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Abstract. Time-lock puzzles (TLP) are a fascinating type of crypto-
graphic problem that is easy to generate, but takes a certain time to
solve, even when arbitrary parallel speedup is allowed. TLPs have wide-
ranging applications including fairness, round efficient computation, and
more. To reduce the effort needed to solve large numbers of TLPs, prior
work has proposed batching techniques to reduce the cost of solving.
However, these proposals either require: (1) a trusted setup or (2) the
puzzle size be linear in the maximum batch size, which implies setting
an a priori bound on the maximum size of the batch. Any of these limi-
tations restrict the utility of TLPs in decentralized and dynamic settings
like permissionless blockchains. In this work, we demonstrate the feasi-
bility and usefulness of a TLP that overcomes all the above limitations
using indistinguishability obfuscation to show that there are no funda-
mental barriers to achieving such a TLP construction.

As a main application of our TLP, we show how to improve the resilience
of consensus protocols toward network-level adversaries in the following
settings: (1) We show a generic compiler that boosts the resilience of a
Byzantine broadcast protocol Π as follows: if Π is secure against t < n
weakly adaptive corruptions, then the compiled protocol is secure against
t < n strongly adaptive corruptions. Here, ‘strong’ refers to adaptively
corrupting a party and deleting messages that it sent while still honest.
Our compiler is round and communication preserving, and gives the first
expected constant-round Byzantine broadcast protocol against a strongly
adaptive adversary for the dishonest majority setting. (2) We adapt the
Nakamoto consensus protocol to a weak model of synchrony where the
adversary can adaptively create minority partitions in the network. Un-
like prior works, we do not assume that all honest messages are delivered
within a known upper bound on the message delay. This is the first work
to show that it is possible to achieve consensus in the permissionless
setting even after relaxing the standard synchrony assumption.

Keywords: Time-lock puzzles · Batch solving · Distributed consensus ·
Byzantine broadcast · Mobile-sluggish faults



1 Introduction

A Time-Lock Puzzle (TLP) is a cryptographic primitive that allows a sender
to lock a message as a computational puzzle in a manner where the receiver
will be able to solve the puzzle after a stipulated time T. In terms of effi-
ciency, a sender should be able to generate a puzzle substantially faster than
the time required to solve it, and in terms of security, an adversary should not
be able to solve the puzzle faster than the stipulated time, even with paral-
lel computation. Rivest, Shamir, and Wagner (RSW) [39] proposed the first
TLP construction based on the sequentiality of repeated modular squaring in
the RSA group. Many other TLP constructions [8,33,44] have followed suit in
different settings but require the same flavor of sequential operations during
solving. TLPs have found a wide variety of applications including sealed-bid
auctions [39,33], timed-commitments [28,44], e-voting [15,33], fair contract sign-
ing [9,33], zero-knowledge proofs [18], cryptocurrency payments [43], distributed
consensus [45], blockchain front-running prevention [1], and more applications
continue to emerge.

In many TLP applications involving multiple users, it is often the case that
a user is required to solve the puzzles of all other users, and record all of the
solutions. Say an auction house has to open all the time-locked bids and declare
them publicly before announcing the winner. Batching and solving the puzzles
is essential for scalability in such TLP applications that have large number of
participating users. Intuitively, batch solving of TLPs allows a receiver to solve
multiple puzzles simultaneously (at the price of solving one puzzle) without
needing to solve each puzzle separately. Specifically, the total running time of
the batch-solve operation is bounded by some p(λ,T) + p̃(λ, n) for some fixed
polynomials p and p̃, where λ is the security parameter, n is the number of
puzzles to be batched, and T is the timing hardness of a single puzzle.

Modern TLP constructions achieve the seemingly impossible batch-solve prop-
erty under various settings and assumptions [33,43,44]. However, all existing
batch solving TLP schemes suffer from the following limitations: (1) requires a
trusted setup to generate structured reference string, and/or (2) individual puz-
zle size scales linearly in the maximum number of puzzles that can be batched,
which further implies that there is an a priori upper bound on the number of
puzzles that can be batched (which is set upfront during puzzle generation).

Yet emerging blockchain applications like Miner Extractable Value (MEV)
prevention [1], cryptocurrency payments [43], distributed consensus [45], etc.,
either for security or performance, require the TLP scheme to have a transpar-
ent setup, the puzzle size independent of the number of puzzles batched and
support batching an unbounded number of puzzles. These requirements arise
in blockchain systems especially in the permissionless setting for the following
reasons:
– First, it is often impossible or impractical to rely on a trusted party to generate

the public parameters. Moreover, a compromised setup with trapdoors can
violate the security of the system. Precisely for these reasons, such trusted
parties are not assumed to exist and usage of cryptosystems requiring such
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trusted setups are actively discouraged in permissionless blockchain systems.

– Second, in permissionless systems (like Bitcoin), nodes can join and leave the
network at will, and there are no mechanisms to authenticate any participant.
So the exact number of participants n is unknown at any point in time. How-
ever, existing TLP schemes require the bound on the number of users at the
time of puzzle generation. Thus, restricting the ability to accommodate more
participants on demand after the puzzle generation phase.

– Third, large puzzle size increases the total communication costs. For instance,
in a setting where all participants have to exchange puzzles with each other, a
linear-sized puzzle of the prior constructions blows up the total communication
overhead to O(n3).
Motivated by these open problems and applications, we ask the following

question: Is it possible to build a TLP scheme with batch solving that has a
transparent setup, puzzle size independent of the batch size, and therefore allows
unbounded batching? In this work, we affirmatively answer this question and use
our new TLP scheme to solve two elusive problems in distributed consensus:

1. The problem of expected constant round Byzantine broadcast under corrupt
majority and strongly adaptive model.

2. The problem of permissionless consensus in a generalization of synchronous
model of communication called the mobile sluggish model.

Below, we motivate how our TLP with the above properties can enhance security
and reduce communication costs in the two applications we consider.

At a high level, in both applications, TLPs help to defend against a powerful
network adversary that has the ability to delay or delete messages from the net-
work. For instance, a powerful network adversary can simply learn the contents
of the message sent by any honest party before deciding to corrupt or deliver the
message. However, by time-lock encrypting the message, the adversary cannot
learn the contents of the message before time T without doing sequential work.
In the meantime, all the honest messages would have been delivered. Thus, the
adversary is forced to corrupt an honest node without inspecting the contents of
the message. Prior works [45,16] showed the feasibility of the distributed consen-
sus in the presence of a network level adversary using TLPs (without batching
property) at the cost of polylogarithmic blowup in round complexity. However,
batch solving and compact puzzles aid in improving the round complexity and
communication costs, respectively, in these applications.

Round-efficient Byzantine broadcast. Byzantine broadcast (BB) is a well-
studied problem in distributed consensus, and, in recent times, BB has emerged
as a fundamental building block in blockchains [23]. Despite decades of study
in improving the round efficiency, no prior BB protocol has expected constant
round-complexity under strongly adaptive and dishonest majority setting. In
the strongly adaptive model, an adversary can observe all the honest messages,
corrupt honest nodes on the fly, and perform after-the-fact removal, that is, the
adversary can delete any honest message in-flight before it reaches any other
honest nodes.

3



Current success in constant round BB is in the weakly adaptive model where
the adversary’s power is severely limited [46]. Wan et al. proposed the first sub-
linear BB protocol under strongly adaptive and dishonest majority setting [45].
Their work used TLPs to prevent the adversary from inspecting the contents
of the message before corrupting a node. Since their TLP construction did not
support batching, they proposed a sub-protocol with polylogarithmic round com-
plexity to distribute the task of opening all puzzles to honest nodes, rather than
solving the puzzles individually. We observe that by using a TLP with batching
property and puzzle size independent of the batch size as a building block, it is
possible to achieve expected constant round Byzantine broadcast under strongly
adaptive and dishonest majority setting.

Permissionless protocol in the mobile sluggish model. Guo et al. intro-
duced a relaxation of the synchronous model, which was subsequently called the
mobile sluggish model [25,3]. In the mobile sluggish model, a fraction of honest
nodes, called sluggish nodes, can arbitrarily lose synchrony, but they faithfully
follow the rest of the protocol. The remaining honest nodes, called prompt nodes,
are synchronous and faithfully follow the protocol. Additionally, sluggishness can
be mobile, that is, any honest node can become sluggish over the protocol ex-
ecution, and if a sluggish node becomes prompt by regaining synchrony, it will
receive all the backlogged messages. This model is stronger than the partially
synchronous and asynchronous model but weaker than the synchronous model.
Pass and Shi showed that it is impossible to achieve permissionless consensus in
a partially synchronous or asynchronous network [37]. Unfortunately, Nakamoto
consensus is vulnerable to consistency violations even in the mobile sluggish
model, as we show in this work. Specifically, even a single mobile sluggish fault
can effectively reduce the collective mining rate of honest nodes by half!

