
Dew: A Transparent Constant-sized Polynomial
Commitment Scheme

Arasu Arun1⋆, Chaya Ganesh2, Satya Lokam3, Tushar Mopuri2⋆, and Sriram
Sridhar4⋆

1 New York University
arasu@nyu.edu

2 Indian Institute of Science
{chaya,tusharmopuri}@iisc.ac.in

3 Microsoft Research India
satya@microsoft.com

4 University of California, Berkeley
srirams@berkeley.edu

Abstract. We construct a polynomial commitment scheme with con-
stant (i.e., independent of the degree) sized evaluation proofs and loga-
rithmic (in the degree) verification time in the transparent setting. To the
best of our knowledge, this is the first result achieving this combination
of properties.

We build our scheme from an inner product commitment scheme with
constant-sized proofs but with linear verification time. To improve the
verification time to logarithmic for polynomial commitments, we prove
a new extremal combinatorial bound. Our constructions rely on groups
of unknown order instantiated by class groups. We prove security of our
constructions in the Generic Group Model.

Compiling known information-theoretic proof systems using our poly-
nomial commitment scheme yields transparent and constant-sized zk-
SNARKs (Zero-knowledge Succinct Non-interactive ARguments of
Knowledge) with logarithmic verification.

1 Introduction

A Polynomial Commitment Scheme (PCS) [18] allows a prover to commit to
a polynomial P of degree d so that, later. a verifier can query for P (x) at an
argument x of its choice and the prover can, together with its response, furnish
an evaluation proof that its response is indeed consistent with its commitment.
The commitment and the evaluation proof are required to be succinct, that is,
of size independent of, or logarithmic, in d.

Polynomial commitments have applications in verifiable secret sharing [15],
anonymous credentials [10], and zero-knowledge sets [22], among others. But by

⋆ Work partially done while at Microsoft Research India.

far, their most dominant application is to constructions of zkSNARKs (zero-
knowledge Succinct Non-interactive ARguments of Knowledge) for all of NP.
Indeed, improvements to PCS imply improvements to SNARKs when combined
with established modular approaches to SNARKs. On the other hand, a SNARK
for all of NP in particular implies a succinct PCS by instantiating the SNARK
for the NP-relation “y = P (x) and the commitment C opens to P”, where C
is a succinct commitment to P . While this incidental corollary of a SNARK
implies succinct PCS, we desire a “direct” construction of PCS without writing
polynomial evaluation as a generic NP relation, since most SNARK constructions
themselves use PCS as a crucial ingredient. PCS is therefore a core cryptographic
construct and there is a strong motivation to construct one with the best possible
parameters.

Transparent setup. Non-interactive proof systems are typically in the Common
Reference String (CRS) model where a CRS is generated during a setup phase
which needs to be trusted if the CRS uses secret randomness. Constructions
that do not involve a trusted setup phase and the verifier randomness consists
of only public coins are called transparent. A recent line of work [12, 23, 11,
17] to construct SNARKs follows a modular approach: first, an information-
theoretic component is constructed; then this is compiled into an argument using
cryptographic tools, typically a PCS. Finally, this is made non-interactive to
obtain a SNARK in the random oracle model (ROM). The resulting SNARK
inherits the trusted setup assumption or the transparency property from the
cryptographic tools used in the compilation process. Any resulting SNARK from
compiling an information-theoretic protocol inherits the complexity of the PCS,
that is, the proof size depends on the commitment size and evaluation proof
size of the PCS. Unfortunately, all existing succinct PCS schemes either require
trusted-setup assumptions [18], or are when they are transparent, only achieve
logarithmic proof size [9, 3, 20]5. We address this challenge in this work.

1.1 Our Contributions

We present the first PCS with constant size commitment, constant size evalua-
tion proof 6 and logarithmic verification in the transparent setting. Our start-
ing point is a construction of a transparent Inner Product Commitment (IPC)
scheme (which is a more general object than PCS) that allows a prover to open
a committed vector to inner products with a verifier’s query vectors. Our IPC is
succinct – that is, the size of the commitment and the proof of a correct open-
ing are independent of the length of the vector and linear (in the length of the
vector) time verification. Building on this IPC, we construct a succinct PCS,

5 A flaw in the proof of security of the DARK scheme [9] was discovered by Block et
al [3], who propose a different PCS with logarithmic proof size. We also note that
a revised version of DARK [8] also proposes a fix by showing that the DARK PCS
satisfies a property called almost-special-soundness which suffices for extraction.

6 Constant is Oκ(1). That is, independent of the size of the input, and polynomial
only in the security parameter.

2

resulting in a transparent constant-sized PCS but, importantly, with logarith-
mic time verification. Our PCS is the first construction to achieve the above
combination of properties to the best of our knowledge.

From a technical point of view, our contributions are summarized below.

Inner Product Commitment (IPC) and Polynomial Commitment
Scheme (PCS). We construct a constant size transparent IPC scheme in §3.
In §4, we present our transparent PCS construction that achieves constant sized
proofs, constant sized public parameters, and verification in O(log n) field oper-
ations and a constant number of group operations for polynomials of degree n.
Both the above constructions are in the GGM. We also show hiding and zero
knowledge variants of our constructions. Using the now standard compilation
process from information-theoretic proofs in idealized models to zkSNARKs via
PCS [9, 12], we obtain a transparent constant-sized zkSNARK with constant-sized
public parameters (§5). The resulting zkSNARKs achieve Oκ(1) communication
and O(log n) verification7, where n is the complexity of the NP relation (e.g.,
number of constraints of a Rank 1 Constraint System, or the number of gates
in an arithmetic circuit). The only other transparent zkSNARKs with constant-
sized proofs and public parameters are obtained by compiling constant-query
PCPs using transparent vector commitment schemes with constant-sized open-
ing proofs and public parameters. The VCs of [5, 19] are such candidates.

A New Combinatorial Lemma. As noted above, we improve the verifica-
tion time from linear (in length of vector) in our IPC to logarithmic (in degree
of polynomial) in our PCS. We achieve this efficiency improvement using Kro-
necker products (details in § 1.3.2 and §4.1); but their naive application breaks
soundness. We recover soundness by solving a problem in extremal combina-
torics. A special case of our problem asks: how many points can we choose in
the discrete cube [n]d such that that set of points does not contain the corners
of a d-dimensional hyper-rectangle (box)? When d = 2, this is the Zarankiewicz
problem [4] in extremal graph theory for which an asymptotically tight bound
of ∼ n3/2 is known. For higher d, the “Box Theorem” due to Rosenfeld [24]

proves the bound ∼ nd−2−d+1

. We can use these bounds in the soundness proof
of our PCS to obtain nϵ verification time for any constant 0 < ϵ < 1. While this
improves on linear, our goal is to obtain logarithmic verification.

We achieve logarithmic verification by generalizing boxes in the extremal prob-
lem to “d-cancellation structures.” With these d-cancellation structures, we can
continue to exploit certain cancellation properties required for soundness (de-
tails in §4.2) similar to those for boxes but also, more importantly, succeed in
proving much better bounds on the number of points in [n]d that do not con-
tain a d-cancellation structure. Our bounds are ∼ dnd−1 and it is crucial for our
soundness that this is a negligible fraction of the whole space (of size nd); in
contrast, as d→∞, the box theorem above gives a bound that approaches nd –
essentially filling the whole space.

7 In the preprocessing setting.

3

To the best of our knowledge, our result is the first application of an extremal
combinatorics theorem in the construction of PCS and SNARKs and we believe
this to be of independent interest. We note that extremal combinatorics results
like this have found applications in complexity theory and theoretical computer
science in general.

Recovering the DARK [9] result. We show that our PCS can be adapted to
obtain logarithmic proof size and verification by employing the recursive evalu-
ation protocol from DARK on our new commitment scheme. This recovers the
flawed Lemmas 8, 9 from DARK thus recovering a transparent PCS with loga-
rithmic proof size and logarithmic verification, but at the expense of an increased
quadratic prover time. The DARK recovery does not require GGM; we achieve
this result under the same assumptions made in DARK, i.e., the Adaptive Root
and Strong RSA Assumptions. We note that [3] gives a construction that achieves
similar results as DARK by modifying DARK’s evaluation protocol, and a sub-
sequent revision of DARK [8] shows that the DARK PCS satisfies a property
called almost-special-soundness. In contrast, our construction is a commitment
scheme that is syntactically close to DARK, has a similar evaluation protocol
and recovers the flawed lemmas. We present this in the full version [1].

1.2 Related Work

Functional commitments were introduced by [21] as a generalization of vector
commitments, where a prover can commit to a vector, and later open the com-
mitment at functions of the committed vector with a succinct proof that the
answer is consistent with the committed vector. The work of [21] also showed
a construction for functional commitments for linear functions. Lai and Mala-
volta [19] put forth the notion of Linear Map Commitments (LMC) that allow a
prover to open a commitment to the output of a linear map. The constructions
from [21, 19] achieve succinctness — constant commitment and proof size, but
require trusted setup.

In a recent concurrent work, [13] presents transparent inner product commit-
ment schemes with constant size openings and constant size public parameters.
Their scheme is also in groups of unknown order, however, the techniques they
use are completely different. Their result relies on proofs of cardinality of RSA
accumulated sets, whereas we rely on integer encoding of vectors and combina-
torial techniques to show extraction. Though a PCS was not their goal, a PCS
resulting from the inner product commitment scheme of [13] in the natural way
results in a linear time verifier. In contrast, we achieve logarithmic verification
time for our PCS.

