signature algorithm and use a (puncturable) PRF to
generate a fresh one-time symmetric-key used to sign a single message. The veri-
fication algorithm is similarly adapted and then obfuscated. Due to the use of the
PRF, the transformation is not function-preserving but only format-preserving.

Compiling extractable argument systems. We are able to extend our re-
sult for argument schemes satisfying soundness to arguments that satisfy knowl-
edge soundness. This is achieved by the exact same function-preserving con-
struction from odiO.10 We are able to compile an adaptively-secure straight-line
extractable designated verifier argument into an adaptively-secure straight-line
extractable publicly verifiable argument. Note that, when considering straight-
line extractability, proofs are not succinct anymore; hence, in this case we cover
dv-NIZK and pv-NIZK. In contrast to soundness—which achieves only selective
security—here we are able to preserve adaptive security. Again, the transfoma-
tion is function-preserving and it does not alter the Prove algorithm. Hence,

9 In particular, soundness (of underlying designated-verifier non-interactive proof sys-
tem) must hold even if the adversary has oracle access to the verification algorithm.
The latter is essential during the reduction to simulate the input-output behavior
of the two circuits (treated as oracles). Hence, our transformation does not apply to
non-interactive proofs systems that suffer from the so called verifier rejection prob-
lem, i.e., giving oracle access to the verifier allows the adversary to break soundness.

10 Despite the construction is the same, the sampler required to prove knowledge sound-
ness is different.
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zero-knowledge is preserved (see also Remark 5.3). To the best of our knowledge
ours is the first work applying obfuscation in the context of extractability in
proof schemes.

Using odiO for public-key encryption through puncturable PRFs. So
far we discussed how odiO is particularly useful for forgery-flavored primitives.
We observe, however, that we are able to prove security of another type of primi-
tive, encryption. In the full version of this work [21], we show how to compile IV-
based selectively secure SKEs (whose ciphertexts have the form Enc(k,m; iv) =
(iv, c)) into selectively IND-CPA secure PKEs. Our obfuscated circuit (that will
be our pk) uses two puncturable PRFs: The first to generate the initialization
vector iv from the randomness given to the PKE’s Enc and, the second to gener-
ate a one-time fresh symmetric-key (used to encrypt) from iv.11 The decryption
algorithm has access to the key for the second PRF and takes as input the ci-
phertext (iv, c). It can then regenerate the key and thus decrypt. Note that this
transformation is only format-preserving since we slightly modify both encryp-
tion and decryption algorithm to embed the evaluation of the PRF.

Oracle-Indistinguishability Obfuscation (oiO). The notion of oiO repre-
sents a natural strengthening of odiO. It has similar features to diO and odiO in
that it requires samplers that output pairs of circuits satisfying some permissi-
bility predicate P . While the permissibility predicate in diO and odiO requires
hardness of finding a differing-input, in oiO we have a weaker permissibility pred-
icate (which in turn makes oiO stronger than odiO): in oiO the sampler must
output pairs of circuits such that an adversary (given also as input related aux-
iliary string α) cannot distinguish the circuits while having only oracle oracle
access to them. An example of a sampler that is permissible for oiO but not odiO
is the one where C0 and C1 are both PRFs but with different keys, since they
differ on (almost) every input but their output distributions are indistinguish-
able.

Public-key “indistinguishability-based” transformations through oiO.
While odiO is suitable for transforming forgery-based primitives, oiO has syn-
ergies with indistinguishability-based primitives, i.e. where “No adversary can
distinguish between two distributions without knowledge of a certain secret”.
Natural examples are encryption schemes where the distributions to distinguish
are the encryption of different messages (e.g., IND-CPA security).

11 If, instead of generating iv using the first PRF, we allow the circuit to take directly
in input iv then the PKE (output by the transformation) is trivially broken. This is
because (following the syntax of the IV-based SKE) iv is included into the ciphertext.
Hence, an adversary can break the selective IND-CPA security of the compiled PKE
by simply re-encrypting a message using the iv that is included into the challenge
ciphertext.
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Through oiO we are able to prove the security of a more general transfor-
mation (compared to (4)) from SKEs to PKEs. Starting from a symmetric en-
cryption algorithm Enc(k, ·; ·), our aim is to transform it into something with
the following syntax Enc(pk, ·; ·), where pk is a public key. Our transformation
is identical to the one proposed by Diffie and Hellman [25]: We define pk as
the oiO-obfuscation of Enc(k, ·; ·) for some honestly chosen symmetric key k. To
claim the IND-CPA security of the above transformation, we need to assume
that the initial SKE is key indistinguishable under (adversarially) chosen mes-
sage randomness attacks. The latter allows us to build a sampler that satisfies
the permissibility predicate of oiO. In particular, the sampler returns (C0, C1)
(again, we ignore the auxiliary input here) where:

– C0 takes as input m and r and returns Enc(k,m; r).
– C1 is identical to the above except that it uses a different (honestly gener-

ated) symmetric key k′.

Intuitively, the circuits satisfy the oiO permissibility notion since any adversary
that is able to distinguish between oracles C0 and C1 would also violates the key
indistinguishability security of the SKE. Now, since the obfuscations of these
two circuits are indistinguishable, we can reduce the security of the PKE to
the security of the original SKE. Consider the standard IND-CPA experiment
of PKE where pk is set to the obfuscation of C0 and the challenge ciphertext
c is computed as c = pk(mb; r) = Enc(k,mb; r) for r randomly chosen. We can
now do an hybrid where pk is set to the obfuscation of C1 whereas the challenge
ciphertext is still computed as c = Enc(k,mb; r) where k is the key hardcoded in
C0. Since the ciphertext c is computed using a key k that is not the obfuscated
one (recall C1 uses an independent key k′), we can now conclude the proof by
doing a reduction to the semantic security of the original SKE. We highlight
that this proof technique works only if we consider selective IND-CPA security.
This is because the sampler needs to output an auxiliary input that is an honest
encryption of mb under the key k (hardcoded into C0). This is fundamental to
simulate the challenge ciphertext (of the selective IND-CPA experiment) and
concludes the hybrid argument.

Why aren’t diO/iO sufficient for these transformations above? We ob-
serve that each of the compilation described above would not be feasible with
either iO or diO. Intuitively, this is because we would eventually need to reduce
the security of our transformations (pv-SNARG, signature, PKE) to the security
of the original secret-key primitive (dv-SNARG, MAC, SKE). However, in the
latter experiment the secret-key sk (e.g., a vrs or a symmetric-key), that we need
to obfuscate in order to conclude the reduction, is sampled and kept secret by
the challenger. This makes iO and diO insufficient since we are not able to sat-
isfy their permissibility notion during this reduction. For the case of iO, during
the reduction, the only thing we could do is to to obfuscate different circuit C1

that does not use the secret-key sk sampled by the challenger. However, this
C1 will have (with overwhelming probability) a different input/output behavior
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compared to C0 (the original obfuscated circuit of the transformation that, in
turn, contains sk).

A similar discussion applies to diO. For the sake of concreteness, consider
transforming a dv-SNARG into a pv-SNARG by publishing an obfuscation of the
circuit C0 which implements the dv-SNARG verification algorithm using an hard-
coded verification key vrs. During the reduction to the security of the underlying
scheme we are not allowed to use the secret verification key vrs. Thus, during
the reduction, we can only move to a hybrid where we obfuscate a circuit C1

that does not use the vrs. But then we cannot argue that it is hard to find
differing-inputs for C0, C1. In this specific case, the distinguisher could simply
produce proofs π for true statements x and submit them to the circuits. While
C0 (using the vrs) returns 1, C1 (without the vrs) is unable to verify the proof
and cannot return a consistent output. Similar arguments apply to the other
transformations.