One way to defend against a mobile sluggish adversary is to let an honest
block winner simply time-lock encrypt the message before sending it, and other
honest nodes time-lock encrypt a decoy to distract the adversary from spotting
the block winner. Since the adversary cannot learn the contents of the puzzle
without spending sufficient time, by setting the TLP duration slightly greater
than the round duration, the adversary is now forced to corrupt or deliver the
message randomly. At the end of the round, honest nodes can batch solve the
TLPs they received and update their chains. Unfortunately, no prior TLP with
batch solving works in this application, due to the requirements and challenges
in the permissionless setting: we cannot rely on a trusted setup [39,33,43], we do
not know the number of users in the network a priori, and we do not want to
blowup the round [39] and communication complexity [33,43,44].

1.1 Our Contributions

We give the first TLP construction (§4) that simultaneously achieves:
• Transparent Setup: Requires a one-time transparent (public-coin) setup.

• Batch Solving : Supports batch solving of any polynomial number of puzzles
even after puzzle generation, and the size of individual puzzles is independent
of the number of puzzles to be batched.
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Our construction is based on Indistinguishability Obfuscation (IO) [21] where
users’ puzzles are obfuscated programs. We employ new techniques to achieve
compactness in the puzzle size while supporting unbounded batch sizes. Even
though our construction is far from being practically efficient, our construction
crucially shows that there are no fundamental barriers from achieving a TLP
with the above properties and lays a blueprint for future work to instantiate our
new techniques with more efficient tools. In §2, we briefly explain why existing
techniques for TLP fail to achieve the desired properties, along with giving a
brief overview of the key techniques used in our TLP scheme.

We use our TLP construction as a fundamental building block and overcome
other challenges to solve two longstanding open problems in consensus:

1. Round-efficient Byzantine broadcast: In the years of distributed con-
sensus research, we present (§5) the first expected constant round Byzantine
broadcast under strongly adaptive and corrupt majority setting. To realize
our result, we develop a generic compiler that uses any batch solving TLP
construction to convert any broadcast protocol secure against a weakly adap-
tive adversary [46] into a broadcast protocol secure against a strongly adaptive
adversary in a round preserving way, which could also be of independent inter-
est. With our TLP, this compiler is additionally communication preserving.
We formally prove the security (Thm. 3) of our compiler in the programmable
random oracle (RO) model.

2. Permissionless protocol in the mobile sluggish model:We first show an
attack to illustrate that Nakamoto consensus is not secure even in the mobile
sluggish model (§6.1). We then present a proof-of-work based permissionless
protocol (§6.3) which does not assume that the network is synchronous or all
honest messages arrive on time. To the best of our knowledge, this is the first
work to show that it is possible to achieve consensus in the permissionless
setting even after relaxing the standard synchrony assumption! To do this,
we develop a novel proof-of-work based decoy mechanism that uses TLPs to
defend against a mobile sluggish adversary that can arbitrarily delay a fraction
of honest messages. We formally analyze our protocol to prove that it achieves
consistency and liveness in the extended version of our paper [42]. Specifically,
we show that our protocol realizes the standard properties namely, chain
growth, chain quality, and common prefix [42].

1.2 Related Work

Time-lock puzzles. Bitanski et al. [8] proposed a different approach to con-
struct TLPs, assuming the existence of succinct randomized encodings [7] and
non-parallelizable languages. Similar to RSW puzzles, during solving each puzzle
has to be solved individually to obtain their solutions. Liu et al. [32] combine
(extractable) witness encryption [22] and a public reference clock like the Bit-
coin blockchain. In their construction, one can batch open many puzzles as the
blockchain reaches a certain height as the computational effort is shared by the
entire blockchain network in mining new blocks. Their construction relies on
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Succinct Non-Interactive Argument of Knowledge (SNARKs) [6] and thus non-
falsifiable assumptions. Our construction on the other hand does not require such
assumptions and does not rely on a global reference clock like a blockchain. Mala-
volta and Thyagarajan introduced Homomorphic TLPs [33]. Their constructions
allowed homomorphic function evaluations to be performed on puzzles to obtain
a single puzzle that embeds the function of all the original solutions. However,
all constructions from [33] (including their fully homomorphic TLP) and [43]
do not support unbounded batching of puzzles and require structured reference
string generated using a trusted setup. Thyagarajan et al. [44] proposed a Class
group based construction that gets rid of the trusted setup and only requires a
transparent public-coin setup. In Table 1, we compare with prior constructions.

Table 1: Comparison with other batch TLP schemes. λ is the security parameter and
T is time hardness parameter. Compactness of puzzles here refers to the size of puzzles
being independent of the batch size.

Scheme
Transparent

setup
Unbounded
batching

Compact
puzzles

One-time Setup
time

Practical
efficiency

RSA-based [43,33] ✗ ✗ ✗ O(log(T), λ) ✓

Class-groups based [44] ✓ ✗ ✗ O(T, λ) ✓

IO-based (This work) ✓ ✓ ✓ O(T, λ) ✗

Recently, Burdges and Feo [11] proposed a related but a new notion called
delay encryption. On a high level, users encrypt their messages to some common
previously unpredictable identity ID using an Identity-Based Encryption (IBE)
scheme. The decryption key for the identity ID can be derived by anyone but
the derivation is a delayed operation, meaning that it takes time T to derive
the key. We can batch decrypt several encryptions provided they are w.r.t. to
the same ID. The drawback of their construction is the requirement of a trusted
setup which is considered a strong assumption in the applications of our inter-
est. Encryption-to-the-future is a closely related primitive, however, unlike our
construction prior works either use a public bulletin (like a blockchain) or a
committee of users with an honest majority [12,19].

Strongly adaptive Byzantine broadcast. Wan et al. proposed the first ex-
pected sub-linear round protocol in the strongly adaptive setting using Public-
Key Infrastructure (PKI) and TLPs [45]. Subsequently, Cohen et al. [16] ex-
plored the feasibility of fair broadcast in the strongly adaptive setting for both
property-based and simulation-based definitions. However, our focus is on achiev-
ing expected constant-round BB under strongly adaptive and dishonest majority
setting. We relate to other works in the extended version our paper [42].

Protocols in the mobile sluggish model. Guo et al. [25] first introduced
the mobile sluggish model as “weakly synchronous” model and showed that
it is impossible for a Byzantine broadcast protocol to tolerate majority faults
(Byzantine or sluggish). Subsequently, Abraham et al. presented a Byzantine
Fault Tolerant blockchain protocol that can tolerate minority corruptions in
the mobile sluggish model [3]. Kim et al. [30] observed that many proof-of-
stake protocols, such as Dfinity [26], Streamlet [14], OptSync [41], can support
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mobile sluggish faults. These prior techniques heavily relied on using messages
(votes) from a majority of the nodes (certificates) to establish communication
with sluggish nodes and ensure safety of the protocol. Since Nakamoto consensus
does not rely on such certificates, their techniques do not apply in our setting.

Nakamoto style protocols. Prior works can be categorized based on the flavor
of synchrony used to analyze Nakamoto consensus. In the lock-step model of syn-
chrony, Garay et al. formally analyzed Nakamoto consensus [20]. Subsequently,
Pass et al. and Kiffer et al. showed that the Nakamoto consensus is secure even
in the non-lock-step synchrony model where the message delay is bounded and
the time proceeds in discrete rounds [35,20,29,48]. Ren discarded the notion of
discrete rounds and proved the security of Nakamoto consensus in the contin-
uous model [38]. Even parallelly composed Nakamoto protocols are also in the
lock-step model of synchrony [4,47]. Unfortunately, all these analyses assume
that any honest message reaches other honest nodes in ∆ time units regardless
of the flavor of synchrony. Our analysis is in the mobile sluggish model, which
assumes that a fraction of honest nodes can violate the ∆-assumption. However,
the prompt nodes in our setting are assumed to be in lock-step synchrony model.

Network-adversary lower bounds and impossibilities. Abraham et al.
showed that a sub-quadratic protocol could not be resilient against a strongly
adaptive adversary that can perform after-the-fact removal [2]. In Nakamoto
consensus, delaying an honest block has the same effects as deleting the block.
For example, if a newly mined block is delayed for a sufficiently long time, it
could end up as an orphan block, which eventually gets pruned after the main
chain stabilizes. Moreover, sluggishness can be mobile, thus making the sluggish
adversary more powerful than the strongly adaptive adversary. Pass and Shi
showed that it is impossible to achieve permissionless consensus in the partially
synchronous/asynchronous network [37]. In these network models, the adversary
can arbitrarily partition the honest nodes. However, in our setting, the adversary
can create only minority partitions. Thus, this impossibility does not apply.

2 Technical Overview

We give an overview of our TLP construction that supports batch-solving an
unbounded number of puzzles and protocols that use our TLP construction to
tolerate network-level adversaries in the BB and Nakamoto consensus.

