
Threshold Private Set Intersection with Better
Communication Complexity

Satrajit Ghosh1 and Mark Simkin2

1 Indian Institute of Technology Kharagpur
2 Ethereum Foundation

Abstract. Given ℓ parties with sets X1, . . . , Xℓ of size n, we would like
to securely compute the intersection ∩ℓ

i=1Xi, if it is larger than n− t for
some threshold t, without revealing any other additional information. It
has previously been shown (Ghosh and Simkin, Crypto 2019) that this
function can be securely computed with a communication complexity
that only depends on t and in particular does not depend on n. For
small values of t, this results in protocols that have a communication
complexity that is sublinear in the size of the inputs. Current protocols
either rely on fully homomorphic encryption or have an at least quadratic
dependency on the parameter t.
In this work, we construct protocols with a quasilinear dependency on
t from simple assumptions like additively homomorphic encryption and
oblivious transfer. All existing approaches, including ours, rely on proto-
cols for computing a single bit, which indicates whether the intersection
is larger than n−t without actually computing it. Our key technical con-
tribution, which may be of independent interest, takes any such protocol
with secret shared outputs and communication complexityO(λℓ poly(t)),
where λ is the security parameter, and transforms it into a protocol with
communication complexity O(λ2ℓt polylog(t)).

1 Introduction

In the private set intersection (PSI) setting, ℓ parties with private input sets
X1, . . . , Xℓ would like to jointly compute ∩ℓi=1Xi without revealing anything else
about any of the sets to each other. PSI is a powerful tool with applications in
various places, such as botnet detection [NMH+10], online advertising [PSSZ15],
private contact discovery [Mar14], and contact tracing [DPT20]. Various works
have shown how to design asymptotically and practically efficient protocols in
both the two and multiparty setting with security against both passive and
active adversaries [Mea86, FNP04, KS05, DCW13, PSSZ15, KKRT16, PRTY19,
PRTY20]. Unfortunately, all these protocols have communication complexities
that are at least linear in the size of the smallest input set and it was observed
by Freedman, Nissim, and Pinkas [FNP04] that one cannot hope to do better in
general.

Ghosh and Simkin [GS19] have recently shown that the communication com-
plexity can be sublinear in the sizes of the input sets, when the intersection is

very large. The authors considered the threshold private set intersection (TPSI)
setting, where the parties would like to compute the intersection of their sets,
if and only if it is larger than n − t, where n is the size of each set and t is
some threshold. Based on simple assumptions, such as the existence of obliv-
ious transfer and additively homomorphic encryption, Ghosh and Simkin con-
struct protocols for TPSI with a communication complexity of O(λt2 polylog t)
bits, where λ is the computational security parameter, for the two-party case.
The authors also show how to construct a close to optimal two-party protocol
based on fully homomorphic encryption with O(λtpolylog t) bits and outline
how these protocols can be extended to the multiparty case. The authors show
an Ω(t) lower bound on the communication complexity for the two-party case.
Subsequently Branco, Döttling, and Pu [BDP21] present an ℓ-party protocol
with a communication complexity of O(λℓt2 polylog t) bits based on threshold
additively homomorphic encryption. Badrinarayanan et al. [BMRR21] propose
a protocol for a setting similar to the TPSI setting above, namely for computing
the intersection of ℓ sets with a communication complexity of O(λℓt polylog t),
when

∣∣(∪ℓi=1Xi) \ (∩ℓi=1Xi

∣∣) ≤ t. For ℓ = 2, the work of Badrinarayanan et al. is
equivalent to two-party TPSI, but for ℓ > 2 their work requires the set intersec-
tion to not only be large, but additionally they require that the parties have less
than t distinct elements outside the intersection among all sets. Both Branco,
Döttling, and Pu as well as Badrinarayanan et al. show that one cannot do bet-
ter than Ω(ℓt) in their respective settings and provide, up to polylog factors,
matching upper bounds based on fully homomorphic encryption.

All three works [GS19, BDP21, BMRR21] leave constructing asymptotically
optimal multiparty protocols from other assumptions than the existence of fully
homomorphic encryption as an open problem.

