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Abstract. This work investigates zero-knowledge protocols in subverted
RSA groups where the prover can choose the modulus and where the
verifier does not know the group order. We introduce a novel technique
for extracting the witness from a general homomorphism over a group of
unknown order that does not require parallel repetitions. We then present
a NIZK range proof for general homomorphisms as Paillier encryptions
in the designated verifier model that works under a subverted setup. The
key ingredient of our proof is a constant sized NIZK proof of knowledge
for a plaintext. Security is proven in the ROM assuming an IND-CPA
additively homomorphic encryption scheme. The verifier’s public key can
be maliciously generated and is reusable and linear in the number of
proofs to be verified.

1 Introduction

A zero-knowledge proof consists of a prover that demonstrates to a verifier that
a statement is true while revealing no information about the witness. Sigma
protocols [58, 28] are a special type of zero knowledge proof that avoid expen-
sive NP encodings and work naturally with many popular non-general relations.
Sigma protocols enjoy negligible soundness-error in groups of known order. The
story is different in groups of hidden order where negligible soundness can only
be achieved by running O(λ) sigma protocols in parallel [6, 60], thus multiplying
the prover, proof size, and verifier costs by O(λ).

In the common reference string model [11], a negligible soundness-error of hid-
den order group sigma protocols can be directly linked to hardness assumptions
such as the strong-RSA [9, 40, 34, 27]. However, relying on hardness assump-
tions introduces an avenue for subversion: we can make no guarantees about any
hardness assumption when a malicious prover corrupts the parameters of the
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hidden order group. For the prominent case of RSA-groups, i.e., multiplicative
groups over the ring ZN with N = p × q, subversion is easy because one can
compute the order of the group given the factorization, p and q.

To date, no natural5 protocol for general homomorphism-languages with hid-
den order co-domain has negligible soundness-error (without repetitions), and at
the same time does not rely on computational assumptions over the co-domain.
Indeed, the task of constructing zero-knowledge proofs over subverted RSA-
groups is exceedingly challenging; strictly more so than over traditional hidden
order groups that are correctly formed. One can make no guarantees about how
the modulus was generated and the Fiat-Shamir challenges can be continuously
sampled until one from a malicious distribution is found.

Our question. We thus put forward the question:

Can one build a generalised sigma-protocol in subverted RSA-groups achieving
negligible soundness-error without repetitions?

Our answer to this question is affirmative assuming a designated-verifier; we
provide and prove secure a construction in the designated verifier model [33, 55].
This is excellent news because currently the only known method to construct
RSA-groups is via a trusted setup [45]. Generating secure RSA parameters with
a MPC is an extremely challenging task to realise in practice and to date no large
scale RSA-MPCs have ever been completed. Our work thus provides an exciting
avenue for numerous results in RSA-groups to remain applicable in subverted
settings.

Subverted RSA groups are primarily interesting because they are a rare in-
stantiation for groups of unknown order. The only known alternative for building
hidden order groups is class groups, that can also be used to build ZKPs (e.g.
[26]). In high contrast to RSA groups, cryptanalysists have only recently started
focusing on class groups and we are still learning the best practices for choosing
the parameters for implementation [38, 47, 50].

Further, the potential for N to be subverted is a delicacy which is rarely con-
sidered when using the additively homomorphic Paillier [54] encryption scheme.
Here subverted parameters should be considered the default because participants
can choose their encryption modulus N . Nonetheless, the handling of subverted
parameters is a detail that is often overlooked in protocols that use Paillier. For
example, in the influential paper by Hazay et al. [45], we see that they require a
subversion resistant zero-knowledge range proof to realise their multiparty MPC
but that none of their suggestions are subversion resistant. For more detail see
the full version of the paper . As a second example, in the Damgard-Jurik voting
scheme [36], they assume that a modulus N is generated by a trusted third party.
If it were instead chosen by an election authority — which is a likelihood in real
world systems — then this modulus could certainly be subverted. By colluding

5 By ’natural’ we mean a protocol that works directly for the underlying language and
does not involve NP-reductions.
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with just a single voter, the authority could provide verifying proofs of faulty
encryptions and thus entirely decide the election result.

1.1 Our Contributions

In this paper we investigate zero-knowledge proofs under subverted RSA pa-
rameters. This is an extremely adversarial setting where the modulus N can be
factorised by the prover but not by the verifier. We make no assumptions about
ideal properties of the modulus: for example we can have that N is smooth or
even that the prover knows the factorisation of N .

Our first contribution is a new extraction method for extracting a witness in-
side general homomorphisms. This extraction technique is completely new to the
literature. We reify this technique through a designated-verifier protocol, named
DVProt, which answers affirmatively the main question of this work introduced in
the previous section. A substantial caveat for our extractor is that the challenges
used by the sigma protocol are encrypted (under the designated verifiers secret
key which importantly is independent from the potentially subverted N). Our
extractor should fail if the adversary could decrypt the challenges, thus we de-
scribe the general extraction method and reduce the probability of the extractor
failing to an adversary’s advantage against IND-CPA. At the heart of our extrac-
tion method is an information-theoretical lemma about the distribution of the
challenges extracted, which we prove to hold unconditionally. Exemplifying the
extraction method, and as a stepping stone towards the second contribution, we
explain how to make the DVProt protocol practical, with reusable and potentially
maliciously generated verifier’s public key. Our main results are in the random
oracle model however we also provide an optimised version in the generic group
model.

Using our extraction technique we arrive at our second contribution, namely
a zero-knowledge designated verifier range proof for Paillier encryptions under
subverted modulus with negligible soundness, which we call DVRangeProt. The
protocol prevents a prover from encrypting a value outside the range even if the
prover chooses the encryption key. Our proof is non-interactive (in the random
oracle model) and has negligible soundness error without parallel repetitions.
Security is proven in the RO model under the assumption that Paillier is IND-
CPA. Our techniques for proving security are potentially of independent interest
and described in more detail in Section 1.3. In the full version we show how our
range proof can be applied for non-injective homomorphisms.

The verifier’s public key has size O((λ+Q) logN) for N a Paillier modulus,
λ the security parameter, and Q the number of proofs the verifier will respond
to. Our protocol does not require a common reference string; being DV the
(designated) verifier inherently runs a setup to generate their potentially mali-
cious key. To ensure zero-knowledge holds against all verifier keys we describe a
non-interactive publicly verifiable key generation algorithm. In more detail, the
verifier runs a publicly verifiable range proof to demonstrate that the verification
public key (VPK) contains ciphertexts in the correct range. We apply amorti-
sation techniques by Cramer et al. [30] (in Section 4.3) to minimise the cost of
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this range proof. The key generation process is relatively expensive and can be
avoided in scenarios where the verifier only needs to retrospectively prove honest
behaviour by revealing the secrets behind their public key. Such scenarios are
common in applications such as MPC with identifiable abort (ID-MPC, [46]).

1.2 Related Work

In composite order groups the standard Σ-protocol has knowledge error of only
1/2 [6]. For a negligibly small extraction error one needs to run the protocol λ
times in parallel (for λ the security parameter). This induces an O(λ) multiplica-
tive overhead. There are many different approaches in the literature to proving
composite group statements more efficiently which we summarise here.

Proofs over groups of unknown order. An intensive line of work focuses
on constructring efficient zero knowledge proofs for relations over groups where
the order is unknown to all parties, however none would fit our context. The
Fujisaki-Okamoto solution [40, 34, 27], the protocols of [18, 8] and the solution by
Boneh et. al. [13] being computationally-sound are not sound in subverted RSA
groups because having known (to the prover) group order prevents the underlying
computational assumptions from holding. The protocol of [7] considers a model
where the verifier has extra information about the witness6. The protocol from
[5] was later cryptanalized [49]. For specific relations, [36, 35] present efficient
protocols where the prover knows the order of the group, however they are sound
only when the RSA group is correctly formed. The work of Cramer et. al. [29, 30]
presents a transformation that allows the protocol to have negligible soundness
error, yet only when proving λ statements simultaneously. For a single proof it
cannot be applied. Finally, Bangerter et al. [6] and Terelius et al. [60] show a
lower bound on soundness error for constant round sigma-like protocols in the
standard model (no CRS, no RO), that translates to 1/2 for common parameters.