Polynomial commitment schemes were introduced in [18], and have since led
to several variants being used in recent SNARKs. The KZG scheme [18] gives
constant-sized commitments and proofs, but require a trusted setup. In the trans-
parent setting, Wahby et al. [25] constructed a polynomial commitment scheme
for multilinear polynomials that has commitment size and evaluation proof size

4

O(
√
d) for degree d polynomials. Zhang et al. [27] construct a polynomial com-

mitment from FRI (Fast Reed Solomon IOPP) that is transparent, has constant
size commitments, but evaluation proofs have size O(log2 d).

As mentioned earlier, Bünz et al [9] used a Diophantine Argument of Knowl-
edge (DARK), and constructed a polynomial commitment scheme with proof
size O(log d) and O(log d) verification time for polynomials of degree d. Block
et al [3] identified a gap in the proof of security of the DARK scheme and pro-
pose a modification that sidesteps the gap in extraction, resulting in a PCS of
polylogarithmic proof size and verification time.

1.3 Technical Overview

The intuitive starting point of our commitment schemes is a natural mapping
from vectors to group elements via integers. Specifically, for a vector8 c, define
intα(c) := ⟨c,α⟩ :=

∑l−1
0 ciα

i, where α := (1, α, α2, . . . , αl−1) and α is suffi-
ciently large. Let us also define C := gintα(c) for a given group element g ∈ G.
When the group G is a group of unknown order and g ∈ G is random (but cho-
sen during set up), we can show that a prover can prove knowledge of a unique
positive exponent of C with base g and that the α-base representation c of that
exponent must be a valid opening of C. This follows from a Proof of Knowledge
of a Positive Exponent (PoKPE) protocol that builds on Wesolowski’s Proof of
Exponent (PoE) protocol [26] (details in Section 2.4).

We now wish to use the commitment C made by a Prover to vector c in a
protocol for inner product ⟨c,q⟩, where q is the query vector from the Verifier.
To that end, let us consider the integer product

intα(c) · intα(reverse(q)) =

(
l−1∑
i=0

ciα
i

)
·

(
l−1∑
i=0

ql−iα
i

)
= L+ αl⟨c,q⟩+H (1)

where L and H are polynomials collecting powers of α of degree less than l and
more than l respectively. Raising g to both sides of (1), we obtain

C intα(reverse(q)) = (gL) · (gα
l⟨c,q⟩) · (gH). (2)

Note that the verifier can compute the l.h.s. of (2). Hence if the prover claims that
the inner product ⟨c,q⟩ evaluates to v and also sends gL and gH to the verifier
(and convinces the verifier of values L and H using a PoKPE protocol), then the
verifier can check consistency of the prover’s claim using (2) (with v in place of
⟨c,q⟩). While this intuition suffices for a completeness proof, it is by no means
sufficient for a soundness proof. Our main contribution, outlined below, is to show
that a check somewhat analogous to (2) with some additional machinery suffices
for a verifier to catch a cheating prover with high probability. This intuition is
essentially the basis for our inner product evaluation protocol IPP in Fig 3 and
the “additional machinery” appears as the TEST protocol in Fig 2.

8 Our vectors are over Zp and we map elements of Zp to integers {0, . . . , p− 1}.

5

We remark that the above intuition is reminiscent of approaches in [19, 9]. How-
ever, our approach below differs significantly from theirs to achieve constant sized
proofs (unlike in [9] that uses recursion to obtain logarithmic size) and transpar-
ent setting where α is not secret (unlike the trusted setup in [19]).

1.3.1 A TEST Protocol and Extracting Structure from Overflows

A cheating prover could use a committed vector (derived by computing the
α-base representation of exponent of g in C using the PoKPE extractor) with
coordinate values that could cause “overflow” in the coefficients on the r.h.s.
of (1). In that case, we can no longer guarantee the correctness of the inner
product as the middle coefficient. We now describe ideas that help us overcome
this challenge.

To control the issues caused by overflow, we intersperse 0’s between coordinates
of c: we double the length of the vector to 2l and place the vector c to be
committed in even positions (0, 2, . . . , 2l − 2) and 0’s in odd positions. More
generally, let d denote the subvector in the odd positions and let c∥d denote
the combined vector of length 2l. Note first that completeness continues to hold
with this change since an honest prover commits to c∥0, with c ∈ Zl

p and satisfy
analogs of (1) and (2) for length-2l vectors with 0’s in odd positions, or equiva-
lently, with α2 replacing α. Second, and this is our next crucial step, note that
the verifier can run a TEST protocol (cf. Fig 2) that queries for the inner prod-
uct ⟨(c∥d) , (0∥z)⟩, where z ∈ Zl

p is a uniformly chosen random vector and the
verifier can check if the middle coefficient of (generalization to 2l-length vectors
of) (2) is zero. Assuming no overflows, the middle coefficient would be ⟨d, z⟩. In
this case, by the Schwartz-Zippel lemma, a cheating prover choosing nonzero d
would be caught with high probability. However, a cheating prover could choose
nonzero d and still pass the test for z by causing overflows from L in (1) (due to
large products between c and z coordinates) to “cancel out” the non-zero value
of ⟨d, z⟩. More precisely, it can be shown using (a generalization of) (1) and the
PoKPE protocol relating (2) to (1) that if a prover can succeed in the TEST
protocol with non-negligible probability, then

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u = 0 mod α, (3)

for some u ∈ {0, 1} must be satisfied (3) with non-negligible probability over a
uniformly random z ∈ Zl

p.

Call a test vector z ∈ Zl
p a success point for the prover if (3) is satisfied when

verifier chooses z and prover’s commitment C extracts – via a PoKPE protocol
– to c∥d. Now, if a prover has two success points z and z′ on a “line”, i.e., z and
z′ agree on all coordinates except j-th, then ⟨d, z⟩−⟨d, z′⟩ = dj(zj−z′j) because
of cancellations in coordinates ̸= j. Thus subtracting (3) for z′ from that for z,
we obtain

dj · (zj − z′j) =

(⌊
⟨c, z′⟩
α

⌋
−
⌊
⟨c, z⟩
α

⌋
+ u′ − u

)
mod α. (4)

6

Using bounds on coordinates of c and z, we conclude that dj is θ1jα+θ2j , where
θ1 and θ2 are rationals with small denominators (a more detailed statement of
this structure appears in Theorem 34). An easy combinatorial argument shows
that if the prover succeeds with non-negligible probability, e.g., at least 1/p (p
is exp(κ)), then in every direction j, there must be a line in the j-th dimension
with two success points z and z′ on it. Hence, if the prover is accepted in the
TEST protocol (Fig 2) with non-negligible probability, every coordinate of d
can be expressed as dj = θ1jα+ θ2j with θ’s as above – this is the structure we
extract on d that we use to prove soundness. This Structure Theorem 34 is a
crucial technical ingredient of our results.

Armed with the structure theorem, we prove (Theorem 35) that if the inner
product evaluation protocol IPP (Fig 3) for ⟨(c∥d), (q∥0)⟩ succeeds in satisfying
(generalizations) of (1) and (2), with query vector q∥0, then we can extract a
vector c̃ that, while fractional over the integers, has invertible denominators
modulo p. Using this c̃ as the “opening hint” (cf. Open() in §3.1), we can then
extract a unique c that is consistent with the claimed inner product.

1.3.2 Logarithmic Verification for Polynomial Commitments

Our IPC scheme above immediately yields a Polynomial Commitment Scheme
(PCS), noting that, for a polynomial f given by its vector of coefficients f =
(f0, . . . , fl−1), f(x) = ⟨f ,x⟩, where x = (1, x, . . . , xl−1). However, the verifi-
cation complexity of the resulting PCS is much worse than what we want to
achieve. Linear verification seems inherent for inner products (since the query
vector q can be arbitrary and the verifier needs to at least read the statement,
verifier’s computation of intα(reverse(q)) itself will take linear time). But, in
a PCS, we can hope to achieve logarithmic verification time since the query
vector x is parameterized by single variable x. In particular, we can compute
intα(reverse(x)) in only logarithmic time (cf. (5) below and (11)). This makes
the verifier in IPP protocol (specialized to a PCS) logarithmic. However, we still
have the bottleneck for verifier computation in the TEST protocol. Note that
while the query vector x is parameterized by a single variable x, the test vector
z is not and hence computing intα(reverse(z)) in checking (2) in TEST protocol
still seems to require linear verifier time.

To reduce verifier’s computation in TEST protocol, we use the idea of Kro-
necker products9: instead of choosing z uniformly at random in Zl

p, we choose
log l vectors z0, . . . , zlog l−1 uniformly at random from Z2

p and define z = z0 ⊗
· · · ⊗ zlog l−1 To illustrate how this helps, consider the following computation
needed on the right hand side of (2), where z is as above and i = (i0, . . . , ilog l−1)
the binary expansion of index i ∈ [l].

intα(reverse(z)) =
l−1∑
i=0

αl−i

log l−1∏
j=0

zj,ij = αl ·
log l−1∏
j=0

(zj,0 + zj,1α
−2j), (5)

9 We note that [2] and [20] also use Kronecker products in proof systems albeit with
different motivations.

7

and note that the last product can be computed in logarithmic time. The new
test protocol with Kronecker product test vectors is called logTEST (identical
to TEST except with the query vector replaced as above).