1.1 Applications of Threshold Private Set Intersection

As has been pointed out by the previous works, threshold private set intersection
is not just an interesting theoretical object to study, but also has the potential to
be useful in a variety of practical applications, where parties are only interested
in the actual intersection if it is indeed large. In the biometric authentication
setting, we have a biometric reading represented as a feature vector and a tem-
plate. An authentication attempt can directly be discarded, if the reading has
a small intersection with the template. In the setting of ride sharing or dating
apps, users may not care to share their private data with each other, if they do
not have a large intersection.

Even protocols for general private set intersection can benefit from more
efficient TPSI protocols. Parties that would like to compute the intersection of
their sets, can first execute a private intersection cardinality test protocol on
thresholds 2, 22, 24, . . . to determine the correct threshold and then compute the
intersection using the TPSI protocol. Using this approach, leads to a general
private set intersection protocol with a communication complexity that depends
on the size of the output and not on the size of the inputs. This is in stark contrast

2

to the majority of existing works on PSI that usuall have a communication
complexity that is at least linear in the smallest set size.

1.2 Our Contribution

In this work, we present new protocols for computing the threshold private set
intersection among ℓ parties with a quasilinear rather than quadratic dependency
on t from simple assumptions. More concretely, we construct protocols with
a communication complexity of O(λ2ℓtpolylog t) bits. We follow the blueprint
of Ghosh and Simkin [GS19] and tackle the problem by splitting it into two
smaller problems. We first execute a private intersection cardinality test (PICT)
protocol Πn,t

ℓ-pict(X1, . . . , Xℓ) that checks, whether the given sets X1, . . . , Xℓ have
an intersection of size at least n− t. If they do, we can execute another protocol
for computing the actual intersection in a communication efficient manner.

Computing the intersection, when it has already been established that it is
indeed large enough, can be done generically from assumptions, like the existence
of oblivious transfer or additively homomorphic encryption, with a close to op-
timal communication complexity of Õ(λℓt) bits as has been shown by Ghosh
and Simkin. Thus, the main challenge and the focus of this work is to construct
communication efficient PICT protocols from simple assumptions, which output
a single bit that indicates, whether the intersection is large enough.

Our main technical contribution is a transformation that takes any PICT pro-
tocol with secret shared outputs3 and communication complexity O(λℓpoly(t))
and transforms it into a new protocol that solves the same task, but has a commu-
nication complexity of only O(λ2ℓtpolylog(t)). An implication of this compiler
is the existence of multiparty protocols with the above stated communication
complexity from effectively any assumption that implies secure computation.
The efficiency of a protocol that is given as input to our transformation only
affects the constant in the polylog(t) exponent.

Is This Stuff Practical? We stress that the main focus of this work is to
construct asymptotically efficient protocols from simpler assumptions. We hope
that our work will eventually lead to practically efficient protocols, but we think
that our current results achieving a communication complexity of O(λ2ℓt logc t)
bits for some c ≥ 2 are still slightly too inefficient for most reasonable real-world
parameters. We leave constructing protocols with c ≤ 1 as an exciting open ques-
tion for future work. Nonetheless, we view our work as a significant theoretical
step towards more efficient protocols for threshold private set intersection.

1.3 Technical Overview

For the sake of this overview, let us focus on the two-party case. We would like
to design a protocol that takes two sets X,Y ⊂ U from some universe U as input

3 All existing protocols can easily be adapted to output secret shares of the output
instead of the output itself.

3

and outputs a bit that indicates, whether |X ∩ Y | ≥ n−t or equivalently, whether
the symmetric set difference |X△Y | := |X \ Y ∪ Y \X| ≤ 2t. Our main idea is
to approach this problem via a divide and conquer strategy, i.e. to partition the
sets X and Y into smaller sets X1, . . . , Xt and Y1, . . . , Yt and then to perform a
series of independent PICTs on each pair Xi and Yi for i ∈ [t] := {1, . . . , t}.