Proving RSA relations with zk-SNARKs. Many zk-SNARK proof systems
are both general enough to encode any NP circuit and efficient enough to be used
in practice. Thus we can prove relations about subverted RSA groups by rep-
resenting them with an arithmetic circuit or similar. Ozdemir et al. implement
an RSA based accumulator inside a SNARK [53]. Their work improves upon
xJsnark [48]. Using Ozdemir et al.’s BigNat library7 we compute the size of the
Paillier knowledge-of-plaintext circuit at 80 million gates for 2048 bit N . This is
towards the upper end of what can feasibly be computed with a SNARK. To the
best of our knowledge the biggest circuits currently in production have about
100-million constraints and take minutes to compute even on specialist hard-
ware8. Our work does not require a reduction to NP and therefore we avoid this

6 For some relations (e.g. Paillier Encryptions) this can lead to fully reconstructing
the witness.

7 https://github.com/alex-ozdemir/bellman-bignat
8 https://research.protocol.ai/sites/snarks/
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prover overhead. Our approach also avoids the significant challenge of auditing
an 80 million gate circuit.

Range proofs in the RSA setting. In this work we present range proofs for
RSA-like relations (e.g Paillier encryption), or generally (additive) homomor-
phisms with unknown co-domain. Variations of basic Schnorr-like Σ-protocol
exist for RSA-like range relations [39, 25, 20, 34, 18, 12, 27]. Boudot [14] presents
the first range proof for general range [L,R] with slackness 1 (i.e. the message
lies exactly in m ∈ [0 . . . R] as opposed to some extended range m ∈ [0 . . . δR]).
Further [14] uses a so-called four-squares integer decomposition property, a tech-
nique which is later used and improved in [51, 44, 62]. None of these works con-
sider a subverted modulus. In fact they are computationally sound and make
assumptions about the RSA group, thus they do not work in subverted settings.

Proofs of correct form of moduli. An orthogonal to the above line of work
intends to prove that the group itself is not subverted [61, 41, 19, 10, 3, 42],
meaning that the modulus N of the RSA group has some beneficial property;
for example is square-free, a product of two primes, a product of equally-sized
primes, a Blum integer or a product of two safe primes, etc. Other works consider
proving that moduli are correctly formed in the context of specific applications as
password-based key agreement [23] or threshold ECDSA signatures [21]. All these
solutions require repetitions to reach a negligible soundness-error. Furthermore,
to apply computationally-sound protocols for general homomorphisms (such as
Fujisaki-Okamoto) over the group afterwards, one needs to prove that the RSA
group is a product of two safe primes. Only [19] ensures this, however it has high
costs and does not avoid the O(λ) parallel repetitions.

1.3 Overview of Techniques

In this work we design efficient designated-verifier ZK protocols for knowledge
and range of RSA group homomorphisms, which have negligible soundness error
without repetitions even when the group is maliciously chosen. The main uni-
fying ideas of all our techniques are (1) an alternative approach to Σ-protocols’
witness extraction and (2) a careful realisation through homomorphic encryp-
tion with respect to (also potentially subverted) verifier’s modulus, which allows
hiding protocol challenges from the prover in a way that prevents lower-bound
attacks of [6, 60].

Let ψ : D → H be a group homomorphism where H is an RSA-related group,
such as exponentatiations w 7→ gw over H = Z∗

N (or multiexponentations), or
Paillier encryption (w, r) 7→ (N+1)whr. We wish to design an efficient argument
of knowledge of w such that Y = ψ(w), and w ∈ {0 . . . R} for R ∈ D ⊂ Z.

Σ-protocol soundness. The classic Σ-protocol for proving knowledge of w
such that Y = ψ(w), described in Fig. 1, is only secure if elements from D are
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invertible. The standard special-soundness extractor behaves as follows: given
two successful transcripts with the same first message (a, c, s), (a, c′, s′) such
that aY c = ψ(s) and aY c′ = ψ(s′) and c ̸= c′ it combines the two:

aY c = ψ(s) aY c′ = ψ(s′)

from which it gets Y = ψ(s−s′)(c−c′)−1

= ψ((s−s′)(c−c′)−1). When H is a group
of public prime order p, as in case of the Schnorr protocol, this strategy always
succeeds, because (c− c′)−1 mod p is efficiently computable. However, when H
is a maliciously chosen RSA group, the extractor has two problems. First, it
does not know the order of the group and thus can only compute (c − c′)−1

when c − c′ = 1 (in this trivial case Y 1 = ψ(s − s′), and s − s′ is the witness).
This limitation is similar to the hardness of taking roots in groups of unknown
order. Second, some inverses (c − c′)−1 do not exist because it is possible that
gcd(c− c′, ord(D)) ̸= 1 for a maliciously chosen N .

In fact the impossibility results of [6, 60] show that the above extractor fails
for any group H whose order is not publicly known, such as RSA groups.

A generalized extraction lemma. Towards constructing an efficient proto-
col with negligible soundness error, our starting point is a generalized extrac-
tion approach. Assume that our extractor has M ≥ 3 successful transcripts9

{(a, ci, si)}Mi=1 such that:

aY c1 = ψ(s1) aY c2 = ψ(s2) . . . aY cM = ψ(sM )

then combining the first with the rest we get the equivalent:

Y c2−c1 = ψ(s2 − s1) . . . Y cM−c1 = ψ(sM − s1)

Now if gcd(c2 − c1, . . . , cM − c1) = 1 then we can always compute coefficients
γ2, . . . , γM such that γ2(c2 − cm) + . . .+ γM (c2 − cM ) = 1, which means:

Y 1 = Y γ2(c2−c1)+...+γ2(cM−c1) = ψ(γ2(s2 − s1) + . . .+ γM (sM − s1))

so s∗ = γ2(s2 − s1) + . . .+ γM (sM − s1) is a valid pre-image.
This extraction technique succeeds as long as gcd(c2 − c1, . . . , cM − c1) =

1. If we had an honest prover and the ci challenges were truly random and
independent, then well-known results from mathematics show that this happens
with probability 1/ζ(M), for ζ being the zeta Riemann function. This probability
is overwhelming (negligibly close to 1) as a function of M .

However, a malicious prover may choose not to respond upon receiving cer-
tain challenges c, so that gcd(c2− c1, . . . , cM − c1) ̸= 1. As an example they can
choose only to answer even challenges. The natural conclusion is that for this
generalized extraction to work we need the (adversarial) prover to be oblivious
to the challenges it answers.

9 Extracting k successful transcripts is no harder than extracting 2 [1].
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Prover P(x) Verifier V(Y )

r ←$ D; a = ψ(r) a
c←$ {0, 1}λc

s = r + cx s
Return aY c ?

= ψ(s)

Fig. 1. A Σ-protocol for the relation containing elements (Y,w) such that Y =
ψ(w), where ψ is a general homomorphism. This protocol is only knowledge
sound if elements from D are invertible.

Designated verifier techniques. We bootstrap the protocol of Fig. 1 to a
secure one (with negligible soundness error) in the Designated-Verifier model.

One of our key observations is that in the Designated-Verifier setting we can
hide the challenge c from the malicious prover by encrypting it with a homo-
morphic encryption scheme for verifier’s public key. Then the prover computes
the response to the challenge “blindly”, using additive homomorphism of the
encryption scheme. The verifier, who possesses the secret key of the encryption,
decrypts the response normally in order to retrieve the plaintext response of the
Σ-protocol. For this we need the verifier to hold the corresponding secret key,
which must be kept secret from the prover. The public key of the designated
verifier (VPK) is merely the pk of the encryption scheme and the ciphertext ct
of the encrypted challenge. The idea of encrypting a (single) challenge in the
designated-verifier public key appears in previous DV protocols [33, 24]

To prove the existence of an extractor we require M answers with differ-
ent challenges from the prover. This is clearly not possible when we encrypt
just a single challenge; but we also cannot do it even when we encrypt M
challenges — the prover can potentially choose only to answer with respect
to the first challenge. What we require is an exponential sized challenge space.
For this, we encrypt λ sub-challenges that are chosen uniformly at random:
ct1 = Enc(c1), . . . , ctλ = Enc(cλ) and add them to the public key. Then the

value P responds to is a random (0, 1) linear combination of {ci}: c =
∑λ

i=1 bici
where b = (b1, . . . , bλ) a random bitstring-challenge sampled by the verifier,
which gives rise to exponential C.

To prove soundness, the core of our security proof is an information-theoretical
lemma showing that afterM = poly(λ) linear combinations have been extracted,
the probability of {bic⊤}Mi=1 being coprime is overwhelming (assuming that ci’s
were uniformly sampled and independent during the setup).

