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Abstract. Recently, time-based primitives such as time-lock puzzles
(TLPs) and verifiable delay functions (VDFs) have received a lot of at-
tention due to their power as building blocks for cryptographic proto-
cols. However, even though exciting improvements on their efficiency and
security (e.g. achieving non-malleability) have been made, most of the
existing constructions do not offer general composability guarantees and
thus have limited applicability. Baum et al. (EUROCRYPT 2021) pre-
sented in TARDIS the first (im)possibility results on constructing TLPs
with Universally Composable (UC) security and an application to se-
cure two-party computation with output-independent abort (OIA-2PC),
where an adversary has to decide to abort before learning the output.
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While these results establish the feasibility of UC-secure TLPs and appli-
cations, they are limited to the two-party scenario and suffer from com-
plexity overheads. In this paper, we introduce the first UC constructions
of VDFs and of the related notion of publicly verifiable TLPs (PV-TLPs).
We use our new UC VDF to prove a folklore result on VDF-based ran-
domness beacons used in industry and build an improved randomness
beacon from our new UC PV-TLPs. We moreover construct the first
multiparty computation protocol with punishable output-independent
aborts (POIA-MPC), i.e. MPC with OIA and financial punishment for
cheating. Our novel POIA-MPC both establishes the feasibility of (non-
punishable) OIA-MPC and significantly improves on the efficiency of
state-of-the-art OIA-2PC and (non-OIA) MPC with punishable aborts.

1 Introduction

Time has always been an important, although sometimes overlooked, resource in
cryptography. Recently, there has been a renewed interest in time-based prim-
itives such as Time-Lock Puzzles (TLPs) [39] and Verifiable Delay Functions
(VDFs) [12]. TLPs allow a sender to commit to a message in such a way that it
can be obtained by a receiver only after a certain amount of time, during which
the receiver must perform a sequence of computation steps. On the other hand,
a VDF works as a pseudorandom function that is evaluated by performing a
certain number of computation steps (which take time), after which it generates
both an output and a proof that this number of steps has been performed to
obtain the output. A VDF guarantees that evaluating a certain number of steps
takes at least a certain amount of time and that the proof obtained with the
output can be verified in time essentially independent of the number of steps.

Both TLPs and VDFs have been investigated extensively in recent work
which focusses on improving their efficiency [11,38,41], obtaining new prop-
erties [25] and achieving stronger security guarantees [22,31,26]. These works
are motivated by the many applications of TLPs and VDFs, such as random-
ness beacons [12,13], partially fair secure computation [20] and auctions [13].
In particular, all these applications use TLPs and VDFs concurrently com-
posed with other cryptographic primitives and sub-protocols. However, most
of current constructions of TLPs [39,13,11,31,26] and all known constructions of
VDFs [12,38,41,22,25] do not offer general composability guarantees, meaning it
is not possible to easily and securely use those in more complex protocols.

The current default tool for proving security of cryptographic constructions
under general composability is the Universal Composability (UC) framework
[14]. However, the UC framework is inherently asynchronous and does not cap-
ture time, meaning that a notion of passing time has to be added in order to
analyze time-based constructions in UC. Recently, TARDIS [6] introduced a
suitable time model and the first UC construction of TLPs, proven secure under
the iterated squaring assumption of [39] using a programmable random oracle.
[6] also shows that a programmable random oracle is necessary for realizing such
time-based primitives in the UC framework.
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Besides analyzing the (im)possibility of constructing UC TLPs, TARDIS [6]
showed that UC TLPs can be used to construct UC-secure Two-Party Compu-
tation with Output-Independent Abort (OIA-2PC), where the adversary must
decide whether to cause an abort before learning the output of the computation.
OIA-2PC itself implies fair coin tossing, an important task used in randomness
beacons. However, while these results showcase the power of UC TLPs, they are
restricted to the two-party setting and incur a high concrete complexity. More-
over, their results do not extend to VDFs. This leaves an important gap, since
many TLP applications (e.g. auctions [13]) are intrinsically multiparty and VDFs
are used in practice for building randomness beacons [12,40]. The TARDIS TLP
formalization and its applications also give adversaries exactly as much power in
breaking the time-based assumption as the honest parties, which appears very
restrictive and unrealistic.

1.1 Our Contributions

In this work, we present the first UC-secure constructions of VDFs and introduce
the related notion of Publicly Verifiable TLPs, which we also construct. Using
these primitives as building blocks, we construct a new more efficient randomness
beacon and Multiparty Computation with Output-Independent Abort (OIA-
MPC) and Punishable Abort. Our constructions are both practical and proven
secure under general composition, and support adversaries who can break the
timing assumptions faster than honest parties.

UC Verifiable Delay Functions. We introduce the first UC definition of
VDFs [12], which is a delicate task and a contribution on its own. We also present
a matching construction that consists in compiling a trapdoor VDF [41] into a
UC-secure VDF in the random oracle model while only increasing the proof size
by a small constant. Even though we manage to construct a very simple and
efficient compiler, the security proof for this construction is highly detailed and
complex. Based on our UC VDF, we give the first security proof of a folklore
randomness beacon construction [12].

UC Publicly Verifiable Time-Lock Puzzles (PV-TLP). We introduce
publicly verifiable TLPs (PV-TLP), presenting an ideal functionality and a UC-
secure construction for this primitive. A party who solves a PV-TLP (or its
creator) can prove to any third party that a certain message was contained
in the PV-TLP (or that it was invalid) in way that verifying the proof takes
constant time. We show that the TLP of [6] allows for proving that a message
was contained in a valid TLP. Next, we introduce a new UC-secure PV-TLP
scheme based on trapdoor VDFs that allows for a solver to prove that a puzzle is
invalid, similarly to the construction of [26], which does not achieve UC security.

Efficient UC Randomness Beacon from PV-TLP. Building on our new
notion (and construction) of PV-TLPs, we introduce a new provably secure ran-
domness beacon protocol. Our construction achieves far better best case scenario
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efficiency than the folklore VDF-based construction [12]. Our novel PV-TLP-
based construction requires only O(n) broadcasts (as does [12]) to generate a
uniformly random output, where n is the number of parties. Differently from
the VDF-based construction [12], whose execution time is at least the worst case
communication channel delay, our protocol outputs a random value as soon as all
messages are delivered, achieving in the optimistic case an execution as fast as 2
round trip times in the communication channel. This construction and its proof
require not only a simple application of UC PV-TLPs but also a careful analysis
of the relative delays between PV-TLPs broadcast channels/public ledgers and
PV-TLPs. We not only present this new protocol but also provide a full secu-
rity proof in the partially synchronous model (where the communication delay
is unknown), characterizing the protocol’s worst case execution time in terms of
the communication delay upper bound. In comparison, no security proof for the
construction of [12] is presented in their work.

UC Multiparty Computation (MPC) with Output Independent Abort
(OIA-MPC). We construct the first UC-secure protocol for Multiparty Com-
putation with Output Independent Abort (OIA-MPC), which is a stronger no-
tion of MPC where aborts by cheaters must be made before they know the
output. This notion is a generalization of the limited OIA-2PC result from [6].
As our central challenge, we identify the necessity of synchronizing honest par-
ties so that their views allow them to agree on the same set of cheaters. We
design a protocol that only requires that honest parties are not too much out of
sync when the protocol starts and carefully analyze its security.

UC MPC with Punishable Output Independent Abort (POIA-MPC)
from PV-TLP. We construct the first protocol for Multiparty Computation
with Punishable Output Independent Abort (POIA-MPC), generalizing OIA-
MPC to a setting where i) outputs can be publicly verified; and ii) cheaters in
the output stage can be identified and financially punished. Our construction
employs our new publicly verifiable TLPs to construct a commitment scheme
with delayed opening. To use this simple commitment scheme, we improve the
currently best [4] techniques for publicly verifiable MPC with cheater identifi-
cation in the output stage. We achieve this by eliminating the need for homo-
morphic commitments, which makes our construction highly efficient. We do not
punish cheating that occurs before the output phase (i.e. before the output can
be known), as this requires expensive MPC with publicly verifiable identifiable
abort [30,34,8]. Our approach is also taken in other previous works [1,10,35,4].

1.2 Related Work

The recent work of Baum et al. [6] introduced the first construction of a compos-
able TLP, while previous constructions such as [39,13,11] were only proven to
be stand-alone secure. As an intermediate step towards composable TLPs, non-
malleable TLPs were constructed in [31,26]. The related notion of VDFs has
been investigated in [12,38,41,22,25]. Also for these constructions, composability
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guarantees have so far not been shown. Hence, issues arise when using these
primitives as building blocks in more complex protocols, since their security is
not guaranteed when they are composed with other primitives.

Randomness beacons that resist adversarial bias have been constructed based
on publicly verifiable secret sharing (PVSS) [33,16] and on VDFs [12], although
neither of these constructions is composable. The best UC-secure randomness
beacons based on PVSS [17] still require O(n2) communication where n is the
number of parties even if only one single value is needed. UC-secure randomness
beacons based on verifiable random functions [21,2] can be biased by adversaries.

Fair secure computation (where honest parties always obtain the output if
the adversary learns it) is known to be impossible in the standard communica-
tion model and with dishonest majority [18], which includes the 2-party setting.
Couteau et al. [20] presented a secure two-party fair exchange protocol for the
“best possible” alternative, meaning where an adversary can decide to withhold
the output from an honest party but must make this decision independently of
the protocol output. Baum et al. [6] showed how to construct a secure 2-party
computation protocol with output-independent abort and composition guaran-
tees. Neither of these works considers the important multiparty setting.