The Landscape of Limitations of odiO/oiO. The seminal work of [7, 8] ex-
plores the boundaries of obfuscation in several directions. As it is well known they
show that there are (not necessarily natural) computations which are impossible
to obfuscate using VBB. Moreover, [7, 8] also shows that VBB-obfuscation cannot
be used for securely performing certain structure-preserving transformations. In
this direction, they show a (contrived but secure) SKE that turns into an inse-
cure PKE scheme when compiled using obfuscation. We show that the results
of [7, 8] can be extended to the setting of odiO and oiO. In particular, we show
that there (unconditionally) exist samplers that are odiO/oiO permissible but are
not obfuscatable. Specifically we sample (somewhat contrived) circuits Cs with
an embedded secret s that remains “hidden enough” when only oracle access is
allowed (thus being odiO/oiO permissible). We then show that, once given access
to the obfuscated circuit, it becomes possible to “partially extract” this secret s.
Finally, we show that (since this sampler cannot be obfuscated) our oiO-based
transformation (5) (from semantically secure and key indistinguishable SKE to
selectively IND-CPA PKE) is inherently impossible, regardless of the strength of
the obfuscator used. This is done by using the unobfuscatable circuits to build a
contrived SKE (satisfying semantic security and key indistinguishability) that,
once compiled, yields an insecure PKE. As mentioned, a similar impossibility re-
sult was given in [8, Theorem 4.10]. However their contrived SKE does not satisfy
key indistinguishability and, for this reason, it cannot be directly used to show
the infeasibility of our transformation (5). Thus, our negative result strength-
ens the one of [8] since ours apply to a smaller class of SKEs (i.e., SKEs with
stronger notions of security) that satisfy key indistinguishability under chosen
message randomness attacks. Note that while we just argued that the oiO-based
transformation in (5) is inherently impossible, our odiO-based transformations
(1)-(4) remain plausible as the impossibility results do not seem to extend. We
elaborate further in Section 6.2.
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1.2 Future Directions

Our work opens up several interesting future directions. How to generally for-
malize structure-preserving transformations? Can we characterize what type of
games can be transformed (from “secret” to “public” key) through odiO? Sev-
eral, but not all those we achieve, seem to have a “forgery” flavor to them (MAC,
NIZKs, etc.). What are further connections between our proposed notions of ob-
fuscation and VBB, iO and diO? While the techniques in [8] seem to fail to show
that some of our transformations are paradoxical, what are other techniques that
could shed light on further limitations of odiO oiO? Can we leverage our tech-
niques for going from secret-key to public-key variants of different cryptographic
primitives than those we consider here, e.g., proofs of retrievability [42]?

2 Related Work

Barak et al. [7, 8] investigate the feasibility of obfuscation. They focus on vir-
tual black-box (VBB) obfuscation, where an obfuscated program/circuit should
leak no information except for its input-output behaviour. They show: 1) that
a general VBB obfuscator cannot exist since there are circuits that cannot be
unconditionally obfuscated in the VBB paradigm; 2) that most of the intriguing
applications of VBB are impossible (including the suggestion of Diffie and Hell-
man’s of building a PKE by obfuscating the SKE encryption algorithm with an
embedded symmetric key). On the positive side, several works have shown that
some restricted classes of circuits can be securely VBB-obfuscated [23, 45, 33, 43]
. Goldwasser and Kalai [30, 31] and Bitansky et al. [13] extended VBB’s impossi-
bility results to the case of auxiliary information demonstrating that other “nat-
ural” circuits cannot be VBB obfuscated when some (dependent or independent)
auxiliary information are available. In addition, [13] demonstrated that the avail-
ability of auxiliary information is equivalent to VBB with universal simulation.
Goldwasser and Rothblum [32] proposed the notion of best-possible obfuscation
that guarantees that the obfuscation of a circuit leaks as little information as
any other circuit implementing the same functionality. They show that a separa-
tion between VBB and best-possible obfuscation and an impossibility result (for
both) in the random oracle model. Other works [38, 37, 6, 20, 22, 40] studied
the (in)feasibility of VBB in different idealized models.

To avoid the VBB paradigm (and its impossibility results), [8] suggested two
weaker security definitions of obfuscation: indistinguishability obfuscation (iO)
and differing-input obfuscation (diO). The former has obtained a lot of interest
thanks to its applications, as initially shown by Sahai and Waters [41]. The first
work that proposed a candidate iO construction is by Garg et al. [26] that built iO
via multilinear maps. Subsequent works [28, 16, 39, 4, 15, 3, 36, 2, 19, 29] focused
on both the relations of iO and other primitives (e.g., functional encryption)
and new candidates construction from weaker assumptions. These works led to
the recent works of Jain et al. [35] and Wee and Wichs [44]. [35] built (sub-
exponentially secure) iO from the sub-exponential hardness of LWE, learning
parity with noise, and boolean pseudorandom generators in NC0. On the other

13



hand, [44] proposed the first construction based solely on lattices and LWE.
Their construction relies on a new falsifiable LWE assumption.

As for diO, [1, 17, 17, 10] proposed different formalization of diO (for both
circuits and Turing machines) and showed different applications. On the negative
side, [18, 11, 27] showed that, in the presence of (some) auxiliary information
(e.g., samplers), a general diO obfuscator may not exist. Notably, Bellare et
al. [11] showed that if sub-exponentially secure one-way functions exist then a
sub-exponentially secure general diO obfuscator for Turing machines does not
exist, i.e., there exists a sampler that outputs two Turing machines and some
auxiliary information that cannot be obfuscated through diO. Moreover, they
show that the impossibility result extends to diO for circuits, if SNARKs exist.
Garg et al. [27] showed a similar result for diO for circuits under the conjecture
that a special-purpose obfuscator exists (i.e., an obfuscator that does not follow
from diO). All the negative results of [18, 11, 27] rely on the fact that the sampler
can silently provide a trapdoor that allows an adversary to distinguish between
two obfuscations whereas the trapdoor does not help in finding a differing-input.,
Because of this, Ishai et al. [34] proposed the weaker notion of public-coin diO
where the random coins of the sampler are public, i.e., a sampler cannot hide
any trapdoor in the auxiliary information.

Among weaker notions of obfuscation, we also find virtual gray-box obfusca-
tion (VGB) [12, 14]. This notion is close to that of VBB but models the simulator
as semi-bounded, i.e., unbounded in running time but limited to a polynomial
number of oracle queries. VGB is equivalent to another notion, strong iO (siO),
where it holds that Obf(C0) ≈c Obf(C1) whenever the pair (C0, C1) is sam-
pled from a concentrated distribution D: For every input x, the probability that
C0(x) and C1(x) do not return to common output majD(x) is negligible (where
majD(·) is defined with respect to the concentrated distribution D taken into
account). Observe that concentrated distributions are a generalization of eva-
sive functions [5]. Intuitively, siO is weaker than odiO (and oiO) since circuits
(sampled from concentrated distributions) are oracle-diffing-input even against
semi-bounded adversaries. Also, note that siO is not powerful enough to achieve
structure-preserving transformations. Intuitively, because siO is able to obfus-
cate distributions of circuits that “pass” an information theoretical test. This is
a obstacle when trying to implement our structure-preserving transformations
since our objective is to compile/obfuscate primitives whose security follows from
computational assumptions.