DV with a reusable VPK. A common issue in the Designated-Verifier model
is that a prover, after seeing whether some proofs of its choice verify or not,
can learn information about the VPK’s structure and break soundness. This
is the analogue of IND-CCA security of encryption schemes. Intuitively, the
verification oracle behaves in a similar manner to a decryption oracle. Additive
homomorphic encryption schemes cannot be IND-CCA and thus an attacker
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could use a verification oracle to learn information about vpk. We overcome this
by adding Q = poly(λ) statistical blinding factors e1, . . . , eQ encrypted in the
VPK. At each proof one of these factors is added to the linear combination and
thus statistically blinds it; thus Q is maximum number of verification queries
the prover can ask. The CRS size is thus O(1) per proof.

1.4 Comparison with Alternative Approaches

To the best of our knowledge, this work is the first that deals with the prob-
lem of constructing zero-knowledge proofs in subverted RSA groups. On the
other hand, the literature provides numerous techniques on constructing zero-
knowledge proofs in non-subverted RSA groups. It is challenging to compare the
efficiency of our scheme directly against the state-of-the-art for non-subverted
solutions because this would require fully researching how to convert multiple
solutions into the subverted setting. Instead we here briefly justify our techniques
against two possible alternative approaches that provide partial solutions to the
problem.

Combine with an auxiliary group of unknown order. A possible approach
to constructing a sound proof of knowledge in the subverted RSA setting would
be to combine the simple protocol of Fig. 1 with a proof of a preimage in an
established group of unknown order. That is, generate an unknown order group
G, commit to the same preimage Commit(w) and send the commitment to the
verifier. Then compose in parallel a proof of knowledge for Commit(w) (over G)
and the protocol of Fig. 1 (over the subverted RSA group). The Fujisaki-Okamoto
extraction technique [40, 34, 27] gives negligible knowledge error and avoids
the need for λ repetitions. However, this solution either requires a private-coin
trusted setup in case an RSA group is used as the auxiliary group of unknown
order, or must rely on class groups [16]. Solutions relying on class groups are
outside the scope of this work (see Introduction).

Range proof with an auxiliary prime order group. For the range proof
problem for the preimage w of a homomorphism, Y = ψ(w) with 0 < w < R,
one possible approach is the following. Generate an auxiliary prime order group
G and commit to the preimage, Commit(w) over this group (e.g. via Pedersen
commitment). Then run in parallel the protocol of Fig. 1 for ψ(w) in the sub-
verted RSA group and a simple Schnorr protocol for the commitment on G, to
prove that Commit(w) and ψ(w) contain the same value. Afterwards one can use
a range proof protocol in the prime order group [17, 26] to prove the range of w.
The main benefit here is that due to progress on range proofs over prime order
groups, the actual range proof block is concretely efficient.

This solution, however, inherits the soundness-error (and thus the required
iterations) of the protocol of Fig. 1. That is 1/2 for general homomorphisms
1/poly(λ) for some specific special homomorphisms such as the (original) Paillier
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Encryption [6]. This leads to an overhead of O(λ) and O(λ/ log(λ)) respectively,
due to the repetitions needed.

Our work concerns with the former category, general non-special homomor-
phisms (such as ElGamal-Paillier) where the overhead is O(λ), and provides a a
truly unique perspective on how to decrease their asymptotic efficiency to O(1)
which was not previously known to be possible. We achieve this by providing and
proving secure an alternative extraction technique together with an information
theoretical lemma that have no dependence on parallel executions.

2 Preliminaries

2.1 Notation

We denote the security parameter with λ; poly(λ) is any positive f(n) = O(poly(n)),
and negl(λ) is a negligible positive function. With [a, b] we denote the set {a, a+
1, . . . , b}, and with [n] we denote [1, n]. Similarly with JnK we denote the set
[−

⌊
n
2

⌋
. . .

⌊
n
2

⌋
]. Adversaries are assumed to be stateful unless stated otherwise.

Zn is the additive group of order n. We often explicitly consider interval JnK
as the integer encoding for Zn. Z∗

n is the multiplicative group of all integers
in JnK coprime with n. With ϕ(·) we denote the Euler’s totient function. US
stands for uniform distribution on S as a finite set (e.g. UZp); U[L,R] is a uniform
distribution on [L,R], and UR is a shorthand for U[0,R]. In general we denote with
capital letters, e.g. Y , elements of the RSA group. In bold we denote vectors (e.g.
s) and matrices (e.g. A).

2.2 Homomorphic Encryption Schemes

In this work we engage public-key encryption schemes that have additively ho-
momorphic properties. That is an encryption scheme is called additively ho-
momorphic if for every pk ∈ PK and m1,m2 ∈ M, Encpk(m1) · Encpk(m2) =
Encpk(m1+m2), where ‘·’ is a ciphertext space operation. In the rest we assume
that the message space M of the additively homomorphic schemes we refer to
forms a ring. Some known examples of additively homomorphic encryption are
the Paillier cryptosystem and its variants [54, 36, 31, 15] in the RSA setting, the
Castagnos-Laguillaumie cryptosystem over class groups [22] and schemes from
lattices [43, 56]. Notably, no additively homomorphic public-key cryptosystems
from groups of prime order exist.10

Paillier encryption scheme. We briefly recall the Paillier public key encryp-
tion scheme [54], and refer the reader to our full version for more details .

10 Although the lifted ElGamal cryptosystem (alike ElGamal but the message is lifted
in the exponent) is additively homomorphic, the decryption is not polynomial-time,
unless one restricts the message space to polynomial size. This makes it unsuitable
for most applications.
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KeyGen(1λ): sample p, q primes of the size λ and set N = p · q. Compute d =
ϕ(N)−1 mod N2. Output pk = N and sk = (d, ϕ(N)).

Encpk(m): sample uniformly r ←$ Z∗
N and output ct = (N + 1)mrN mod N2.

Decsk(ct): compute c = (ctϕ(N) − 1)d mod N2 and return m = c
N .

2.3 Homomorphisms and Efficient Σ-protocols

Let ψ : D → H be a homomorphism between a domain D (group or ring), and
an output group H (e.g. RSA). When Y = ψ(w), we call w a witness, and Y an
instance.

A pair (v, u) ∈ Z×D is called a pseudo-preimage (PP) for instance Y = ψ(x),
if Y v = ψ(u) holds [7, 5], where v is called a degree of a given PP. Pseudo-
preimages naturally occur in Σ-protocols: the extractor usually transforms two
transcripts for the same commitment a (Y cia = ψ(si), i ∈ 1, 2) into a single PP
by dividing the equations: Y c1−c2 = ψ(s1 − s2), thus (c1 − c2, s1 − s2) is a PP.

In prime-order groups (|H| = p) knowledge of PP implies knowledge of preim-
age, since inverses in Zp are efficiently computable. In groups where the order
is not prime or even unknown to V (e.g. in Paillier H = Z∗

N2) there is an-
other way to extract a proper preimage, but from two pseudo-preimages: given
(v1, u1), (v2, u2) with gcd(v1, v2) = 1 for any Y we can use the so-called called
“Shamir’s trick”. Given (v1, u1), (v2, u2) s.t. Y

vi = ψ(ui), i ∈ {1, 2}, it first checks
if gcd(v1, v2) ̸= 1 and aborts if not. Then it computes Bezout coefficients — in-
tegers γ, δ such that γv1 + δv2 = 1, and returns u := γu1 + δu2. This extractor
succeeds, since given Y vi = ψ(ui), Y = Y γv1+δv2 = ψ(u1γ + u2δ) = ψ(u).

Special homomorphisms. In [7], following Cramer [28], the homomorphism
ψ : D → H is called special if for any instance Y one can easily find a non-
trivial PP (v̂, û) of Y (non-trivial means v̂ ̸= 0 mod |H|). Examples of special
homomorphisms include Schnorr-like homomorphism11 ψ : Zq → Z∗

p, ψ : x 7→ hx

with ord(h) = q, q | (p− 1) and Paillier homomorphism12.