2.1 Time-Lock Puzzles with Batch Solving

Bounded batching of TLPs. Before delving into the specific of our construc-
tion, we show how standard techniques [33,44] readily give a construction of TLP
with bounded batched solving, i.e., where the number n of batched solutions is
fixed at puzzle generation time. Given a Linearly Homomorphic TLP scheme
LHP with homomorphism over Zq and a large enough q, we can homomorphically
evaluate the packing algorithm. In more detail, we are given n puzzles Z1, . . . , Zn
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(of the LHP scheme) each encoding λ-bit values with timing hardness of each
puzzle being T. To batch solve these puzzles, we first homomorphically evaluate
the linear function: f(x1, . . . , xn) =

∑n
i=1 2

(i−1)·λ · xi.
The resultant evaluated puzzle Z∗ is then solved in time T to obtain all the

n values where each of these values were originally encoded as λ-bit values. Im-
portantly, this means that the bit-representation of the plaintext space must be
large enough to accommodate all n-secrets, i.e., log(q) ≈ n ·λ. Since the domain
has to be fixed at the time of puzzle generation, this means that each puzzle
scales linearly with n. In settings with n parties, where each party generates a
puzzle and broadcasts it to the other parties, the total communication is O(n3),
assuming a total of O(n2) communication for a broadcast of a single bit and
ignoring factors that depend on λ.

Unbounded batching? The question that we set out to answer is whether
it is possible to construct a TLP that supports unbounded batch-solving. One
approach to do that is to “defer” the choice of the plaintext space at the solving
time, so that the solver can select the appropriate domain, depending on how
many puzzles need to be batched. A naive idea is to define a program P that, on
input the batch size n, outputs a LHP puzzle Z embedding the user’s message m
and where the message space is sufficiently large to accommodate packing of n
puzzles. This solution is clearly insecure as it reveals m in the plain, so to amend
this we obfuscate the program P̃ := iO(P), using indistinguishability obfuscation
(IO) [21,27]. Setting a super-polynomial upper bound on n ≈ 2ω(log(λ)) allows
one to batch any polynomial number of puzzles.

Unfortunately, this simple construction runs into issues when proving se-
curity. A natural strategy when proving security would be to hybrid over all
possible n, hardwire the corresponding puzzle in the description of the circuit
and the swap it with a puzzle encoding a fixed string (say 0) appealing to the se-
curity of the TLP. However it is not hard to see that this would quickly run into
issues: As n grows to super-polynomial, the size of the corresponding puzzle, and
consequently of the obfuscated circuit, would also be super-polynomial. This is
not only an issue of the security proof, since the actual obfuscated circuit must
be padded to the maximum size of the circuits that is defined in the analysis.
To get this strategy to work, our construction would yield a super-polynomial
size puzzle!

Our solution. To understand our solution, we first discuss a way to circumvent
the above issue. We change the output of the obfuscated circuit to output the n
dimensional vector (0, . . . ,m, . . . , 0), where m is inserted in the i-th slot, masked
by the output of a puncturable pseudorandom function (PRF) F and a LHP
puzzle Z encoding the PRF key k.

0
...
m
...
0

+


F(k, 1)

...
F(k, i)

...
F(k, n)

 =


F(k, 1)

...
F(k, i) +m

...
F(k, n)


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This structured solution allows us to solve the proof problem by puncturing
each position individually, thereby avoiding an exponential blow-up in the size
of the obfuscated circuit. To solve this puzzle, the solver can arrange the various
masked plaintexts (from other obfuscated circuits of other users) diagonally, and
sum up all the results, to obtain

F(k1, 1) +m1

F(k1, 2)
...

F(k1, n)

+


F(k2, 1)

F(k2, 2) +m2

...
F(k2, n)

+ . . .+


F(kn, 1)
F(kn, 2)

...
F(kn, n) +mn


Here ki and mi are the PRF key and message, respectively, of the i-th obfuscated
program. However at this point it is not clear how to batch solve the resulting
puzzles, since each party will use an independent PRF key ki. This means that
we shifted the problem from recovering the n messages to recovering n PRF
keys, bringing us back to square one. Our last idea is to use instead a key-
homomorphic PRF F. Assuming a suitable instantiation [10], we have the above
expression evaluate to

=


∑

i F(ki, 1) +m1∑
i F(ki, 2) +m2

...∑
i F(ki, n) +mn

 ≈

F
(∑

i ki, 1
)
+m1

F
(∑

i ki, 2
)
+m2

...

F
(∑

i ki, n
)
+mn


We also have a LHP puzzle from each party encoding ki. The solver can now add
all keys homomorphically and solve the resulting LHP puzzle in time T to obtain∑

i ki. Once the key is known, the solver can simply unmask all the values in
the above vector by evaluating the PRF at points (1, . . . , n) using the key

∑
i ki.

Subtracting the output yields the vector of n plaintexts. Note that in the full
construction, the index i for the puzzle of a user is not chosen during puzzle
generation, but is assigned during puzzle solving through some deterministic
rule.

This gives an outline of our construction. In the actual scheme, extra care
is needed to match the modulus of the TLPs with the key space of the PRF,
to set the parameters to account for the imperfect homomorphism, and deal
with the lack of imperfect correctness of punctured keys in the proof (see §4 for
more details). Notice that the size of each puzzle is dominated by the obfuscated

program P̃, which can be implemented to be of size logarithmic in n (the batch
size). Therefore, in a multi-party setting, we get a total communication of Õ(n2)
assuming O(n2) communication for single bit broadcast and ignoring factors that
depend on λ.

2.2 Application 1: Efficient Byzantine Broadcast

Byzantine broadcast is a classical problem in distributed consensus, where a
designated sender holds a bit b and wants to transmit b to all n nodes in the
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presence of t faults. A BB protocol is secure if it can guarantee consistency
(all honest nodes output the same bit) and validity (if the designated sender is
honest, all honest nodes output the designated sender’s input b).

With increasing applications for BB (cryptography, blockchains, etc.), we
study the round-efficiency of BB under the dishonest majority setting. Prior
BB protocols in the dishonest majority setting can broadly tolerate: (1) weakly
adaptive or (2) strongly adaptive adversary. Both strongly and weakly adaptive
adversary can corrupt honest nodes on the fly. But, a weakly adaptive adversary
cannot perform after-the-fact removal.

Despite decades of study, the state-of-art round-efficient BB in the dishonest
majority is in the weakly adaptive setting [46]. Thus, it raises the question:

Is it possible to achieve an expected constant-round Byzantine broadcast
under strongly adaptive and corrupt majority?

We affirmatively answer this using PKI, RO, and any batch solvable TLP con-
struction. Our solution is a generic round preserving compiler that can convert
any weakly adaptive BB protocol into a strongly adaptive one. Thus, our com-
piler can be efficiently realized using the batch solvable TLP constructions
based on RSA or Class-groups [44,43]. With our batch solvable TLP (§4.3), our
compiler is additionally communication preserving as well!

The key ingredient in our compiler is that we use TLPs to hide the contents
of the messages sent by the underlying protocol so that the strongly adaptive
adversary cannot learn the contents of any message before honest nodes receives
it. Prior works use the RSW puzzles to defend against a strongly adaptive ad-
versary [45,16]. But, due to the inability to batch solve RSW proofs, opening all
puzzles collectively adds an overhead of polylogarithmic rounds to any proto-
col [45]. An alternate approach is to use batch solvable TLPs defined in [44,43] to
remove the polylogarithmic communication overhead incurred by RSW puzzles.
But this increases communication complexity by a linear factor since prior batch
solvable TLPs are not compact. Since our TLP is compact and batchable, we can
solve all puzzles in one round without increasing the communication complexity.

Even though TLPs can prevent the adversary from inspecting the contents
of the message, the primary challenge is in proving that the compiled protocol
is secure against an adversary that can perform after-the-fact removal. This is
because TLPs, apart from hiding the message contents for T time units, also
serve as a commitment to the message inside the puzzle, which prevents the
simulator from simulating the honest nodes without knowing the actual contents
of the puzzle! Cohen et al. encountered a similar problem in the context of
fair BB and proposed a non-committing TLP to overcome this challenge [16,
Theorem 5].

Non-committing TLPs. Informally, it allows the simulator to equivocate a
TLP. That is, the simulator first generates and sends a “fake” TLP to the net-
work, which can be later “opened” be to any message. Thus, when the simulator
is asked to explain the contents, it programs the RO to open the desired message.
In §4.3, we show how to achieve this property with our TLP construction.
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Compiler overview. Abstractly, in a weakly adaptive protocol Πbb−wa, a node
performs three basic steps: In every round, (1) receives the messages sent by
other nodes, (2) performs the state transition based on the messages received
and computes the messages to send, and (3) sends the messages to other nodes.
Our compiler interleaves each step of Πbb−wa with TLP operations to obtain a
strongly adaptive protocol, Πbb−sa.

In a bit more detail, before sending a message in the compiled Πbb−sa, a
node uses non-committing TLPs to encrypt the message it wants to send and
computes the puzzle with proof of well-formedness of the puzzle. Thus, instead
of sending the plaintext in Πbb−wa, a node in Πbb−sa sends the puzzle, ciphertext,
and the proof of well-formedness to other nodes. When a node receives puzzles,
ciphertexts, proofs of well-formedness from the network, instead of opening one
puzzle at time, Πbb−sa uses the batchable TLP proposed in this work to obtain
all the solutions simultaneously without incurring additional round complexity
or communication complexity to open all the puzzles. Thus, after opening all the
puzzles, a node in Πbb−sa invokes the state transition function just like a node in
Πbb−wa. This process is repeated for every round. We defer the details to §5.2.