Another work which considers fairness is that of Garay et al. [27], which
introduced the notion of resource-fairness for protocols in UC. Their work is
able to construct fair MPC in a modified UC framework, while we obtain OIA-
MPC which can be used to obtain partially fair secure computation (as defined
in [28]). The key difference is that their resource-fairness framework needs to
modify the UC framework in such a way that environments, adversaries and
simulators must have an a priori bounded running time. Being based on the
TARDIS model of [6], our work uses the standard UC framework without such
stringent (and arguably unrealistic) modifications/restrictions.

An alternative, recently popularized idea is to circumvent the impossibility
result of [18] by imposing financial penalties. In this model, cheating behavior is
punished using cryptocurrencies and smart contracts, which incentivizes rational
adversaries to act honestly. Works that achieve fair output delivery with penalties
such as [1,10,35,4] allow the adversary to make the abort decision after he
sees the output. Therefore financial incentives must be chosen according to the
adversary’s worst-case gain. Our POIA-MPC construction forces the adversary
to decide before seeing the output and incentives can be based on the expected
gain of cheating in the computation instead. All these mentioned works as well
as ours focus on penalizing cheating during the output phase only, as current
MPC protocols with publicly verifiable cheater identification are costly [7,34,8].

2 Preliminaries

We use the (Global) Universal Composability or (G)UC model [14,15] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
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adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1, . . . .
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition 1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time. We denote with λ the
statistical and τ the computational security parameter.

Public Verifiability in UC. We model the public verification of protocol
outputs, for simplicity, by having a static set of verifiers V. These parties exist
during the protocol execution (observing the public protocol transcript) but only
act when they receive an input to be publicly verified. Converting our approach
to dynamic sets of verifiers (as in e.g. [3]) is possible using standard techniques.

2.1 The TARDIS [6] Composable Time Model

The TARDIS [6] model expresses time within the GUC framework in such a way
that protocols can be made oblivious to clock ticks. To achieve this, TARDIS
provides a global ticker functionality Gticker as depicted in Fig. 1. This global
ticker provides “ticks” to ideal functionalities in the name of the environment. A
tick represents a discrete unit of time which can only be advanced, and moreover
only by one unit at a time. Parties observe events triggered by elapsed time, but
not the time as it elapses in Gticker. Ticked functionalities can freely interpret ticks
and perform arbitrary internal state changes. To ensure that all honest parties
can observe all relevant timing-related events, Gticker only progresses if all honest
parties have signaled to it that they have been activated (in arbitrary order). An
honest party may contact an arbitrary number of functionalities before asking
Gticker to proceed. We refer to [6] for more details.

How we use the TARDIS [6] model. To control the observable side ef-
fects of ticks, the protocols and ideal functionalities presented in this work are
restricted to interact in the6 “pull model”. This precludes functionalities from
6 The pull model, a standard approach in networking, has been used in previous works

before such as [32].
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Functionality Gticker

Initialize a set of registered parties Pa = ∅, a set of registered functionalities Fu = ∅,
a set of activated parties LPa = ∅, and a set of functionalities LFu = ∅ that have
been informed about the current tick.

Party registration: Upon receiving (register, pid) from honest party P with pid
pid, add pid to Pa and send (registered) to P.

Functionality registration: Upon receiving (register) from functionality F ,
add F to Fu and send (registered) to F .

Tick: Upon receiving (tick) from the environment, do the following:
1. If Pa = LPa, reset LPa = ∅ and LFu = ∅, and send (ticked) to the adversary S.

2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from functionality F ∈ Fu: If F /∈ LFu,
add F to LFu and send (ticked) to F. Otherwise send (notticked) to F.

Record party activation: Upon receiving (activated) from party P with pid
pid ∈ Pa, add pid to LPa and send (recorded) to P.

Fig. 1: Global ticker functionality Gticker(from [6]).

implicitly providing communication channels between parties. Parties have to
actively query functionalities in order to obtain new messages, and they obtain
the activation token back upon completion. Ticks to ideal functionalities are
modeled as follows: upon each activation, a functionality first checks with Gticker

if a tick has happened and if so, may act accordingly. For this, it will execute
code in a special Tick interface.

In comparison to [6], after every tick, each ticked functionality F that we de-
fine (unless mentioned otherwise) allows A to provide an optional (Schedule, sid,D)
message parameterized by a queue D. This queue contains commands to F which
specify if the adversary wants to abort F or how it will schedule message deliv-
ery to individual parties in P. The reason for this approach is that it simplifies
the specification of a correct F . This is because it makes it easier to avoid edge
cases where an adversary could influence the output message buffer of F such
that certain conditions supposedly guaranteed by F break. As mentioned above,
an adversary does not have to send (Schedule, sid,D) - each F can take care of
guaranteed delivery itself. On the other hand, D can depend on information that
the adversary learns when being activated after a tick event.

Modeling Start (De)synchronization. In the 2-party setting considered in
TARDIS [6] there is no need to capture the fact that parties receive inputs and
start executing protocols at different points in time, since parties can adopt the
default behavior of waiting for a message from the other before progressing.
However, in the multiparty setting (and specially in applications sensitive to
time), start synchronization is an important issue that has been observed before
in the literature (e.g. [36,32]) although it is often overlooked. In the spirit of the
original TARDIS model, we flesh out this issue by ensuring that time progresses
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regardless of honest parties having received their inputs (meaning that protocols
may be insecure if a fraction of the parties receive inputs “too late”). Formally,
we require that every (honest) party sends (activated) to Gticker during every
activation regardless of having received its input. We explicitly address the start
synchronization conditions required for our protocols to be secure.

Ticked Functionalities. We explicitly mention when a functionality F is
“ticked”. Each such F internally has two lists M,Q which are initially empty. The
functionality will use these to store messages that the parties ought to obtain.
Q contains messages to parties that are currently buffered. Actions by honest
parties can add new messages to Q, while actions of the adversary can change
the content of Q in certain restricted ways or move messages from Q to M. M
contains all the “output-ready” messages that can be read by the parties directly.
The content of M cannot be changed by A and he cannot prevent parties from
reading it. “Messages” from F may e.g. be messages that have been sent between
parties or delayed responses from F to a request from a party.

We assume that each ticked functionality F has two special interfaces. One,
as mentioned above, is called Tick and is activated internally, as outlined before,
upon activation of F if a tick event just happened on Gticker. The second is called
Fetch Messages. This latter interface allows parties to obtain entries of M.
The interface works identically for all ticked functionalities as follows:

Fetch Message: Upon receiving (Fetch, sid) by Pi ∈ P retrieve the set L of all
entries (Pi, sid, ·) in M, remove L from M and send (Fetch, sid, L) to Pi.

Macros. A recurring pattern in ticked functionalities in [6] is that the func-
tionality F , upon receiving a request (Request, sid,m) by party Pi must first
internally generate unique message IDs mid to balance message delivery with
the adversarial option to delay messages. F then internally stores the message
to be delivered together with the mid in Q and finally hands out i,mid to the
ideal adversary S as well as potentially also m. This allows S to influence deliv-
ery of m by F at will by referring to each unique mid. We now define macros that
simplify the aforementioned process. When using the macros we will sometimes
leave out certain options if their choice is clear from the context.
Macro “Notify the parties T ⊆ P about a message with prefix Request from Pi

via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i)) to Q for each Pij ∈ T .

Macro “Send message m with prefix Request received from party Pi to the parties
T ⊆ P via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i,m)) to Q for each Pij ∈ T .
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Macro “Notify S about a message with prefix Request” expands to “Send (Request,
sid, i,midi1 , . . . ,midik) to S.” Finally, the Macro “Send m with prefix Request
and the IDs to S” expands to “Send (Request, sid, i,m,midi1 , . . . ,midik) to S.”

If honest parties send messages via simultaneous broadcast (ensuring simul-
taneous arrival), then we will only choose one mid for all messages. As the ad-
versary can influence delivery on mid-basis, this ensures simultaneous delivery.
We indicate this by using the prefix “simultaneously” in the first two macros.

2.2 Trapdoor Verifiable Sequential Computation

Functionality Fpsc is presented in Figure 2 and captures the notion of a generic
stand alone trapdoor verifiable sequential computation scheme (a generaliza-
tion of a trapdoor VDF) in a similar way as the iterated squaring assumption
from [39] is captured in [6]. More concretely, Fpsc allows the evaluation of Γ
computational steps taking as input an initial state el and outputting a final
state elΓ along with a proof π. A verifier can use π to check that a state el′Γ
was indeed obtained after Γ computational steps starting from el. Each compu-
tational step takes a tick to happen, and parties who are currently performing a
computation must activate Fpsc in order for their computation to advance when
the next tick happens. The proof π′ can be verified with respect to el, elΓ , Γ
in time essentially independent of Γ . Since current techniques (e.g. [38,41,25])
for verifying such a proof require non-constant computational time, we model
the number of ticks necessary for each by function g(Γ ). The implementation of
Fpsc is presented in the full version [5] due to space limitations.

Fpsc must be used to capture a stand alone verifiable sequential computation
because, as observed in [6], exposing the actual states from a concrete computa-
tional problem would allow the environment to perform several computational
steps without activating other parties (and essentially breaking the hardness
assumption). However, notice that Fpsc does not guarantee that the states it
outputs are uniformly random or non-malleable, as it allows the adversary to
choose the representation of each state, which is crucial in our proof. What Fpsc

does guarantee is that proofs are only generated and successfully verified if the
claimed number of computational steps is indeed correct, also guaranteeing that
the transition between states el and nxt is injective.