More precisely, imagine we have random functions4 Hi : U → [t] for i ∈ [ϵ]
for some value ϵ that take set elements as input and outputs values in [t]. Define
Xj

i = {x | x ∈ X ∧Hj(x) = i} and Y j
i = {y | y ∈ Y ∧Hj(y) = i} for i ∈ [t] and

j ∈ [ϵ] and observe that for all j ∈ [ϵ]

|X△Y | =
t∑

i=1

∣∣∣Xj
i△Y j

i

∣∣∣.
Consider some fixed j ∈ [ϵ]. If |X△Y | ≤ 2t, then in expectation each pair of sets
Xj

i and Y j
i contains at most two elements in their symmetric set difference and

one can show that (for a fixed j) with a constant probability none of the pairs
has a symmetric set difference that is larger than O(ln t). It follows that when

|X△Y | ≤ 2t, there must exist at least one j for which
∣∣∣Xj

i△Y j
i

∣∣∣ ∈ O(ln t) for

all i ∈ [t] with an overwhelming in ϵ probability.
So how is this helpful? Imagine we were given access to an auxiliary func-

tionality Fn,t̃,v
△ that takes two sets as input and either returns a secret sharing

of the size of their exact symmetric set difference or a secret sharing of some
default value v, if the symmetric set difference is larger than t̃ ≈ ln t. We can

use Fn,t̃,v
△ on each of the ϵt many subset pairs to obtain equally many secret

shared values and then add all the values together that belong to inputs, which
were partitioned using the same random partitioning function to get a total of ϵ
many secret shared sums. Each of those sums either equals the exact size of the
symmetric set difference of X and Y or some value, which has v as a summand.
By picking v = t+ 1, we ensure that each sum containing v is larger than t. As
the final step in our protocol, we run a generic secure computation protocol for
checking, whether any of the ϵ sums is at most t in which case we conclude that
the inputs X and Y have a large enough intersection.

To make our protocol work, we still need to instantiate Fn,t̃,v
△ . We show that

this can be done from any PICT protocol with secret shared outputs for thresh-
olds t̃. If the given protocol has a communication complexity of O(λ poly(t̃)) bits,

then our instantiation of Fn,t̃,v
△ has a communication complexity ofO(λt̃poly(t̃)) =

O(λ ln tpolylog t) = O(λ polylog t). Since our approach only relies on generic se-
cure computation and existing PICT protocols, it follows that we can instantiate
our constructions from assumptions that imply both of these cryptographic ob-
jects. As we will see, this means that we can instantiate our results from oblivious
transfer or generic additively homomorphic encryption.

4 Throughout the paper we will use random functions for the sake of simplicity, but
we stress that all of our constructions and arguments work equally well with pseu-
dorandom functions, where the key is known to all parties.

4

Our multiparty PICT protocols follows the same blueprint as the protocol
outlined above, but need to overcome several other challenges. In the the two-
party case we got away with just talking about the symmetric set difference,
since an upper bound on that quantity directly translates into a lower bound
on the set intersection size. In the multiparty setting this is not the case any
longer and we will need to directly talk about the set intersection sizes in all the
buckets instead. While it may sounds like an irrelevant change, it does introduce
some small technical challenges that we will highlight in Section 4.

Paper Outline. In Section 2 we recall some basic preliminaries and define all
the required notation that will be needed throughout the paper. In Section 3,
we present our protocol for the two-party case. We stress that this does not
asymptotically improve upon the state-of-the-art, which has a communication
complexity of O(λtpolylog t) bits5. We do, however, believe that our two-party
protocol highlights the main ideas of this work quite well, while avoiding some
of the complexities that come from considering multiple parties. In Section 4 we
present our multiparty protocol, which is the main technical contribution of this
work.

2 Preliminaries

Notation. We write [n] = {1, 2, . . . , n}. Let log x be the logarithm of x with
base 2 and lnx the one with base e. For convenience, we assume the natural
numbers start at one, i.e. N = {1, 2, 3, . . . }. Let λ be the computational and
ϵ the statistical security parameter and we assume that ϵ/λ ∈ O(1). We write
F to denote a finite field of prime order and we assume that |F| ≥ 2ϵ. For
parties P1, . . . , Pℓ with inputs X1, . . . , Xℓ that have oracle access to an ideal
functionality F , we write (b1, . . . , bℓ)← F(X1, . . . , Xℓ) as a shorthand notation
for each party i sending Xi to the ideal functionality and, once all inputs are
received, receiving back output bi. For a protocol Π, we write CC(Π) to denote
the communication complexity of Π, i.e. the number of bits exchanged in one
execution of the protocol.6

Theorem 1 (Chernoff Bound). Let I1, . . . , In be random variables with 0 ≤
Ii ≤ 1 for all i ∈ [n]. Define I =

∑n
i=1 Ii and let µ = E[I]. For any δ ≥ 1,

Pr[I ≥ (1 + δ)µ] ≤ e−
δµ
3 .