For special homomorphisms it is sometimes possible to build Σ-protocols
with non-binary challenge spaces (and thus small soundness error) by applying
Shamir’s trick to just one extracted PP, and the special PP. This is the best
known method of extraction for Paillier in the honest setting. However, in the
subverted N scenario it does not work, and binary challenges are still optimal.
This is because of the GCD condition in Shamir’s trick: A can choose N to
maximize Pr[gcd(c1 − c2, N) ̸= 1] (N is a degree of Paillier special PP); with
binary challenges c1 − c2 = 1, and GCD is always 1. Other variants of Paillier
(e.g. ElGamal-Paillier [31, 15]), are not known to be special, thus even the above
extraction technique fails unless challenges are binary (c1 − c2 = 1).

11 Its special PP is (q, 0), since Y q = ψ(0); and the PP is non-trivial: q ̸= 0 mod p.
12 From Y = GmrN we can derive Y N = (GmrN )N = G0(GmrN )N , so (N, (0, Y )) is a

pseudo-preimage of degree N (and N ̸= 0 mod ϕ(N2)).

10



2.4 Designated-Verifier Arguments of Knowledge

We assume some familiarity with the notion of interactive arguments of knowl-
edge and their standard security properties (completeness, knowledge-soundness,
and zero-knowledge). In the designated verifier (DV) model, additionally to P,V
programs we claim existence of a KeyGen routine that the verifier uses to create
verifier’s public key (VPK). This public key is then used to interact with this ver-
ifier only, and can potentially be reused multiple times. The formal definitions of
completeness, soundness with reusable VPK, and honest verifier zero-knowledge
under a malicious VPK are deferred to the full version.

3 Our Extraction Technique

In this section we state and prove two lemmas about our novel extraction
method. The first is a generalised extraction lemma, Lemma 1, that describes
how to extract a witness given M accepting transcripts such that the gcd of the
challenges is 1. Our second lemma, Lemma 2, is the core information-theoretical
lemma behind the security of our construction, which argues about this proba-
bility of random challenges being coprime.

3.1 The Generalized Extraction Lemma

We consider the three-round public-coin protocol of Figure 1 where transcripts
have the form (a, c, s). In Lemma 1 we design an extractor that, given M valid
transcripts on the same first message, always succeeds provided that gcd(c(2) −
c(1), . . . , c(M) − c(1)) = 1. The following is proven in the full version.

Lemma 1. Let T =
{
(a, c(i), s(i)

}M

i=1
be a collection of M ≥ 3 successful tran-

scripts for the relation RHom and input Y , aY c(i) = ψ(s(i)), such that gcd(c(2)−
c(1), . . . , c(M) − c(1)) = 1. Then there exists a PPT extractor Ext that outputs w
such that Y = ψ(w) with probability 1.

3.2 Our Core Coprimality Lemma

The above generalized extraction technique is effective conditioned on the fact
that differences of the challenges in the extracted transcripts are coprime, gcd(c(2)−
c(1), . . . , c(M) − c(1)) = 1. However, this cannot be guaranteed for any malicious
prover. This stems from the fact that an adversarial prover can manipulate the
c(i)’s by selectively choosing to answer successfully or not, after receiving c(i).

Intuitively, we would like the adversary to answer independently of c(i). Then
for sufficiently large M = poly(λ), gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1 would
hold. To this end we let the challenges consist of two factors: the challenge is
e = bcT where b is sampled during the protocol execution and c is a vector
that is uniformly random from the point of view of the adversary. The adver-
sary can manipulate b because b is chosen during the protocol, but c cannot
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be manipulated. Looking ahead, in Section 4 we realize this technique in the
designated-verifier setting.

In Lemma 2 we prove an information-theoretical statement which is at the
core of our construction. The distribution of values output by our extractor
depend nontrivially on some adversarial matrix B: the matrix of all b that the
adversary chooses to answer successfully. Because there are no computational
restrictions on how an adversary might choose B, we require that for any B the
extractor will succeed with high probability. Lemma 2 is new to this work and
as far as we are aware there are no similar results in the literature.

How to interpret the lemma. As previously noted, Lemma 2 aims to information-
theoretically prove that M extracted accepting transcripts (on the same first
message) have coprime challenges where each challenge is b(i)cT . From the point
of view of the adversary b is known but c is not, and assumed uniformly random.

To make the applicability of the lemma more clear we briefly recall (omitting
the non-relevant details) the extractor of [2] (that generalizes [32]) which obtains
M accepting transcripts, with the same first message, for any Σ-protocol.

Let H be the binary matrix where the rows represent the first messages α1 =
ψ(r1), α2 = ψ(r2), . . . , α|D| = ψ(r|D|) and the columns represent the different
challenges b1, b2, . . . , b2λ . The position Hi,j is 1 if the adversary can answer
successfully on αi, bj and 0 otherwise. The extractor works as follows:

– Probes different positions of H until it finds a 1.
– If it finds a first 1 it continues sampling uniformly in the same row until it

finds M − 1 more 1’s (or terminates with some specific probability).

Attema et. al. [2] show that this extraction strategy outputs M accepting tran-
scripts in expected polynomial time.

Assume that the extractor succeeds in outputting the M transcripts from
some row i. Then B (in matrix form) represents all the bj ’s of this row that
have 1. Similarly, B′ (also in matrix form) represents all the b(j)’s of the row
that were sampled (uniformly) by the extractor, contained 1 and thus gave an
accepting transcript. Lastly, for the lemma to be applied we need that B has
exponentially large number of rows > 2λ/poly(λ). Conditioned on the fact that
the extractor terminates in (expected) polynomial time this holds, otherwise the
probability of the extractor to find M 1’s in the row (in poly-time) would be
negligible. Clearly then, B′ is a polynomially sized sub-matrix of B.

We highlight that the matrix H represents the malicious prover’s strategy
and it is clearly adversarially chosen, thus so is B. For this it is important that
the lemma holds for any arbitrary B. This makes the lemma and its proof highly
non-trivial.

Lemma statement. Lemma 2 proves the following. Assume any exponentially-
large (2λ/poly(λ)) space B of binary vectors with λ coordinates. Then if we

sample uniformlyM = poly(λ) vectors from this space b(1), . . . , b(M) $←− B and λ

12



uniformly random values (from an exponentially large space) c := (c1, . . . , cλ)←$(
J2λK

)λ
we get that their inner products b(1)cT , . . . , b(M)cT are coprime, except

with negligible probability. This then generalizes to our final result that concerns
with the differences {b(i)cT − b(1)cT }Mi=2 being coprime.

Crucially, this holds for any space B as long as it is sufficiently large.

Lemma 2. Let B be any (ϵ′2λ) × λ binary matrix consisting of ϵ′2λ distinct
binary rows, with ϵ′ > 1/poly(λ). Sample:

– M = poly(λ) rows of B, ik ←$ [1, ϵ′2λ] for k = 1, . . . ,M , and set

B′ = (b(1) b(2) . . . b(M))T := (bi1 bi2 . . . biM )T

– λ uniformly random values, ci ←$ J2λK for i = 1, . . . , λ, and set

c = (c1 c2 . . . cλ)

and set (e(1) . . . e(M))T = B′c. Then:

Pr[gcd(e(2) − e(1), . . . , e(M) − e(1)) = 1] = 1− negl(λ)

the probability is over the choices of c,B′.

Due to space limitations the full proof is deferred to full version.

4 Designated Verifier Proofs of Knowledge for General
Homomorphisms

In this section we design a designated verifier argument of knowledge for an
opening to a general homomorphisms. We prove that there is a negligible sound-
ness error assuming an additively homomorphic encryption scheme that is CPA
secure. Zero-knowledge holds even under subverted parameters and it does not
require a common reference string. Our proofs consist of 6 elements and can be
made non-interactive using the Fiat-Shamir transform.

We show in Section 5 that knowledge of an opening for a general homomor-
phism is powerful enough to build range proofs for ciphertexts over a subverted
encryption key. For now we focus on the simpler general relation

RHom = { ψ,A w : Y = ψ(w) }

where ψ : D → H and H is a group parametrized by a maliciously generated
RSA modulus N (for example Z∗

N or Z∗
N2). Although not directly in our scope,

the techniques of this sections also apply to any group of unknown order.
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4.1 The Designated-Verifier Protocol

We are now ready to present our designated verifier zero-knowledge proof system
for RHom where ψ is any additive group homomorphism.

The public-coin interactive DV protocol for RHom is run between a prover
and the verifier. The protocol is a modification of the sigma protocol in Fig. 1
to ensure soundness even for subverted RSA groups. One of the key observa-
tions is that in the Designated-Verifier setting we can hide the challenge from
the malicious prover. We can thus assume that all the challenges answered are
independent, provided that they are sampled independently by the verifier. In
order to hide the challenges from the prover they are encrypted with a public
key homomorphic encryption scheme. These encrypted challenges are provided
in advance inside the verifier’s public key.