2.3 Multi-Party Message Delivery

Ticked Authenticated Broadcast In Fig. 3 we describe a ticked functionality
FΓ,∆

BC,delay for delayed authenticated simultaneous broadcast. FΓ,∆
BC,delay allows each

party Pi ∈ P to broadcast one message mi in such a way that each mi is delivered
to all parties at the same tick (although different messages mi,mj may be deliv-
ered at different ticks). This functionality guarantees messages to be delivered at
most ∆ ticks after they were input. Moreover, it requires that all parties Pi ∈ P
must provide inputs mi within a period of Γ ticks, modeling a start synchroniza-
tion requirement. If this loose start synchronization condition is not fulfilled, the
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Functionality Fpsc

Fpsc interacts with a set of parties P = {Pi, . . . ,Pn}, an owner Po ∈ P (if Po =⊥,
no Pi ∈ P can access Trapdoor Solve) and an adversary S. It is parameterized by
an adversarial slack parameter 0 ≤ ϵ ≤ 1, state space ST , a proof space PROOF
and a function g : {0, 1}⋆ 7→ N determining the number of ticks for verifying proofs.
Fpsc has initially empty lists prf, L and Qv (proofs being verified); and flags fi for
i = 1, . . . , n that are initially set to zero.

Trapdoor Solve: Upon receiving (TdSolve, sid, el0, Γ ) from Po where Γ ∈ N+

and el0 ∈ ST , sample Γ random distinct states elj
$← ST for j ∈ {1, . . . , Γ} and

add (elj−1, elj) to steps. Also sample proof π $← PROOF . Add (el0, Γ, elΓ , π) to
prf and output (sid, el0, Γ, elΓ , π) to Po.

Solve: Upon receiving (Solve, sid, el0, Γ ) from Pi ∈ P where el0 ∈ ST , append
(Pi, sid, el0, Γ, el0, 0) to L and send (Solve, sid, el0, Γ ) to S.

Advance State: Upon receiving (AdvanceState, sid) from Pi ∈ P, set fi = 1.

Tick:
– For each (Pi, sid, el0, Γ, elc, c) ∈ L, if fi = 1 proceed as follows:

1. If there is no elc+1 such that (elc, elc+1) ∈ steps then sample elc+1
$← ST ,

and append (elc, elc+1) to steps.

2. Output (elc, elc+1) to S and update (Pi, sid, el0, Γ, elc, c) by setting c =
c+ 1.

3. If c ≥ ϵΓ and (el0, Γ, elΓ , π) ∈ prf, output
(GetEsPf, el0, Γ, elc, elc+1, . . . , elΓ , π) to S.

4. Else If c ≥ ϵΓ but (el0, Γ, elΓ , π) /∈ prf, then for j ∈ {c + 1, . . . , Γ}
sample state elj

$← ST and add (elj−1, elj) to steps. Also sample
proof π

$← PROOF , and add (el0, Γ, elΓ , π) to prf. Finally, output
(GetEsPf, el0, Γ, elc, elc+1, . . . , elΓ , π) to S.

5. If c = Γ , output (GetPf, sid, el0, Γ, elΓ , π) to Pi, and remove
(Pi, sid, el0, Γ, elΓ , Γ ) from L.

– For each (Pi, sid, c, elI , Γ, elO, π) ∈ Qv, if fi = 1 proceed as follows:
1. If c = 0: remove (Pi, sid, 0, elI , Γ, elO, π) from Qv and set b =

1 if (elI , Γ, elO, π) ∈ prf, otherwise set b = 0, and output
(Verified, sid, elI , Γ, elO, π, b) to Pi.

2. Else, if c > 0: update (Pi, sid, c, elI , Γ, elO, π) by setting c = c− 1.
Set flag fi = 0 for i = 1, . . . , n.

Verify: Upon receiving (Verify, sid, elI , Γ, elO, π) from Pi ∈ P where π ∈
PROOF , add (Pi, sid, g(Γ ), elI , Γ, elO, π) to Qv.

Fig. 2: Ticked Functionality Fpsc for trapdoor provable sequential computations.

functionality no longer provides any guarantees, allowing the adversary to freely
manipulate message delivery (specified in Total Breakdown).

In comparison to the two-party secure channel functionality F∆
smt,delay of [6],

our broadcast functionality FΓ,∆
BC,delay uses a scheduling-based approach and ex-
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Functionality FΓ,∆
BC,delay

The ticked functionality FΓ,∆
BC,delay is parameterized by maximal input desynchroniza-

tion Γ , parties P = {P1, . . . ,Pn} and adversary S. S may corrupt a strict subset
I ⊂ P. The functionality uses the identifier ssid to distinguish different instances
per sid. FΓ,∆

BC,delay for each ssid has internal states stssid, donessid that are initially ⊥.

Init: In the beginning of the execution, FΓ,∆
BC,delay waits for input (Delay,∆) from S.

Upon receiving (Delay,∆) from S where ∆ ∈ N and ∆ ≥ Γ , FΓ,∆
BC,delay proceeds to

the next steps using ∆ as its internal (unknown to honest parties) delay parameter.

Send: Upon receiving an input (Send, sid, ssid,mi) from an honest party Pi:
1. If stssid = ⊥ then set stssid = Γ . If either stssid = ⊤ or Pi sent (Send, sid, ssid, ·)

before then go to Total Breakdown.

2. For all Pj ∈ P, add (∆, sid,Pj , (Pi,mi, ssid)) to Q.

3. If all honest parties sent (Send, sid, ssid, ·) then set donessid = ⊤.

4. Send (Send, sid, ssid,Pi,mi) to S.

Total Breakdown: Doing a total breakdown means the ideal functionality from
now on relays all inputs to S, otherwise ignores the input and lets S determine all
outputs from then on. The ideal functionality becomes a proxy for S.

Tick:
1. If stssid = a for a ≥ 0:

(a) If a > 0 then set stssid = a− 1.

(b) If a = 0 and if there is Pi ∈ P \ I that did not send (Send, sid, ssid, ·) then
go to Total Breakdown, otherwise set stssid = ⊤.

(c) If donessid = ⊤ then wait for mi from S for each Pi ∈ I and, if S sends it,
then add (a, sid,Pj , (Pi,mi, ssid)) to Q for all Pj ∈ P, and set stssid = ⊤.

2. Remove each (0, sid,Pi,M) from Q and add (sid,Pi,M) to M.

3. Replace each (cnt, sid,Pi,M) in Q with (cnt− 1, sid,Pi,M).
Upon receiving (Schedule, sid, ssid,D) from S:
– If (Deliver, sid, ssid) ∈ D and donessid = ⊤ then, for all Pi ∈ P, remove

(cnt, sid,Pj , (Pi,mi, ssid)) from Q and add (sid,Pj , (Pi,mi, ssid)) to M.

Fig. 3: Ticked ideal functionality FΓ,∆
BC,delay for synchronized authenticated broad-

cast with maximal message delay ∆.

plicitly captures start synchronization requirements. Using scheduling makes for-
malizing the multiparty case much easier while requiring start synchronization
allows us to realize the functionality as discussed below. This also means that
FΓ,∆

BC,delay is not a simple generalization of the ticked channels of [6].
We briefly discuss how to implement FΓ,Γ,∆

BC,delay. We could start from a syn-
chronous broadcast protocol like [24] or the one in [23] with early stopping. These
protocols require all parties to start in the same round and that they terminate
within some known upper bound. For t < n/3 corruptions we could use [19]
to first synchronize the parties before running such a broadcast. If t ≥ n/3
we can get rid of the requirement that they start in the same round using the
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round stretching techniques of [37]. This will maintain that the parties termi-
nate within some known upper bound. Then use n instances of such a broadcast
channel to let each party broadcast a value. When starting the protocols at time
t a party Pi knows that all protocol instances terminate before time t+∆ so it
can wait until time t + ∆ and collect the set of outputs. Notice that by doing
so the original desynchronization Γ is maintained. When using protocols with
early stopping [23], the parties might terminate down to one round apart in
time. But this will be one of the stretched rounds, so it will increase the original
desynchronization by a constant factor.

We stress that other broadcast channels than the one in FΓ,∆
BC,delay may also be

modeled using [6], although these may not be applicable to instantiate OIA-MPC
as we do in Section 6.

Ticked Public Ledger In order to define a ledger functionality FLedger, we
adapt ideas from Badertscher et al. [3]. The ledger functionality FLedger is, due
to space limitations, presented in the full version [5]. There, we also describe it
in more detail. The original ledger functionality of Badertscher et al. [3] keeps
track of many relevant times and interacts with a global clock in order to take
actions at the appropriate time. Our ledger functionality FLedger, on the other
hand, only keeps track of a few counters. The counters are updated during the
ticks, and the appropriate actions are done if some of them reach zero. We also
enforce liveness and chain quality properties, and our ledger functionality can
be realized by the same protocols as [3].

3 Publicly Verifiable Time-Lock Puzzles

In this section, we describe an ideal functionality FTLP for publicly verifiable
TLPs. Intuitively, a publicly verifiable TLP allows a prover who performs all
computational steps needed for solving a PV- TLP to later convince a verifier
that the PV-TLP contained a certain message or that it was invalid. The verifier
only needs constant time to verify this claim. The ideal functionality FTLP as
presented in Figures 4 & 5 models exactly that behavior: FTLP has an extra
interface for any verifier to check whether a certain solution to a given PV-TLP
is correct. Moreover, FTLP allows the adversary to obtain the message from a
PV-TLP with Γ steps in just ϵΓ steps for 0 < ϵ ≤ 1, modeling the slack between
concrete computational complexities for honest parties and for the adversary is
sequential computation assumptions.