5 This communication complexity can be obtained, without using fully homomorphic
encryption, by using the construction of Ghosh and Simkin [GS19] in combination
with an observation due to Badrinarayanan et al. [BMRR21].

6 We assume that the communication complexity is a deterministic function of the
inputs and parameters of Π.

5

Set Gymnastics. Let U be the universe from which set elements will be
sampled and let Z = (z1, z2, . . .) be an auxiliary (sorted) universe such that
U ∩ Z = ∅. We will use upper case letter for sets and lower case letters for
their elements, e.g. S = {s1, . . . , sn}. For S ∈ Un and function H : U → [t],
we write (S1, . . . , St) ← H(S) as a shorthand notation to specify the sets
Si = {s | s ∈ S ∧H(s) = i}.

Secret Sharing. Let Sharen : F→ Fℓ be an ℓ-out-of-ℓ secret sharing algorithm
that takes v ∈ F as input and outputs uniformly random v1, . . . , vℓ ∈ F, such
that v =

∑ℓ
i=1 vi. When an algorithm or a functionality outputs Shareℓ(v), we

mean that party i receives shares vi.

2.1 Secure Multiparty Computation

We assume familiarity with standard secure computation notions in the stan-
dalone model (see [Lin17]). In this paper, we assume that all parties are pairwise
connected via a synchronous network and authenticated private channels. Addi-
tionally the parties have access to a broadcast channel. We consider an adversary
that can corrupt all but one parties passively.

2.2 Private Intersection Cardinality Testing.

For the two-party case the functionality we are interested in is the Fn,t
pict(X,Y)

functionality shown in Figure 1. It is helpful to note that for X and Y with
n = |X| = |Y |, it holds that

|X ∩ Y | ≤ n− t ⇐⇒ |X△Y | > 2t,

which means that the functionality outputs a sharing of 1 for two sets of size n
if and only if |X ∩ Y | > n − t. The functionality Fn,t

pict(X,Y) does allow for the
input sets to be of unequal sizes smaller than n in which case the equivalence
above does not hold. This is done for the sake of simplifying the presentation
of our construction in the two-party case. The multiparty functionality will be
introduced in Section 4 and it will require the input sets to be of the same size.

2.3 Some Auxiliary Functionalities

In the following, we define some helpful functionalities that will come in handy
later on. They can be realized using any generic secure computation protocol
and will not affect our communication complexities in any meaningful way.

The functionalities in Figure 2 allow for comparing a secret shared input
against a publicly known threshold and returning either the secret shared value
or a default value. Both functionalities can be easily realized with communi-
cation complexities that are linear in their input length with standard secure
computation tools.

6

Functionality Fn,t
pict (X,Y)

if |X| > n or |Y | > n

return ⊥
if |X△Y | > t

return Share2(0)

else

return Share2(1)

Fig. 1. Functionality takes two sets X and Y of size at most n as input and checks
whether |X△Y | ≤ t.

Functionality F t,v
cmp(r1, r2)

if r1 + r2 = t

return Share2(v)

else

return Share2(r1 + r2)

Functionality F t,v
ℓ-geq(r1, . . . , rℓ)

Compute s :=

ℓ∑
i=1

ri

if s ≥ t

return Shareℓ(s)

else

return Shareℓ(v)

Fig. 2. Some useful private comparison function of secret shared inputs.

7

Functionality F t,ϵ
ℓ-vec-leq((s

1
1, . . . s

ϵ
1), . . . , (s

1
ℓ , . . . s

ϵ
ℓ)) in Figure 3 takes ϵ many

ℓ-out-of-ℓ secret shared field elements as input and returns 1 if any one of them
is smaller than t and 0 otherwise. This functionality can be realized using generic
secure computation with a communication complexity of O(ϵℓ|F|) bits.

Functionality F t,ϵ
ℓ-vec-leq((s

1
1, . . . s

ϵ
1), . . . , (s

1
ℓ , . . . s

ϵ
ℓ))

if ∃ j ∈ [ϵ] :

ℓ∑
i=1

sji ≤ t

return Shareℓ(1)

else

return Shareℓ(0)

Fig. 3. Functionality for checking, whether one of the ϵ many secret shared inputs is
at most t.