2.3 Application 2: Permissionless Consensus in the Mobile Sluggish
Model

Nakamoto’s protocol, used in Bitcoin, achieves consensus over the Internet in
a permissionless setting, where: any node can join and leave the system at any
time, the exact number of participating nodes is unknown, and the nodes have to
communicate over unauthenticated channels. However, for security, the protocol
assumes that the network is synchronous – all honest messages get delivered to
one another within a known upper bound on time, ∆ units.

Unfortunately, assuming that an Internet scale protocol is synchronous is
excessively optimistic. Moreover, Pass and Shi [37] showed that it is impossible
to achieve permissionless consensus in an asynchronous or even in a partially
synchronous network [5], which are relaxations of the synchronous model. Thus,
to deploy the protocol in the real-world, the protocol designers are compelled to
choose a loose upper bound ∆ as the network delay to accommodate nodes with
slow network.

In this work, we relax the standard synchrony assumption and study Nakamoto
consensus under the mobile sluggish model [3,25]. For Internet scale protocols,
the sluggish model is a pragmatic trade-off between the synchronous model and
partially synchronous/asynchronous model. Thus, we ask the following question:

Is it possible to achieve consensus in a permissionless setting
in the presence of mobile sluggish faults?

We affirmatively answer this question by proposing a protocol that uses our TLP
construction from §4 as a fundamental building block to show that it is possible
to achieve consistency (any two prompt chains can differ only in the last few
blocks) and liveness (every prompt node eventually commits all transactions)
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even in the presence of mobile sluggish faults.
In this subsection, we show how to adapt the Nakamoto consensus to defend

against a mobile sluggish adversary using the our TLP. In our protocol, we use
the following ideas: (1) All honest nodes time-lock encrypt any message they
transmit, (2) all honest nodes send decoys to protect the block winner from
getting caught by the adversary, (3) restrict the adversary from flooding with
decoys, and (4) ignore malformed puzzles sent by the adversary.

Formally, we define a round, a super-round, and duration of a round in §6.2
and §6.3. However, as a warm-up, we present strawman solutions to illustrate
the inadequacies of the well-known approaches.

Strawman solutions. The first straightforward solution is to use RSW puzzles
to time-lock encrypt any message with a duration equal to the network delay
before transmitting across the network [39]. Unfortunately, this approach does
not work for the following reasons:

• Recall that in a protocol like the Nakamoto consensus, only the block winner
sends a message to the network. Thus, the adversary can easily stop the one
message transmitted, whether or not the message is encrypted.

• Say the other honest nodes send out time-lock encrypted dummy messages,
which act as a decoys to protect an honest block winner from getting caught.
Unfortunately, the honest parties have to open all the puzzles to find the
winning block. Thus, the honest parties either have to open all the puzzles
individually or open them using the distributed-solve primitive proposed by
Wan et al. [45, Section 4.2]. Both these approaches increase the round com-
plexity of the protocol by linear and polylogarithmic rounds, respectively.

An alternate approach is to use TLPs with batch solving property defined
in [44,43], but we would suffer from large communication costs and fixed batch
size problem as explained before. Instead, we can now use our TLP that gets rid
of the these issues. Below we give an overview of other challenges we encounter
in designing our permissionless consensus protocol.

Decoys, spam prevention, and malformed puzzles. Since the Nakamoto
consensus is in the permissionless setting, there are no identities to tackle Sybil
attacks. This setting raises an important question: how to stop the adversary
from spawning multiple identities to send decoys? We resort to proof-of-work to
tackle the Sybil attack!

Say the difficulty threshold to mine a block is T , then we set the threshold
to mine a decoy as Tc, such that T < Tc. Each RO query made by a node
simultaneously tries to mine a block and a decoy. That is, say h is the output
of the hash function. If h < T , then a block is mined, else if T ≤ h < Tc,
then a decoy is mined. This is the “2-for-1 POW” trick introduced by Garay et
al. [20,36,4]. The parameter Tc presents an interesting trade-off: Tc should be
sufficiently high so that honest nodes mine enough decoys whereas the adversary
should not be able to overwhelm the honest nodes with many decoy puzzles.

One of the challenges is that nodes do not know the exact number of decoys
mined at a given time. However, since our TLP construction can batch a variable
number of puzzles, nodes can flexibly batch puzzles on demand. Observe that
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Tc restricts the number of decoys that the adversary (and the honest nodes)
can mine. But, this does not stop the adversary from flooding the honest nodes
with malformed puzzles. Batching malformed puzzles along with honest puzzles
prevents a node from obtaining the solutions to honest puzzles. To circumvent
this problem we equip our TLP with a verifiability property that allows an honest
node to reject a puzzle that is not well-formed according to the puzzle generation
algorithm. Thus, a valid proof guarantees that the plaintext can be obtained by
solving the puzzle.

Mine phase and solve phase. Since the mining process is stochastic, the
arrival times of a decoy and a block are random. Say if an honest node sends
the puzzle as soon as it finds the block, it is unlikely that the rest of the honest
nodes will also be sending the decoy puzzles at the same time. If enough honest
nodes do not provide “cover” to the block winner, then the probability of the
adversary guessing the block winner is high. However, if all honest nodes wait
until a pre-determined time to send the respective puzzles, then block winner
will have the best chance of not being detected by the adversary.

In order to capture this intuition, we have two phases in our protocol:

– Mine phase: All nodes spend a sequence of m rounds mining a block or decoy
without sending or receiving any messages.

– Solve phase: This phase begins as soon as the mine phase ends and consists
of two rounds. In the first round, nodes send and receive the puzzles they
have mined in the mine phase, and check the well-formedness of the received
puzzles. In the second round, nodes will batch solve the TLPs to find the
block, if any, and update the longest chain.
We generically denote the duration of the solve phase as D rounds. If one
employs RSW puzzles and the distributed-solve primitive fromWan et al. [45]
instead of our TLP construction, then D can be thought of as the number of
rounds required to perform distributed-solve procedure. However, when our
protocol is instantiated with our TLP construction we have D = 2.

Thus, the duration of a super-round is (m+D) rounds.

Putting it all together. In summary, by using our TLP, the decoy mechanism,
and super-rounds, our protocol works as follows: Every honest node performs the
following steps in every super-round: (1) Receive transactions from the environ-
ment, (2) choose the longest chain it has seen so far and break ties arbitrarily,
(3) mine for m rounds (mine phase), and (4) solve for D rounds (solve phase)
and update the longest chain. We defer the details of the protocol to §6.3.

3 Cryptographic Background

We denote by λ ∈ N the security parameter. We say that a function µ is neg-
ligible if it vanishes faster than any polynomial. The notation [n] denotes a set
{1, . . . , n}. Background and notations relevant to the two applications are de-
ferred to §6.2 and §5.1, respectively.
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3.1 Time-Lock Puzzles

In the following we give a definition for the main object of interest of this work,
namely time-lock puzzles (TLPs) [39]. The syntax follows the standard notation
for TLPs except that we consider an additional setup phase that depends on the
hardness parameter but not on the secret.

Definition 1 (Time-Lock Puzzles). Let S be a finite domain. A time-lock
puzzle (TLP) with solution space S is tuple of four algorithms (PSetup,PGen,
PSol) defined as follows.
– pp ← PSetup(1λ,T) a probabilistic algorithm that takes as input a security

parameter 1λ and a time hardness parameter T, and outputs public param-
eters pp.

– Z ← PGen(pp, s) a probabilistic algorithm that takes as input public param-
eters pp, and a solution s ∈ S, and outputs a puzzle Z.

– s← PSol(pp, Z) a deterministic algorithm that takes as input public param-
eters pp and a puzzle Z and outputs a solution s.

Definition 2 (Correctness). A TLP scheme (PSetup,PGen,PSol) is correct if
for all λ ∈ N, all polynomials T in λ, all secrets s ∈ S, and all pp in the support
of PSetup(1λ,T), it holds that: Pr [PSol(pp,PGen(pp, s)) = s] = 1.

Security requires that the solution of the puzzles is hidden for all adversaries
that run in (parallel) time less than T.

Definition 3 (Security). A TLP scheme (PSetup,PGen,PSol) is secure with
gap ε < 1 if there exists a polynomial T̃(·) such that for all polynomials T(·) ≥
T̃(·) and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the
depth of A2 is bounded from above by Tε(λ), there exists a negligible function
µ(·), such that for all λ ∈ N it holds that

Pr

 b← A2(pp, Z, st)
∧ (s0, s1) ∈ S2

:
pp← PSetup(1λ,T(λ))
(st, s0, s1)← A1(1

λ, pp)
b← {0, 1}, Z ← PGen(pp, sb)

 ≤ 1

2
+ µ(λ)

Homomorphic Time-Lock Puzzles. We also recall the definition of homomorphic
TLPs [33], which allows one to compute functions on secrets homomorphically,
without solving the puzzles first.

Definition 4 (Homomorphic TLPs). Let C = {Cλ}λ∈N be a family of circuits
(together with their respective representations). A TLP scheme (PSetup,PGen,
PSol) is homomorphic if the syntax is augmented with the following interface:
– Z ′ ← PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as input a

circuit C ∈ Cλ, public parameters pp and a set of n puzzles (Z1, . . . , Zn) and
outputs a puzzle Z ′.