Functionality FTLP allows the owner to create a new TLP containing message
m to be solved in Γ steps by activating it with (CreatePuzzle, sid, Γ,m). Other
parties can request the solution of a TLP puz generated by the owner of FTLP

by activating it with message (Solve, sid, puz). After every tick when a party
activates FTLP with message (AdvanceState, sid), one step of this party’s previosly
requested puzzle solutions is evaluated. When ϵΓ steps have been computed,
FTLP leaks message m contained in the puzzle puz to the adversary S. When all
Γ steps of a puzzle solution requested by a party are evaluated, FTLP outputs
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m and a proof π that m was indeed contained in puz to that party. Finally, a
party who has a proof π that a message m was contained in puz can verify this
proof by activating FTLP with message (Verify, sid, puz,m, π).

Functionality FTLP (Part 1)

FTLP is parameterized by a computational security parameter τ , a message space
{0, 1}τ , a state space ST , a tag space T AG, a proof space PROOF , a slack pa-
rameter 0 < ϵ ≤ 1 and a function g : {0, 1}⋆ 7→ N (determining how many ticks it
takes to verify a proof). FTLP interacts with a set of parties P = {P1, . . . ,Pn}, an
owner Po ∈ P and an adversary S. FTLP maintains flags fi for i = 1, . . . , n that
are initially set to 0 and initially empty lists steps (honest state transitions), omsg
(output messages and proofs), Qv (proofs being verified), L (puzzles being solved).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ,m) from Po

where Γ ∈ N+ and m ∈ {0, 1}τ , proceed as follows:
1. If Po is honest, sample tag

$← T AG, st0
$← ST , and proof π $← PROOF . If

Po is corrupted, let S provide values tag, st0, and the proof π.

2. If (tag, st0, π) /∈ T AG × ST × PROOF or there exists (st′0, Γ
′, tag′,m′, π) ∈

omsg then FTLP halts. Otherwise, append (puz = (st0, Γ, tag),m, π) to omsg,
and output (CreatedPuzzle, sid, puz, π) to Po and (CreatedPuzzle, sid, puz) to S.

Solve: Upon receiving (Solve, sid, puz = (st0, Γ, tag)) from Pi ∈ P, add
(Pi, sid, puz, st0, 0) to L and send (Solve, sid, puz) to S.

Advance State: Upon receiving (AdvanceState, sid) from Pi ∈ P, set fi = 1.

Public Verification: Upon receiving (Verify, sid, puz = (st, Γ, tag),m, π) from a
party Pi ∈ P, add (Pi, sid, g(Γ ), st, Γ, tag,m, π) to Qv.

Fig. 4: Ticked Functionality FTLP for publicly verifiable time-lock puzzles (Part
1).

In the full version [5], we show that the TLP from [6] realizes a slightly
weaker version of FTLP and present a new Protocol πtlp that realizes FTLP (i.e.
proving Theorem 1). Protocol πtlp is constructed from a standalone trapdoor
VDF modeled by Fpsc. A puzzle owner Po uses the trapdoor to compute the
VDF on a random input st0 for the number of steps Γ required by the PV-
TLP, obtaining the corresponding output stΓ and proof π. The owner then
computes tag1 = H1(st0, Γ, stΓ , π) ⊕ m, tag2 = H2(st0, Γ, stΓ , π, tag1,m)
and tag = (tag1, tag2), where m is the message in the puzzle, using random
oracles H1 and H2. The final puzzle is puz = (st0, Γ, tag). A solver computes
Γ steps of the trapdoor VDF with input st0 to get a proof of PV-TLP solution
π′ = (stΓ , π), which can be used to check the consistency of tag and retrieve
m. If tag is not consistent, π′ can also be used to verify this fact.

Theorem 1. Protocol πtlp (G)UC-realizes FTLP in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary. For every static
adversary A and environment Z, there exists a simulator S s.t. Z cannot distin-
guish πtlp composed with Gticker,GrpoRO,Fpsc and A from S composed with FTLP.
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Functionality FTLP (Part 2)

Tick: – For all (Pi, sid, puz = (st0, Γ, tag), stc, c) ∈ L, if fi = 1 proceed as follows:
1. If there is no stc+1 such that (stc, stc+1) ∈ steps:
(a) If Po is honest, sample stc+1

$← ST , and append (stc, stc+1) to steps.

(b) If Po is corrupted, send (sid, adv, stc) to S and wait for (sid, adv, stc, stc+1).
If stc+1 /∈ ST then halt. Otherwise, append (stc, stc+1) to steps.

2. Output (stc, stc+1) to S and update (Pi, sid, puz, stc, c) ∈ L by setting c = c+1.

3. If c ≥ ϵΓ and there is no (stc, stc+1), (stc+1, stc+2), . . . , (stΓ−1, stΓ ) ∈ steps:

(a) If Po is honest, sample stj
$← ST for j = c + 1, c + 2, . . . , Γ , and output

(stj−1, stj) to S and append (stj−1, stj) to steps. If (st0, Γ, tag,m, π) /∈
omsg, set m = ⊥, sample π $← PROOF and append (st0, Γ, tag,⊥, π) ∈ omsg.
Finally, output (Solved, sid, puz,m, π) to S.

(b) Else (if Po is corrupted), send (GetSts, sid, puz) to S, wait for S to answer
with (GetSts, sid, puz, stc, stc+1, . . . , stΓ ). For j = c+1, . . . , Γ , if stj /∈ ST or
(stj−1, st

′
j) ∈ steps, then FTLP halts, else, append (stj−1, stj) to steps.

4. Else If c ≥ ϵΓ and there exist (stc, stc+1), . . . , (stΓ−1, stΓ ) ∈ steps, or if (puz′ =
(st0, Γ, tag

′),m′, π′) ∈ omsg s.t. tag′ ̸= tag (i.e. a puzzle with same st0, Γ has
been solved) or Po is corrupted and (puz,m, π) /∈ omsg, send (GetMsg, sid, puz)
to S, wait for S to answer with (GetMsg, sid, puz,m, π). If π /∈ PROOF or
(st′0, Γ

′, tag′,m′, π) ∈ omsg, FTLP halts, else, append (st0, Γ, tag,m, π) to omsg.

5. If c = Γ , remove (Pi, sid, puz, stc, c) ∈ L and send (Solved, sid, puz,m, π) to Pi.

– For each (Pi, sid, c, st, Γ, tag,m, π) ∈ Qv, if fi = 1 proceed as follows: 1. If c = 0,
remove (Pi, sid, 0, st, Γ, tag,m, π) from Qv, set b = 1 if (st, Γ, tag,m, π) ∈ omsg,
otherwise set b = 0 and output (Verified, sid, puz = (st, Γ, tag),m, π, b) to Pi;
2. Else, if c > 0: update (Pi, sid, c, st, Γ, tag,m, π) ∈ Qv by setting c = c− 1.

Set fi = 0 for i = 1, . . . , n.

Fig. 5: Ticked Functionality FTLP for publicly verifiable time-lock puzzles (Part
2).

4 Universally Composable Verifiable Delay Functions

We present a generic UC construction of VDFs as modeled in functionality FVDF

(Figure 6) from a generic verifiable sequential computation scheme modeled in
functionality Fpsc (Figure 2) and a global random oracle GrpoRO. Our construction
is presented in protocol πVDF (Figure 7).

Verifiable Delay Functions We model the UC VDF in Functionality FVDF.
It ensures that each computational step of the VDF evaluation takes at least
a fixed amount of time (one tick) and guarantees that the output obtained
after a number of steps is uniformly random and unpredictable even to the
adversary. However, it allows that the adversary obtains the output of evaluating
a VDF for Γ steps in only ϵΓ steps for 0 < ϵ ≤ 1, modeling the slack between
concrete computational complexities for honest parties and for the adversary
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Functionality FVDF

FVDF is parameterized by a computational security parameter τ , a state space ST ,
a proof space PROOF , a slack parameter 0 < ϵ ≤ 1 and a function g : {0, 1}⋆ 7→ N
(determining how many ticks it takes to verify a proof). FVDF interacts with a set
of parties P = {P1, . . . ,Pn}, and an adversary S. FVDF maintains flags fi for i =
1, . . . , n that are initially set to 0 and initially empty lists steps (state transitions),
Qv (proofs being verified), L (proofs being computed), and OUT (outputs).

Solve: Upon receiving (Solve, sid, in, Γ ) from Pi ∈ P where in ∈ ST and Γ ∈ N,
add (Pi, sid, in, Γ, in, 0) to L and send (Solve, sid, in, Γ ) to S.

Advance State: Upon receiving (AdvanceState, sid) from Pi ∈ P, set fi = 1.

Tick: – For each (Pi, sid, in, Γ, stc, c) ∈ L, if fi = 1 proceed as follows:
1. If there is no stc+1 such that (stc, stc+1) ∈ steps, send (sid, adv, stc) to S and

wait for (sid, adv, stc, stc+1). If stc+1 /∈ ST or (stc, st
′
c+1) ∈ steps for some

st′c+1 ∈ ST then halt. Otherwise, append (stc, stc+1) to steps. Finally update
(Pi, sid, in, Γ, stc, c) ∈ L by setting c = c+ 1.