The functionality in Figure 4 computes the minimum among a list of input
values and returns that value in secret shared form.

Functionality Fℓ-min(d1, . . . , dℓ)

Compute dmin := min{d1, . . . , dℓ}
return Shareℓ(dmin)

Fig. 4. Functionality for computing a secret sharing of the minimum among a set of
inputs.

The functionality in Figure 5 checks whether at least one of multiple secret
shared values is within a given interval.

3 The Two-Party Divide-and-Conquer Approach

In this section, we will focus on the two-party case for the sake of presenting our
main ideas in a simplified setting.

Let us begin with a simple lemma, which states that one can partition sets
X and Y into smaller sets and compute the size of their symmetric set difference
in a divide-and-conquer fashion.

8

Functionality Fn,t,ϵ
ℓ-vec-intrvl((s

1
1, . . . s

ϵ
1), . . . , (s

1
ℓ , . . . s

ϵ
ℓ))

if ∃ j ∈ [ϵ] : n− t ≤
ℓ∑

i=1

sji ≤ n

return Shareℓ(1)

else

return Shareℓ(0)

Fig. 5. Functionality for checking, whether at least one of ϵ many secret shared input
values is in between n− t and n.

Lemma 1. Let X,Y ⊂ U , let t ∈ N, and let H : U → [t] be an arbitrary
function. For (X1, . . . , Xt)← H(X) and (Y1, . . . , Yt)← H(Y), it holds that

|X△Y | =
t∑

i=1

|Xi△Yi|.

Proof. Consider two arbitrary setsX,Y ⊂ U . We observe that |X△Y | = |X \ Y |+
|Y \X|. If v ∈ X \Y , then there exists an index i ∈ [t] such that v ∈ Xi \Yi and
since Xi ∩Xj = ∅ for any j ̸= i, it holds that i is unique. The other way round,
for any i ∈ [t] and any v ∈ Xi \ Yi, it holds that v ∈ X \ Y . Thus

|X \ Y | =
t∑

i=1

|Xi \ Yi|

and by symmetry of the above argument

|X△Y | =|X \ Y |+ |Y \X|

=

t∑
i=1

|Xi \ Yi|+
t∑

i=1

|Yi \Xi|

=

t∑
i=1

|Xi \ Yi|+ |Yi \Xi| =
t∑

i=1

|Xi△Yi|.

□

Next, we observe that, if the symmetric set difference of X and Y is at most
t, then the symmetric set difference of each pair of subsets Xi and Yi for i ∈ [t]
is in O(ln t) with a constant probability.

Lemma 2. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. Let H : U → [t] be a
random function, and let X,Y ∈ Un. If |X△Y | ≤ t, then for (X1, . . . , Xt) ←
H(X) and (Y1, . . . , Yt)← H(Y) it holds that

Pr
[
∃i ∈ [t] : |Xi△Yi| ≥ t̃

]
≤ 1/2,

where the probability is taken over the random choice of H.

9

Proof. Assume that |X△Y | ≤ t. For all i ∈ [t], it holds that Xi△Yi = {v | v ∈
X△Y ∧H(v) = i} ⊂ X△Y . Fix one bucket j and let Iv be the indicator variable
for whether v ∈ X△Y landed in bucket j or not. For

E[|Xj△Yj |] = E

 ∑
v∈X△Y

Iv

 =
∑

v∈X△Y

1/t ≤ 1

we get by Chernoff bound that

Pr [|Xj△Yj | ≥ 1 + 3 ln 2t] ≤ e−
3 ln 2t

3 = 1/2t,

where the probability is taken over the random choice of the function H. The
statement follows by union bounding over all t buckets. □

Now, if |X△Y | ≤ t and we partition sets X and Y not once, but ϵ many
times, then we are guaranteed with overwhelming probability that at least one
of those partitions has no bucket that contains more than O(ln t) elements.

Theorem 2. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. For each i ∈ [ϵ], let
Hi : U → [t] be a random function. Let X,Y ∈ Un be two sets of size n and
(Xi

1, . . . , X
i
t) ← Hi(X) and (Y i

1 , . . . , Y
i
t) ← Hi(Y) for i ∈ [ϵ]. If |X△Y | ≤ t,

then

Pr
[
∃i1, . . . iϵ ∈ [t] :

∣∣∣Xj
ij
△Y j

ij

∣∣∣ ≥ t̃ ∀j ∈ [ϵ]
]
≤ 2−ϵ,

where the probability is taken over the random choice of H1, . . . ,Hϵ.