While this helps improve verifier efficiency of TEST, it breaks soundness! The
extractability proof of TEST in IPC relies on uniform randomness of the test
vector z ∈ Zl

p. So, we must now improve the extractability proof to work with
exponentially smaller randomness in the log l vectors zj of length 2. Specifically,
it is crucial to recover an analog of the structure for the d vector as outlined in
Section 1.3.1 but now from this vastly reduced space of verifier’s randomness in
logTEST. We outline how to do this next.

1.3.3 An Extremal Combinatorial Bound

We recover soundness with Kronecker product TEST vectors by proving a
new result in extremal combinatorics. Informally, this theorem (Theorem 45)
gives a tight upper bound on the number of points in the hypercube [n]d such
that no subset of 2d points in that set form a configuration that we call a
d-cancellation structure. A d-cancellation structure generalizes the set of corners of
a d-dimensional box or a hyper-rectangle. For instance, a 2-cancellation structure
is a parallelogram generalizing a rectangle. In the case of a rectangle, this is
the well-known Zarankiewicz problem [4] from extremal graph theory and has
an asymptotically tight bound of n3/2 points (out of n2) that contain no four
points as corners of a rectangle in [n]2. Thus, our problem generalizes this in two
ways: first, we consider high dimensions with growing d (but no more than log n)
and second, we generalize a rectangle/box to d-cancellation structure. A recur-
sive definition is given in Def. 44. For d > 2 and in case of boxes, Rosenfeld [24]

proved an upper bound of ∼ nd−2−d+1

on the maximum number of points that
do not contain the corners of a box. This bound, however, is insufficient for us
to get logarithmic verification since as d grows, it tends to nd almost entirely
filling the space. Our main contribution is to obtain a significantly smaller upper
bound by generalizing boxes to d-cancellation structure: a tight upper bound of
(nd−(n−1)d) ≤ dnd−1, which is a vanishingly small fraction of nd. For example,
when the forbidden configurations are generalized from rectangles to parallelo-
grams for d = 2, the upper bound improves to ∼ n from the ∼ n3/2 stated above
for the Zarankiewicz problem.

We now tie back this combinatorial argument to the goal of extractability. As
the name implies, a d-cancellation structure induces cancellations. Recall from
Section 1.3.1 that cancellations between two success points (test vectors z and
z′ where the prover succeeds by satisfying (3)) allow us to deduce structural
conditions on coordinates of d using (4). We now generalize that argument to
Kronecker products as test vectors where a d-cancellation structure generalizes
the role of a line, and cancellations between two points on a line generalize
to recursive cancellations among 2d points in a d-cancellation structure. Finally,
the simple combinatorial argument outlined in Section 1.3.1 for TEST on the
existence of at least one line in each dimension with at least two success points

8

is replaced by the existence of a d-cancellation structure for every index i =
(i0, . . . , ilog l−1) (corresponding to a d-coordinate di, cf. (5)) in the Kronecker
product space for logTEST.

Specifically, each accepting run of logTEST corresponds to a chosen/success
point in [n]d (this is our space of randomness, with n = p and d = log l). By
suitable calibration of parameters, we can show that a prover that succeeds
with a non-negligible probability gives rise to more than nd − (n − 1)d cho-
sen points and then our combinatorial bound above implies the existence of
a d-cancellation structure B, each of whose “corners” (for simplicity, think of a
d-cancellation structure as a box) is a success point. Thus, we obtain 2d equations
like (3) at the corners of B; ⟨d, z⟩ is a multilinear polynomial with coefficients di
(i-th coordinate of d, with bit representation of i = (i0, . . . , ilog l−1)) and vari-

ables zj,ij (cf. (5)) from the Kronecker product TEST vector z = ⊗log l−1
j=0 zj. The

recursive structure of B allows recursively combining these equations by folding,
i.e., subtracting equations like (3) along “edges” of B in the same direction. Each
successive folding reduces the number of equations by half and eliminates one of
the free variables zj,ij to obtain a multilinear version of (4). After log l such fold-
ing steps, we obtain an equation generalizing (4) with one di on l.h.s, that yields
the structure on coordinates of d that we seek. This helps us recover an analog
of the structure theorem (Theorem 34) for logTEST (Theorem 42).

2 Preliminaries

Notation. A finite field is denoted by F. We denote by κ a security parameter.
When we explicitly specify the random tape for a randomized algorithm A,
then we write a ← A(pp; ρ) to indicate that A outputs a given input pp and
random tape ρ. We consider interactive arguments for relations, where a prover P
convinces the verifier that it knows a witness w such that for a public statement
x, (x,w) ∈ R. For a pair of PPT interactive algorithms P, V , we denote by
⟨P (w), V ⟩(x), the output of V on its interaction with P where w is P ’s private
input and x is a common input.

Fiat-Shamir transform. In this work, we consider public coin interactive ar-
guments where the verifier’s messages are uniformly random strings. Public
coin protocols can heuristically be made non-interactive by applying the Fiat-
Shamir [16] transform (FS) in the Random Oracle Model (ROM).

2.1 Inner Product Commitments

We define Inner Product Commitments (IPC) which is an extension of functional
commitments introduced in [21]. IPC allows a prover to prove that the committed
vector f satisfies ⟨f ,q⟩ = v, for some vector q and v.

An Inner Product Commitment scheme over F is a tuple
IPC = (Setup,Com,Open,Eval) where:

9

– Setup(1κ, D)→ pp. On input security parameter κ, and an upper bound D
on accepted vector lengths, Setup generates public parameters pp.

– Com(pp, f0, . . . , fl−1, l) → (C, c̃). On input the public parameters pp, the
length of the vector l ≤ D and a vector of length l, given as f0, . . . , fl−1 ∈
F, Com outputs a commitment C, and additionally an opening hint c̃ ≡
(f0. . . . , fl−1).

– Open(pp, f , l, C, c̃) → b. On input the public parameters pp, the opening
hint c̃, the length of the vector in the commitment l and the commitment
C, the claimed committed vector f , Open outputs a bit indicating accept
or reject.

– Eval(pp, C, l,q, v; f)→ b. A public coin interactive protocol
⟨PEval(f), VEval⟩(pp, C, l,q, v) between a PPT prover and a PPT verifier.
The parties have as common input public parameters pp, commitment C,
the length of the vector in the commitment l, query vector q ∈ Fl, and
claimed inner product v. The prover has, in addition, the vector committed
to in C, f . At the end of the protocol, the verifier outputs 1 indicating
accepting the proof that ⟨f ,q⟩ = v, or outputs 0 indicating rejecting the
proof.

Definition 21 (Completeness) For all l ≤ D, for all inputs f0, . . . , fl−1 ∈ F,
for query vectors q ∈ Fl,

Pr

b = 1 :

pp← Setup(1κ, D)
(C, c̃)← Com(pp, f0, . . . , fl−1, l)

v ← ⟨(f0, . . . , fl−1),q⟩
b← Eval(pp, C, l,q, v; f)

 = 1.

Definition 22 (Binding) An Inner Product Commitment scheme PC is bind-
ing if for all PPT A, the following probability is negligible in κ.

Pr

Open(pp, f0, l, C, c̃0) = 1∧
Open(pp, f1, l, C, c̃1) = 1∧

c̃0 ̸= c̃1

:
pp← setup(1κ, D)

(C, f0, f1, c̃0, c̃1, l)← A(pp)

 .

Definition 23 (Succinctness) We require the commitments and the evalua-
tion proofs to be of size independent of the length of the vector, that is the scheme
is proof succinct if |C| is poly(κ) and |π| is poly(κ), where π is the transcript
obtained by applying FS to Eval.

Definition 24 (Extractability) For any PPT adversary A = (A1,A2), there
exists a PPT algorithm Ext such that the following probability is negligible in κ:

Pr

b = 1 ∧REval(pp, C, l,q, v; f , c̃) = 0 :

pp← Setup(1κ, D)
(C, l,q, v, st)← A1(pp)

(f , c̃) = ExtA2(pp)
b← ⟨A2(st), VEval⟩(pp, C, l,q, v)

 .

10

where the relation REval is defined as follows:

REval = {
(
(pp, C ∈ G, l ∈ N, q ∈ Fl, v ∈ F); (f , c̃)

)
:

(Open(pp, f , l, C, c̃) = 1) ∧ v = ⟨f ,q⟩ mod p}

2.2 Polynomial Commitment Scheme

The notion of a polynomial commitment scheme that allows the prover to open
evaluations of the committed polynomial succinctly was introduced in [18] who
gave a construction under the trusted setup assumption. A polynomial commit-
ment scheme over F is a tuple PC = (setup, commit, open, eval) where:

– setup(1κ, D) → pp. On input security parameter κ, and an upper bound
D ∈ N on the degree, setup generates public parameters pp.

– commit(pp, f(X), d) → (C, c̃). On input the public parameters pp, and a
univariate polynomial f(X) ∈ F[X] with degree at most d ≤ D, commit
outputs a commitment to the polynomial C, and additionally an opening
hint c̃.

– open(pp, f(X), d, C, c̃)→ b. On input the public parameters pp, the commit-
ment C and the opening hint c̃, a polynomial f(X) of degree d ≤ D, open
outputs a bit indicating accept or reject.

– eval(pp, C, d, x, v; f(X))→ b. A public coin interactive protocol
⟨Peval(f(X)), Veval⟩(pp, C, d, z, v) between a PPT prover and a PPT verifier.
The parties have as common input public parameters pp, commitment C,
degree d, evaluation point x, and claimed evaluation v. The prover has,
in addition, the opening f(X) of C, with deg(f) ≤ d. At the end of the
protocol, the verifier outputs 1 indicating accepting the proof that f(x) = v,
or outputs 0 indicating rejecting the proof.