3 Preliminaries on Obfuscation

We assume the reader to be familiar with standard cryptographic notation and
definitions. Our notation and all the standard definitions used in the paper can
be found in the full version.

Indistinguishability obfuscation and differing-input obfuscation. Let
C = {Cλ}λ∈N be an ensemble of functionally equivalent circuits (of same size),
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i.e., ∀λ ∈ N,∀C0, C1 ∈ Cλ,∀x ∈ {0, 1}ℓin , C0(x) = C1(x) and |C0| = |C1|. Indis-
tinguishability obfuscation (iO) [7] guarantees that the obfuscation of any two
functionally equivalent circuits C0, C1 ∈ Cλ are computationally indistinguish-
able. The stronger notion of differing-input obfuscation (diO) [8, 1, 17] considers
the larger class of differing-input circuits, i.e., circuits that differ on hard to
find inputs. Below, we introduce the definition of diO with respect to samplers
responsible of sampling two differing-input circuits and (some) auxiliary infor-
mation.

Definition 3.1. A sampler S for an ensemble of circuits C = {Cλ}λ∈N is a
PPT algorithm that, on input the security parameter 1λ, it outputs two circuits
C0, C1 ∈ Cλ such that |C0| = |C1| and (possibly) some auxiliary information α.

Definition 3.2. (diO-sampler) We say a sampler S (Definition 3.1) is a diO-
sampler if for every PPT adversary A we have

P
[
C0(x) ̸= C1(x)

∣∣∣(C0, C1, α)←$ S(1λ), x←$ A(1λ, C0, C1, α)
]
≤ negl(λ).

Definition 3.3 (Differing-input obfuscation). Let S be an ensemble of diO-
samplers (Definition 3.2). For every S ∈ S, let CS = {CSλ}λ∈N be the ensemble
of circuits output by S. A PPT algorithm Obf is a (S)-diO-obfuscator for the
ensemble S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CSλ, ∀x ∈ {0, 1}ℓin , we have C ′(x) = C(x)
where C ′←$ Obf(1λ, C).

Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈
CSλ, we have |Obf(1λ, C)| ≤ p(|C|).

Indistinguishability. For every S ∈ S, every PPT adversary D, we have that∣∣P[D(1λ,Obf(1λ, C0), α) = 1
]
− P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α)←$ S(1λ).

The above definition is parametrized by an ensemble of diO-samplers since some
negative results for diO are known [11, 27] (see next). Because of this, an universal
(general) diO-obfuscator may not exists, i.e., a diO-obfuscator that obfuscates
any diO-sampler.

Negative results. In the setting of Turing machines (not covered by this pa-
per), Bellare et al. [11] show that if sub-exponentially secure one-way functions
exist then a sub-exponentially secure diO-obfuscator Obf for any sampler for Tur-
ing machines does not exist (i.e., there exists a particular sampler that cannot
be diO-obfuscated). We stress that the main impossibility result covers Turing
machines but, as described by [11], if SNARKs exist the negative result can be
extended to diO for circuits. Garg et al. [27] show that under the conjecture
that a special-purpose obfuscator exists (i.e., an obfuscator that does not follow
from the existence of a diO-obfuscator) then a diO-obfuscator Obf for any sam-
pler for circuits does not exist. We highlight that both [11, 27] show that only
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“some” diO-samplers cannot be obfuscated. Indeed, both works rely on samplers
that output complex auxiliary information α (α is itself an obfuscation of con-
trived circuit/Turing machine). Hence, this does not rule out the possibility of
obfuscating the same class of circuits/Turing machines under simpler auxiliary
information.

Virtual black-box Obfuscation. Virtual black-box obfuscation (VBB) [7],
is the strongest known notion of obfuscation. In a nutshell, a VBB-obfuscator
guarantees that having an obfuscation of a circuit C is “equivalent” to having
oracle access to C. We consider the weakest notion of VBB that requires the
adversary (and the simulator) to output a single bit. This is equivalent to asking
the adversary/simulator to compute/determine an arbitrary predicate π(C) of
the original circuit [7]. Similarly to diO, we consider VBB with respect to samplers
responsible to sample a circuit and (some) auxiliary information. This will allow
us to provide a meaningful comparison between VBB and diO, odiO, oiO.

Definition 3.4. (VBB-sampler) A VBB-sampler S for an ensemble of circuits
C = {Cλ}λ∈N is a PPT algorithm that, on input the security parameter 1λ, it
outputs a circuit C ∈ Cλ and some auxiliary information α.

Definition 3.5 (Virtual black-box obfuscation). Let S be an ensemble
of VBB-samplers (Definition 3.4). For every S ∈ S, let CS = {CSλ}λ∈N be the
ensemble of circuits output by S. A PPT algorithm Obf is a (S)-VBB-obfuscator
for the ensemble S if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CSλ, ∀x ∈ {0, 1}ℓin , we have C ′(x) = C(x)
where C ′←$ Obf(1λ, C).

Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈
Cλ, we have |Obf(1λ, C)| ≤ p(|C|).

Virtual black-box simulation. For every PPT adversary A, there exists a
PPT simulator Sim such that for every S ∈ S, we have∣∣∣P[A(1λ,Obf(1λ, C), α) = 1

]
− P

[
SimC(·)(1λ, 1|C|, α) = 1

]∣∣∣ ≤ negl(λ),

where (C,α)←$ S(1λ).

Note that VBB is a much stronger flavor of obfuscation than diO and iO
for two reasons. First, VBB defines the concept of ideal/oracle obfuscation, i.e.,
an obfuscated circuit behaves as an oracle. Second, VBB is a simulation-based
definition (whereas both iO and diO are indistinguishability-based), i.e., any
bit of leakage (that can be retrieved from the obfuscation of a circuit) can be
simulated (except with negligible probability) having only oracle access to the
unobfuscated circuit.

Impossibility results. VBB is a very interesting notion of obfuscation since
it has several important applications (e.g., it permits to convert a SKE into
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PKE). However, VBB-obfuscation turned out to be impossible for several and
reasonably simple class of circuits/samplers [13, 7, 8]. Moreover, also several
applications of VBB are impossible to achieve. As an example, Barak et al. [8,
Theorem 4.10] have shown that there exist a SKE that cannot be transformed
into a PKE by (simply) obfuscating the SKE’s encryption algorithm (a similar
impossibility result applies also to PRFs, MACs, and signatures). Still, VBB-
obfuscation is still possible for other class of circuits/samplers. Examples are
compute-and-compare programs [45] (also known as lockable obfuscation [33])
and point functions [43].

4 Oracle-differing-input and oracle-indistinguishability
Obfuscation

In this section, we propose two new notions of obfuscation, dubbed oracle-
differing-input obfuscation and oracle-indistinguishability obfuscation (odiO and
oiO in short). Both odiO and oiO are the result of two natural extensions of diO
(resp. iO): they introduce the notion of oracle circuits (as in VBB) while keeping
the indistinguishability property of diO (resp. iO). In a nutshell, odiO requires
that the obfuscations of two circuits C0, C1 are computationally indistinguish-
able if the latter two are differing-input circuits when treated as oracles, i.e., an
adversary cannot find an input x such that C0(x) ̸= C1(x) when given oracle
access to both C0 and C1. On the other hand, oiO provides the same indistin-
guishability guarantee with respect to circuits C0, C1 that are computationally
indistinguishable when treated as oracles.

As usual, we define odiO and oiO with respect to an ensemble of samplers
responsible of generating the circuits C0, C1 and (possibly) some auxiliary infor-
mation α.