Proof. Assume |X△Y | ≤ t, then

Pr
[
∃i1, . . . iϵ ∈ [t] :

∣∣∣Xj
ij
△Y j

ij

∣∣∣ ≥ 1 + 3 ln 2t ∀j ∈ [ϵ]
]

=

ϵ∏
j=1

Pr
[
∃ij ∈ [t] :

∣∣∣Xj
ij
△Y j

ij

∣∣∣ ≥ 1 + 3 ln 2t
]

≤
ϵ∏

j=1

1/2 = 2−ϵ,

where the last inequality follows from Lemma 2.
□

From the above it now follows that, if there exists at least a single bucket in
each of the ϵ partitions, which contains more than 1+3 ln 2t elements of the sym-
metric set difference, then we can conclude that |X△Y | > t with overwhelming
probability.

Corollary 1. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln 2t. For each i ∈ [ϵ],
let Hi : U → [t] be a random function. Let X,Y ∈ Un be two sets of size n

10

Functionality Fn,t,v
△ (X,Y)

if |X| > n or |Y | > n

return ⊥
if |X△Y | > t

return Share2(v)

else

return Share2(|X△Y |)

Fig. 6. Functionality for computing the exact symmetric set difference, if it is smaller
than t, of sets X and Y with elements from U . The sets X and Y may be of different
sizes, but neither of them is larger than n.

and (Xi
1, . . . , X

i
t)← Hi(X) and (Y i

1 , . . . , Y
i
t)← Hi(Y) for i ∈ [ϵ]. If there exist

indices i1, . . . iϵ ∈ [t], such that for all j ∈ [ϵ] it holds that
∣∣∣Xj

ij
△Y j

ij

∣∣∣ ≥ t̃, then

Pr[|X△Y | > t] ≥ 1− 2−ϵ,

where the probability is taken over the random choices of H1, . . . Hϵ.

Armed with the above observations, we are now ready to present our con-
struction. The description of our protocol makes use of an ideal functionality
Fn,t,v

△ (see Figure 6) that takes two sets as input and either returns a secret
sharing of their symmetric set difference or returns a sharing of some value v.
The sets may be of different sizes, but are both not larger than n. We want to
highlight that allowing for input sets of unequal size is only possible, because we
are currently talking about the symmetric set difference. Looking ahead, we will
be directly talking about the size of the intersection in the multiparty protocols
in Section 4 and therefore we will need to take care of making the sets be of the
correct and same size. We show how to instantiate Fn,t,v

△ in Section 3.1

Theorem 3. Let n, t, t̃ ∈ N with n > t and t̃ = 1 + 3 ln 2t. The protocol Πpict

depicted in Figure 7 securely realizes Fn,t
pict using ϵ · t calls to Fn,t̃,t+1

△ and one

call to F t,ϵ
vec-cmp.

Proof. We prove correctness and privacy separately.

Correctness. If there exists indices j1, . . . , jϵ ∈ [t] such that
∣∣Xi

ji
△Y i

ji

∣∣ > t̃ for
all j ∈ [ϵ], then by Corollary 1 we know that |X△Y | > t with overwhelming
probability and thus the output of Πn,t

pict(X,Y) should be a secret sharing of 0.

We observe that for these indices it holds that riji + siji = t+ 1 and thus for all

i ∈ [ϵ] it holds that ri + si > t. Therefore r + s = 0

11

Construction Πn,t
pict(X,Y)

1 : for i ∈ [ϵ] :

2 : Alice: (Xi
1, . . . , X

i
t)← Hi(X)

3 : Bob: (Y i
1 , . . . , Y

i
t)← Hi(Y)

4 : for j ∈ [t] :

5 : (rij , s
i
j)← Fn,t̃,t+1

△

(
Xi

j , Y
i
j

)
6 : Alice: ri :=

t∑
j=1

rij

7 : Bob: si :=

t∑
j=1

sij

8 : (r, s)← F t,ϵ
2-vec-leq

(
(r1, . . . , rϵ), (s1, . . . , sϵ)

)
9 : return (r, s)

Fig. 7. Protocol for private intersection cardinality testing.