A polynomial commitment scheme must satisfy completeness, binding and ex-
tractability.

Definition 25 (Completeness) For all polynomials f(X) ∈ F[X] of degree
d ≤ D, for all x ∈ F,

Pr

b = 1 :

pp← setup(1κ, D)
(C, c̃)← commit(pp, f(X), d)

v ← f(x)
b← eval(pp, C, d, x, v; f(X))

 = 1.

Definition 26 (Binding) A polynomial commitment scheme PC is binding if
for all PPT A, the following probability is negligible in κ:

Pr

open(pp, f0, d, C, c̃0) = 1∧
open(pp, f1, d, C, c̃1) = 1∧

f0 ̸= f1

:
pp← setup(1κ, D)

(C, f0, f1, c̃0, c̃1, d)← A(pp)

 .

11

Definition 27 (Extractability) For any PPT adversary A = (A1,A2), there
exists a PPT algorithm Ext such that the following probability is negligible in κ:

Pr

b = 1 ∧Reval(pp, C, x, v; f̃ , c̃) = 0 :

pp← setup(1κ, D)
(C, d, x, v, st)← A1(pp)

(f̃ , c̃)← ExtA2(pp)
b← ⟨A2(st), Veval⟩(pp, C, d, x, v)

 .

where the relation Reval is defined as follows:

Reval = {((pp, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)) :

(open(pp, f, d, C, c̃) = 1) ∧ v = f(x)}

Definition 28 (Succinctness) We require the commitments and the evalua-
tion proofs to be of size independent of the degree of the polynomial, that is the
scheme is proof succinct if |C| is poly(κ), |π| is poly(κ) where π is the transcript
obtained by applying FS to eval. Additionally, the scheme is verifier succinct if
eval runs in time poly(κ) · log(d) for the verifier.

2.3 Assumptions

Groups of unknown order and GGM. Our constructions make use of groups of
unknown order. A class group is a candidate group of unknown order. The class
group of an imaginary quadratic order [6, 7] is the quotient group of fractional
ideals by principal ideals of an order of a number field with ideal multiplication.
It is completely defined by its discriminant, which can be generated using only
public randomness.

We use the generic group model (GGM) for groups of unknown order as defined
by Damg̊ard and Koprowski [14], and used in [5]. In this model, the group is
parameterized by two integer public parameters A, B and the order of the group
is sampled uniformly from [A,B]. The group G description consists of a random
injective function σ : Z|G| → {0, 1}ℓ, for some ℓ where 2ℓ ≫ |G|. The elements
of the group are σ(0), σ(1), . . . , σ(|G| − 1). A generic group algorithm A is a
probabilistic algorithm with the following properties. Let L be a list that is
initialized with the encodings (group elements) given to A as inputs. A can
query two generic group oracles, O1 and O2. O1 samples a random r ∈ Z|G|
and returns σ(r) which is appended to L. The second oracle O2(i, j,±) takes
two indices i, j ∈ {1, . . . , q}, where q is the size of L, and a sign bit and returns
σ(xi ± xj), which is appended to L. It should be noted that A is not given |G|.
We use a group sampler GGen that on input a security parameter κ, samples a
description of the group G of size 2poly(κ). Note that GGen is public-coin.

We informally describe the rest of the assumptions – note that these problems
are indeed intractable in the GGM. The formal definitions are deferred to the
full version.

Adaptive root assumption. Computing random roots of arbitrary group elements
g is hard for any PPT adversary.

12

Low order assumption. Computing the order of any non-trivial element in a
group G← GGen is hard for any PPT adversary.

2.4 Proofs about Exponents

PoE (Proof of Exponentiation): We use Wesolowski’s proof of exponentiation
(PoE) protocol [26] in it’s slightly more generalized form as presented in [5] for
the relation RPoE = {(u,w ∈ G, x ∈ Z;⊥) : w = ux ∈ G}.

PoKE (Proof of Knowledge of Exponent): We also use the PoKE protocol from
[5] in our protocols. This protocol is an argument of knowledge in the GGM for
the relation RPoKE = {(u,w ∈ G;x ∈ Z) : w = ux ∈ G}.

PoKPE (Proof of Knowledge of Positive exponent): Define the relationRPoKPE =
{(w ∈ G;x ∈ Z) : (w = gx) ∧ (x > 0)}. We construct an argument of knowledge
for this relation called PoKPE using PoKE and Lagrange’s four-square theorem.
We also use the notation PoKPE{A,B, . . . } to denote the combined protocol for
the set, where the verifier outputs 1 iff PoKPE checks pass for all elements. More
details about these protocols appear in the full version.

3 Inner Product Commitment Scheme with
Constant-sized Proof

In this section, we construct an inner product commitment (IPC) scheme that
achieves constant-sized proof and linear time verification.

3.1 Construction

IPC = (Setup,Com,Open,Eval) are as defined below:

– Setup(1κ, D): Here, κ is the security parameter and D is an upper bound
on the length of the committed vectors. Sample a group of unknown order
(we use class groups) G ← GGen(κ) and g ←$ G. Define α = p2D (p is a
large prime such that len(p) = poly(κ)). Return pp = (κ,G, g, p) (α does not
have to be explicitly returned; it is defined completely by p,D).

– Com(pp, D, f0, . . . , fl−1, l): Define the commitment to f = (f0, . . . , fl−1) ∈
Zl
p as C := g

∑l−1
i=0 fiα

2i

, considering fi ∈ Zp as integers in [0, p − 1] and the
sum in Z. If l ≤ D, return (C, f), else return error.

– Open(pp, f , l, C, c̃): (f is the claimed opening and c̃ is an opening hint)
Return 1 if all the below conditions hold, else return 0.

• l ≤ D, c̃ = f mod p 10

10 Treating any coordinate a
b
of c̃ mod p as a′ · b′−1, where a′ = (a mod p) ∈ Zp and

b′ = (b mod p) ∈ Zp.

13

• C = g
∑l−1

i=0 c̃iα
2i

, exponent
∑d

i=0 c̃iα
2i ∈ Z and c̃ ∈ Q(2, 3)l, where

Q(β1, β2) :=
{a
b
: gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
,

where |a| denote s the absolute value of a ∈ Q. (Note that Q(β1, β2) is a
subset of Q(β′

1, β
′
2) if β1 ≤ β′

1, β2 ≤ β′
2)

– Eval(pp, C, l,q, v; f): The Eval protocol consists of two sub-protocolsTEST
and IPP as described in Fig. 2 and 3 below.

• b1 ← TEST(C, l; f), b2 ← IPP(C, l,q, v; f). Return b = (l ≤ D)∧b1∧b2

3.2 Proofs of Security

We prove that our construction IPC satisfies the requirements of an inner product
scheme as defined in §2.1.

Theorem 31 (Completeness) The inner product commitment scheme IPC
satisfies Completeness (Definition 21).

Proof. Note that by definition of CoeffSplit and completeness of PoKPE, all the
PoKPE checks will accept.

To show that the last checks in TEST and IPP hold, it suffices to show that
v = 0 in TEST and v = ⟨f ,q⟩ mod p in IPP. We will show this by expanding
the computations done in CoeffSplit.
In TEST, direct manipulation shows

l−1∑
j=0

fjα
2j ×

l−1∑
j=0

α2l−2−2jzj

= α2l

∑
j′>j

α2(j′−j)−2fj′zj


︸ ︷︷ ︸

λ

+

∑
j′<j

α2l−2−2(j−j′)fj′zj +
∑
j′=j

α2l−2fjzj


︸ ︷︷ ︸

γ

and notice that since α > lp2, these are indeed the γ, λ returned by CoeffSplit,
and v = 0.

And, in IPP,

l−1∑
j=0

fjα
2j ×

l−1∑
j=0

α2l−1−2jqj = α2l−1


l−1∑
i=0

fjqj mod p︸ ︷︷ ︸
v

+ p

⌊∑l−1
i=0 fjqj
p

⌋
︸ ︷︷ ︸

n


+ α2l−2(0) + α2l

∑
j′>j

α2(j′−j)−1fj′qj


︸ ︷︷ ︸

λ

+

∑
j′<j

α2l−1−2(j−j′)fj′qj


︸ ︷︷ ︸

γ

14

CoeffSplit(α, a, b, i)

1. Write a · b in base α, call the resulting representation vector c.

2. Set v := ci , γ :=

i−1∑
j=0

cjα
j , λ :=

⌈logα ab⌉∑
j=i+1

cjα
j

3. Output the tuple (v′, γ, λ).

Fig. 1: CoeffSplit

TEST

Prover Verifier

C := commit(pp, f ∈ Zl
p)

C

z z←$ Zl
p uniformly at random

Computations in TEST

CoeffSplit

(
α,

l−1∑
j=0

fjα
2j ,

l−1∑
j=0

zjα
2l−2−2j , 2l − 1

)
7→ (v′, γ, λ)

Define Λ := gλ, Γ := gγ

(Λ, Γ)
Checks

σ :=

l−1∑
j=0

α2l−2−2jzj

E :=
gα

2l−1

C
,∆ :=

gα
2l−1

Γ

1 : PoKPE{C,E,Λ, Γ,∆} accepts

2 : Cσ ?
= Λα2l

Γ

The blue colored parts will be replaced in subsequent versions of this protocol.