Definition 4.1. (odiO- and oiO-sampler) Let type ∈ {odiO, oiO}. We say a
sampler S (Definition 3.1) is an type-sampler if for every PPT adversary A we
have

If type = odiO: P
[
C0(x) ̸= C1(x)

∣∣∣x←$ AC0(·),C1(·)(1λ, 1|C0|, α)
]
≤ negl(λ),

If type = oiO:
∣∣P[AC0(·)(1λ, 1|C0|, α) = 1

]
− P

[
AC1(·)(1λ, 1|C1|, α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α)←$ S(1λ).12

Definition 4.2 (Oracle-differing-input and oracle-indistinguishability ob-
fuscation). For type ∈ {odiO, oiO}, let S be an ensemble of type-samplers
(Definition 4.1). For every S ∈ S, let CS = {CSλ}λ∈N be the ensemble of circuits
output by S. A PPT algorithm Obf is a (S)-type-obfuscator for the ensemble S
if the following conditions are satisfied:

Correctness. ∀S ∈ S, ∀λ ∈ N, ∀C ∈ CSλ, ∀x ∈ {0, 1}ℓin , we have C ′(x) = C(x)
where C ′←$ Obf(1λ, C).

12 Recall that |C0| = |C1| by definition of sampler (Definition 3.1).
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Polynomial slowdown. There exists a polynomial p such that ∀S ∈ S, ∀C ∈
CSλ, we have |Obf(1λ, C)| ≤ p(|C|).

Indistinguishability. For every S ∈ S, every PPT adversary D, we have that∣∣P[D(1λ,Obf(1λ, C0), α) = 1
]
− P

[
D(1λ,Obf(1λ, C1), α) = 1

]∣∣ ≤ negl(λ),

where (C0, C1, α)←$ S(1λ).

Comparing diO-, odiO-, oiO-, and VBB-obfuscation. We now study the re-
lations between diO, odiO, oiO, and VBB. In order to provide a meaningful com-
parison, we work in terms of best-possible universal obfuscators, i.e., we compare
the classes of circuits/samplers that each flavor of obfuscation is able to handle.
We start by defining the notion of best-possible universal type-obfuscator Obf
(for type ∈ {diO, odiO, oiO,VBB}) whose definition is tied with the (universal)
set Stype composed of all the type-samplers that can be securely type-obfuscated
(as defined in Definitions 4.2 to 3.4).

Definition 4.3 (Best-possible universal type-obfuscator). Let type ∈ {diO,
odiO, oiO,VBB}. Consider the ensemble Stype composed of every type-sampler
S (Definitions 4.1, 3.2 and 3.4) that can be securely type-obfuscated (Defini-
tions 4.2, 3.3 and 3.5), i.e.,

Stype = {type-sampler S | ∃ Obf s.t. Obf is a ({S})-type-obfuscator}.

A PPT algorithm Obf is a best-possible universal type-obfuscator if Obf is a
(Stype)-type-obfuscator (Definitions 4.2, 3.3 and 3.5).

Remark 4.4. There are two technical reasons behind the need of considering only
best-possible universal obfuscators, while comparing diO, odiO, oiO, and VBB.
First, for any notion of type-obfuscation, it is possible to find two contrived type-
obfuscators Obf0 and Obf1 that result to be incomparable, even within the same
flavor of obfuscation. As an example, we could have that Obf0 (resp. Obf1) is able
to type-obfuscate S0 (resp. S1) but not S1 (resp. S0) where S0,S1 are two type-
samplers.13 The same argument holds between different notions. For example, if
we consider diO and odiO, we could have that Obf0 diO-obfuscates a diO-sampler
S (that in turn, as we will see, is also a odiO-obfuscator) but Obf1 does not odiO-
obfuscate S. Also, we can have the symmetric case: there exist two obfuscators
Obf ′0 and Obf ′1 such that Obf ′1 odiO-obfuscates S but Obf ′0 does not diO-obfuscate
S. Hence by changing the obfuscator we could reach any conclusions: (i) odiO and
diO are incomparable, (ii) odiO implies diO, or (iii) diO implies odiO. This clearly
does not allow for a meaningful comparison. Definition 4.3 naturally solves the
above problem since a best-possible universal type-obfuscator uniquely represents
the power of a particular notion of obfuscation, i.e., the set Stype of samplers that
can be securely type-obfuscated. This allows us to have a meaninful (and unique)
formal comparison between diO, odiO, oiO, and VBB.

13 For instance, we can have that Sb only outputs circuits whose description starts with
a bit b, and that Obfb rejects any circuit whose description starts with the bit 1− b.
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Second, Definition 4.3 allows us to exclude from the comparison the known
impossibility results of VBB [7, 13] (and odiO, oiO as we will show in Section 6).
This is because, instead of quantifying over any possible type-sampler, best-
possible universal type-obfuscation is defined over any possible type-sampler that
can be type-obfuscated.

In the setting of best-possible universal obfuscation, odiO (resp. oiO) is
stronger than diO since (i) any diO-sampler is also an odiO-sampler (resp. oiO-
sampler) and (ii) both diO and odiO (resp. oiO) have the same indistinguishability-
based security definition. The same argument applies to odiO and oiO, i.e., oiO
is stronger than odiO.

Theorem 4.5 (oiO⇒ odiO⇒ diO). For type ∈ {diO, odiO, oiO}, we have that
SdiO ⊆ SodiO ⊆ SoiO where Stype as defined in Definition 4.3.

The proof of this theorem is deferred to full version.
About (best-possible universal) odiO-, oiO-, and VBB-obfuscation, we have

that VBB is stronger than odiO (resp. oiO) for two main reasons:

1. VBB leverages a simulation-based definition: any bit of information that can
be leaked from an obfuscated circuit C can be simulated by only having
oracle access to C. On the other hand, odiO (resp. oiO) provides a much
weaker security guarantee: the obfuscation of two circuits C0, C1 (output by
an odiO-sampler (resp. oiO-sampler)) are computationally indistinguishable.
This implies that a odiO-obfuscator (resp. oiO-obfuscator) could leak signif-
icant information about the circuit, as long as the leaked information does
not help in distinguishing (except with negligible probability) between the
obfuscations of C0 and C1.

2. Both VBB and odiO (resp. oiO) incorporate the notion of oracle circuits
in their definitions. However, oracles are used to define two different con-
cepts. VBB uses oracle circuits to define the amount of information a VBB-
obfuscator may leak. Since oracles leak no information (except their input-
output behavior), this implies that a VBB-obfuscator does not leak any in-
formation, except with negligible probability.
Conversely, odiO and oiO leverage the notion of oracle circuits to characterize
the class of circuits (or samplers) that an odiO-/oiO-obfuscator can handle.
The definition of security (i.e., the indistinguishability property of Defini-
tion 4.2) is independent from the oracles. Both odiO and oiO “only” guar-
antee that the information leaked by the obfuscation of two circuits are the
same. This does not imply that the odiO-/oiO-obfuscated circuits must “be-
have” as oracles (as required by VBB (Definition 3.5)).

The relation between VBB, oiO, and odiO is formalized by the following theorem,
whose proof is deferred to full version.