Then if these encrypted challenges are linearly combined with fresh (binary)
challenges, sampled during the actual execution one can directly apply the ex-
traction techniques of Section 3 (Lemma 1 and Lemma 2). The linear combina-
tion is performed homomorphically through the ciphertexts.

The full protocol is presented in DVProt. For ease of presentation, we first
describe our protocol incrementally: with respect to a trusted setup that always
outputs (vpk, vsk) honestly and without allowing any reusability of it; then in
the next sections we incrementally present how to achieve these properties.

Our construction makes use of any additive additively homomorphic encryp-
tion scheme with message spaceM, randomness space R, and ciphertext space
CT such that CT forms a multiplicative group. For simplicity we will assume
AHE to be standard Paillier w.r.t. Npk, andM to be the ring ZNpk

for an integer
Npk, although our scheme works with any AHE and ringM.13

First the key generation algorithm creates a verification key: it chooses an
encryption key pair (pk, sk) and sets the verifier’s secret key to vsk = sk. It then

samples uniformly λ values, c1, . . . , cλ
$←− J2λK (denote c = (c1, . . . , cλ)) and

encrypts them under pk, ct1 = Encpk(c1), . . . , ctλ = Encpk(cλ). In Section 4.3 we
describe a protocol by which the verifier proves that their vpk is well formed,
ensuring that we achieve zero-knowledge under subverted vpk (hence without
trusting the designated verifier for the key setup).

The protocol then proceeds in 5 moves which we detail in Fig. 2. The prover
essentially proves that Y = ψ(w) by sending a = ψ(r); an encryption S of
(r+cw); and a proof (T, u1, u2, u3) that the prover knows the contents of S. The
additional steps 4 and 5 that prove knowledge of the preimage of S are there so
that we can technically avoid passing vsk to the extractor to compute s. Instead
they can extract s from the additional protocol of these steps. This explains
why d is sampled from the exponentially big challenge space – the modulus in
question (chosen by the verifier and extractor) is trusted for soundness.

As usual in public-coin protocols, the interactive DVProt can be transformed
into a non-interactive one applying the Fiat-Shamir transformation (in the ran-
dom oracle model).

13 As long as all elements in J2λ+1K have a multiplicative inverse inM.
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V.KeyGen(1λ): Generate a VPK:

– Sample a key pair (sk, pk)← AHE.KeyGen(1λ) with |M| >
22λ+log λ|D|.

– Sample challenges uniformly: c1, . . . , cλ
$←− J2λK

– Encrypt them: cti = Encpk(ci) for each i ∈ [1, λ].
– Return vpk = (pk, ct1, . . . , ctλ), vsk = sk.

P ↔ V: The prover and the verifier interact as follows.

P(vpk, ψ, Y, w) V(vsk, vpk, ψ, Y )

r1
$←− J22λ+log λ|D|K

a = ψ(r1) a

b
$←− {0, 1}λb

C =

λ∏
i=1

ctbii

r2
$←− R

S = Cw · Encpk(r1; r2)

t1
$←− J22λ|D|K

t2
$←−M, t3

$←− R
T = Ct1 · Encpk(t2; t3) S, T

d
$←− J2λK

d
u1 = t1 + dw ∈ Z
u2 = t2 + dr1 ∈M
u3 = t3 · rd2 ∈ R u1, u2, u3 s = Decsk(S)

c =
∑

cibi;C =
∏

ctbii

aY c ?
= ψ(s)

TSd ?
= Cu1 · Encpk(u2;u3)

Fig. 2. DVProt: The designated-verifier Σ-protocol for RHom demonstrating
knowledge of a preimage of ψ(·). The additively homomorphic encryption scheme
is instantiated with Paillier with |M| = |Npk|. This scheme is knowledge sound
for subverted RSA groups provided that the outputs of KeyGen(1λ) are well-
formed.
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4.2 Security

We now argue the security of our DVProt. For correctness, we only need to make
sure that the message spaceM of AHE is large enough to fit the largest possible
s = r1 + cw. That is we require an additively homomorphic IND-CPA secure
Encryption Scheme with message space |M| > 22λ+log λ|D|.

Knowledge soundness. To demonstrate knowledge soundness we first describe
an extractor that can rewind a malicious prover and aims to output the prover’s
witness. This extractor obtains M(λ) = poly(λ) different verifying transcripts
from the prover and succeeds if the gcd of the challenges of these transcripts is
equal to 1. We then describe a reduction B that succeeds at IND-CPA when-
ever the extractor fails at obtaining a valid witness. The reduction queries an
encryption oracle to determine the vpk and therefore does not know the contents
of the encryptions. It runs the prover and decides whether a transcript verifies
or not based on whether the transcript verifies with both possible contents. We
argue that if it verifies with one of the possible contents but not the other, then
provided the domain space of ψ() is bigger than 2λ, then B can guess the con-
tents of the ciphertexts with overwhelming probability. We further argue that
the gcd of the challenges the prover does not see must equal 1 with overwhelm-
ing probability. Thus if the extractor fails then B can guess which challenges the
ciphertexts contain based on whether the gcd is 1 or not.

The protocol and theorem currently do not give the prover oracle access to
the verifier. In Section 4.4 we will describe an extension of our DV protocol that
can give the prover this access.

Theorem 1 (Knowledge Soundness). The DVProt protocol is knowledge-
sound in the designated verifier model, provided that the AHE is IND-CPA se-
cure.14

Proof. Suppose that (vpk, vsk, τ)
$←− KeyGen(1λ), where τ = {c1, . . . , cλ} con-

tains the challenges encrypted in vpk but not the secret key sk of AHE. As-
sume that P∗(vpk, ψ, Y ; coin) is a malicious prover that is run on random coins
coin. We first describe an extractor Ext, that has rewindable black-box access to
the prover P∗, such that whenever P∗ outputs verifying (Y ; (a, S, T, u1, u2, u3))

ExtP
∗
(τ, vpk, ψ, Y ) outputs a witness w such that Y = ψ(w). The Ext algorithm

depends on two subalgorithms, Ext0 and Ext1 where Ext0 is the extractor from
Lemma 1, and Ext1 we present below.

Ext1, on input τ, vpk, ψ and Y , runs P∗(vpk, ψ, Y ; coin) (on challenges b, d of
its choice) until it obtains a full (M, 2)-tree of accepting transcripts, for the same
first message a. That is:

T =
{(
a, b(j), S(j), T (j), d(j,k), u

(j,k)
1 , u

(j,k)
2 , u

(j,k)
3

)}
j∈[M ],k∈[2]

14 We further assume that if ZN is the message space, then the largest factor of N is
larger than 2λ+1, which is the case for example in Paillier.
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and outputs T . For Ext1 we use the generic (M, 2)-special soundness extractor
(see [2]), that efficiently finds such a tree. As we argue later we set M = poly(λ).

More specifically, Ext1 proceeds as follows. It probes P∗ on randomly sampled

coin, b, d until it obtains
(
a, b(1), S(1), T (1), d(1,1), u

(1,1)
1 , u

(1,1)
2 , u

(1,1)
3

)
such that

T (1)(S(1))d
(1,1)

= (C(1))u
(1,1)
1 Encpk(u

(1,1)
2 ;u

(1,1)
3 ), where C(1) =

∏λ
i=1 ct

b
(1)
i

i . Since
it does not have vsk it cannot directly decrypt S(1) to s(1) and check whether

aY c(1) = ψ(s(1)). For this it continues probing P∗ on the same coin and b(1)

until it obtains a second
(
a, b(1), S(1), T (1), d(1,2), u

(1,2)
1 , u

(1,2)
2 , u

(1,2)
3

)
such that

T (1)(S(1))d
(1,2)

= (C(1))u
(1,2)
1 Encpk(u

(1,2)
2 ;u

(1,2)
3 ). So we have:

T (1)(S(1))d
(1,1)

= (C(1))u
(1,1)
1 Encpk(u

(1,1)
2 ;u

(1,1)
3 )

T (1)(S(1))d
(1,2)

= (C(1))u
(1,2)
1 Encpk(u

(1,2)
2 ;u

(1,2)
3 )

or

(S(1))d
(1,1)−d(1,2)