Fig. 2: The TEST Protocol

IPP

Prover Verifier

q q ∈ Zl
p is the inner product vector

Computations in IPP

CoeffSplit

(
α,

l−1∑
j=0

fjα
2j ,

l−1∑
j=0

qjα
2l−1−2j , 2l − 1

)
7→ (v′, γ, λ)

Define Λ := gλ, Γ := gγ

N := g
⌊ v
p
⌋
, v := v′ mod p

(v,N,Λ, Γ)
Checks

σ :=

l−1∑
j=0

α2l−1−2jqj

∆ :=
gα

2l−2

Γ

1 : v ∈ Zp

2 : PoKPE{Λ, Γ,∆,N} accepts

3 : Cσ ?
= (gvNp)α

2l−1

Λα2l

Γ

The blue colored parts will be replaced in subsequent versions of this protocol.

Fig. 3: The IPP Protocol

15

Here, again since α > lp2, (v + np, λ, γ) above coincide with the output of
CoeffSplit, and v = ⟨f ,q⟩ mod p.

Theorem 32 (Binding) The inner product commitment scheme IPC Construc-
tion in §3.1 is binding (Definition 22) for opening hint vectors in Q(β1, β2) as
long as α > 4β2p

2β1 and if the Order assumption holds for GGen.

Proof. Suppose there exists an adversary A which breaks binding as defined in
Definition 22, i.e., A(pp) outputs (C, f , f ′, c, c′, d) such that open(pp, f , d, C, c) =
1 and open(pp, f ′, d, C, c′) = 1 but f ̸= f ′ (which also implies that c ̸= c′ – we
will use this condition to show a contradiction).
Then, since open outputs 1 for both f , f ′ we know that the opening hints c, c′ ∈
Q(β1, β2)

l and that g
∑l−1

i=0 ciα
2i

= g
∑l−1

i=0 c′iα
2i ⇐⇒ g

∑l−1
i=0(ci−c′i)α

2i

= 1. If the
exponent of g above were not zero, we could construct an adversary AOrd that
uses the above exponent to break the Low order assumption. Now, let the expo-
nents be equal, and consider the largest index j such that c′i ̸= ci (WLOG, let

c′i > ci). This implies that
∑j−1

i=0 (ci − c′i)α
2i = (c′j − cj)α

2j .

We can now show that this equality is impossible given the conditions on α, β1, β2.
Notice that any difference |c′i − ci| (if non-zero) can be bounded by 1

p2β1
<

|c′i − ci| < 2β2α,

since ci, c
′
i ∈ Q(β1, β2). This gives a contradiction, since

j−1∑
i=0

(ci − c′i)α
2i < 2β2α

j−1∑
i=0

α2i < 2β2α · 2α2j−2 <
α2j

p2β1
< (c′j − cj)α

2j ,

Before proving extractability, we need a few definitions. Define

S :=

{
mα− n

k
: m,n, k ∈ Z, gcd(m, k) = 1, 0 < m ≤ k < p, −2 < n < k + 2

}
as a subset of Z and functions χm, χn : Sq −→ Qq which isolates the vector of
fractions m/k and n/k from the elements of Sq:

v ∈ Sq =⇒ v =

(
miα− ni

ki

)
i

, χm(v) :=

(
mi

ki

)
i

, and χn(v) :=

(
ni

ki

)
i

.

These functions can be made well-defined by fixing a representation of elements
of S: for any d ∈ S, consider the representation (m,n, k) as the one with the
smallest denominator k and if there are multiple such representations, we pick
the one with the smallest m.

Theorem 33 (Extractability) The inner product commitment scheme IPC
satisfies Extractability for (β1, β2) = (2, 3) (Def. 24) in the Generic Group Model.

Proof. We split the proof into two theorems; the first theorem (concerning
TEST) will define a partial extractor and obtain conditions on the extracted

16

objects, while the second theorem uses the results and the extractor of the first
theorem and finishes the proof.
Suppose there exists a generic adversary A that makes the Verifier in eval ac-
cept with non-negligible probability (and hence both the TEST verifier and
IPP verifier). We will construct a polynomial time extractor Ext that outputs
(f̃ , c̃) satisfying Reval (in Def 27) with overwhelming probability.

Theorem 34 (TEST Extractor) If the Verifier in TEST outputs accept with
non-negligible probability, there exists an efficient extractor ExtT in the GGM

that outputs c,d ∈ [α]l such that C = g
∑l−1

i=0(ci+αdi)α
2i

and d ∈ Sl.

Theorem 35 (IPP Extractor) If the Verifier in IPP outputs accept with non-
negligible probability (and given that the Verifier of TEST also did so), there
exists an efficient extractor Ext in the GGM that outputs an opening f̃ ∈ Zl

p

and opening hint c̃ ∈ Q(2, 3) for C such that v = ⟨f̃ ,q⟩ mod p and satisfies
Extractability (Def. 24).

3.3 Auxiliary lemmas

Lemma 1. Suppose K =
∑k

i=0 Miα
i where Mi’s are not necessarily < α, but

we have a bound Mi < α(α− 1) ∀ i. Then, we can write K =
∑k+1

i=0 Uiα
i where

each Ui < α, ui ∈ {0, 1}, and

Ui :=


(M0 mod α+ u0) mod α if i = 0

(Mi mod α+
⌊
Mi−1

α

⌋
+ ui) mod α if 1 ≤ i ≤ k

(
⌊
Mk

α

⌋
+ uk+1) if i = k + 1

ui :=


0 if i = 0, 1⌊

Mi−1 mod α+
⌊

Mi−2
α

⌋
+ui−1

α

⌋
if 1 ≤ i ≤ k + 1

Lemma 2. Suppose for some α, M ′α−N ′ = Mα−N , where M ′, N ′ ∈ Q and
M,N ∈ Z. If |N |, |N ′| < B, M ′ = x

y and y < α
2B , then M ′ = M and N ′ = N .

3.4 Proof of Theorem 34 - TEST extraction

First, we prove a lemma giving a partial extractor for the TEST protocol.

Lemma 3. If the Verifier in TEST outputs accept with non-negligible prob-
ability, there exists an efficient extractor ExtT in the GGM that outputs with
high probability c,d ∈ Zl

p (that only depends on the commitment C) such that

C = g
∑l−1

i=0(ci+αdi)α
2i

.
Moreover, if the random vector used in TEST was z ∈ Zl

p, then we also have
the relation (for some u ∈ {0, 1}):

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u = 0 mod α

17

Proof. We define an extractor ExtT that invokes the PoKPE extractor for C,
which outputs an exponent c > 0 such that C = gc. Since E also passes the

PoKPE protocol and C · E = gα
2l−1

, we can infer that c < α2l−1. Consider the
base-α representation of c, which is a 2l-length vector. ExtT outputs the even
indexed coordinates as c and the odd indexed coordinates as d. By construction,

C = g
∑l−1

i=0(ci+αdi)α
2i

.

Notice that each PoKPE is essentially a range check as well as a proof of knowl-
edge of the exponent. With overwhelming probability, we can assume that each
of these statements are true (due to knowledge soundness of PoKPE). Hence, we
get that the prover “knows” (formally, an extractor outputs) integers c, γ, λ such
that C = gc, 0 < c < α2l−1, Γ = gγ , 0 < γ < α2l−1, and Λ = gλ, 0 < λ.

Now, notice that for any equality of group elements in a group of unknown order,
we can (with overwhelming probability) equate their exponents when written
with base g over integers. This follows from the Low order assumption as long
as the prover knows all the exponents w.r.t. some fixed base g (else the prover
could compute a multiple of the order of the group).

Hence, given an equation of the form Cσ = Γgvα
2l−1

Λα2l

(this is essentially
Check 2 for the TEST verifier with y = 0), we can write

gcσ = gγ+vα2l−1+λα2l

=⇒ cσ = γ + vα2l−1 + λα2l

Writing this in base α and using Lemma 1, we can compare the coefficients of
α2l−1 on both sides:

v = ⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u mod α

In TEST, we have v = 0, hence we prove the lemma.

Now, using the above lemma, we show that if the prover succeeds with non-
negligible probability, we must have di ∈ S for all i.
If the prover succeeds with non-negligible probability, it must hold that it also
succeeds for a non-negligible probability over the choice of the random query
z ∈ Zl

p. Fix some index 0 ≤ i ≤ l − 1.

Partition the randomness space Zl
p into 1-dimensional “lines” of length p along

the ith dimension:
Tq := {(zi,q) : zi ∈ Zp}

If the prover was only able to succeed for at most one value of z in all Tq, the
overall success probability of the prover is bounded by 1

p , which is negligible and
hence a contradiction. Hence, there must exist some q such that there exists two
points z1, z2 ∈ Tq such that the prover succeeds in convincing the verifier (for
simplicity, we will use z1, z2 to denote the ith coordinate that differs in these two
vectors. WLOG let z2 > z1).

18

Now, using Lemma 3, we get two equations:

⟨d, z1⟩ mod α+

⌊
⟨c, z1⟩

α

⌋
+ u1 mod α = 0 mod α (6)

⟨d, z2⟩ mod α+

⌊
⟨c, z2⟩

α

⌋
+ u2 mod α = 0 mod α (7)

where u1, u2 ∈ {0, 1}. Our aim is to isolate and prove conditions on a single
coordinate di, and notice that the inner products ⟨d, z1⟩ and ⟨d, z2⟩ differ only
in the ith term. Hence, subtracting the two equations, we get:

(z2 − z1)di = −
(⌊
⟨c, z2⟩

α

⌋
−
⌊
⟨c, z1⟩

α

⌋
+ u2 − u1

)
mod α

Call the term in the brackets on the RHS n. Using the fact that x−1 ≤ ⌊x⌋ < x
and ui ∈ {0, 1} for all i gives us trivial bounds −2 < n < (z2 − z1) + 2. We also
know that 0 < z2 − z1 < p. Letting k := z2 − z1,

kdi = −n mod α =⇒ di =
mα− n

k

where −2 < n < k + 2, 0 < k < p and 0 < m ≤ k since di < α.