Theorem 4.6 (VBB ⇒ oiO and VBB ⇒ odiO). Let S be a sampler (Defini-
tion 3.1). For b ∈ {0, 1}, let Sb be a sampler such that (Cb, α) = Sb(1

λ; r) where
r ∈ {0, 1}∗, and (C0, C1, α) = S(1λ; r). If S0,S1 ∈ SVBB then S ∈ Stype where
SVBB and Stype are defined in Definition 4.3.
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By leveraging a similar argument to that used to prove Theorem 4.5, we
can demonstrate that any negative result for diO extends to odiO. This because
any diO-sampler S is also an odiO-sampler and, since diO and odiO leverage
the same indistinguishability-based definition, if S ̸∈ SdiO then S ̸∈ SodiO.14 The
same applies between odiO and oiO, and between oiO and VBB (with respect to
samplers as defined in Theorem 4.6).

Corollary 4.7. For type ∈ {diO, odiO, oiO,VBB}, let Stype be an ensemble of
type-samplers as defined in Definition 4.3. The following conditions holds:

1. For every diO-sampler S such that S ̸∈ SdiO then S ̸∈ SodiO.
2. For every odiO-sampler S such that S ̸∈ SodiO then S ̸∈ SoiO.
3. For every oiO-sampler S and every pair of VBB-samplers (S0,S1) such that

(Cb, α) = Sb(1
λ; r) where r ∈ {0, 1}∗, (C0, C1, α) = S(1λ; r) and b ∈ {0, 1}

(as defined in Theorem 4.6), if S ̸∈ SoiO then S0 ̸∈ SVBB or S1 ̸∈ SVBB.

Lastly, odiO (resp. oiO) does not imply VBB, i.e., both odiO and oiO are
strictly weaker than VBB. This follows by leveraging two observations. First,
Barak et al. [7, Lemma 3.5, Corollary 3.8] have demonstrated that there (un-
conditionally) exists a distribution of circuits that cannot be VBB-obfuscated
(see also Section 6.1). This, in turn, implies that there exists a VBB-sampler
S0 ̸∈ SVBB, i.e., S0 outputs (C,⊥) where C comes from the distribution of [7,
Lemma 3.5]. Second, we have that any sampler S1, that outputs (C0, C1,⊥) such
that C0 = C1, is an odiO-sampler (resp. oiO-sampler) that can be easily odiO-
obfuscated (resp. oiO-obfuscated).15 By combining these two observations, we
conclude that if S1 outputs (C0, C1,⊥) where C0 = C1 and (C0,⊥)←$ S0(1

λ), it
follows that neither C0 nor C1 (sampled by S0) can be VBB-obfuscated but S1
can be odiO-obfuscated (resp. oiO-obfuscated). While this counterexample might
be trivial at first sight, it indeed captures the fact that an odiO-/oiO-obfuscator is
allowed to reveal any information which is common to the two circuits, as long
as this information does not allow to win the respective distinguishing game
between the oracles.

Theorem 4.8 (odiO ̸⇒ VBB and oiO ̸⇒ VBB). Let S0 be a VBB-sampler
(Definition 3.4). Consider the odiO-sampler (resp. oiO-sampler) S1 defined as
(C0, C1, α) = S1(1

λ; r) where C0 = C1 and (C0, α) = S0(1
λ; r) for r ∈ {0, 1}∗.

For type ∈ {odiO, oiO}, there exists a VBB-sampler S0 such that S0 ̸∈ SVBB and
S1 ∈ Stype where SVBB and Stype as defined in Definition 4.3.

5 Applications of odiO and oiO

In this section, we show that odiO and oiO are able to compile several symmetric
key primitives into their corresponding public key versions and designated veri-

14 Otherwise, if S ∈ SodiO, there exists a ({S})-odiO-obfuscator that in turn is also a
({S})-diO-obfuscator.

15 Indeed, any PPT obfuscator Obf that satisfies correctness and polynomial slowdown
is a ({S})-odiO-obfuscator (resp. ({S})-oiO-obfuscator), e.g., Obf is the identity func-
tion or Obf is an iO-obfuscator.
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fier non-interactive argument systems into their public verifiable version. These
transformations achieve (and use) different flavors of security whose definitions
can be found in the full version of this paper. In more details, we demonstrate
the following transformations:

Function-Preserving PV-NIZK from DV-NIZK: odiO is able to compile
any designated verifier non-interactive argument system (that satisfies either
selective soundness or straight-line knowledge soundness) into its public ver-
ifiable version (Section 5.1).

Function-Preserving Signatures from MACs: odiO is able to compile any
(q)-sEUF-sel-CMA MAC into a (q)-sEUF-sel-CMA signature scheme (full
version).

Format-Preserving Signatures from MACs: odiO is able to compile EUF
MAC into a sel-EUF-CMA digital signature scheme, using puncturable PRF
(full version).

Format-Preserving PKE from IV-based SKE: odiO is able to compile se-
mantically secure IV-based SKE (i.e., SKE whose encryption algorithm has
the following sintax Enc(k,m; iv) = (iv, c)) into a sel-IND-CPA PKE, using
puncturable PRF (full version).

Function-Preserving PKE from SKE: oiO is able to compile any seman-
tically and sel-IND-CPRA-key secure SKE into a sel-IND-CPA PKE (Sec-
tion 5.2).

Note that transformations that use the puncturable PRFs are only format-
preserving whereas the others are fully function-preserving.

We show the first and the last of our applications in detail in the main body;
proofs and the remaining applications are deferred to the full version of this
work.

5.1 From designated verifier to public verifiable non-interactive
argument systems

Construction 1 Let Π∗ = (Setup∗,Prove∗,Verify∗) and Obf be a DV non-
interactive argument system for a relation R and an obfuscator, respectively. We
compile Π∗ into a PV non-interactive argument system Π = (Setup,Prove,Verify)
for the same relation R as follows:

Setup(1λ,R): On input the security parameter 1λ and a relation R, the setup
algorithm computes (crs∗, vrs∗)←$ Setup∗(1λ,R) and outputs crs = crs∗ and

vrs = C̃ where C̃←$ Obf(1λ, CVerify
vrs∗ ) and CVerify

vrs is depicted in Figure 2.
Prove(crs, x, ω): On input the common reference string crs = crs∗, a statement

x, and a witness ω, the prover algorithm outputs π←$ Prove∗(crs∗, x, ω).

Verify(vrs, x, π): On input the verification key vrs = C̃, a statement x, and a

proof π, the verification algorithm returns b = C̃(x, π).

Below we establish the following result.
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CVerify
vrs (x, π)

return b = Verify∗(vrs, x, π)

CVerify
vrs,x∗(x, π)

If x = x
∗
, return 0

return b = Verify∗(vrs, x, π)

CVerify
vrs,td,r(x, π)

ω = Ext∗1(1
λ
, td, x, π; r)

If Verify∗(vrs, x, π) = 1 and

(x, ω) ∈ R, return 1

return 0

Sx(1
λ; r)

(crs, vrs) = Setup∗(1λ; r)

Set C0 = C
Verify
vrs , C1 = C

Verify
vrs,x , α = crs

return (C0, C1, α)

SExt∗(1
λ; r)

Let r = (r0, r1)

(crs, vrs, td) = Ext∗0(1
λ
,R; r0)

Set C0 = C
Verify
vrs , C1 = C

Verify
vrs,td,r1

, α = crs

return (C0, C1, α)

Fig. 2: The circuits CVerify
vrs , CVerify

vrs,x∗ , C
Verify
vrs,td,r, and the samplers Sx,SExt∗ . C

Verify
vrs

and CVerify
vrs,x∗ (resp. CVerify

vrs and CVerify
vrs,td,r) are padded to match the size γ =

max{|CVerify
vrs |, |CVerify

vrs,x∗ |} (resp. γ = max{|CVerify
vrs |, |CVerify

vrs,td,r|}).