2. If c ≥ ϵΓ and there is no (stc, stc+1), (stc+1, stc+2), . . . , (stΓ−1, out) ∈ steps,
sample out

$← ST , send (GetStsPf, sid, in, Γ, stc, out) to S, wait for S to answer
with (GetStsPf, sid, stc+1, . . . , stΓ−1, Π). If stj /∈ ST or (stj−1, st

′
j) ∈ steps, for

j ∈ {c+1, . . . , Γ −1}, or Π /∈ PROOF , or there exists (in′, Γ ′, out′, Π) ∈ OUT,
FVDF halts. Otherwise, append (stj−1, stj) to steps, for j ∈ {c+ 1, . . . , Γ − 1},
append (stΓ−1, out) to steps and (in, Γ, out,Π) to OUT.

3. If c = Γ , remove (Pi, sid, in, Γ, out, Γ ) ∈ L, send (Proof, sid, in, Γ, out,Π) to Pi.

– For each (Pi, sid, c, in, Γ, out,Π) ∈ Qv, if fi = 1 proceed as follows: 1. If c = 0,
remove (Pi, sid, 0, in, Γ, out,Π) from Qv, set b = 1 if (in, Γ, out,Π) ∈ OUT, oth-
erwise set b = 0 and output (Verified, sid, in, Γ, out,Π, b) to Pi; 2. If c > 0, update
(Pi, sid, c, in, Γ, out,Π) ∈ Qv by setting c = c− 1.

Set fi = 0 for i = 1, . . . , n.

Verification: Upon receiving (Verify, sid, in, Γ, out,Π) from a party Pi ∈ P, add
(Pi, sid, g(Γ ), in, Γ, out,Π) to Qv.

Fig. 6: Ticked Functionality FVDF for Verifiable Delay Functions.

in sequential computation assumptions. Naturally, FVDF also provides a proof
that each output has been correctly obtained by computing a certain number of
steps on a given input. As it is the case with Fpsc, the time required to verify
such proofs is variable and modeled as a function g(Γ ). Moreover, FVDF allows
the ideal adversary to choose the representation of intermediate computational
steps involved in evaluating the VDF, even though the output is guaranteed to
be random. Another particularity of FVDF used in the proof is a leakage of each
evaluation performed by an honest party at the tick when the result is returned
to the original caller. This leakage neither affects the soundness of the VDF nor
the randomness of its output, but is necessary for simulation.

Functionality FVDF allows for a party to start evaluating the VDF for Γ steps
on an input in by activating it with message (Solve, sid, in, Γ ). After this initial
request, the party needs to activate FVDF with message (AdvanceState, sid) on Γ
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different ticks in order to receive the result of the VDF evaluation. This is taken
care of by the Tick interface of FVDF, whose instructions are executed after every
new tick, causing FVDF to iterate over every pending VDF evaluation request
from parties who have activated FVDF in the previous tick. Each evaluation is
performed by asking the adversary for a representation of the next intermediate
state stc+1. When ϵΓ steps have been evaluated, FVDF leaks the output out to
the adversary S. When all Γ steps have been evaluated by FVDF, it outputs out
and a proof Π that this output was obtained from in after Γ steps. Moreover,
parties who have an input in and a potential proof Π that out was obtained as
output after evaluating the VDF for Γ steps on this input can activate FVDF

with message (Verify, sid, in, Γ, out,Π) to verify the proof. Once a proof verifi-
cation request has been made, the party needs to activate FVDF with message
(AdvanceState, sid) on g(Γ ) different ticks to receive the result of the verification.

Protocol πVDF

Protocol πVDF is parameterized by a security parameter τ and is executed by a set of
parties P = {P1, . . . ,Pn} interacting with functionalities Gticker,GrpoRO,Fpsc (whose
state space is ST , proof space is PROOF and Po =⊥, i.e. no Pi ∈ P can access
the trapdoor solve interface). All parties locally keep initially empty lists L and Qv.

Solve: Upon receiving input (Solve, sid, in, Γ ) where in ∈ ST and Γ ∈ N, Pi sends
(Solve, sid, in, Γ ) to Fpsc, and adds (sid, in, Γ ) to L.

Advance State: Upon receiving input (AdvanceState, sid), Pi sends
(AdvanceState, sid) to Fpsc.

Tick: Pi processes proofs being computed or verified as follows:
1. Upon receiving (GetPf, sid, in, Γ, elΓ , π) from Fpsc s.t. there is (sid, in, Γ ) ∈ L:

(a) Send (Hash-Query, (in|Γ |elΓ |π)) to GrpoRO, getting (Hash-Confirm, h).

(b) Set out = h and Π = (elΓ , π); output (Proof, sid, in, Γ, out,Π) and remove
(sid, in, Γ ) from L.

2. Upon receiving (Verified, sid, in, Γ, elΓ , π, b) from Fpsc s.t. there is
(Pi, sid, in, Γ, out,Π = (elΓ , π)) ∈ Qv:
(a) Send (Hash-Query, (in|Γ |elΓ |π)) to GrpoRO, getting (Hash-Confirm, h).

(b) Set b′ = 0 if b = 0 or h ̸= out, otherwise set b′ = 1. Output
(Verified, sid, in, Γ, out,Π, b′) and remove (Pi, sid, in, Γ, out,Π) from Qv.

Verification: Upon receiving input (Verify, sid, in, Γ, out,Π), Pi parses Π =
(elΓ , π), and sends (Verify, sid, in, Γ, elΓ , π) to Fpsc, and adds (Pi, sid, in, Γ, out,Π)
to Qv.

Fig. 7: Protocol πVDF realizing Verifiable Delay Functions functionality FVDF in
the Fpsc,GrpoRO-hybrid model.

Construction Our protocol πVDF realizing FVDF in the Fpsc,GrpoRO-hybrid
model is described in Figure 7. We use an instance of Fpsc where Po =⊥, mean-
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ing that no party in P has access to the trapdoor evaluation interface. Departing
from Fpsc,GrpoRO this protocol works by letting the state el1 be the VDF input
in. Once all the Γ solution steps are computed and the final state and proof
elΓ , π are obtained, the output is defined as out = H(sid|Γ |elΓ |π) where H is
an instance of GrpoRO and the VDF proof is defined as Π = (elΓ , π). Verification
of an output out obtained from input in with proof Π consists of again setting
the initial state el′1 = in and the output out′ = H(sid|Γ |elΓ |π), then checking
that out = out′ and verifying with Fpsc that π is valid with respect to Γ, el′1, elΓ .
The security of Protocol πVDF is formally stated in Theorem 2, and the proof is
presented in the full version[5] due to space limitations.

Theorem 2. Protocol πVDF (G)UC-realizes FVDF in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary: there exists a sim-
ulator S such that for every static adversary A no environment Z can distinguish
πVDF composed with GrpoRO,Fpsc and A from S composed with FVDF.

5 UC-secure Semi-Synchronous Randomness Beacons

We model a randomness beacon as a publicly verifiable coin tossing functionality
FRB

∆TLP−RB presented in Figure 8. Even though this functionality does not peri-
odically produce new random values as in some notions of randomness beacons,
it can be periodically queried by the parties when they need new randomness.

Functionality FRB
∆TLP−RB

FRB
∆TLP−RB is parameterized by delay ∆TLP−RB and interacts with parties P =

{P1, . . . ,Pn}, verifiers V and an adversary S through the following interfaces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, sample x
$← {0, 1}τ

and send (Tossed, sid, x) to all parties in P via Q with delay ∆TLP−RB.

Verify: Upon receiving (Verify, sid, x) from Vj ∈ V, if (Tossed, sid, x) has been
sent to all parties in P set f = 1, else set f = 0. Send (Verify, sid, x, f) to Vj .
Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

Fig. 8: Ticked Functionality FRB
∆TLP−RB for Randomness Beacons.

5.1 Randomness Beacons from TLPs

In order to construct a UC-secure randomness beacon from TLPs and a semi-
synchronous broadcast channel FΓ,∆

BC,delay (with finite but unknown delay ∆), we
depart from a simple commit-then-open protocol for n parties with honest major-
ity where commitments are substituted by publicly verifiable TLPs as captured
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in FTLP. Such a protocol involves each party Pi posting a TLP containing a
random value ri, waiting for a set of at least 1 + n/2 TLPs to be received and
then opening their TLPs, which can be publicly verified. The output is defined
as r = rj1 ⊕· · ·⊕rj1+n/2

, where values rj are valid TLP openings. If an adversary
tries to bias the output by refusing to reveal the opening of its TLP, the honest
parties can recover by solving the TLP themselves.

To ensure the adversary cannot bias/abort this protocol, we must ensure two
conditions: 1. At least 1 + n/2 TLPs are broadcast and at least 1 is generated
by an honest party (i.e. it contains an uniformly random ri); 2. The adversary
must broadcast its TLPs before the honest TLPs open, so it does not learn any
of the honest parties’ ri and cannot choose its own ris in any way that biases the
output. While condition 1 is trivially guaranteed by honest majority, we ensure
condition 2 by dynamically adjusting the number of steps δ needed to solve the
TLPs without prior knowledge of the maximum broadcast delay ∆. Every honest
party checks that at least 1+n/2 TLPs have been received from distinct parties
before a timeout of ϵδ ticks (i.e. the amount of ticks needed for the adversary
to solve honest party TLPs) counted from the moment they broadcast their
own TLPs. If this is not the case, the honest parties increase δ and repeat the
protocol from the beginning until they receive at least 1+n/2 TLPs from distinct
parties before the timeout. In the optimistic scenario where all parties follow the
protocol (i.e. revealing TLP openings) and where the protocol is not repeated,
this protocol terminates as fast as all publicly verifiable openings to the TLPs
are revealed with computational and broadcast complexities of O(n). Otherwise,
the honest parties only have to solve the TLPs provided by corrupted parties
(who do not post a valid opening after the commitment phase).