Hence di ∈ S. Since i was an arbitrary index, d ∈ Sl.

3.5 Proof of Theorem 35 – IPP extraction

We define the final extractor Ext for eval using the extractor ExtT from TEST
that outputs c,d ∈ Zl

p. Specifically, Ext invokes ExtT and performs the following
additional computations on c,d:

1. Compute mi, ni, ki for every i such that di =
miα−ni

ki
.

2. Let m−1 := 0, k−1 := 1 and define vectors c′,d′ ∈ Zl
p as

c′i := ci +
mi−1

ki−1
and d′i := −ni

ki
.

3. Output c′ + αd′ as the opening hint, and (c′ + αd′) mod p as the opening
to the commitment.

Note that this extractor is indeed efficient as ExtT is efficient and the only non-
trivial computations done are in Step 1 above, which can be done efficiently
(details in full version).

By construction, this is a valid opening hint, as d ∈ Sl =⇒ c′ + αd′ ∈ Q(2, 3).
This is just a rearrangement of the coordinates of c and d and keeps the sum∑l−1

i=0(c
′
i + αd′i)α

2i equal to the previous sum
∑l−1

i=0(ci + αdi)α
2i (since we just

move the coefficient of α in di to ci+1). Hence, C = g
∑l−1

i=0(c
′
i+αd′

i)α
2i

and the
exponent ∈ Z.

19

Now, since the verifier accepts in IPP, we can use similar arguments as made
in Lemma 3 for the check equation in IPP to get

cσ = γ + 0α2l−2 + (v + np)α2l−1 + λα2l

Focusing on the coefficients of α2l−2 and α2l−1, we get two equations:

⟨d,q+⟩ mod α+

⌊
⟨c,q+⟩

α

⌋
+ u′ = 0 mod α (8)

⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u = v + np mod α (9)

where q+ is defined as the vector with elements q+i := qi+1 ∀ i ∈ {0, . . . , l −
2}, q+l−1 := 0 and u, u′ ∈ {0, 1}.

Due to the bounds on coefficients of q (chosen by the verifier ∈ Zp), we know
that Equation 8’s LHS over integers must be either 0 or α. Also define

M ′ :=

l−1∑
i=0

mi

ki
q+i , and N ′ :=

l−1∑
i=0

ni

ki
q+i

1. If the LHS is 0, then so are each of the terms in the LHS, as they are all non-
negative. Hence, ⟨d,q+⟩ = 0 mod α which implies u = 0 (due to Lemma 1).
Hence, we can simplify Equation 9

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩+ ⟨d,q
+⟩

α
mod α = ⟨c,q⟩+M ′ − N ′

α
mod α

Since M ′ −N ′/α must be an integer and N ′ < α =⇒ N ′ = 0.

v + np = ⟨c,q⟩+M ′ mod α = ⟨c′,q⟩ mod α

=⇒ v = ⟨c′,q⟩ mod p = ⟨c′,q⟩+ α⟨d′,q⟩ mod p,

as α = 0 mod p and ⟨d′,q⟩ is invertible modulo p (or simply 0 mod p). In
either case, v = ⟨c′ + αd′,q⟩ mod p.

2. If the LHS is α, we get u = 1. Now, write Equation 8 in the form ⟨d,q+⟩ =
Mα − N by moving all the terms but the inner product to the RHS and
calling it N . Now, we get M ′α − N ′ = Mα − N where |N |, |N ′| < 3pl and
M ′ has denominator at most the LCM of all the ki, which is at most pl.

We can apply Lemma 2 which implies that M ′, N ′ ∈ Z (since α > p2l).
Then,

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

20

= ⟨c,q⟩ mod α+

⌊
M ′ − N ′

α

⌋
+ 1 mod α

= ⟨c,q⟩ mod α+M ′ − 1 + 1 mod α

as N ′ < α. Hence, as before, we get that v = ⟨c′ + αd′,q⟩ mod p.

Thus, the extracted opening equals the claimed inner product v in both cases
and we satisfy extractability.

Non-interactivity using Fiat-Shamir. Protocol eval is public-coin and we
can use the Fiat-Shamir heuristic [16] to obtain a non-interactive version in
the ROM that has a constant-sized proof. The prover applies the RO on the
commitment C to obtain the random query vector z. Note that, the query vector
q itself needs to be communicated, but the size of the proof is constant.

4 Dew – Constant-Sized PCS with Logarithmic
Verifier

We prove our main result on PCS in this section. To go from IPC in §3 to a
PCS of constant size and logarithmic verification time, we need two main ideas.
First, we use Kronecker products test vectors to improve verification time from
linear to logarithmic. But this breaks extractability of the new test. To recover
extractability, we prove a new extremal combinatorial bound that enables us to
prove a structure theorem despite the exponentially smaller randomness in the
verifier’s test vectors.

4.1 Dew: Our Polynomial Commitment Scheme

To construct Dew, we use ideas based on Kronecker products to define new query
vectors in the TEST and IPP protocols from §3 and call the modified protocols
logTEST and logIPP. These changes are to bring the verifier complexity down
to logarithmic in the degree of the polynomial. For notational simplicity, let the
degree of the polynomial d = l− 1. We change the blue messages in the TEST,
IPP protocols as below. In the logTEST protocol, the query vector z in Fig. 2
is now redefined using just 2 log l random elements in Zp:

1. Sample random x1,x2, . . . ,xlog l from Z2
p where xj = (xj,0, xj,1).

2. For 0 ≤ k ≤ l − 1, let (k0, . . . , klog l−1) be the base-2 representation of k so
that k = k0 · 20 + · · ·+ klog l−1 · 2log l−1. Then,

zk ≡ zk0,...,klog l−1
:=

log l∏
j=1

xj,kj−1
. (10)

For logIPP, the query vector q in Fig. 3 defined by the evaluation point x ∈ Zp

is modified as follows

qk :=
∏

0≤j≤log l−1

(xkj2
j

mod p). (11)

21

Note that 0 < zk, qk < plog l and qk mod p = xk mod p for all k.

Our PCS Dew = (setup, commit, open, eval) is now constructed as follows:

– setup(1κ, D): Here, κ is the security parameter and D is an upper bound
on the degree of the committed polynomial. Sample a group of unknown
order (we use class groups) G ← GGen(κ) and a random g ←$ G. Define
α := p2D logD (p is a large prime such that len(p) = poly(κ)).
Return pp = (κ,G, g, p).

– commit(pp, D, f(X) ∈ Zp[X], l−1): Define the commitment C := g
∑l−1

i=0 fiα
2i

,
where fi are the coefficients of the degree (l−1) polynomial f(X) considered
as integers from [0, p− 1] and the sum in Z. If l − 1 ≤ D, return (C, f), else
return error.

– open(pp, D, f(X) ∈ Zp[X], l − 1, C, f̃): Check that

(i) l − 1 ≤ D, f̃i = fi mod p where fi ∈ Zp are the coefficients of f(X).

(ii) C = g
∑l−1

i=0 f̃iα
2i

,
∑l−1

i=0 f̃iα
2i ∈ Z, and f̃ ∈ Q(log l + 1, l + 1)l.

Recall that

Q(β1, β2) :=
{a
b
: gcd(a, b) = gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
,

where |a| denotes the absolute value of the integer a.

return 1 if all checks (i)-(iii) above pass, else return 0.

– eval(pp, D,C, l−1, x, v; f(X)): The eval protocol consists of two sub-protocols
logTEST and logIPP:

• If l − 1 > D, return 0

• Else Run logTEST(C, l − 1; f(X)) and logIPP(C, l − 1, x, v; f(X)).
return 1 if both these protocols accept else return 0.

The protocols logTEST and logIPP are simply variants of TEST and IPP in
Figures 2 and 3 by replacing the (blue messages) query vectors with Kronecker
products of shorter vectors as in (10) and (11). We also replace all expensive
group exponentiations for the verifier by invocations of Wesolowski’s PoE proto-
col. The full protocols thus obtained are presented as figures in the Appendix of
[1]. In the NI version, the random query vector is derived from the RO instead
of being sent in logTEST.

Non-interactive Dew using Fiat-Shamir. Note that even though logTEST
and logIPP are described as separate protocols for ease of exposition, they
are both run as part of eval. Protocol eval is public-coin and we can use the
Fiat-Shamir heuristic [16] to obtain a non-interactive version in the ROM that
has constant-sized proof and logarithmic verification. The prover applies the
RO on the commitment C to obtain x1, . . .xlog l, and the random query vec-
tor z is computed as described in Eq (10). The non-interactive (NI) transcript

22

consists of all the elements communicated in both protocols along with the NI
versions of PoE and PoKPE from both protocols. Hence, the transcript com-
municated is π = ((C,A,Λ, Γ,R)logTEST, (B,N,Λ, Γ,R, S)logIPP, πPoE, πPoKPE)
where πPoE consists of NI transcripts of steps (4, 20, 21) and (2, 16, 17, 18) in
logTEST and logIPP respectively, and πPoKPE consists of NI transcripts of
steps (13, 14, 15, 16, 17) and (10, 11, 12, 13) in logTEST and logIPP respec-
tively (from the figures in the appendix of [1]). It is easy to see that the Fiat-
Shamir transformed NI transcript is succinct since the vectors x1, . . . ,xlog l are
now generated using the RO.