= Encpk(u
(1,1)
2 + c(1)u

(1,1)
1 − u(1,2)2 − c(1)u(1,2)1 )

From assumption gcd(d(1,1) − d(1,2), N) = 1 (given that the largest prime factor

of N is larger that |d(1,1) − d(1,2)|) so the inverse
(
d(1,1) − d(1,2)

)−1
exists inM

and Ext1 extracts s(1) = s
(1)
2 + c(1)s

(1)
1 such that S(1) encrypts s(1) (under some

randomness unknown to the extractor) where

s
(1)
1 =

(
u
(1,1)
1 − u(1,2)1

)(
d(1,1) − d(1,2)

)−1

mod N

s
(1)
2 =

(
u
(1,1)
2 − u(1,2)2

)(
d(1,1) − d(1,2)

)−1

mod N

From here Ext1 can verify aY c(1) = ψ(s(1)) to confirm if the two transcripts are
accepting or not. It continues in a similar manner until it obtains a full (M, 2)-
tree of accepting transcripts T . Whenever P∗ convinces V with non-negligible
probability Ext1 computes the decryption of S(1) in polynomial time thus the
probability that Ext1 accepts a false transcript is negligible.15

Now, the extractor Ext behaves as follows. It runs T ← ExtP
∗

1 (τ, vpk, ψ, Y )

and computes c(j) = b(j)cT =
∑λ

i=1 cib
(j)
i . If gcd(c(2) − c(1), . . . , c(λ) − c(1)) ̸= 1

it aborts. Else it computes s(j) as shown above (where it holds that s(j) =
Decsk(S

(j))) for each j ∈ [M ] and runs w ← Ext0(ψ, Y ; (a, c(1), s(1)), . . . , (a, c(M), s(M)))
and returns w.

We first see that Ext runs in polynomial time provided that the adversary
P∗ has non-negligible probability of success. So either ϵ(λ) is polynomial in λ or
P∗ only convinces V with negligible probability. Let ϵ(λ) > 1/poly(λ) denote the
probability that P∗ convinces an honest verifier on input (ψ, Y ). By Lemma 1

15 For ease of exposition we keep the description simple. We omit the technical details
of special soundness extractors related to aborting senarios, that ensure termination
in polynomial time(see lemma 5, [2]).

17



we have that Ext0 runs in polynomial time. For the runtime of Ext1 we rely on [2,
Lemma 5] which shows that Ext1 runs in expected time O( λ

ϵ−(M−1)/2λ
), which

is polynomial (since we assumed that ϵ is non-negligible).
We must now show that Ext only aborts with negligible probability. This

occurs if and only if gcd(c(2) − c(1), . . . , c(M) − c(1)) ̸= 1 with non-negligible
probability. In order to show this, we design an adversary B against IND-CPA
that, using Ext, wins the IND-CPA game:

BOEnc(pk)

c1, z1, . . . , cλ, zλ
$←− J2λK

cti
$←− OEnc(ci, zi) for i ∈ [λ];

vpk← (pk, ct1, . . . , ctλ)

coin
$←− [1, 2λ]; j ← 1

while j < M : (transj,1, transj,2)← P∗(vpk, ψ, Y ; coin)

if aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1 ) and aY z(j) ̸= ψ(s

(j)
2 + z(j)s

(j)
1 ) return 0

if aY c(j) ̸= ψ(s
(j)
2 + c(j)s

(j)
1 ) and aY z(j)

= ψ(s
(j)
2 + z(j)s

(j)
1 ) return 1

if aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1 ) and aY z(j)

= ψ(s
(j)
2 + z(j)s

(j)
1 ) j ← j + 1

if gcd(c(2) − c(1), . . . , c(M) − c(1)) ̸= 1 return 0
if gcd(z(2) − z(1), . . . , z(M) − z(1)) ̸= 1 return 1

where we denote c(j) = b(j)cT and z(j) = b(j)zT .

Case 1. First we show that if aY c(j) = ψ(s
(j)
2 + c(j)s

(j)
1 ) and aY z(j) ̸= ψ(s

(j)
2 +

z(j)s
(j)
1 ), then with overwhelming probability the encryptions contain c1, . . . , cλ

and B succeeds.
The fact that aY c(j) = ψ(s

(j)
2 + c(j)s

(j)
1 ) can be rewritten as:(

aψ(−s(j)2 )
)
=

(
ψ(s

(j)
1 )Y −1

)c(j)

Assume that cti ̸= Encpk(ci) then P∗ gets no information about c1, . . . , cλ, so
they are perfectly hidden. This means that from the point of view of P∗ these
are uniformly random over J2λK, which makes the above happen with probability

2−λ (considering also that |H| > 2λ), unless aψ(−s(j)2 ) = ψ(s
(j)
1 )Y −1 = 1. Now,

since aY z(j) ̸= ψ(s
(j)
2 + z(j)s

(j)
1 ) then a ̸= ψ(s

(j)
2 ) or Y ̸= ψ(s

(j)
1 ).

We conclude then that, except with negligible probability 2−λ, {cti}i contain
encryptions of ci.

Case 2. Second, we use the same argument as in the previous case to claim

that if aY c(j) ̸= ψ(s
(j)
2 + c(j)s

(j)
1 ) and aY z(j)

= ψ(s
(j)
2 + z(j)s

(j)
1 ), then with

overwhelming probability the encryptions contain z1, . . . , zλ and B succeeds.

Case 3. Third we argue that if the extractor Ext fails then B succeeds. Indeed we

have from the first two cases that transcripts only verify if both aY c(j) = ψ(s
(j)
2 +

c(j)s
(j)
1 ) and aY z(j)

= ψ(s
(j)
2 +z(j)s

(j)
1 ). If the encryptions contain c1, . . . , cλ then

Ext only fails if gcd(c(2)−c(1), . . . , c(M)−c(1)) ̸= 1. In this case B correctly guesses.
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If the encryptions instead contain z1, . . . , zλ then Ext only fails if gcd(z(2) −
z(1), . . . , z(M) − z(1)) ̸= 1. In this case B guesses correctly unless gcd(c(2) −
c(1), . . . , c(M) − c(1)) ̸= 1. The (c1, . . . , cλ) are uniformly distributed values that
are perfectly hidden from the prover and the extractor. Indeed, the encryptions
contain no information and, by the first two cases, the behaviour of the extractor
is entirely determined by the verification with respect to z1, . . . , zλ. So the prob-
ability that gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1 is overwhelming (see Lemma 2).
We thus argue that if Ext fails then B succeeds with overwhelming probability.

Indeed Lemma 2 shows that Pr[gcd(c(2) − c(1), . . . , c(M) − c(1)) = 1] = 1 −
negl(λ).

To see why Lemma 2 applies in our case, B corresponds to the matrix con-
taining all the challenges b which the adversary can successfully answer, when
the first message is a. Since the extractor was able to obtainM such challenges in
(expected) polynomial time, this means that B is at most polynomially smaller
than 2λ: there exists ϵ′ > 1/poly(λ) such that |B| = ϵ′2λ. We can show this
by contradiction, assume that ϵ′ = 1/ω(poly(λ)), then the expected time for
Ext to find a successful answer would be non-polynomial ω(poly(λ)). Finally, B′

corresponds to the matrix consisting of the challenges in T .

Zero-knowledge. To demonstrate zero-knowledge we will provide a simulator
and argue that the simulators outputs are indistinguishable from the honest
provers. We make use of a standard blinding lemma.

The main HVZK result is as follows (due to space limitations the proof is
deferred to the full version of the paper):

Theorem 2 (Honest Verifier Zero Knowledge). DVProt is statistical honest-
verifier zero-knowledge for the relation RHom.

Since our DV protocol is essentially Schnorr-like, the simulator is almost
as usual: it samples response values uniformly (since they are properly blinded
in the honest protocol), and generates (encrypted) challenges using verifier’s
equations. The only difference is that one challenge is an encryption value. Also
the proof assumes honest CRS setup.

4.3 Malicious VPK Generation

The DVProt protocol in the previous section assumes that the verifier’s public
key is trusted. In particular, zero-knowledge only holds on the condition that cti
contains plaintexts ci ∈ J2λK for all i. In this section we explain how to generate
a vpk in a way that prevents dishonest verifiers from breaking zero-knowledge of
our DV construction.