Homomorphic TLPs must satisfy the following notion of evaluation correctness.
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Definition 5 (Evaluation Correctness). Let C = {Cλ}λ∈N be a family of
circuits (together with their respective representations). An homomorphic TLP
scheme (PSetup,PGen,PSol,PEval) is correct (for the class C) if for all λ ∈ N, all
polynomials T in λ, all circuits C ∈ Cλ and respective inputs (s1, . . . , sn) ∈ Sn,
all pp in the support of PSetup(1λ,T), and all Zi in the support of PGen(pp, si),
the following conditions are satisfied:
– It holds that

Pr [PSol(pp,PEval(C, pp, Z1, . . . , Zn)) = C(s1, . . . , sn)] = 1.

– There exists a fixed polynomial p(·) such that the runtime of PSol is bounded
by p(λ,T) and the runtime of PEval is bounded by p(λ).

We require homomorphic TLPs specifically that support homomorphic evalu-
ations of linear functions over the puzzles, that are secure against depth bounded
but sub-exponential size adversaries. We have such constructions from RSA
groups [33] and Class groups with imaginary quadratic order [44]. These con-
structions are proven secure against such adversaries by conjecturing the hard-
ness of the sequential squaring assumption [33,31] against depth bounded but
sub-exponential size adversaries.

3.2 Puncturable Pseudorandom Functions

A puncturable pseudorandom function (PRF) is an augmented PRF that has an
additional puncturing algorithm. Such an algorithm produces a punctured ver-
sion of the key that can evaluate the PRF at all points except for the punctured
one. It is required that the PRF value at that specific point is pseudorandom
even given the punctured key. A puncturable PRF can be constructed from any
one-way function [24].

Definition 6 (Puncturable PRFs). A puncturable family of PRFs is a tuple
of polynomial-time algorithms (Setup,KGen,Punc,F) defined as follows.
– pp ← Setup(1λ) a probabilistic algorithm that takes as input the security

parameter 1λ and outputs public parameters pp. Public parameters pp are
taken as input in all other algorithms.

– K ← KGen(pp) a probabilistic algorithm that takes as input the public pa-
rameters pp and outputs a key K.

– Ki ← Punc(K, i) a deterministic algorithm that takes as input a key K ∈ K
and a position i ∈ X and returns a punctured key Ki.

– y ← F(K, i) a deterministic algorithm that takes as input a key K and a
string i ∈ X and returns a string y ∈ Y.

Definition 7 (Correctness). For all λ ∈ N, for all outputs K ← KGen(1λ),
for all points i ∈ X and x ∈ X \ i, and for all K−i ← Punc(K, i), we have that
F(K−i, x) = F(K,x).

We require that punctured points are pseudorandom to the eyes of any effi-
cient distinguisher.
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Definition 8 (Pseudorandomness at Punctured Points). For all λ ∈ N
and for every PPT adversaries (A1,A2) there is a negligible function µ(·), such
that

Pr

b← A2(τ,Ki, i, y) :
pp← Setup(1λ), (i, τ)← A1(pp)

K ← KGen(pp),Ki ← Punc(K, i), b← {0, 1}
if b = 0 then y ← Y, else y ← F(K, i)

 ≤ 1

2
+µ(λ).

Key Homomorphism. We also assume the existence of constructions of punc-
turable PRFs that satisfy key homomorphism [10].

Definition 9 (γ-Almost Key-Homomorphic PRF). Let function F : K ×
X → Zm

p be such that (K,+) is a group. Then the tuple (F,+) is said to be
γ-almost key-homomorphic PRF if the following two conditions hold:
– F is a (puncturable) pseudorandom function.

– For all k1, k2 ∈ K and all x ∈ X , there exists a vector e ∈ [0, γ]m such that

F(k1, x) + F(k2, x) = F(k1 + k2, x) + e (mod p).

The scheme presented in [10] satisfies (additive) key-homomorphism over Zn
q ,

which we also use in this work. Their scheme satisfies a weaker notion of cor-
rectness, which we state below.

Definition 10 (Computational Functionality Preservation). For all λ ∈
N and all PPT adversaries (A1,A2), there exists a negligible function µ(·), such
that

Pr

x∗ ← AF(K,·)
2 (1λ,Ki∗ , τ) ∧
x∗ ̸= i∗ ∧

F(K,x∗) ̸= F(Ki∗ , x
∗)

:
pp← Setup(1λ),K ← KGen(pp)

(i∗, τ)← A1(pp)
Ki∗ ← Punc(K, i∗)

 ≤ µ(λ).

For our purposes, we require the above property of the key-homomorphic
puncturable PRF from [10] to hold against super-polynomial adversaries, which
is possible assuming the hardness of LWE against super-polynomial adversaries.

3.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation (iO) for circuits from [21].

Definition 11 (iO for Circuits [21]). A uniform PPT machine iO is an
indistinguishable obfuscator for circuit class {Cλ}, if the following are satisfied:
– For all λ ∈ N, or all C ∈ Cλ, for all inputs x, we have

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For all λ ∈ N, all pairs of circuit (C0, C1) ∈ Cλ such that |C0| = |C1| and
C0(x) = C1(x) on all inputs x, it holds that the distributions {iO(λ,C0)}
and {iO(λ,C1)} are computationally indistinguishable.
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4 Time-Lock Puzzles with Batch Solving

In this section we formally present the notion and constructions for time-lock
puzzles with batched solving.

4.1 Definition

We define the notion of TLPs with batched solving. We borrow the standard
interfaces of a TLP from §3.1 and append it with an interface to allow for
batched solving of n puzzles.

Definition 12 (Batch Solving). A TLP scheme (PSetup,PGen,PSol) sup-
ports batch solving with the aid of an additional interface defined below
– (s1, . . . , sn)← BatchPSol(pp, Z1, . . . , Zn) a deterministic algorithm that takes

as input public parameters pp and puzzles Z1, . . . , Zn, and outputs solutions
s1, . . . , sn.

Definition 13 (Batch Solving Correctness). An TLP scheme (PSetup,
PGen,PSol) with batch solving interface BatchPSol is correct if for all λ ∈ N,
all polynomials T in λ, all polynomials n in λ, all solutions (s1, . . . , sn) ∈ Sn,
all pp in the support of PSetup(1λ,T), and all Zi in the support of PGen(pp, si),
the following conditions are satisfied:
– There exists a negligible function µ(·) such that

Pr [BatchPSol(pp, Z1, . . . , Zn) ̸= (s1, . . . , sn)] ≤ µ(λ).

– There exist fixed polynomials p(·), p̃(·) such that the size complexity of the
circuit evaluating BatchPSol(pp, Z1, . . . , Zn) is bounded by p(λ,T) + p̃(λ, n).

Notice that the above definition rules out trivial solutions, where you solve
the n puzzles individually and output the solutions. This is because, in this
solution the size scales with n · T, while the definition above only permits the
scale to be n+T. One can view p̃(λ, n) as capturing the time taken to read and
process the n puzzles, and returning the n solutions. The factor p(λ,T) captures
the solving of a single puzzle and itself is independent of n.

4.2 Bounded Batching of TLPs

As hinted to in §2.1, given a linearly homomorphic TLP with homomorphism
over Zq, that has a large enough message space, it was shown in [43,44] that we
can homomorphically pack several puzzles into a single puzzle using standard
techniques. Solving the single puzzle reveals the solutions to all the n puzzles
that we started out with. A crucial requirement for the above batch solving
to work is that the message space of the homomorphic time-lock puzzle must
be large enough to accommodate all the n λ-bit values. It was shown [43] that
this is indeed possible by instantiating the Paillier-based linearly homomorphic
time-lock puzzle construction from [33] in the same way Damg̊ard-Jurik [17]
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extended the Paillier cryptosystem [34]. That is, instantiate the Paillier-based
linearly homomorphic TLP from [33] with a modulus Ns instead of modulus
N2, for a large enough value s. A similar domain extension was also shown in
the settings of class groups of imaginary quadratic orders [44] that only require
a public-coin (transparent) setup.

More formally, the LHP scheme from [33] has the LHP.PSetup algorithm
output ppLHP = (T, N, g, h), where N = pq for some λ-bit primes p and q, g

is the generator of J∗N , and h := g2
T

mod N . Here J∗N denotes the elements in
Z∗N with Jacobi symbol +1. The puzzle Z embedding message m is of the form
(u, v) where

u := gr mod N and v := hr·N (1 +N)m mod N2,

with randomness r ← [N2]. The security of the scheme follows from the sequen-
tial squaring assumption [39,33]. The Damg̊ard-Jurik extension from [33,43] lets
the puzzle generation algorithm additionally choose s ∈ Z, and set the puzzle
Z := (u, v) where

u := gr mod N and v := hr·Ns−1

(1 +N)m mod Ns.