If on the other hand there exists an i ∈ [ϵ], such that
∣∣Xi

j△Y i
j

∣∣ ≤ t̃ for all
j ∈ [t], then

ri + si =

t∑
j=1

rij + sij =

t∑
j=1

∣∣Xi
j△Y i

j

∣∣ (Lemma 1)
= |X△Y |

and thus the F t,ϵ
vec-cmp outputs a sharing of 1 if and only if |X△Y | ≤ t.

Privacy. Without loss of generality assume that Alice is corrupted. At each step
of the protocol, she only sees one share of freshly independent secret shared
values returned by the ideal functionalities. Her view can simply be simulated
by providing her shares of independent secret sharings of 0 instead of the real
values. The indistinguishability of Alice’s simulated view follows from the indis-
tinguishability of the secret sharing scheme.

□

3.1 Instantiating Fn,t,v
△

To instantiate Fn,t,v
△ , we simply use Fn,i

pict once for each threshold i ∈ [t] and then
accumulate the result.

Theorem 4. Let n, t ∈ N with n > t and v ∈ F. The protocol Πn,t,v
△ depicted in

Figure 8 securely implements Fn,t,v
△ using one call to Fn,i

pict for each i ∈ [t].

12

Construction Πn,t,v
△ (X,Y)

1 : for i ∈ [t] :

2 : (ri, si)← Fn,i
pict(X,Y)

3 : Alice: r := t−
t∑

j=1

ri

4 : Bob: s := −
t∑

j=1

sj

5 : (d1, d2)← F t,v
cmp(r, s)

6 : return (d1, d2)

Fig. 8. Protocol Πn,t,v
△ realizing Fn,t,v

△ .

Proof. For correctness, we observe that Fn,i
pict(X,Y) outputs a sharing of 1, when

|X△Y | is at most i. Thus, for |X△Y | ≤ t, we have that (r, s) is a secret sharing
of exactly |X△Y | and if |X△Y | > t, then (r, s) is a secret sharing of t.

For seeing that the protocol is secure, assume that Alice is corrupted. To
simulated the responses of Fn,i

pict(X,Y), we add shares of a secret sharing of 0
to her view. Given the output of the functionality, we secret share that value
and add one share to Alice’s view. It is straightforward to see that this perfectly
simulates Alice’s view in the real world, which completes the proof.

□

To instantiate our overall protocol, we now need to instantiate the Fn,t
pict func-

tionality that is being used inside of Πn,t,v
△ . Formally, the two-party protocols

of Ghosh and Simkin [GS19] require the input sets to be of the same size. Their
protocols, however, work equally well for sets of different sizes and thus can be
used to instantiate our functionality Fn,t

pict. Internally, their work relies on a pro-
tocol for securely computing the determinant of a secret shared matrix. They
instantiate that protocol with a communication complexity of O(λt2 polylog(t))
via additively homomorphic encryption, but using a protocol for computing that
determinant by Cramer and Damg̊ard [CD01], one can instantiate the protocol of
Ghosh and Simkin with communication complexityO(λ ln3 t) from generic secure
computation. It follows that our result can be instantiated from any assumption,
such as the existence of additively homomorphic encryption or oblivious transfer,
that implies secure computation.

In our instantiation, we have ϵt buckets and for each of them we execute the
protocol of Ghosh and Simkin O(ln t) times with a threshold of O(ln t). Thus
we get the following corollaries.

Corollary 2. Assuming the existence of oblivious transfer (or additively homo-
morphic encryption), there exists a constant-round protocol for securely comput-

13

ing the two-party private intersection cardinality test for threshold t with com-
munication complexity of O(ϵ2tpolylog t) bits.

Combining the results in our paper with the protocols for actually computing
the intersection, once it is known that it is large enough, from by Ghosh and
Simkin [GS19], we get the following result.

Corollary 3. Assuming the existence of oblivious transfer (or additively homo-
morphic encryption), there exists a constant-round protocol for threshold private
set intersection among two parties with threshold t with communication complex-
ity of O(ϵ2tpolylog t) bits.