For lack of space we defer the formal description of the malicious-verifier
alternative key generation procedure is presented to the full version. We edit
the setup algorithm such that the verifier must provide a range proof on the
ciphertexts it generates for vpk.
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In the full version we present a protocol proving range of the VPK ciphertext
efficiently, together with a security proof. The protocol follows the transforma-
tion by Cramer et al. [29, 30] allowing to increase performance when proving
multiple instances simultaneously; however our instantiation has a number of
differences from the original transformation. The range proof comes with a slack:
a verifying π on the prover’s side guarantees that when ci ∈ J2λK, the resulting
messages in the ciphertexts cti of vpk are in the extended interval J23λ+log λ−1K
(the slack is 22λ+log λ−1). Therefore the encrypted sum-challenge P replies to
is in J23λ+2 log λ−1K. To preserve zero-knowledge we must increase the blinding
parameter r1 on the prover’s side to this value, multiplied by |D|. This in turn
requires us to increase AHE |M| to |D|23λ+2 log λ, to be enough to fit the new
s = r1 + cw

s≈ r1.
In addition to this, we also must prove that verifier’s public key Npk gives

rise to an injective Paillier instantiation, since otherwise the statement of the
range proof is not useful . For this we use [42, Protocol PPaillier−N, Sec. 3.2]
— it is public-coin, so can be executed non-interactively (using FS); it proves
gcd(Npk, ϕ(Npk)) = 1, which is enough to achieve injectivity of Paillier; and it is
quite efficient, only taking a few percent of all KeyGen computations.

Theorem 3. Protocol DVProt, augmented with KeyGen and P from ??, is statis-
tical honest-verifier zero-knowledge under malicious VPK for the relation RHom.

4.4 Reusable VPK

In this section we present DVReusableProt, a modification of DVProt, in which
vpk is reusable Q = poly(λ) number of times. This means the prover can query
the verifier to learn whether their response verifies up to Q times. We achieve
this by adding Q encrypted challenges to the vpk. The result is that both the
communication and the computation complexity related to vpk generation and
verification can be amortized down to O(1) per query.

For the basic DVProt it is possible to show an attack in which an adversarial
prover, interacting with the verifier many times, uses the information of whether
a (malicious) proof of their choice verifies or not in order to learn plaintext
challenges ci in the vpk. This in turn defeats the purpose of hiding the challenges,
and prevents extraction, breaking soundness.

To overcome this we introduce additional challenge blinders. First, we sample
ĉκ of size at least λ22λ per query, encrypt them to ĉtκ, and add them all to the
VPK. Then we use ĉtκ in the final challenge C = ĉtκ

∏
i ct

bi
i (for a challenge

bit-vector b) so that ĉκ statistically hides
∑
cibi since ĉκ is at least 2λ larger.

This means that the adversary statistically learns no information about {ci}, but
only about ĉκ. Each challenge ĉκ must be used exactly once, which is enforced
by V.

The final challenge size now grows to λ22λ, which means r1 must be sampled
from Jλ23λ|D|K, and |M| of verifier’s AHE must be bigger than this value.

20



Theorem 4. DVReusableProt is a complete, honest-verifier zero-knowledge pro-
tocol in the designated-verifier setting, that has knowledge-soundness with Q-
times reusable VPK for any polynomial Q(λ).

Due to space limitations the proof is deffered to the full version.

4.5 Malicious and Reusable VPK

Techniques from the two previous sections can be combined. The reusable VPK
from Section 4.4 can also be generated maliciously with the same technique from
Section 4.3.

The batched range proof now must also cover new “bigger” challenges intro-
duced for reusability. From the perspective of efficiency of amortized SigmaRangeAProt

it is optimal to batch exactly n = λ instances together. Thus we will prove
challenge ranges of ci in batches of size λ, where first batch uses range bound
R1 = 2λ (corresponding to small ciphertexts), and the following Q/λ batches use
R2 = λ22λ. When λ ∤ Q, SigmaRangeAProt instance can be padded with dummy
values.

Given 2λ+log λ−1 slack of the range proof, we must sample r1 ∈ J25λ+2 log λ|D|K;
and |M| must be chosen to be bigger than this r1.

4.6 Efficiency Optimization in the Generic Group Model

Here we describe a variant of the DVProt protocol that consists of 3 rounds
(instead of 5) and thus saves 4 elements from the proof size. The protocol tran-
script simply consists of (a, b, S) omitting T, d, u1, u2, u3 together with the last
two rounds.

In DVProt the last three messages T, d and (u1, u2, u3) are used to prove that
S is a well-formed ciphertext. Namely, the extractor of Theorem 1, at each ac-
cepting transcript should be able to obtain an s(j) such that S(i) = Encpk(s

(j)).
We observe that if we instantiate the encryption scheme with the Paillier-with-

randomness-in-the-exponent cryptosystem, S(j) = (N+1)s
(j)

hr then our extrac-
tor can obtain s(j) for free in the generic group model [59, 52] (GGM).

GGM for unknown order groups has been established [37, 13] in a similar
manner to the original model. For this optimization we make use of this model.
For knowledge-soundness we assume that the group generated for the Paillier
encryption is honest (it’s part of VPK), thus the model applies normally.

The following proof is almost identical to that of Theorem 1 except that
the extractor now uses whitebox access to the prover instead of the rewinding
argument to find a representation for S.

Theorem 5 (Knowledge Soundness). The optimised DVProt described above
is knowledge-sound in the generic group model provided that the AHE is IND-
CPA secure.

Due to space limitations the proof is deffered to the full version.
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5 Designated Verifier Range Proof

In this section we construct DVRangeProt — a zero-knowledge argument of knowl-
edge for the range of the pre-image of general homomorphisms. Formally, we are
interested in the relation:

RHomRange =
{
(ψ, Y,R);x : Y = ψ(x) ∧ x ∈ [0, R]

}
where ψ : D → G and G is a group parameterised by a (possibly subverted)
RSA modulus N . We use our designated-verifier protocol of Section 4, that is
able to extract the witness using the extraction strategy of Lemma 1. On top of
that, we use the range proof from [27] for RSA groups.

The protocol from [27] works over an integer commitment [40, 34] c = gxhr

in an RSA group for which the order is unknown to the prover. Since we cannot
assume that G is such a group (recall that the prover might know the order of
G) we let the verifier generate an RSA modulus Ncm together with the bases of
the commitment g, h, which are included in the verification key. The prover first
commits to the pre-image x in ZNcm , c = gxhr and sends c to the verifier. Then
it performs the two protocols, the opening of ψ (section 4.1) and the range proof
of [27] (compiled with the same Designated-Verifier technique), in parallel.

For completeness, we recall the aforementioned integer commitment scheme
used. It works over any group of unknown (to the committer) order such as an
RSA group or a class group. In our case, we focus on the RSA instantiation, thus
the underlying group is ZNcm , where Ncm is an RSA modulus. The commitment
key consists of two random elements g, h ∈ ZNcm such that g ∈ ⟨h⟩. In the key
generation phase we sample uniformly g ←$ ZNcm and f ←$ ϕ(Ncm)

16 and output
(g, h) = (hf , h). A commitment to x is merely c = gxhr for a random r ←$ JNcm

2 K.
The opening values are (x, r) and the verification is c = ±gxhr.17 The scheme is
binding under the factoring assumption for Ncm and statistically hiding.

We present DVRangeProt in Fig. 3,(for lack of space we describe its key gener-
ation in the full version).For ease of presentation parts related to the range proof
and the opening of ψ are visually separated, denoted as (1) and (2) respectively.
We directly present our protocol with reusable and maliciously generated vpk,
similarly to how these were presented for DVProt in Sections 4.3 and 4.4.

For the key generation, except for a secret/public key of the additively ho-
momorphic encryption scheme (Paillier cryptosystem), we further need an RSA
modulus Ncm and the group elements g, h to instantiate the integer commitment
scheme. For zero-knowledge to hold even under maliciously generated vpk it is
important that g = hf holds. Therefore we additionally include a zero-knowledge
proof ensuring it.