Here, the message space is ZNs−1 while the puzzle component v is in ZNs .
Consider n puzzles Z1, . . . , Zn each encoding λ-bit values with timing hard-

ness T, and each of these puzzles are of the Damg̊ard-Jurik extended form. The
LHP.BatchPSol algorithm internally evaluates the following linear function

f(x1, . . . , xn) =

n∑
i=1

2(i−1)·λ · xi

homomorphically over the puzzles using the LHP.PEval algorithm. The effect
of this evaluation is that the resultant puzzle Z∗ embeds the λ-bit values of
(x1, x2, . . . , xn). The LHP.BatchPSol algorithm proceeds to solve the resultant
puzzle Z∗ in time T to obtain the n values encoded as λ-bit values.

However, both of the above constructions only support bounded batching as
they require the size of each puzzle Zi (the v component) to scale linearly with
the maximum batch size. Also, since the domain extension factor s has to be
fixed at puzzle generation time, it determines an upper bound on the input size
of the function f and therefore the number of puzzles we can batch solve later.

4.3 Unbounded Batching of TLPs

In this section, we present a new TLP scheme with batched solving which over-
come both drawbacks of the scheme above. Namely, our new construction allows
for batching where the size of the TLPs output by puzzle generation algorithm is
independent of the number of puzzles to be batched. As a consequence, we have
unbounded batching (bounded above by a super polynomial 2ω(log λ)) meaning
that any polynomial number of puzzles can be batched with an one-time setup.

Our construction uses the following ingredients:
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- PSetup(1λ,T):

• Run ppLHP ← LHP.PSetup(1λ,T).

• Run ppF ← Setup(1λ) and ppF ← Setup(1λ).
• Return pp := (ppLHP, ppF, ppF).

- PGen(pp,m):

• Generate k ← KGen(ppF).
• Define Pm,k,pp(n, i, j) as the following circuit:a

∗ Ensure i, j ∈ [n].

∗ Compute (r, r)← F(k, (n, i)).

∗ Compute k ← KGen(ppF; r).

∗ Compute Z ← LHP.PGen(ppLHP, k; r).

∗ If j = i set c = F(k, j) + m · ⌈p/2⌋ (mod p).

∗ Else if j ≤ n ≤ N set c = F(k, j).
∗ Return (Z, c).

• Return P̃ := iO(1λ,Pm,k,pp).

- BatchPSol(pp, Z1, . . . , Zn):

• For each i ∈ [n],

∗ Parse Zi := P̃i.

∗ For each j ∈ [n], compute (Z∗
i , ci,j)← P̃i(n, i, j).

∗ Define ci = (ci,1, . . . , ci,n) ∈ Zn
p .

• Set Z∗ ← LHP.PEval(+, pp, Z∗
1 , . . . , Z

∗
n).

• Compute k∗ ← LHP.PSol(pp, Z∗).

• Compute f∗ =
(
F(k∗, 1), . . . , F(k∗, n)

)
• Compute c∗ =

∑n
i=1 ci.

• Return c∗ − f∗ rounded component-wise.

a
The circuit is padded to the maximum size of the circuits among those defined in the security
proof. We refer the reader to the end of this Section for a discussion on the size of this circuit.

Fig. 1: Our construction for TLP with unbounded batch solving.

– A linearly homomorphic TLP scheme LHP := (LHP.PSetup, LHP.PGen,
LHP.PSol, LHP.PEval) where the homomorphism is over Zq.

– A puncturable PRF (Setup,KGen,Punc,F) denoted in short by F.

– An indistinguishable obfuscator iO for circuits.

– A γ-almost key-homomorphic puncturable PRF (Setup,KGen,Punc,F) (de-
noted in short by Fi) with key space Zn

q and where the noise bound is γ such

that p = 2ω(log λ) · γ.
Let N = 2ω(log λ) denote an upper bound on the number of participants. Our
construction (PSetup,PGen,BatchPSol) is shown in Fig. 1. For simplicity we
consider the messages encoded to be in {0, 1}, and argue that its straightforward
to extend the construction for multiple bits.

A puzzle in our case is an obfuscation of the programP which has the message
m, a PRF F key k, and the public parameters pp hardwired in it. The program
P takes as input three values: n indicating number of puzzles to be batched, i
“index” of the current puzzle and j “index” of other puzzles. It is important to
note that the exact indices for each puzzle are only set later during batch solving.
Let i be the symbolic index of the puzzle being generated now (whose concrete
value will be set during batch solving). The program internally generates the
PRF key k for the key-homomorphic puncturable PRF which then is embedded
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inside the LHP puzzle Z. In case the indices i and j are the same, a ciphertext
c is set to encrypt the message m using the value F(k, j) as the masking factor.
In any other case, c encrypts 0 with F(k, j) as the masking factor. The program
returns the puzzle Z and the ciphertext c.

The batch solving algorithm in the beginning, locally indexes the n puzzles in
some order based on some rule (e.g., lexicographic ordering). We have them now
ordered (Z1, . . . , Zn) where the i-th puzzle is an obfuscated program denoted by

Zi := P̃i. Then, for all i ∈ [n], we execute the program P̃i on values (n, i, j) for
all j ∈ [n]. In the end we obtain a LHP time-lock puzzle Z∗i and ciphertexts ci,j
for each j ∈ [n]. Recall that when i = j the program P̃i sets ci,j to encrypt the
message mi (where mi is the message inside puzzle Zi), and for all i ̸= j, the
ciphertext ci,j encrypts 0. We then obtain a LHP puzzle Z∗ by homomorphically
adding the puzzles Z∗i for all i ∈ [n] and solving Z∗ returns a PRF key k∗

of the key-homomorphic puncturable PRF. We retrieve the message mj (for all
j ∈ [n]) by doing the following: (1) compute c∗j =

∑n
i=1 ci,j , (2) evaluate F(k

∗, j),

(3) set mj as the rounding of
(
c∗j − F(k∗, j)

)
. The correctness and security of

our construction is formalized in the theorems below and the formal proofs are
deferred to the extended version our paper [42].

Theorem 1. Let LHP be a linearly homomorphic TLP scheme where the homo-
morphism is over Zq, let F be a puncturable PRF, let iO be an indistinguishable
obfuscator for circuits and let F be a γ-almost key-homomorphic puncturable
PRF with key space Zn

q and where the noise bound is γ such that p = 2ω(log λ) ·γ.
If all the above primitives are perfectly correct, then the TLP scheme with batch
solving from Fig. 1 is perfectly correct.

Theorem 2. Let LHP be secure against depth Tε(λ)-bounded adversaries with
sub-exponential advantage, F be a sub-exponentially secure puncturable PRF, F be
a sub-exponentially secure γ-almost key-homomorphic puncturable PRF and iO
be a sub-exponentially secure indistinguishable obfuscator. Then, the construction
from Fig. 1 is a secure time-lock puzzle with batch solving against all depth Tε(λ)-
bounded adversaries.

Size of the obfuscated circuit. Observe that at any point in the proof, we
only hardwire information of size bounded by a fixed polynomial in λ, and in
particular independent of the number of parties. Since the size of the obfuscated
circuit must be padded to the maximum size of the circuit at any point in the
security proof, the size overhead is also independent of the number of parties.

Instantiations and Setup assumptions. We can instantiate: the linearly ho-
momorphic TLP, LHP, with the Class group based scheme from [44]. We can
instantiate the puncturable PRF F with the GGM based PRF [40,24], the iO
scheme with the scheme from [27], and the γ-almost key-homomorphic punc-
turable PRF with the scheme from [10]. Notice that the above instantiations do
not require trusted setups, thus our TLP scheme does not require a trusted setup.
However, requires a one-time transparent public-coin setup (for LHP from [44]).
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TLP runtime. The runtime of PGen is dominated by the obfuscation of the
circuit P which is polynomial in λ and size of P. Moreover, the size of P is
independent of the batch size n or the number of users. Thus, the total runtime
is polynomial in λ and size of the time-locked message. The BatchPSol involves
executing n obfuscated circuits, combining their outputs homomorphically using
LHP.PEval, and solving the resulting TLP using LHP.PSol. The runtime of the
first two operations is poly(λ, n), whereas the last operation is poly(λ, T ).

Verifiable TLPs. We can support verifiability for our puzzles where the puzzle
generator along with the puzzle also outputs a proof, that convinces a verifier
that the puzzle is well-formed. In applications of our TLP scheme (including
the ones in later sections), verifying whether a puzzle is in the support of the
PGen is paramount for the correctness (Def. 13) of batched solving to hold. To
provide such verifiability, we can add two new interfaces: PProve(Z,m, r) run
by the puzzle generator that outputs a proof π to ascertain a puzzle Z is well-
formed (with message m and randomness r), and PVer(Z, π) run by a verifier
that validates the proof w.r.t. the puzzle. In terms properties we want that a
verifier shouldn’t be convinced of a malformed puzzle and that the proof does
not help in solving the puzzle any faster. For a formal definition and a discussion
on concrete instantiations, see the extended version of our paper [42].