Theorem 5.1. Let Π∗ and Obf as defined in Construction 1. For every x ̸∈ L,
consider the sampler Sx depicted in Figure 2.

1. If Π∗ satisfies selective soundness then, for every x ̸∈ L, Sx is an odiO-
sampler (Definition 4.1), and

2. if Obf is a ({Sx}x̸∈L)-odiO-obfuscator (Definition 4.2) then the publicly veri-
fiable non-interactive argument system Π of Construction 1 satisfies selective
soundness.

We extend the above result to the case of straight-line knowledge soundness.

Theorem 5.2. Let Π∗ and Obf as defined in Construction 1.

1. If Π∗ satisfies straight-line knowledge soundness then the sampler SExt∗ of Fig-
ure 2 is an odiO-sampler (Definition 4.1) where Ext∗ = (Ext∗0,Ext

∗
1) is the

PPT extractor of Π∗, and
2. if Obf is a ({SExt∗})-odiO-obfuscator (Definition 4.2) then the publicly verifi-

able non-interactive argument system Π of Construction 1 satisfies straight-
line knowledge soundness.

Remark 5.3 (On zero-knowledge). Observe that Construction 1 preserves zero-
knowledge if the underlying designated verifier non-interactive argument sys-
tem Π∗ is zero-knowledge. This is straightforward and follows intuitively be-
cause Construction 1 only obfuscates vrs (that it is known by a malicious verifier
against zero-knowledge) and it does not alter Π∗’s Prove. A proof sketch of
the zero-knowledge property would be as follows. The simulator for the pub-
licly verifiable case is the same as the one for the designated verifier case. Now
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CEnc
k (m, r)

return c = Enc∗(k,m; r)

Sm(1λ; r)

Let r = (r0, r1, r2)

k0 = KGen∗(1λ; r0), k1 = KGen∗(1λ; r1)

c = Enc∗(k0,m; r2)

Set C0 = C
Enc
k0

, C1 = C
Enc
k1

, α = c

return (C0, C1, α)

Fig. 3: The circuit CEnc
k and the sampler Sm. CEnc

k0
and CEnc

k1
(output by Sm) are

padded to match the size γ = max{|CEnc
k0
|, |CEnc

k1
|})

assume there exists an adversary Apv distinguishing simulated proofs from hon-
est ones. We could then design adversary Adv breaking zero-knowledge of the
original scheme. This adversary can in fact internally run Apv passing to it the
obfuscation Obf(1λ, CVerify

vrs ). It can do that because the designated-verifier zero-
knowledge has access to vrs.

5.2 From semantically and sel-IND-CPRA-key SKEs to
sel-IND-CPA PKEs

Construction 2 Let Π∗ = (KGen∗,Enc∗,Dec∗) and Obf be a SKE with message
space M and an obfuscator, respectively. We compile Π∗ into a PKE scheme
Π = (KGen,Enc,Dec) with message spaceM as follows:

KGen(1λ): On input the security parameter 1λ, the key generation algorithm

computes k∗←$ KGen∗(1λ) and outputs pk = C̃ and sk = k∗ where C̃←$ Obf(
1λ, CEnc

k∗ ) and CEnc
k is depicted in Figure 3.

Enc(pk,m; r): On input the public key pk = C̃, a message m ∈M, and random-

ness r ∈ {0, 1}∗, the encryption algorithm outputs c = C̃(m, r).

Dec(sk, c): On input the secret key sk = k∗ and a ciphertext c, the deterministic
decryption algorithm returns m = Dec∗(k∗, c).

Below we establish the following result.

Theorem 5.4. Let Π∗ and Obf as defined in Construction 2. For every m ∈M,
consider the sampler Sm depicted in Figure 3.

1. If Π∗ is sel-IND-CPRA-key then, for every m ∈ M, Sm is an oiO-sampler
(Definition 4.1), and

2. If Π∗ is semantically secure and Obf is a ({Sm}m∈M)-oiO-obfuscator (Def-
inition 4.2) then the PKE scheme Π of Construction 2 is sel-IND-CPA.
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C0
k,a,b(x, r)

If x = a, return b

return Enc0(k, 0; r)

C1
k,a(i, r)

Let a = a1|| . . . ||aλ

return Enc0(k, ai; r)

C2
k (c1, c2,⊙, r)

x = Dec0(k, c1) ⊙ Dec0(k, c2)

return Enc0(k, x; r)

C3
k,a,b,y,e(d1, . . . , dλ, r)

Let b = b1|| . . . ||bλ
For i ∈ [λ] do:

If Dec0(k, di) ̸= bi,

return Enc0(k, 0; r)

return (k, a, y, e)

C∗
s,(k,a,b,y,e)(ℓ, v, r)

Let v = (x, i, c1, c2,⊙, d1, . . . , dλ)

r
′
= F1(s, (ℓ, v, r))

If ℓ = 0, return C
0
k,a,b(x, r

′
)

If ℓ = 1, return C
1
k,a(i, r

′
)

If ℓ = 2, return C
2
k (c1, c2,⊙, r

′
)

If ℓ = 3, return C
3
k,a,b,y,e(d1, . . . , dλ, r

′
)

Fig. 4: The circuit C∗
s,(k,a,b,y,e) where (s, k, a, b, y, e) ∈ {0, 1}5λ+1 and ⊙ is the

binary representation of a 2 × 2 table of an arbitrary binary operator (e.g.,
AND, OR, NOT).

6 Extending the impossibility results of Barak et al. [7, 8]
to the setting of odiO and oiO

In Section 4, we have demonstrated that both odiO and oiO are weaker than
VBB and, despite this, these new notions are enough to implement several of
the most important applications of VBB (Section 5). At this point, the natural
question is how weak odiO and oiO are, compared to VBB. In order to give an
answer to this question, we investigate whether the impossibility results for VBB
(of Barak et al. [7, 8]) extend to either odiO or oiO (or both). Unfortunately, this
turned out to be true: As we show in Section 6.1, for type ∈ {odiO, oiO}, there
exist a type-sampler that cannot be type-obfuscated (unconditionally).

In addition, Barak et al. [8, Theorem 4.10] have shown that converting an
arbitrary SKE into a PKE (by simply obfuscating the SKE’s encryption algo-
rithm together with a symmetric key) is not possible: Indeed, there exists a con-
trived SKE Π that cannot be obfuscated (as described above) into a PKE. How-
ever, such an impossibility result does not apply to our oiO-based transformation
from semantically secure and sel-IND-CPRA-key secure SKEs into sel-IND-CPA
PKEs (Section 5.2) since the contrived SKE Π of [8] is not sel-IND-CPRA-key.
Following the same spirit, we study whether a similar argument applies to our
format-preserving (deferred to full version) and function-preserving transforma-
tions (Construction 2). In this case, we have a negative answer but only for the
oiO-based function-preserving transformation (Construction 2): We demonstrate
that there exists a SKE Π that is semantically and sel-IND-CPRA-key secure
that cannot be converted into a sel-IND-CPA PKE by simply obfuscating the
SKE’s encryption algorithm together with a symmetric key, as done by our oiO-
based Construction 2. On the other hand, it remains unclear how we can prove a
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similar impossibility result for our odiO-based format-preserving transformation
from SKEs to PKEs (through puncturable PRFs). See full version of this work
for more details.

We stress that both our impossibility results leverage similar techniques to
that of Barak et al. [7, 8] that we describe in the next sections.

Also, to meet space constraints, the formal proofs of the theorems that appear
in next sections are deferred to full version.