We design and prove security of our protocol with an honest majority in
the semi-synchronous model where FΓ,∆

BC,delay has a finite but unknown maximum
delay ∆. However, if we were in a synchronous setting with a known broadcast
delay ∆, we could achieve security with a dishonest majority by proceeding to
the Opening Phase after a delay of δ > ∆, since there would be a guarantee
that all honest party TLPs have been received.

We describe protocol πTLP−RB in Figure 9 and state its security in Theorem 3.
The proof is presented in the full version[5] due to space limitations.

Theorem 3. If ∆ is finite (though unknown) and all Pi ∈ P receive inputs
within a delay of δ ticks of each other, Protocol πTLP−RB UC-realizes FRB

∆TLP−RB

in the FTLP,FΓ,∆
BC,delay-hybrid model with computational security against static ad-

versaries corrupting t < n
2 parties in P for ∆TLP−RB = 3(ϵ−1∆+ 1) +

∑ϵ−1∆
i=1 i,

where ϵ is FTLP’s slack parameter. There exists a simulator S such that for every
static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB by A composed with FTLP,FΓ,∆

BC,delay from an ideal exe-
cution with S and FRB

∆TLP−RB .
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Protocol πTLP−RB

The protocol is executed by parties P = {P1, . . . ,Pn} out of which t < n/2 are
corrupted and verifiers V, who interact with FΓ,∆

BC,delay and instances F i
TLP of FTLP

with slack parameter ϵ for which Pi acts as Po. The initial delay parameter is δ.
Toss: On input (Toss, sid), all parties in P proceed as follows:
1. Commitment Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:
(a) Sample ri

$← {0, 1}τ and send (CreatePuzzle, sid, δ, ri) to F i
TLP, receiving

(CreatedPuzzle, sid, puzi, πi) in response.
(b) Send (Send, sid, ssid, puzi) to FΓ,∆

BC,delay and send (activated) to Gticker.
(c) Wait for Pj ∈ P to broadcast their TLPs within ϵδ ticks (i.e. before the ad-

versary solves puzi) by sending (Solve, sid, puz′ = (st′, ϵδ, tag′)) to FTLP (i.e.
solving a dummy TLP with ϵδ steps to count the ticks) and proceeding as
follows when activated: i. Send (Fetch, sid) to FΓ,∆

BC,delay, receiving (Fetch, sid, L);
ii. Check that there exist 1 + n/2 messages (Pi, sid, (Pj , puzj , ssid)) in L from
different Pj and, if yes, let C = {Pj}1≤j≤1+n/2 and proceed to the Open-
ing Phase, else, send (activated) to Gticker; iii. If (Solved, sid, puz′,⊥, π′) is
received from FTLP, ϵδ ticks have passed, so increment δ and go to Step 1(a).

2. Opening Phase: All parties Pi ∈ C proceed as follows:
(a) Send (Send, sid, ssid′, ri, πi) to FΓ,∆

BC,delay.
(b) Wait δ ticks for all Pj ∈ C to broadcast their TLP solutions by sending

(Solve, sid, puzi) to FTLP and only proceeding to Step 2(c) when (Solved,
sid, puzi, ri, πi) is received from FTLP, sending (activated) to Gticker otherwise;

(c) Send (Fetch, sid) to FΓ,∆
BC,delay, receiving (Fetch, sid, L). Check that every message

of the form (Pi, sid, (Pj , rj , πj , ssid
′)) from Pj ∈ C is a valid solution to puzj by

sending (Verify, sid, puzj , rj , πj) to Fj
TLP and checking that the answer received

later is (Verified, sid, puzj , rj , πj , 1). Send (activated) to Gticker. If this check
passes for all puzj from Pj ∈ C, compute r =

⊕
ri∈V ri, output (Tossed,

sid, r) and skip Recovery Phase. Otherwise, proceed.
3. Recovery Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:
(a) For each j such that Pj ∈ C did not send a valid solution of puzj , send

(Solve, sid, puzj) to FTLP. When activated, if (Solved, sid, puzj , rj , πj) is received
from FTLP, send (Send, sid, ssid′′, (rj , πj)) to FΓ,∆

BC,delay and (activated) to Gticker.
(b) Let G be the set of all solutions rj ̸=⊥ of puzj such that Pj ∈ C (i.e. G is the set

of solutions rj from valid TLPs posted in the commitment phase). Compute
r =

⊕
rj∈G rj , output (Tossed, sid, r) and send (activated) to Gticker.

4. Verify: On input (Verify, sid, x), Vj ∈ V proceeds as follows:
(a) Send (Fetch, sid) to FΓ,∆

BC,delay, receiving (Fetch, sid, L) and determining C by
looking for the first 1 + n/2 messages of the form (Pi, sid, (Pj , puzj , ssid));

(b) Check that each message of the form (Pi, sid, (Ph, rj , πj , ssid
′)) in L for Pj ∈ C

and Ph ∈ P (i.e. solutions to a puzzle puzj from a party Pj ∈ C sent by Pj

or by any party Ph ∈ P who solved an unopened puzj in the recovery phase)
contains a valid solution to puzj by sending (Verify, sid, puzj , rj , πj) to Fj

TLP

and checking that the answer is (Verified, sid, puzj , rj , πj , 1);
(c) Let G be the set of all rj such that Pj ∈ C, rj is a valid solution of puzj and

rj ̸=⊥. If x =
⊕

rj∈G rj , set f = 1, else set f = 0, output (Verify, sid, x, f).

Fig. 9: Protocol πTLP−RB for a randomness beacon based on PV-TLPs.
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5.2 Using a Public Ledger FLedger with πTLP−RB

Instead of using a delayed broadcast FΓ,∆
BC,delay, we can instantiate Protocol πTLP−RB

using a public ledger FLedger for communication. In this case, we must parame-
terize the TLPs with a delay δ that is large enough to guarantee that all honest
parties (including desynchronized ones) agree on the set of the first t+ 1 TLPs
that are posted on the ledger before proceeding to the Opening Phase. We
describe an alternative Protocol πTLP−RB−LEDGER that behaves exactly as Proto-
col πTLP−RB but leverages FLedger for communication.

Protocol πTLP−RB−LEDGER: This protocol is exactly the same as πTLP−RB except
for using FLedger for communication instead of FΓ,∆

BC,delay in the following way:

– At every point of πTLP−RB where parties send (Send, sid, ssid,m) to FΓ,∆
BC,delay,

instead they send (Submit, sid,m) to FLedger.
– At every point of πTLP−RB where parties send (Fetch, sid) to FΓ,∆

BC,delay and
check for messages in (Fetch, sid, L), instead they send (Read, sid) to FLedger

and check for messages in (Read, sid, statei).

Theorem 4. If ∆ = maxTXDelay+ emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unknown), Protocol πTLP−RB−LEDGER UC-
realizes FRB

∆TLP−RB in the FTLP,FLedger-hybrid model with computational secu-
rity against a static adversary corrupting t < n

2 parties in P for ∆TLP−RB =

3(ϵ−1∆ + 1) +
∑ϵ−1∆

i=1 i, where ϵ is FTLP’s slack parameter. Formally, there ex-
ists a simulator S such that for every static adversary A, and any environment
Z, the environment cannot distinguish an execution of πTLP−RB−LEDGER by A
composed with FTLP,FLedger from an ideal execution with S and FRB

∆TLP−RB .

Proof. The proof is presented in the full version[5] due to space limitations. ⊓⊔

5.3 Randomness Beacons from VDFs

It has been suggested that VDFs can be used to obtain a randomness beacon [12]
via a simple protocol where parties post plaintext values r1, . . . , rn on a public
ledger and then evaluate a VDF on input H(r1| . . . |rn), where H() is a crypto-
graphic hash function, in order to obtain a random output r. However, despite
being used in industry [40], the security of this protocol was never formally
proven due to the lack of composability guarantees for VDFs. Our work settles
this question by formalizing Protocol πVDF−RB and proving Theorem 5 (in the
full version[5]), which characterizes the worst case execution time.

Theorem 5. If ∆ = maxTXDelay+ emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (but unknown), Protocol πVDF−RB UC-realizes FRB

∆TLP−RB

in the FVDF,FLedger-hybrid model with computational security against static ad-
versaries corrupting t < n/2 parties for ∆TLP−RB = 2(ϵ−1∆+1)+

∑ϵ−1∆
i=1 i, where

ϵ is FVDF’s slack parameter. There is a simulator S s.t. for every static adversary
A, and any environment Z, Z cannot distinguish an execution of πVDF−RB by A
composed with FVDF,FLedger from an ideal execution with S and FRB

∆TLP−RB .
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6 MPC with (Punishable) Output-Independent Abort
In this section we will describe how to construct a protocol that achieves MPC
with output-independent abort. The starting point of this construction will be
MPC with secret-shared output7, which is a strictly weaker primitive, as well as
the broadcast as modeled in FΓ,∆

BC,delay and Commitments with Delayed Openings
F∆,δ,ζ

com . In the full version[5], we subsequently show how to financially penalize
cheating behavior in the protocol (POIA-MPC).