Non-committing TLPs. A non-committing TLP lets a simulator generate a
puzzle first and later “explain” the puzzle as committing to a message m by
opening it to reveal m. Note that a TLP is committing to the message once
the puzzle is generated. Cohen et al. [16] showed a generic approach to build
such non-committing TLPs in the programmable random oracle model (PROM)
and we can transform our TLP scheme into one that is non-committing in the
same way. The idea is to run Z ′ ← PGen(pp, x) for some random r, and the
final puzzle Z is set as Z := (Z ′, c) where c := H(r) ⊕m. The simulator when
required to equivocate Z as a puzzle embedding the message m, sets the value
H(r) := c ⊕ m on the fly, as H() is modeled as a PROM. We can modify
the construction from §4.3 by having letting PGen run as before, but output
(P̃, H(r) ⊕ m) as the final puzzle, where P̃ := iO(λ,Pr,k,pp). Specifically this
means that the PROM computation is outside the iO.

5 Application 1: Byzantine Broadcast

In this section, we present our generic compiler to transform any BB protocol
secure against weakly adaptive adversaries to one that is secure against strongly
adaptive adversaries.

5.1 Model and Definitions

In our setting, there are n nodes, numbered 1 to n, running a distributed protocol
where the identity of each node is known to one another through a PKI.

Communication model. We assume that each node has access to a shared
global clock and all parties are connected by a pairwise reliable channel. We
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consider the standard synchronous model of communication where there is a
known upper bound on the message delay (∆). The protocols are executed in
a round-based fashion, where the duration of each round is ∆ time units. Any
message sent by an honest node in a round reaches all other honest nodes by the
beginning of the next round. Also, each node has access to the functionalities:
RECEIVE and SEND. When a node u invokes SEND(m, recipients) in round r−1,
then m is delivered to recipients using the pairwise reliable channels from u by
round r. When a node u invokes RECEIVE in round r, then all messages that
were sent to u using the pairwise reliable channels by round r − 1 are returned.
The adversary can read, rearrange, insert, and drop messages between any two
nodes (if strongly adaptive). But, cannot forge signatures. Moreover, we also
assume that each round is sufficiently long to perform standard cryptographic
operations except BatchPSol and PSol.

Let P be the set of possible internal states of a node and M be the set of
possible messages that can be sent and received by a node.

Definition 14 (∆-secure Synchronous protocol). Let Fn denote the family
of transition functions such that:

Fn = {fr,u : P ×Mn → P ×Mn : u ∈ [n], r ∈ Z}

A synchronous protocol Πsync is executed by n nodes and proceeds in rounds.
In every round r, every node u ∈ [n], reads the messages addressed to it using
the RECEIVE functionality, updates its state and computes the messages to be
sent using fr,u, and sends the messages to intended recipients using the SEND
functionality.

Protocol Πsync(λ,∆)

Setup.
– Let S0,u be the initial state of node u ∈ [n]

– Generate and publish public parameters

Protocol. A node u ∈ [n], for each round r:
– Fetch messages from each sender: m := (m1, . . . ,mn)← RECEIVE()
– Compute next state and messages: (Sr+1,u,m

′ := (m′
1, . . . ,m

′
n))← fr,u(Sr,u,m)

– Send messages: SEND(m′, recipients)

Adversary model. The adversary can make at most t out of n nodes to arbi-
trarily deviate from the protocol execution, where t < n. Moreover, we assume
that the adversary controls the delivery of all the messages in the network.
– We consider a strongly adaptive adversary that can corrupt nodes on the fly

and perform after-the-fact removal.

– Whereas, a weakly adaptive adversary can only corrupt nodes on the fly, but
cannot prevent the delivery of any message that was already sent.

Additionally, we consider a rushing adversary that can inspect the messages sent
by any honest node before delivering it to other nodes. Moreover, we assume that
honest nodes can irrecoverably erase (part of) its state and memory at any time.

Computational model. All honest nodes are sequential, random access ppt,
but the adversary is a non-uniform probabilistic parallel machine with polyno-
mially bounded parallelism running in polynomially bounded parallel steps.
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5.2 Protocol

For an n node protocolΠ, we define a deterministic function called output deriva-
tion function for each node u ∈ [n]. This function allows a node to compute its
output bit for Π based on the transcript of public messages exchanged by the
participants and public parameters.

Definition 15 (Output derivation function). Let Π be an n node protocol
and Y denote the public transcript space of the protocol Π, then Gn denote the
family of output derivation functions such that:

Gn = {gu : Y → {0, 1} : u ∈ [n]}

Functions in Gn, despite being deterministic, may not be efficiently computable
without a party’s keys.

We recall the definition of a secure Byzantine broadcast protocol below.

Definition 16 ((∆, t)-secure Byzantine broadcast). Let λ be the security
parameter, ∆ be the known upper-bound on the network delay, and node d ∈ [n]
be the designated sender. A protocol Π executed by n nodes with specified family
of functions Gn, where the designated sender holds an input bit b ∈ {0, 1}, is a
(∆, t)-secure broadcast protocol tolerating at most t corruptions if it satisfies the
following properties with probability 1− negl(λ):
• Consistency: If two honest nodes output bit bi and bj respectively, then bi = bj.

• Validity: If the designated sender is honest, then every honest node outputs
the designated sender’s input bit b.

• Termination: Every honest node u outputs a bit from gu(transcript), where
transcript is the transcript from running Π.

If the protocol can tolerate corruptions by a strongly adaptive and a weakly adap-
tive adversary, then it is strongly adaptive (∆, t)-secure and weakly adaptive
(∆, t)-secure, respectively.

Let Πbb−wa be a weakly adaptive protocol, we formally describe Πbb−sa below:

Protocol Πbb−sa(λ,∆,Πbb−wa,Gn)
Text in gray indicates the instructions from Πbb−wa.

Setup.
– Let S0,u be the initial state of node u ∈ [n]

– For each round r, pp← PSetup(1λ, ∆)

– Generate and publish public parameters

Input.
– Let b ∈ {0, 1}
– If designated sender, d, then S0,d := S0,d ∪ b

Protocol. A node u ∈ [n], for each round r:
– Fetch messages from each sender: m := (m1, . . . ,mn)← RECEIVE()
– Parse message mv as puzzle Zv, ciphertext Cv, proof of well-formed πv for all v ∈ [n]

– Check πv ’s to verify if Zv ’s are well-formed by PVer(pp, Zv, πv)

– Extract the individual solutions (s1, . . . , sn)← BatchPSol(pp, Z1, . . . , Zn)

– Decrypt Cv ’s, set mv := Cv ⊕H(sv) for all v ∈ [n], and m := (m1, . . . ,mn)

– Set internal state for round r as Sr,u := mu

– Compute next state and messages: (Sr+1,u,m
′ := (m′

1, . . . ,m
′
n))← fr,u(Sr,u,m)

– Pick s ∈ S, Z ← PGen(pp, s), and compute π to prove that Z is well-formed.

– Reassign m′
u := (Z, Sr+1,u ⊕H(s), π) and m′

v := (Z,m′
v ⊕H(s), π) for all v ∈ [n] \ {u}
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– Set output messages as m′ := (m′
1, . . . ,m

′
n) and erase Sr+1,u, s, π

– Send messages: SEND(m′, recipients)

Output.
– Let transcript be the public transcript of the protocol execution

– Return b← gu(transcript)

Theorem 3. Let Πbb−wa be a weakly adaptive (∆, t)-secure Byzantine broad-
cast protocol with output derivation functions Gn and Πbb−sa be the compiled
strongly adaptive (δ, t)-secure protocol with output derivation functions Gn, such
that ∆ = 2δ. If an A violates Πbb−sa with probability at least p, then there exists
an adversary B that violates Πbb−wa with probability at least p.

Analysis. Suppose ∃ an A that can break Πbb−sa, then we build another adver-
sary B that breaks Πbb−wa. At a high level, we show that every attack by A on
Πbb−sa can be translated to an attack on Πbb−wa. Observe that B is as powerful
as A, except B cannot perform after-the-fact removal. Thus, to translate the
after-the-fact removal, B must know whether A delivers or removes messages in
Πbb−sa. B can know this only by waiting for δ steps to see A’s actions! Hence, B
starts the simulation δ steps ahead of Πbb−wa. But, when the simulation begins,
B doesn’t yet have the real-world messages from Πbb−wa that can be copied to
Πbb−sa. So B sends non-committing TLPs to equivocate the contents of the puz-
zle (possible because of PROM). When A solves the TLP and queries the RO,
actual messages from Πbb−wa will be available, and B programs the RO to open
the corresponding message from Πbb−wa. Since the duration between when the
messages are sent and the contents learned by the honest nodes should be the
same in the simulation and the real-world, we set ∆ = 2δ. Thus, asymptotically,
Πbb−sa is round preserving (as ∆ = 2δ) and communication preserving (due
to compactness of our TLP). We present the detailed analysis in the extended
version of our paper [42].

Expected constant-round Byzantine broadcast. Wan et al. [46] proposed
an expected constant round BB protocol under a weakly adaptive and dishonest
majority setting. Thus, using the compiler (§5.2), we can obtain resilience in the
strongly adaptive setting!

6 Application 2: Nakamoto Consensus Secure Against a
Mobile Sluggish Adversary

In this section, we show an attack against the Nakamoto consensus in the mobile
sluggish model and how to secure the Nakamoto consensus using our TLP.