16 In case ϕ(Ncm) is unknown, sampling f ←$ JNcm
2

K is statistically close.
17 The ± relaxation is artificially added in order to achieve a sound zero-knowledge

proof of opening of c, which however does not affect the binding of the commitment
scheme.
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P(vpk, ψ, Y,R, κ, x)↔ V(vsk, vpk, ψ, Y,R, κ):

P1: 1. Sample t←$ J2λ Ncm

2 K and compute cm = gxht mod Ncm.

2. Sample r ←$ J25λ+2 log λRK, σ ←$ J26λ+2 log λ Ncm

2 K and compute
β = grhσ.

3. Find x1, x2, x3 ∈ Z such that 4x(R − x) + 1 =
∑3

i=1 x
2
i (using

e.g. [57]).
4. Sample ti ←$ J2λ Ncm

2 K and compute cmi = gxihti , for i ∈ [1, 3].

5. Sample ri ←$ J25λ+2 log λRK, σi ←$ J26λ+2 log λ Ncm

2 K and compute
βi = grihσi , for i ∈ [1, 3].

6. Sample τ ←$ J26λ+2 log λ+4Ncm

2 RK and compute β4 =

hτcm4r
∏3

i=1 cm
−ri
i .

7. Compute α = ψ(r).
P → V: send a =

(
cm, {cmi}i∈[1,3], α, β, {βi}i∈[1,4]

)
V1: Sample b

$←− {0, 1}λ (denote (b1, . . . , bλ) := b).
V → P: send b

P2: 1. Compute challenge ciphertext C = ctλ+κ ·
∏λ

i=1 ct
bi
i

2. Compute:
• U = Encpk(r) · CR−x, V = Encpk(σ) · C−t.
• Ui = Encpk(ri) · Cxi , Vi = Encpk(σi) · Cti , for i ∈ [1, 3].

• U4 = Encpk(τ) · C
∑3

i=1 xiti−4(R−x)t.
P → V: send S = (U, V, {Ui}i∈[1,3], {Vi}i∈[1,3], U4)

V2: 1. Compute plaintext challenge c = cλ+κ +
∑λ

i=1 cibi
2. Decrypt U, V, {Ui}i∈[1,3], {Vi}i∈[1,3], U4: u = Decsk(U), v =

Decsk(V ), ui = Decsk(Ui), vi = Decsk(Vi) for i ∈ [1, 3] and
u4 = Decsk(U4)

3. Perform the following checks:

• β(cm−1gR)c
?
= guhv

• βicmc
i

?
= guihvi , for i ∈ [1, 3]

• β4
∏

i∈[1,3] cm
ui
i

?
= hu4gccm4u

• ui
?
∈ J25λ+2 log λRK, for i ∈ [1, 3]

• α
(
Y −1ψ(R)

)c ?
= ψ(u)

P ↔ V: (Non-GGM part:) For each ciphertext of the third message S per-
form a variant of the three-round SigmaProt for the relation R ={
(Si, C); (w1, w2, w3) : Si = Encpk(w1;w2) · Cw3

}
with |C| = 2λ.

This can be done in two extra rounds starting with P2, as in Fig. 2.

Fig. 3. DVRangeProt: The designated-verifier range proof of a preimage of ψ. The
key generation phase is presented in ??.
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Security. The above protocol consists of two sub-protocols: our protocol of Sec-
tion 4.1 and the range proof by Couteau et. al. [27] over RSA groups. Thus the
security of the protocol can be proven in a straightforward way from the security
of these subprotocols. For correctness, again we need to consider the size of the
message spaceM of the encryption scheme AHE. Indeed |M| needs to be at least

as large as the maximum value encrypted, which equals τ+
∑3

i=1 xiti−4(R−x)t,
the content of U4. Knowledge-Soundness follows directly from the knowledge-
soundness of the two sub-protocols.

Theorem 6. Let AHE be an IND-CPA secure Encryption Scheme with mes-
sage space |M| > 26λ+2 log λ+4NcmR. Then DVRangeProt is a designated verifier
argument of knowledge for the relation RHomRange that is: correct, Q-reusable
knowledge-sound under the Factoring assumption for Ncm and IND-CPA se-
curity of AHE and statistically honest-verifier zero-knowledge under malicious
VPK.

Due to space limitations the proof is deffered to the full version.
DVRangeProt can be optimised in the generic group model similarly to how

it is done in Section 4.6. In this case we can omit the final interaction between
prover and verifier in Fig. 3 that proves knowledge of the plaintext inside Si.

6 Evaluation and Performance

We implemented18 and benchmarked our protocols, primarily focusing on eval-
uating and comparing DVProt and DVRangeProt (Table 1), proving knowledge of
the ciphertext message, and its range correspondingly. As a baseline we also im-
plemented several flavours of the basic Σ-protocol (Table 2). For simplicity here
we only present non-interactive (Fiat-Shamir transformed) variants.

The evaluation indicates that our protocols is a strictly better choice for
certain types of applications (e.g. ID-MPC such as RSA ceremonies), as they
exhibit better verification time and communication size. For generic applications,
our protocols are comparable to other solutions, providing different performance
trade-offs.

Setup and Instantiation Details. We ran our benchmarks on the Intel i5-8500
@ 3.00GHz processor. For illustrative purposes the protocol code runs in the
single-core mode only, and no specifically tailored low-level optimisations are
implemented. All the evaluations are presented for λ = 128, and logN = 2048;
for the range proof we take R = 2256; the maximum query number of VPK reuses
is set to Q = 128. For Fiat-Shamir transformation we instantiate the random
oracle with the Blake2b [4] hash function.

For DVProt and DVRangeProt we use Paillier-ElGamal encryption as the target
homomorphism (which is additively homomorphic in both message and random-
ness), and standard Paillier as the AHE scheme on the verifier’s side. For each of

18 The implementation is available publicly on Github: https://github.com/volhovm/
rsa-zkps-impl
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VPK Gen VPK Verify Prove Verify Proof size VPK size

DVProt M 4754 12310 162 66 5.52 KB 741 KB

DVProt T 836 - 130 56 5.14 KB 159 KB

DVProt M GGM 4754 12310 84 32 2.32 KB 741 KB

DVProt T GGM 836 - 69 28 2.19 KB 159 KB

DVRangeProt M 13827 25900 1880 1120 34.32 KB 842 KB

DVRangeProt T 9106 - 1330 782 31.78 KB 188 KB

DVRangeProt M GGM 13827 25900 689 153 11.05 KB 842 KB

DVRangeProt T GGM 9106 - 490 111 10.41 KB 188 KB

Table 1. Evaluation of our main protocols. Timings are in ms. “GGM” is GGM
optimisation, and “M/T” stand for malicious or trusted setup.

Prove Pre-Verify Verify Proof size

SigmaProt Paillier, λ = 128 reps 342 0 1161 134.00 KB

SigmaProt Paillier, 8 reps 21 4 73 8.38 KB

SigmaProt Paillier, 7 reps 19 36 64 7.33 KB

SigmaProt Paillier, 6 reps 16 339 55 6.28 KB

SigmaProt Paillier, 5 reps 14 6535 46 5.23 KB

SigmaRangeProt Paillier (with slack) 345 0 1157 108.00 KB

Table 2. Performance for the baseline algorithms. Timings are in milliseconds.
SigmaProt is evaluated with different pmax/number of repetition parameters. Note
that SigmaRangeProt has range slack while DVRangeProt is tight.

our two protocols we evaluate four cases, depending on whether we use the GGM
optimisation or not, and whether we consider malicious VPK or a trusted one
(for the ID-MPC case). In the latter case we do not consider VPK verification
time.

For the baseline SigmaProt and SigmaRangeProt we use standard Paillier. We
evaluate SigmaProt with naive λ = 128 reps, and also with varying log pmax ∈
{16, 19, 22, 26} . The range proof SigmaRangeProt cannot use the pmax optimisa-
tion. Note, importantly, that SigmaRangeProt has multiplicative range slack 2λ+1,
while our DVRangeProt is tight; this means comparing them directly is not even
possible for all applications.

Performance Overview. Below we will mostly consider the GGM optimised vari-
ants of our protocols that assumes trusted setup, since it gives us best per-
formance, and fits ID-MPC case well. The main advantage of our DVProt and
DVRangeProt is that they are single-shot, requiring no repetitions. It affects the
two protocols non-proportionally, benefiting DVRangeProt more, since the base-
line SigmaRangeProt cannot avoid λ repetitions. Our verification time is strictly
less than the baseline: 1.5-2× for DVProt, and 10× for DVRangeProt. Communi-
cation is more efficient too, since our proofs are strictly smaller. Even with our
VPK being comparably heavy, its size together with Q = 128 proofs gives us 1.5-
2× improvement for DVProt and 6-9× improvement for DVRangeProt. Our proving
time is slightly higher for DVRangeProt, and about 2× higher with DVProt.
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