Fig. 10: How MPC with (Punishable) Output-Independent Abort is constructed.

6.1 Functionalities for Output-Independent Abort
We begin by mentioning the functionalities that are used in our construction
and which have not appeared in previous work (when modeled with respect to
time). These functionalities are:

1. F∆
mpc,sso (Fig. 11 and Fig. 12) for secure MPC with secret-shared output.

2. F∆,δ,ζ
mpc,oia (Fig. 13 and Fig. 14) for OIA-MPC.

In the full version [5], we also introduce the following functionalities:
1. F∆

ct for coin-flipping with abort.
2. F∆,δ,ζ

com for commitments with delayed non-interactive openings.
3. Fγ,δ,ζ,g

vcom for commitments with verifiable delayed non-interactive openings.
4. Fγ,δ,ζ

SC which is an abstraction of a smart contract.
5. F∆,γ,δ,ζ

mpc,poia for POIA-MPC.

Before formally introducing all functionalities and explaining them in more de-
tail, we show how they are related in our construction in Figure 10. As can be
seen there our approach is twofold. First, we will realize F∆,δ,ζ

mpc,oia via the protocol
πmpc,oia relying on FΓ,∆

BC,delay,F∆
ct ,F∆

mpc,sso and F∆,δ,ζ
com . Then, we will show how to

7 For the sake of efficiency we focus on an output phase that uses additive secret
sharing. However, the core MPC computation could use any secret sharing scheme,
while only the output phase is restricted to additive secret sharing. This approach
can be generalized by using a generic MPC protocol that computes an additive secret
sharing of the output as part of the evaluated circuit, although at an efficiency cost.
We remark that efficient MPC protocols matching our requirements do exist, e.g. [29].
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implement F∆,γ,δ,ζ
mpc,poia via the protocol πmpc,poia (a generalization of πmpc,oia) which

uses Fγ,δ,ζ
SC ,F∆

ct ,F∆
mpc,sso as well as Fγ,δ,ζ,g

vcom . As mentioned in Fig. 10, Fγ,δ,ζ,g
vcom and

Fγ,δ,ζ
SC are modifications of F∆,δ,ζ

com and FΓ,∆
BC,delay. We now describe the function-

alities required to build πmpc,oia in more detail.

Functionality F∆
mpc,sso (Computation, Message Handling)

The ticked functionality interacts with n parties P = {P1, . . . ,Pn} and an adversary
S which may corrupt a strict subset I ⊂ P.
Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Init, sid, C) then store C. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆. Then accept xi as input for Pi.

2. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message with
prefix Input.

Computation: On first input (Compute, sid) by Pi ∈ P and if x1, . . . , xn were
accepted:
1. Notify parties P \ {Pi} via Q with delay ∆. If all parties sent (Compute, sid)

compute and store (y1, . . . , ym)← C(x1, . . . , xn).

2. Notify S about a message with prefix Compute.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add

(Pi, sid,m) to M.

– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore all
further messages with this sid except to Fetch Message.

Fig. 11: Ticked Functionality F∆
mpc,sso for MPC with Secret-Shared Output and

Linear Secret Share Operations.

MPC with Secret-Shared Output. The functionality F∆
mpc,sso is formally

introduced in Fig. 11 and Fig. 12. It directly translates an MPC protocol with
secret-shared output into the TARDIS model, but does not make use of any tick-
related properties beyond scheduling of message transmission. The functionality
supports computations on secret input where the output of the computation is
additively secret-shared among the participants. Additionally, it allows parties
to sample random values, compute linear combinations of outputs and those
random values and allows to reliably but unfairly open secret-shared values.
F∆

mpc,sso can be instantiated from many different MPC protocols, such as those
based on secret-sharing [9] or multiparty BMR [29].
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Functionality F∆
mpc,sso (Computation on Outputs)

Share Output: Upon first input (ShareOutput, sid, T ) by Pi ∈ P for fresh identi-
fiers T = {cid1, . . . , cidm} and if Computation was finished:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent ShareOutput:
(a) Send (RequestShares, sid, T ) to S, which replies with (OutputShares, sid,
{sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \ I, h ∈ [m] sample sj,cidh ← F
uniformly random conditioned on yh =

⊕
k∈[n] sk,cidh .

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send sj,cid
with prefix OutputShares to party Pj via Q with delay ∆. Finally notify S
about the message with prefix OutputShares.

3. Notify S about a message with the prefix ShareOutput.

Share Random Value: Upon input (ShareRandom, sid, T ) by all parties with fresh
identifiers T :
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent ShareRandom:
(a) Send (RequestShares, sid, T ) to S, which replies with (RandomShares,

sid, {sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \ I, cid ∈ T sample sj,cid ← F
uniformly at random.

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send sj,cid
with prefix RandomShares to party Pj via Q with delay ∆. Finally notify
S about the message with prefix RandomShares.

3. Notify S about a message with the prefix ShareRandom.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈T , cid′) from all par-
ties: If all αcid ∈ F, all (cid, s1,cid, . . . , sn,cid) have been stored and cid′ is unused, set
s′i ←

∑
cid∈T αcid · si,cid and record (cid′, s′1, . . . , s

′
n).

Reveal: Upon input (Reveal, sid, T ) by Pi ∈ P for identifiers T and if
(cid, s1, . . . , sn) is stored for each cid ∈ T :
1. Notify the parties P \{Pi} via Q with delay ∆. Then notify S about a message

with prefix Reveal.

2. If all parties sent (Reveal, sid, T ) then send
(Reveal, sid, {(cid, s1,cid, . . . , sn,cid)}cid∈T ) to S.

3. If S sends (DeliverReveal, sid, T ) then send message {(cid, s1,cid, . . . , sn,cid)}cid∈T
with prefix DeliverReveal to parties P via Q with delay ∆ and notify S about
a message with prefix DeliverReveal.

Fig. 12: Ticked Functionality F∆
mpc,sso for MPC with Secret-Shared Output and

Linear Secret Share Operations, Part 2.

Commitments with Delayed Openings. We describe the functionality F∆,δ,ζ
com

for commitments with delayed non-interactive openings in the full version[5].
The functionality distinguishes between a sender PSend, which can make com-
mitments, and a set of receivers, which obtain the openings. Compared to regular
commitments with a normal Open that immediately reveals the output to all
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parties, PSend is also allowed to perform a Delayed Open, where there is a delay
between the choice of a sender to open a commitment (or not) and the actual
opening towards receivers and the adversary.

While both Commit and Open directly resemble their counterparts in a
normal commitment functionality, the Delayed Open logic is not as straight-
forward. What happens during such a delayed open is that first all honest parties
will simultaneously learn that indeed an opening will happen in the future - for
which they obtain a message DOpen. Additionally, F∆,δ,ζ

com stores the openings
in an internal queue O. These openings can not be rescheduled by the adver-
sary, and therefore it will take δ ticks before honest parties learn the opening of
the commitment. This means that for honest parties, it may take up to ∆ + δ
ticks depending on when DOpen is obtained. The simulator will already learn
the opening after ζ ≤ δ ticks, similar to how it might solve FTLP faster. F∆,δ,ζ

com

ensures that all honest parties will learn the delayed opening simultaneously.
In the full version[5], we provide a secure instantiation of a publicly verifiable

version of F∆,δ,ζ
com . Since we do not require homomorphic operations, this means

that it can be realized with a much simpler protocol than the respective two-
party functionality in [6].

MPC with Output-Independent Abort. In Fig. 13 and Fig. 14 we describe
the functionality F∆,δ,ζ

mpc,oia for MPC with output-independent abort.
In terms of the actual secure computation, our functionality is identical with

F∆
mpc,sso, although it does not reveal the concrete shares to the parties and the

adversary during the sharing. The output-independent abort property of our
functionality is then achieved as follows: in order to reveal the output of the
computation, each party will have to send Reveal to F∆,δ,ζ

mpc,oia. Once all honest
parties and the verifiers thus learn that the parties indeed are synchronized by
seeing that the first synchronization message arrives at all parties (st = sync

and f = ⊤), the internal state of the functionality changes. From this point on,
the adversary can, within an additional time-frame of ζ ticks, decide whether
to reveal its shares or not. Then, once these ζ ticks passed, S will obtain the
output y of the computation after having provided the set of aborting parties
J . If J = ∅ then F∆,δ,ζ

mpc,oia will, within δ additional ticks, simultaneously output y
to all honest parties, while it otherwise outputs the set J .

The additional up to δ ticks between the adversary learning y and the honest
parties learning y or J is due to our protocol and will be more clear later.

Coin Tossing. πmpc,oia additionally requires a functionality for coin tossing F∆
ct ,

which we present in the full version [5]. Note that F∆
ct can easily be realized in

the FΓ,∆
BC,delay,F∆,δ,ζ

com -hybrid model.

6.2 Building MPC with Output-Independent Abort

We will now describe how to construct an MPC protocol that guarantees output-
independent abort. Although this might appear like a natural generalization
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Functionality F∆,δ,ζ
mpc,oia (Computation, Sharing)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S who may corrupt a strict subset I ⊂ P. F∆,δ,ζ

mpc,oia is parameterized by ∆, δ, ζ ∈
N+, ζ ≤ δ, has an initially empty list O and set J as well as a state st initially ⊥.

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Init, sid, C) then store C locally. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆. Then accept xi as input for Pi.

2. Send xi and the IDs to S if Pi ∈ I, otherwise notify S about a message with
prefix Input.

Computation: On first input (Compute, sid) by Pi ∈ P and if all {xi}i∈[n] were
accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.