6.1 Attack on Nakamoto Consensus in the Mobile Sluggish Model.

In Nakamoto consensus, a chain forks when two distinct blocks extend the same
parent block. Forks are inherently bad for security as it splits the honest mining
efforts across the two branches of the tree. A benign example is when two blocks
are mined less than ∆ time units apart. Since the messages take ∆ to reach
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others, the winner of the second block would not have been aware of the previous
block. Nakamoto consensus is parameterized in a way that the inter-arrival time
between two blocks is much longer than the time to transmit between any two
farthest nodes in the system. The security threat posed by forks is the exact
reason the Nakamoto consensus is secure only in the synchronous model.
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Fig. 2: Double spend attack: This plot depicts average block arrival times. Assuming
52 honest nodes (51 prompt + 1 sluggish) and 48 adversarial nodes, the average inter-
arrival time of honest blocks and adversarial blocks in Bitcoin is 19.2 and 20.8 minutes,
respectively. Observe that over 19.2 × 2 minutes, even though the honest nodes have
mined two blocks, due to sluggishness, the honest chain has grown only by one block.

The mobile sluggish adversary, whenever an honest node mines a block, can
simply delay the block propagation until another block extends the same header
(see Fig. 2). At this point, the adversary can release both the blocks simultane-
ously to split the honest mining efforts. The adversary can sustain the forks as
long as it has sufficient sluggish budget. Since the adversary is responsible for
message delivery and sluggishness can be mobile, it could perform this attack re-
peatedly. In the meantime, adversarial nodes will continue to extend their chain
in private. Using this strategy, even a single mobile sluggish fault has the ability
to reduce the honest mining rate by half ! Thus, an honest majority assump-
tion may not be sufficient to guarantee security in this model. We elaborate this
attack in the extended version of our paper [42].

6.2 Model

Let n be the total number of nodes, d be the maximum number of sluggish
nodes, and t be the maximum number of adversarial nodes. Thus, there are at
least n−t honest nodes and at least n−d−t prompt nodes. We adopt the formal
framework from Garay et al. [20], a model inspired by the prior formulations of
secure multiparty computation [13].

Sluggish network model. We assume that the time proceeds in rounds. More-
over, we assume that the adaptivity of the adversary is static. That is before the
protocol execution, the adversary picks the set of nodes to corrupt. Moreover,
we also assume that every node has access to a shared global clock and a pairwise
reliable channel between any two parties.

The standard (lock-step) model of synchrony assumes that any message sent
in round r reaches other nodes by r+1. We consider a generalization of this model
called the mobile sluggish model. In this model, if a node is prompt at round r,
then any message sent by the node in round ≤ r reaches all the nodes that are
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prompt in round r + 1 by round ≤ r + 1. Due to mobility of the sluggishness,
set of prompt nodes in any two adjacent rounds need not be the same.

The adversary is responsible for message delivery. Thus, an adversary can
reorder or delay messages (according to prompt and sluggish delay requirement),
but cannot delete messages. Moreover, any message sent to a prompt node by
a prompt or an adversarial node reaches all prompt nodes. We can relax this
assumption by assuming that nodes gossip/echo any message they receive [35,
Footnote 4]. The adversary inspects all messages (including puzzles and blocks)
first before delivering to any node.

Round duration.We assume that the duration of a round is O(∆). Specifically,
we assume that a round is sufficiently long to send/receive messages and perform
cryptographic operations (such as verifying a hash of a message, generating
and verifying a zero-knowledge proof of well-formedness of a TLP, computing
PGen/PEval, and signing and verifying a signature), except PSol,BatchPSol, and
RO invocations to mine a block or a decoy.

Computational model. We adopt the flat model of computation introduced
by Garay et al. [20]. In this model, all nodes are assumed to have the same
computational power. Moreover, any node can make at most q proofs-of-work
invocations to the RO in a round. Thus, the adversary can perform t · q RO
queries in each round. We remark that each node has an unlimited number of
proof-of-work verification queries to the RO [20].

Additionally, we assume that all honest nodes are sequential, random access
ppt, but the adversary is a non-uniform probabilistic parallel machine with poly-
nomially bounded parallelism running in polynomially bounded parallel steps.

Environment. The entity environment handles the external aspects of the pro-
tocol execution such as spawning the nodes and the adversary, injecting trans-
actions, writing inputs and reading outputs of each node, etc. However, the
environment cannot make queries to RO. This is to prevent the adversary from
outsourcing the RO queries to an external entity.

6.3 Protocol

Super-round. Since our protocol proceeds in two phases: (1) Mine phase (m
rounds) and (2) Solve phase (D rounds), a super-round consists of a mine phase
followed by a solve phase. Thus, the duration is (m+D) rounds.

Mobile Sluggish Nakamoto Protocol

Input.
– pp, TLP public parameters with T as one round

– m, duration of mine phase

– D, duration of solve phase

– q, maximum number of RO queries per round

– T , difficulty threshold to mine a block

– Tc, difficulty threshold to mine a decoy where T < Tc

Initialize. Chain C containing agreed-upon genesis block C[0]

Protocol. Every super-round R (which consists of (m + D) rounds)
– Get the payload from the environment
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– Let h−1 := H(C[−1]) be the hash of the last block on the longest chain C
– Let B = ⊥ be an empty block

– For m rounds of mine phase:
• For q RO queries:

∗ Pick random η ∈ {0, 1}λ and compute h := H(h−1, payload, η)
∗ If h < Tc (mined a decoy)

· Overwrite B := (h−1, payload, η)
∗ If h < T (mined a block)

· Overwrite B := (h−1, payload, η)
· Set C := C||B
· Break out of the q and m loop

– If B ̸= ⊥
• Compute the TLP Z := PGen(pp, B)

• Compute proof of well-formed π := PProve(pp, Z,B)

– Solve phase for D = 2 rounds:
• First round, multicast (Z, π) (if one exists), receive all the w puzzles from the network

Z1, . . . , Zw, and check their well-formedness.

• Second round, batch solve (s1, . . . , sw) := BatchPSol(Z1, . . . , Zw).

– Update the chain C based on output from the solve phase

Assumptions. Let a block mined in a super-round R be a prompt block, if mined
by an honest node and the node was prompt at the beginning of solving phase
of both R − 1 and R. Moreover, let f be the probability of one or more prompt
blocks were mined in a super-round, c be the probability of every honest node
mining at least one decoy in a super-round, ε, δ ∈ (0, 1) be parameters, and p be
the probability of a RO query mining a block. Our analysis assumes that:

(m+D)t+md

cm(n− 2d− t)
≤ (1− δ) (1)

ε+ f < δ/3 (2)

pqm(n− 2d− t) < 1/2 (3)

2ε

1− ε
< δ2 (4)

Analysis. At a high level, our analysis extends the formal tools proposed by
Garay et al. [20]. But there are several differences due to mobile sluggish faults
and the use of TLPs:

1. The adversary can deviate from the protocol and invoke RO queries even
during the solve phase. Intuitively, Eq. 1 quantifies the required advantage
of the prompt nodes over sluggish and adversarial nodes for our protocol to
be secure. Specifically, the numerator captures the computational advantage
enjoyed by the adversarial nodes due to additional RO queries during the
solve phase (the term (m+D)t) and the loss in honest mining efforts due to
sluggish nodes (the term md). Large values of D decreases t (assuming other
values can remain the same). But, due to the batch solving property of our
TLP, D = 2 in our protocol. Thus, the impact of D is minimal.

2. The mobility of the sluggishness provides the adversary timing based oppor-
tunities to reduce the contributions to the “prompt” chain. The adversary
with d sluggish budget can toggle the sluggishness of 2d nodes. If the adver-
sary toggles the sluggishness when the honest nodes release TLPs at the end
of the mining phase, it can reduce the number of nodes contributing to the
prompt chain to (n − 2d − t). This is because the d nodes that are sluggish
through the mining phase of a super-round may not be mining on the longest
chain, and at the end of the mining phase, the adversary can use its mobility
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to make d prompt node sluggish (See [42, Remark 1]).
3. The sluggish nodes can inadvertently contribute to the adversarial chain. This

is because the sluggish nodes may only have access to the view provided to
them by the adversary.

4. Coordinated release of TLPs: Observe that from Eq. 3, large values of m
decreases p, thus reducing the block arrival frequency. But, a bounded p en-
sures that the honest nodes do not fork one another and there are sufficient
“convergence opportunities” to resolve forks [20,35]. Moreover, no prior per-
missionless protocol is secure under mobile-sluggish faults even under reduced
performance.

5. Impact of decoys: In Eq. 1, the security impact of mining decoys by honest
nodes is captured by c. We set the probability of mining a decoy such that
honest nodes can mine sufficiently many decoys while simultaneously bound-
ing the total number of decoys mined. Recall that our batch solvable TLP
allows simultaneously opening a polynomial number of puzzles.

Notice that our analysis is a generalization of [20], thus by substituting
m = 1, c = 1, d = 0, andD = 0, our analysis, in principle, collapses to [20]’s anal-
ysis. We prove liveness and consistency by assuming that the mining-hardness
parameter is appropriately set in Eqs. 1 to 4. We present the complete analysis
of the protocol in the extended version of the paper [42].
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