Proof of completeness is analogous (taking care of the new choices of param-
eters) to that of IPP in Theorem 31 and is deferred to the appendix of the
full version [1]. Since the commitment scheme remains unchanged, the proof of
binding remains as in Theorem 32. Proof of Extractability is shown in § 4.2, and
proof of succinctness is given in § 4.3. The appendix of the full version contains
concrete estimates of proof sizes. It also contains a section on how to achieve
hiding and zero-knowledge evaluation for the commitment scheme.

4.2 Proof of Extractability of Dew

Define

Slog :=

{
mα− n

k
: m,n, k ∈ Z, gcd(m, k) = gcd(k, p) = 1, 0 < m ≤ k < plog l,

−l < n < k + l}

as a subset of Z and functions χm, χn : Sq
log −→ Qq which isolates the vector of

fractions m/k and n/k from the elements of Sq
log:

v ∈ Slog =⇒ v =

(
miα− ni

ki

)
i

, χm(v) :=

(
mi

ki

)
i

, and χn(v) :=

(
ni

ki

)
i

.

Theorem 41 The polynomial commitment scheme Dew satisfies Extractability
(Def. 27) in the Generic Group Model.

Proof. The proof of this theorem consists of two theorems about logTEST and
logIPP. Both theorems rely on the fact that the adversary is generic.

Theorem 42 If the Verifier in logTEST outputs accept with non-negligible
probability over the choice of random z1, . . . , zlog l ∈ Z2

p, there exists an efficient

extractor that outputs c,d ∈ [α]l such that C = g
∑l−1

i=0(ci+αdi)α
2i

and d ∈ Sl
log.

Theorem 43 If the Verifier in logIPP outputs accept with non-negligible prob-
ability and the Verifier of logTEST also did so, there exists an extractor that
outputs an opening f̃ ∈ Zp[x] and an opening hint c̃ in Q(log l + 1, l + 1) for C

such that v = f̃(x).

23

The proof of Theorem 42 is presented in Section 4.2.2. The proof of Theorem 43
is almost identical to that of Theorem 35 and we defer it to the full version.
There are only two changes: di ∈ Slog instead of S implies that the extracted
vector ∈ Q(log l+1, l+1)l instead of Q(2, 3)l, and the bounds on N,N ′,M ′ are
different, leading to a lower bound α > p2l(log l).

4.2.1 d-cancellation structures Before we present the proof of Theorem 42 in
Section 4.2.2, we define certain combinatorial structures and state an extremal
bound about them that plays a crucial role in our extractability proof. These are
d-cancellation structures and are generalizations of d-dimensional hyper-rectangles
/boxes. For instance, a 2-cancellation structure is a parallelogram, while a
3-cancellation structure can be seen as two parallel parallelograms with the same
base length and height (note that this is more general than a parallelepiped - in
a parallelepiped, the two parallelograms have to be congruent). For general d,
we have the following recursive definition.

Definition 44 (d-cancellation structure) Given a d-tuple (a1, . . . , ad) ∈ [n]d,
a d-cancellation structure is defined to be the set of 2d points mapped to the leaves
of a depth-d binary tree, where the mapping from [n]d to nodes of the tree is
recursively defined as follows.

– Map (a1, . . . , ad) to the root (depth 0).

– Suppose (b1, . . . , bd) is mapped to a node u at depth d − j + 1. Then, for
some yu,j ∈ [n], map (b1, . . . , bj−1, yu,j + bj , . . . , bd) to u’s left child and
(b1, . . . , bj−1,, yu,j , . . . , bd) to u’s right child.

Informally, when we start from the same d-tuple, we get “similar”
d-cancellation structures (which form an equivalence class; see an equivalent def-
inition in the full version [1]). This is useful in counting arguments about them
such as the one below.

Our main result on d-cancellation structures states that in the [n]d integer lattice,
we can choose at most nd − (n − 1)d ≤ dnd−1 points that do not contain a
d-cancellation structure.

Theorem 45 The maximum number of points in [n]d such that no subset of
them forms a d-cancellation structure is Nd := nd− (n− 1)d. This bound is tight.

In the extractability proof in the next section, we will argue that if the prover
succeeds with non-negligible probability, then it must populate an appropriately
chosen lattice with more points than this bound, leading to the existence of a
log l-cancellation structure. We then use higher-dimensional/multilinear analogs
of ideas in Theorem 34 to induce cancellations among the l equations at the
points in this log l-cancellation structure to derive an equation with a single d co-
ordinate, thereby deducing the required structure for it. Specifically, we traverse
the corresponding tree bottom-up (from leaves to root) by “folding” equations
from one level to the next – subtract them pairwise to reduce their number by

24

half and eliminate half of the remaining terms in each of them. Details of this
process appear in the next section and in the full version [1].

4.2.2 Proof of Theorem 42 – logTEST extraction

Similar to the process in Lemma 3, we define the extractor ExtT to first invoke
the PoKPE extractor for C, which outputs c > 0 such that C = gc. Since E also

passes the PoKPE protocol and C ·E = gα
2l−1

, we infer that c < α2l−1. Consider
the base-α representation of c, which is a 2l-length vector. ExtT then outputs
the even indexed coordinates as c and the odd indexed coordinates as d.

Note that by definition, the first condition in the theorem is satisfied: C =

g
∑l−1

i=0(ci+αdi)α
2i

. An honest prover would clearly choose di = 0 and ci = xi,
0 ≤ ci ≤ p−1 for i ∈ [l] to commit to a vector x ∈ Zl

p. However, with a cheating
prover, we are only guaranteed (at this point) that 0 ≤ ci, di ≤ α− 1.

Now we use the checks done by the logTEST verifier to derive conditions on
the above extracted vector and show the second part of the theorem – d ∈ Sl

log.
Suppose the prover succeeds with a non-negligible probability over the random
choice of z1, . . . , zlog l from Z2

p.
Fix an arbitrary index 0 ≤ k ≤ l − 1, equivalently its binary representation
(k1, . . . klog l). Consider the partition of the space Z2 log l

p by sets of the form

Tq := {(x1,k1
, . . . , xlog l,klog l

,q) : xj,kj
∈ Zp, 1 ≤ j ≤ log l} for q ∈ Zlog l

p .

Since the success probability of the prover is non-negligible, it is at least log l
p .

Hence, at least one of these sets (which are log l-dimensional spaces) must have
more than log lplog l−1 ≥ plog l − (p − 1)log l accepting points, which implies by
Theorem 45 that there exists a log l-cancellation structure in this space consisting
of l accepting points.

For some fixed 1 < aj < p and for all g1g2 . . . gτ ∈ {0, 1}τ , let this
log l-cancellation structure be represented by

B :=
{(

y1,g1,g2,...,glog l−1
+ glog la1, . . . , yj,g1,g2,...,glog l−j

+

glog l−j+1aj , . . . , ylog l + g1alog l) : 1 ≤ j ≤ log l, y... ∈ Zp}

All the points in B can be considered as the leaves of a binary tree, with leaves
indexed as g1g2 . . . glog l. Starting from the root, at each node, the left child is
labeled 1 and the right child is labeled 0. Thus the leftmost leaf would have
index 11 . . . 1, and the rightmost leaf will have index 00 . . . 0.

Now, Lemma 3 gives us equations corresponding to each accepting point on the
log l-cancellation structure relating c,d (given by ExtT) and the random variables
xj,ij . We recall the definition of the query vector z from Equation (10), where
for each coordinate zi if the binary representation of i = i1 . . . ilog l, then

zi ≡ zi1,i2,...,ilog l
:=

log l∏
j=1

xj,ij

25

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u1 mod α = 0 mod α

The term ⟨d, z⟩ mod α can be expanded as follows:

⟨d, z⟩ mod α =
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·
log l∏
j=1,

xj,ij mod α

=
∑

i1,...,ilog l∈{0,1}

di1,...,ilog l
·
log l∏
j=1

(
yj,g1,...,glog l−j

+ glog l−j+1aj
)
·

log l∏
j=1

ij ̸=kj

xj,ij mod α

This expansion holds at height log l (for all leaves g1g2 . . . glog l). To obtain the
required conditions on d, we subtract the l equations in a specific order to
cancel out all but one term. This is possible due to the fact that the coefficients
of di1...ilog l

are multilinear in each of the randomly sampled variables.

More precisely, at any intermediate height in the binary tree, we obtain the
equation at that node by subtracting the equation at the right child from the
equation at the left child. For instance, at height (log l− 1), the first term takes
the form :

a1
∑

i1,...,ilog l−1

dk1,i2,...,ilog l
·
log l∏
j=2

(
yj,g1,...,glog l−j

+ glog l−j+1aj
)
·

log l∏
j=2

ij ̸=kj

xj,ij mod α

In general, we get at height 0 ≤ t < log l,

log l−t∏
j=1

ai
∑

i1,i2,...,it∈{0,1}

dk1,k2,...,klog l−t,ilog l−t+1,...,ilog l

·
log l∏

j=log l−t+1

(
yj,g1,g2,...,glog l−j

+ glog l−j+1aj
)
·

log l∏
j=log l−t+1

ij ̸=kj

xj,ij mod α

Notice that at the root, i.e., at height 0, we are left with the single term
a1 . . . alog l · dk1,k2,...,klog l

.