6.1 Unobfuscatable odiO-samplers (resp. oiO-samplers) exist
unconditionally

We build an ensemble of circuits C = {C∗
s,(k,a,b,y,e)} (indexed by (s, k, a, b, y,

e) ∈ {0, 1}5λ+1) that (i) C∗
s,(k,a,b,y,e) leaks no information when treated as oracles,

and (ii) the obfuscation of any C∗
s,(k,a,b,y,e) ∈ C allows to extract the hardcoded

values (k, a, b, y, e). We anticipate that the value e ∈ {0, 1} will allow us to
prove that a circuit C∗

s,(k,a,b,y,e) cannot be odiO-obfuscated (resp. oiO-obfuscated)

(see Section 6.1). On the other hand, the value y is a key of a PRF that is
fundamental to build a contrived semantically and sel-IND-CPRA-key secure
SKE that cannot be obfuscated (as described in Construction 2) into a sel-IND-
CPA PKE (Section 6.2). We build such an ensemble C (depicted in Figure 4) by
using a similar technique to that of [7, 8] (for more details, we refer the reader
to [7, 8]).

In a nutshell, C∗
s,(k,a,b,y,e) (depicted in Figure 4) is the composition of four

circuits (C0
k,a,b, C

1
k,a, C

2
k , C

3
k,a,b,y,e) and it is defined with respect to a SKE scheme

Π0 = (KGen0,Enc0,Dec0) and a PRF Π1 = (Gen1,F1) (required to generate
“fresh” randomnesses). On input (ℓ, v, r) where v = (x, i, c1, c2,⊙, d1, . . . , dλ),
C∗

s,(k,a,b,y,e) uses ℓ to select which circuit to execute:

1. If ℓ = 0, C0
k,a,b(x,F1(s, (ℓ, v, r))) is executed. This circuit presents a trigger

input a. If x = a, C0
k,a,b(x,F1(s, (ℓ, v, r))) returns b. Otherwise, it returns

Enc0(k, 0;F1(s, (ℓ, v, r))).
2. If ℓ = 1, C1

k,a(i,F1(s, (ℓ, v, r))) is executed. This circuit simply outputs the
encryption of the i-th bit of a, i.e., Enc0(k, ai;F1(s, (ℓ, v, r))).

3. If ℓ = 2, C2
k (c1, c2,⊙,F1(s, (ℓ, v, r))) is executed. This circuit allows an eval-

uator to perform (gate by gate) computations over encrypted inputs. In
more detail, it outputs the encryption of the evaluation of w ⊙ z (i.e.,
Enc0(k, w ⊙ z;F1(s, (ℓ, v, r)))) where ⊙ is a binary operator, and w and z
are the bits encrypted by c1 and c2, respectively.

4. If ℓ = 3, C3
k,a,b,y,e(d1, . . . , dλ,F1(s, (ℓ, v, r))) is executed. This is another cir-

cuit that presents a trigger input b. In more detail, if each di is the en-
cryption of the i-th of b, the circuit returns (k, a, y, e). Otherwise, it returns
Enc0(k, 0;F1(s, (ℓ, v, r))).

Following [8, 7], if the SKE scheme Π0 is IND-CCA1 and Π1 is a secure
PRF, then oracle access to C∗

s,(k,a,b,y,e) is computationally indistinguishable to
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oracle access to a circuit C̃k that, on every input (ℓ, v, r), it always outputs a
fresh encryption of 0. This is because an adversary only sees ciphertexts and,
as a consequence, it cannot distinguish between C∗

s,(k,a,b,y,e) and C̃k unless it

guesses the trigger inputs a, b ∈ {0, 1}λ. As a consequence, this implies that (i)
an adversary cannot leak the hardcoded values (k, a, b, y, e) and, (ii) the pair
of circuits (C∗

s,(k,a,b,y,0), C
∗
s,(k,a,b,y,1)) are both oracle-differing-input and oracle-

indistinguishable circuits (Definition 4.1).

On the other hand, on input C̃←$ Obf(1λ, C∗
s,(k,a,b,y,e)), an adversary can

easily extract (k, a, b, y, e), i.e., the circuit is partially reversible. This can be
done as follows:

– Evaluate C̃(1, ·, ·) to get the encryptions (c1, . . . , cλ) of the a’s bits (see Item 2).
– Use (c1, . . . , cλ) to compute (d1, . . . , dλ) where di is the encryption of b’s i-th

bit. Observe that this can be done by leveraging C̃(2, ·, ·) to evaluate (gate

by gate) C̃(0, ·, ·) = C0
k,a,b(·, ·) on a (see Item 3), and

– Compute (k, a, b, y, e) by C̃(3, ·, ·) on (d1, . . . , dλ) (see Item 4).

The properties of the ensemble C are formalized in Theorem 6.1. We highlight
that our technique of generating Enc0’s randomness as F1(s, (ℓ, v, r)) (instead of
F1(s, (ℓ, v)) as done by Barak et al. [7, 8]) permits to have multiple randomnesses
for a fixed pair (ℓ, v). This is allows us to prove a new property (not achieved
by [7, 8]) named input-indistinguishability that, in turn, is fundamental to prove
the impossibility (Section 6.2) of converting semantically and sel-IND-CPRA-
key secure SKE into sel-IND-CPA PKE. We stress that the ensemble of circuits
built by Barak et al. [7, Lemma 3.5] does not satisfy input-indistinguishability.

Theorem 6.1. Let Π0 = (KGen0,Enc0,Dec0), Π1 = (Gen1,F1), and C∗
s,(k,a,b,y,e)

be a SKE scheme with key space {0, 1}λ, a PRF scheme with key space {0, 1}λ,
and the circuit defined in Figure 4 with respect to Π0 and Π1, respectively. Then,
the ensemble C = {C∗

s,(k,a,b,y,e)}s,k,a,b,y∈{0,1}λ,e∈{0,1} satisfies the following prop-
erties:

Oracle-differing-input: If Π0 is IND-CCA1 and Π1 is secure then for every
PPT adversary D, we have

P
[
C∗

s,(k,a,b,y,0)(ℓ, v, r) ̸= C∗
s,(k,a,b,y,1)(ℓ, v, r)

]
≤ negl(λ),

where (ℓ, v, r)←$ AC∗
s,(k,a,b,y,0)(·,·,·),C

∗
s,(k,a,b,y,1)(·,·,·)(1λ), k←$ KGen0(1

λ), s←$

Gen1(1
λ), y←$ Gen1(1

λ), and (a, b)←$ {0, 1}2λ.
Input-indistinguishability: If Π0 is IND-CCA1 and IND-CPA-key, and Π1

is secure, then for every ℓ, v ∈ {0, 1}∗, every PPT adversary D, we have∣∣∣P[DC∗
s0(k0,a0,b0,y0,0)(·,·,·),C

∗
s1,(k1,a1,b1,y1,1)(·,·,·)(1λ,m0) = 1

]
−

P
[
DC∗

s0,(k0,a0,b0,y0,0)(·,·,·),C
∗
s1,(k1,a1,b1,y1,1)(·,·,·)(1λ,m1) = 1

]∣∣∣ ≤ negl(λ),
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Cowf
r,b (x)

If x = r, return b

return 0

Sowf(1
λ; r)

Set C0 = C
owf
r,0, C1 = C

owf
r,1, α = ⊥

return (C0, C1, α)

Fig. 5: The circuit Cowf
r,b and the sampler Sowf .

where (a0, b0, a1, b1)←$ {0, 1}4λ, kj ←$ KGen0(1
λ) for j ∈ {0, 1}, sj ←$ Gen1(

1λ) for j ∈ {0, 1}, yj ←$ Gen1(1
λ) for j ∈ {0, 1}, and md = C∗

sd,(kd,ad,bd,yd,d)
(

ℓ, v, rd) for rd←$ {0, 1}∗ and d ∈ {0, 1}.
Partial reversibility: There exists a PPT algorithm Ext such that for ev-

ery (s, k, a, b, y, e) ∈ {0, 1}5λ+1 and every circuit C̃ such that C̃(ℓ, v, r) =

C∗
s,(k,a,b,y,e)(ℓ, v, r) for all ℓ, v, r ∈ {0, 1}

∗, P
[
(k, a, b, y, e)←$ Ext(1λ, C̃)

]
= 1.