3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent Share then:
(a) Send (Shares?, sid) to S.

(b) Upon (DeliverShares, sid) from S send a message with prefix DeliverShares
to each Pj ∈ P \ I via Q with delay ∆. Then notify S about messages with
prefix DeliverShares and the IDs.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties

3. Notify S about a message with prefix Share.

Reveal: Upon first message (Reveal, sid, i) by each party Pi ∈ P, if Share has
finished, if no DeliverShare message is in Q and if st = ⊥ or st = sync:
1. Simultaneously send a message i with prefix Reveal to parties P \ {Pi} via Q

with delay ∆.

2. Set st = sync and notify S about a message with prefix Reveal.

Fig. 13: Ticked F∆,δ,ζ
mpc,oia Functionality for MPC with Output-Independent Abort.

of [6], constructing the protocol is far from trivial as we must take care that all
honest parties agree on the same set of cheaters. Our protocol works as follows:

1. The parties begin by sending a message beat (i.e. a heartbeat) to the func-
tionality FΓ,∆

BC,delay. Throughout the protocol, they do the following in parallel
to running the MPC protocol, unless mentioned otherwise:
– All parties wait for a broadcast message beat from all parties on FΓ,∆

BC,delay.
If some parties did not send their message to FΓ,∆

BC,delay in one iteration
then all parties abort. Otherwise, they send beat in another iteration to
FΓ,∆

BC,delay.
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Functionality F∆,δ,ζ
mpc,oia (Timing)

Tick:
1. Set f← ⊥, remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m)

to M. If m = (Reveal, i) then set f← ⊤.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

3. If st = wait(x) & x ≥ 0:
If x ≥ 0: Set st = wait(x− 1).

If x = 0:
(a) Send (Abort?, sid) to S and wait for response (Abort, sid, J) with J ⊆ I.

(b) If J = ∅ then send message y with prefix Output to each party P \ I
via Q with delay δ. If J ̸= ∅ then send message J with prefix Abort to
each party P \ I via Q with delay δ.

(c) Send (Output, sid, y) and the IDs to S.

4. If st = sync and f = ⊤ then set st = wait(ζ) and send (RevealStart, sid) to S.
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add

(Pi, sid,m) to M.

– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) to M for each Pi ∈ P
and ignore all further messages with this sid except to Fetch Message.

Fig. 14: Ticked F∆,δ,ζ
mpc,oia Functionality for MPC with Output-Independent Abort.

The purpose of the heartbeat is to ensure that honest parties are synchro-
nized throughout the protocol, allowing them to later achieve agreement on
the corrupt parties.

2. The parties provide inputs xi to F∆
mpc,sso, perform the computation using

F∆
mpc,sso and obtain secret shares y1, . . . ,yn of the output y. They also sample

a blinding value ri ∈ Fλ for each Pi inside F∆
mpc,sso. yi, ri is opened to Pi.

3. Next, the parties commit to both yi, ri using F∆,δ,ζ
com towards all parties.

Dishonest parties may commit to a different value than the one they obtained
from F∆

mpc,sso and consistency must therefore be checked.
4. All parties use the coin-flipping functionality to sample a uniformly random

matrix A ∈ Fλ×m. This matrix is used to perform the consistency check.
5. For each i ∈ [n] the parties compute and open ti = ri +Ayi using F∆

mpc,sso.
Due to the blinding value ri opening ti will not leak any information about
yi of Pi ∈ P \ I to the adversary.

6. Each party that obtained ti changes the next beat message to ready. Once
parties receive ready from all other parties and are thus synchronized, they
simultaneously perform a delayed open of yi, ri using their commitments
(and ignore FΓ,∆

BC,delay from now on). Parties which don’t open commitments
in time or whose opened values do not yield ti are considered as cheaters.

Intuitively, our construction has output-independent abort because of the
timing of the opening: Until Step 6, the adversary may abort at any time but no
such abort will provide it with information about the output. Once the opening
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Protocol πmpc,oia (Computation, Share)

All parties P have access to one instance of the functionalities F∆
mpc,sso, F∆

ct and
FΓ,∆

BC,delay. Furthermore, each Pi ∈ P has it’s own F∆,δ,ζ,i
com where it acts as the dedi-

cated sender and all other parties of P are receivers.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that it, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Upon every activation: Let c be a counter that is initially 0. Pi sends
(Send, sid, c, beat) to the functionality FΓ,∆

BC,delay (with c as ssid). Throughout πmpc,oia,
each Pi waits for FΓ,∆

BC,delay to return (Pj , c, beat) for all other Pj ∈ P. If it does,
then each Pi increases c by 1 and sends (Send, sid, c, beat) to FΓ,∆

BC,delay. Otherwise
the parties abort.

Init: Each Pi ∈ P sends (Init, sid, C) to F∆
mpc,sso and ticks. It waits until it obtains

messages C with prefix Init from F∆
mpc,sso for every other party P \ {Pi}.

Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆
mpc,sso and ticks. It waits until it

obtains messages j with prefix Input from F∆
mpc,sso for every Pj ∈ P \ {Pi}.

Computation: Each Pi ∈ P sends (Computation, sid) to F∆
mpc,sso and ticks. It waits

until it obtains messages with prefix Computation from F∆
mpc,sso for every P \ {Pi}.

Share:
1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].

2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆
mpc,sso and ticks. Then it waits

until it obtains a message {yi,cid}cid∈Ty with prefix OutputShares from F∆
mpc,sso.

3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆
mpc,sso and ticks. It then waits

until it obtains a message {ri,cid}cid∈Tr with prefix RandomShares from F∆
mpc,sso.

Set yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.

4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to F∆,δ,ζ,i
com and ticks. It then waits

for messages (Commit, sid, cidj) from F∆,δ,ζ,j
com of all other Pj ∈ P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ) to F∆
ct and ticks. It then waits for the

message (Coins, sid,A) where A ∈ Fλ×m.

6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆

mpc,sso.

7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆
mpc,sso and ticks. It then waits for the

message {(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆
mpc,sso. Set

tj = (tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

Fig. 15: Protocol πmpc,oia for MPC with Output-Independent Abort.

phase begins, parties can easily verify if an opening by an adversary is valid or not
- because he committed to its shares before A was chosen and the probability of
a collision with ti for different choices of y′

i, r
′
i can be shown to be negligible in λ

as this is exactly the same as finding a collision to a universal hash function. The
decision to initiate its opening, on the other hand, will arrive at each honest party
before the honest party’s delayed opening result is available to the adversary -
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Protocol πmpc,oia (Reveal)

Reveal: If Share completed successfully:
1. Each party changes the messages to FΓ,∆

BC,delay to (Send, sid, c, ready). Upon re-
ceiving the first (Pj , ready, c) for all Pj ∈ P from FΓ,∆

BC,delay, each Pi sends
(DOpen, sid, cidj) to F∆,δ,ζ,j

com for each Pj ∈ P and ticks. It also stops sending
beat to FΓ,∆

BC,delay.

2. Each Pi ∈ P waits until F∆,δ,ζ,i
com returns (DAdvOpened, sid, cidi). Then Pi checks

if it obtained a message with prefix DOpen from all other F∆,δ,ζ,j
com . Let J1 ⊂ P

be the set of parties such that Pi did not obtain DOpen before it received
DAdvOpened.

3. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each Pj ∈
P \ (J1 ∪ {Pi}) from the respective instance of F∆,δ,ζ,j

com . It then defines J2 as
the set of all parties Pj such that tj ̸= rj +Ayj .

4. If J1 ∪ J2 = ∅ then each Pi ∈ P outputs (Output, sid,y =
⊕

j∈[n] yj) and
terminates. Otherwise it outputs (Abort, sid, J1 ∪ J2).

Fig. 16: Protocol πmpc,oia for MPC with Output-Independent Abort.

which will be ensured by the appropriate choice of ζ > ∆. In turn, an adversary
must thus send its opening message before learning the shares of an honest party,
which is exactly the property of output-independent abort. At the same time,
honest parties have their DOpen message delivered after ∆ steps already and
will never be identified as cheaters.

Concerning agreement on the output of the honest parties, we see that if
all honest parties initially start almost synchronized (i.e. at most Γ ticks apart)
then if they do not abort during the protocol they will simultaneously open their
commitments. Therefore, using FΓ,∆

BC,delay guarantees that they all have the same
view of all adversarial messages during the Reveal phase.

Interestingly, our construction does not need homomorphic commitments as
was necessary in [6,4] to achieve their verifiable or output-independent abort
in UC. Clearly, our solution can also be used to improve these protocols and
to simplify their constructions. The full protocol can be found in Fig. 15 and
Fig. 16. We now prove the following Theorem:

Theorem 6. Let λ be the statistical security parameter and ζ > ∆. Assume
that all honest parties obtain their inputs at most Γ ticks apart. Then the pro-
tocol πmpc,oia GUC-securely implements the ticked functionality F∆,δ,ζ

mpc,oia in the
F∆

mpc,sso,F∆,δ,ζ
com ,F∆

ct ,F
Γ,∆
BC,delay-hybrid model against any static adversary corrupt-

ing up to n− 1 parties in P. The transcripts are statistically indistinguishable.

To prove security, we will construct a PPT simulator S and then argue in-
distinguishability of the transcripts of πmpc,oia ◦ A and F∆,δ,ζ

mpc,oia ◦ S. The proof is
presented in the full version[5] due to space limitations.
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