For the rest of the folded equation, we only use bounds on the other terms and
not the exact expression. The actual expression is a symbolic subtraction of the
floor terms and the ‘u’ terms. This is similar to what is done in Theorem 34
generalised to higher dimensions.
Specifically, indexing the l points/leaves by zg1g2...glog l

, we get the expression for
the remaining two terms (call this expression n) as ∑

g1,g2,...,glog l∈{0,1}

(−1)
∑log l

j=1 ij ·
⌊ ⟨c, zg1,g2,...,glog l

⟩
α

⌋
+

26

∑
g1,g2,...,glog l∈{0,1}

(−1)
∑log l

j=1 ij · ug1,g2,...,glog l

 mod α

Since for all x, x−1 ≤ ⌊x⌋ < x and u ∈ {0, 1}, we can bound the above expression
n by

ck1,...,klog l
·
∏log l

i=1 ai

α
− 2log l < n <

ck1,...,klog l
·
∏log l

i=1 ai

α
+ 2log l

=⇒ −l < n <

log l∏
i=1

ai + l

Hence, there existsm such that dk1,...,klog l
= mα−n

a1···alog l
wherem ≤

∏log l
i=1 ai < plog l

(as dk1,...,klog l
< α) and −l < n <

∏log l
i=1 ai + l as shown above.

Hence, dk1,...,klog l
∈ Slog. Since (k1, . . . , klog l) was arbitrary, d ∈ Sl

log.

4.3 Succinctness of Dew

Theorem 46 (Proof and Verifier Succinctness) In Dew, the commitment
and evaluation proof sizes are poly(κ) and the Verifier runs in time poly(κ)·log(l).

Proof. Proof succinctness is easy to see; the commitment is a single group el-
ement and the evaluation protocol only communicates a constant number of
group elements (the PoE protocols are also constant-sized) and the query vec-
tor elements x1, . . . ,xlog l. However, as mentioned before, in the NI version, the
2 log l random field elements are generated using a RO – this makes the proof
size of the non-interactive version of the protocol constant.

To analyse the verifier computation, notice that the the only potentially expen-
sive computations are the computation of σ and raising group elements to large
powers (the PoKPE protocols consist of a constant number of PoKE protocols,
which are efficient). The group exponentiations are made more efficient for the
verifier by engaging in a constant number of PoE protocols with the prover. The
only remaining bottleneck is the computation of σ mod q for some prime q in
the invocation of Weslowski’s PoE (for σ in both logTEST and logIPP).

In logTEST, using the definition of the test vector in (10) and direct manipu-
lation implies that σ mod q can be computed in O(log l) time as follows

σ mod q =

l−1∑
k=0

α2l−2−2kzk mod q = α2l−2

log l∏
i=1

(
xi,0 + xi,1α

−2i+1
)

mod q

In logIPP, by a similar manipulation as above using the definition of the the
query vector in (11), we obtain

σ =

l−1∑
k=0

α2l−1−2kqk mod q = α2l−1

log l−1∏
i=0

(
1 + (x2i mod p) α−2i+1

)
mod q

27

Also note that for efficient computation, we need to compute α mod q and
α−1 mod q (If α−1 mod q does not exist, then α = 0 mod q and computing
σ becomes trivial). In this case, since α = pL for some L = O(l), computing
α mod q = pL mod q can be efficiently done in O(log l) time using repeated
squaring. Once this is found, α−1 mod q can also be efficiently found using the
Extended Euclidean algorithm.

5 Transparent zkSNARKs via Dew

As a corollary of our PCS, we get concrete instantiations of new transparent
succinct arguments by compiling an information theoretic proof in an idealized
model into a succinct argument using a PCS.

The modular approach advocated for designing efficient arguments consists of
two steps; constructing an information theoretic protocol in an abstract model
(PCP, linear PCP, IOP etc.), and then compiling the information-theoretic pro-
tocol via a cryptographic compiler to obtain an argument system. Many recent
constructions of zkSNARKs [9, 12, 17] follow this approach where the infor-
mation theoretic object is an algebraic variant of IOP, and the cryptographic
primitive in the compiler is a polynomial commitment scheme. Marlin [12] uses
an IOP abstraction called algebraic holographic proofs (AHP), and [9] uses an
abstraction called polynomial IOPs (PIOPs). In both these abstractions, the
prover and the verifier interact where the prover provides oracle access to a set
of polynomials, and the verifier sends random challenges. Then, the verifier asks
for evaluations of these polynomials at these challenge points and decides to
accept or reject based on the answers. PLONK [17] uses an abstraction called
idealized low degree protocols (ILDPs) that proceeds in a similar way except
that at the end of the protocol, the verifier checks a set of polynomial identities
over the oracles sent by the prover. Polynomial Holographic IOP (PHP) [11]
specializes the IOP notion in two ways (i) it is holographic – that is, the verifier
has access to a set of oracle polynomials created during the setup phase that
encode the relation, (ii) the verifier can directly check polynomial identities.
The high level idea to build a zkSNARK with universal SRS starting from PI-
OPs/AHPs/ILDPs/PHPs is the following: the argument prover commits to the
polynomials obtained from the information-theoretic prover, and then uses the
evaluation opening property of the polynomial commitment scheme to respond
to the evaluation queries of the verifier in a verifiable way.

We present concrete instantiations of zkSNARKs obtained by using our trans-
parent PCS to cryptographically compile the AHP underlying the constructions
of Sonic, Marlin and PLONK. We present the details and compare our zkSNARK
Dew-SNARK to existing schemes in the full version [1].

References
1. Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri, and Sriram Sridhar.

Dew: Transparent constant-sized zkSNARKs. Cryptology ePrint Archive, Report

28

2022/419, 2022. https://eprint.iacr.org/2022/419.
2. Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and

Nicholas Spooner. Linear-size constant-query IOPs for delegating computation. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of
LNCS, pages 494–521. Springer, Heidelberg, December 2019.

3. Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and Pratik
Soni. Time- and space-efficient arguments from groups of unknown order. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 123–152, Virtual Event, August 2021. Springer, Heidelberg.

4. Béla Bollobás. Extremal Graph Theory. Reprint of the 1978 original. Dover Pub-
lications, Inc., Mineola, NY, ISBN: 0-486-43596-2, 2004.

5. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators
with applications to IOPs and stateless blockchains. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
561–586. Springer, Heidelberg, August 2019.

6. Wieb Bosma and Peter Stevenhagen. On the computation of quadratic 2-class
groups. Journal de Théorie des Nombres de Bordeaux, 8(2):283–313, 1996.

7. Johannes Buchmann and Safuat Hamdy. A survey on iq cryptography. In In
Proceedings of Public Key Cryptography and Computational Number Theory, pages
1–15, 2001.

8. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. Cryptology ePrint Archive, Report 2019/1229, 2019. https://eprint.
iacr.org/2019/1229.

9. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.

10. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, Au-
gust 2002.

11. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián
Rodŕıguez. Lunar: A toolbox for more efficient universal and updatable zkSNARKs
and commit-and-prove extensions. In Mehdi Tibouchi and Huaxiong Wang, edi-
tors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 3–33. Springer,
Heidelberg, December 2021.

12. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

13. Hien Chu, Dario Fiore, Dimitris Kolonelos, and Dominique Schröder. Inner prod-
uct functional commitments with constant-size public parameters and openings.
In Clemente Galdi and Stanislaw Jarecki, editors, Security and Cryptography for
Networks, pages 639–662, Cham, 2022. Springer International Publishing.

14. Ivan Damg̊ard and Maciej Koprowski. Generic lower bounds for root extrac-
tion and signature schemes in general groups. In Lars R. Knudsen, editor, EU-
ROCRYPT 2002, volume 2332 of LNCS, pages 256–271. Springer, Heidelberg,
April / May 2002.

15. Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages
427–438. IEEE, 1987.

29

https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229

16. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

17. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permuta-
tions over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019. https://ia.cr/2019/953.

18. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, De-
cember 2010.

19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application
to succinct arguments. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 530–560. Springer, Heidel-
berg, August 2019.

20. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner prod-
ucts and polynomial commitments. In Kobbi Nissim and Brent Waters, editors,
TCC 2021, Part II, volume 13043 of LNCS, pages 1–34. Springer, Heidelberg,
November 2021.

21. Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment
schemes: From polynomial commitments to pairing-based accumulators from sim-
ple assumptions. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Ra-
bani, and Davide Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs, pages
30:1–30:14. Schloss Dagstuhl, July 2016.

22. Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages
80–91. IEEE, 2003.

23. Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updat-
able SNARKs. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 774–804, Virtual Event, August 2021. Springer,
Heidelberg.

24. Lisa Rosenfeld. The box problem in two and higher dimensions. Bachelor’s
thesis, University of Rochester, 2016. https://www.sas.rochester.edu/mth/

undergraduate/honorspaperspdfs/rosenfeldhonorsthesis16.pdf.
25. Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on
Security and Privacy, pages 926–943. IEEE Computer Society Press, May 2018.

26. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 379–407. Springer, Heidelberg, May 2019.

27. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent poly-
nomial delegation and its applications to zero knowledge proof. In 2020 IEEE Sym-
posium on Security and Privacy, pages 859–876. IEEE Computer Society Press,
May 2020.

30

https://ia.cr/2019/953
https://www.sas.rochester.edu/mth/undergraduate/honorspaperspdfs/rosenfeldhonorsthesis16.pdf
https://www.sas.rochester.edu/mth/undergraduate/honorspaperspdfs/rosenfeldhonorsthesis16.pdf

	Dew: A Transparent Constant-sized Polynomial Commitment Scheme