Theorem 6.1 implies that there exists an odiO-sampler (resp. oiO-sampler)

Ŝ that cannot be odiO-obfuscated (resp. oiO-obfuscated), if OWFs exist (in-
deed, OWF implies both IND-CCA1 and IND-CPA-key security of SKE. See
full version for more details).

Corollary 6.2. For type ∈ {odiO, oiO}, if OWFs exist then there exists a type-

sampler Ŝ (Definition 4.1) such that Ŝ ̸∈ Stype where Stype is defined in Defini-
tion 4.3.

Similarly to VBB, both odiO and oiO imply the existence of OWFs. As a
consequence, for type ∈ {odiO, odiO}, a type-unobfuscatable type-sampler exists
unconditionally.

Theorem 6.3. s Let Obf and Sowf be an obfuscator and the sampler as de-
fined in Figure 5. Let p(·) and F = {Fλ}λ∈N be a polynomial and an ensemble
of functions such that Fλ is defined as Fλ(b, r0, r1) = Obf(1λ, Cowf

r0,b
; r1) where

(b, r0, r1) ∈ {0, 1} × {0, 1}λ × {0, 1}p(λ). Then, the following statements hold:

1. Sowf is an odiO-sampler (resp. oiO-sampler), and

2. if Obf is a ({Sowf})-odiO-obfuscator (resp. ({Sowf})-oiO-obfuscator) then Fλ ∈
F is a OWF.

Corollary 6.4. For type ∈ {odiO, oiO}, there exists (unconditionally) a type-
sampler S such that S ̸∈ Stype where Stype as defined in Definition 4.3.

The above corollary follows by combining Corollary 6.2 and Theorem 6.3, i.e.,
either Sowf ̸∈ Stype or Ŝ ̸∈ Stype (for type ∈ {odiO, odiO}) where Sowf and Ŝ defined
in Figure 5 and Corollary 6.2, respectively.
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6.2 Impossibility of obfuscating semantically and sel-IND-
CPRA-key secure SKE into sel-IND-CPA secure PKE
schemes

We now demonstrate that it is inherently impossible to convert a semantically
secure and sel-IND-CPRA-key SKEs into sel-IND-CPA PKEs by simply obfus-
cating the SKE’s encryption algorithm, as described in our oiO-based Construc-
tion 2. We prove this by leveraging a similar technique to that of [8]: We con-
struct a SKE Π∗ that satisfies semantic and sel-IND-CPRA-key security that,
when obfuscated into a PKE (as described in Section 5.2), the latter results to
be completely insecure. By leveraging the ensemble C of Theorem 6.1, a PRF
Π = (Gen,F), and a semantically and sel-IND-CPRA-key secure SKE scheme

Π̃ = (K̃Gen, Ẽnc, D̃ec), we build the contrived SKE Π∗ as follows:

Enc∗(k∗, (ℓ, v); r) = (Ẽnc(k̃, (ℓ, v); r), C∗
s,(k̂,a,b,y,e)

(ℓ, v, r),F(y, (ℓ, v, r))⊕ k̃) (1)

where k∗ = (k̂, k̃, s, a, b, y, e).
Π∗ is a semantically and sel-IND-CPRA-key secure SKE for the following rea-

sons. First, as described in Section 6.1, oracle access to the circuit C∗
s,(k̂,a,b,y,e)

∈ C

is computationally indistinguishable from having oracle access to a circuit C̃k

that always returns encryptions of 0. Hence, this implies that C∗
s,(k̂,a,b,y,e)

does

not leak the message (ℓ, v) and that an adversary cannot leak any information

about (k̂, a, b, y, e). Second, conditioned to the above observation, the semantic

security of Π∗ easily follows from the semantic security of Π̃ and the security
of Π. Third, as for the sel-IND-CPRA-key security of Π∗, it follows from sel-
IND-CPRA-key security of Π̃, the security of Π, and the fact that C satisfies
input-indistinguishability (see Theorem 6.1).

On the other hand, when Enc∗ is obfuscated (as in Construction 2), an ad-
versary can exploit the partial reversibility of C (Theorem 6.1) to extract y and,

in turn, the key k̃ that is used to encrypt the message m = (ℓ, v). Below, we
report the formal result.

Theorem 6.5. If OWFs exist then the following statements hold:

1. there exist a SKE Π∗ such that Π∗ is semantically secure, sel-IND-CPRA-
key, and

2. the PKE scheme Π = (KGen,Enc,Dec) (output by applying to Π∗ the trans-
formation defined in Construction 2) is not sel-IND-CPA (Theorem 5.4).

We stress that the above result improves the impossibility result of Barak et
al. [8] since ours apply to the smaller class of SKEs (i.e., SKEs with stronger
notions of security) that satisfy sel-IND-CPRA-key security.

Also, all our odiO-based transformations remain plausible as the impossibility
result do not seem to extend. We provide more details in the full version of this
work.

28



Acknowledgments. The authors would like to thank the anonymous review-
ers for useful feedback. The research described in this paper received funding
from: the Concordium Blockhain Research Center, Aarhus University, Denmark;
the Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM); the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No
803096 (SPEC).

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptol. ePrint Arch. 2013, 689 (2013)

2. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: new paradigms via low degree weak pseudorandomness
and security amplification. In: Annual International Cryptology Conference. pp.
284–332. Springer (2019)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Annual Cryptology Conference. pp. 308–326. Springer (2015)

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive (2015)

5. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfus-
cation for evasive functions. In: Theory of Cryptography Conference. pp. 26–51.
Springer (2014)

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 221–238. Springer (2014)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im) possibility of obfuscating programs. In: Annual international cryp-
tology conference. pp. 1–18. Springer (2001)

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im) possibility of obfuscating programs. Journal of the ACM (JACM)
59(2), 1–48 (2012)

9. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via uces.
In: Annual Cryptology Conference. pp. 398–415. Springer (2013)

10. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: International Con-
ference on the Theory and Application of Cryptology and Information Security.
pp. 102–121. Springer (2014)

11. Bellare, M., Stepanovs, I., Waters, B.: New negative results on differing-inputs
obfuscation. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 792–821. Springer (2016)

12. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation.
In: Annual Cryptology Conference. pp. 520–537. Springer (2010)

13. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Annual Cryptology Conference. pp. 71–89. Springer (2014)

14. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. Algorithmica 79(4), 1014–1051 (2017)

29



15. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS). pp. 171–190. IEEE Computer Society (2015)

16. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. Journal of the ACM (JACM) 65(6), 1–37 (2018)

17. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Theory of
cryptography conference. pp. 52–73. Springer (2014)

18. Boyle, E., Pass, R.: Limits of extractability assumptions with distributional aux-
iliary input. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 236–261. Springer (2015)
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