4 The Multiparty Case

We now proceed to present our protocol for the multiparty case, which follows the
blueprint from Section 3, but needs to overcome several additional challenges.
The functionality that we would like to realize in this section is depicted in
Figure 9.

Functionality Fn,t
ℓ-pict(X1, . . . , Xℓ)

if |X1| ̸= n or . . . or |Xℓ| ≠ n

return ⊥

if

∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣ ≥ n− t

return Shareℓ(1)

else

return Shareℓ(0)

Fig. 9. Functionality for multiparty private intersection cardinality testing among sets
of size exactly n.

In the two-party case we got away with talking about the set difference as a
surrogate for the size of the set intersection due to the equivalence of intersection
size and size of the symmetric set difference that is pointed out in Section 2.2.
In the multiparty case, we make no such assumption.

To call a protocol for computing the size of the intersection in each bucket
among ℓ parties, we will now ensure that the sets in each bucket are of the same
size. We achieve this by padding sets with elements from an (ordered) auxiliary
universe Z = {z1, z2, . . . } with Z ∩ U = ∅. For n, b ∈ N with b > n and any
set X ∈ Un, we define Pad(X, b) := X ∪ {zi | i ∈ [n − b]}. Lemma 3 shows
the relationship between the size of the intersection among padded sets and
unpadded sets.

14

Lemma 3. Let b ∈ N and let X1, . . . , Xℓ ⊂ U with |Xi| ≤ b for all i ∈ [ℓ]. Let
di := ||Xi| − b| for i ∈ [ℓ]. Then∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

Pad(Xi, b)

∣∣∣∣∣−min(d1, . . . , dℓ)

Proof. Define Wi = Pad(Xi, b) \Xi for i ∈ [ℓ]. We observe that∣∣∣∣∣
ℓ⋂

i=1

Pad(Xi, b)

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

(Xi ∪Wi)

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣+
∣∣∣∣∣

ℓ⋂
i=1

Wi

∣∣∣∣∣ =
∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣+min(d1, . . . , dℓ),

where the second equality follows from the fact that Z ∩ U = ∅ and thus the
lemma statement follows. □

The following Lemma can be seen as a generalization of Lemma 1 to the
multiparty case. On an intuitive level, it states that a lower bound on the size
of the intersection of ℓ sets translates into a lower bound on the cumulative size
of the intersections in each buckets

Lemma 4. Let n, ℓ, t ∈ N with t < n, let H : U → [t] be a random function, let
X1, . . . , Xℓ ∈ Un, and (Xi,1, . . . , Xi,t)← H(Xi) for i ∈ [ℓ]. It holds that∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t

if and only if
t∑

k=1

∣∣∣∣∣Xj,k \
ℓ⋂

i=1

Xi,k

∣∣∣∣∣ ≤ t,∀j ∈ [ℓ].

Proof. Let Wj,k := Xj,k \
⋂ℓ

i=1 Xi,k for k ∈ [t] and j ∈ [ℓ]. We observe that for
each pair k, k′ ∈ [t], it holds that Wj,k ∩Wj,k′ = ∅ and thus∣∣∣∣∣Xj \

ℓ⋂
i=1

Xi

∣∣∣∣∣ =
t∑

k=1

∣∣∣∣∣Xj,k \
ℓ⋂

i=1

Xi,k

∣∣∣∣∣.
The statement follows from the fact that∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t,

if and only if ∣∣∣∣∣Xj \
ℓ⋂

i=1

Xi

∣∣∣∣∣ ≤ t,∀j ∈ [ℓ].

□

15

Similarly to Theorem 2, we will now show that, if the intersection is large
enough, then there exists an index j ∈ [ϵ] such that the partitioning with Hj will
not result in any one party having too many elements in a single bucket that do
not belong to that buckets intersection.

Theorem 5. Let n, ℓ, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln(2tℓ). For each j ∈ [ϵ],
let Hj : U → [t] be a random function. Let X1, . . . , Xℓ ∈ Un be sets of size n
and (Xj

i,1, . . . , X
j
i,t)← Hj(Xi) for j ∈ [ϵ] and i ∈ [ℓ]. If∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t,

then

Pr

[
∃ k1, . . . , kϵ ∈ [t]

i1, . . . , iϵ ∈ [ℓ]
:

∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ t̃ ∀j ∈ [ϵ]

]
≤ 2−ϵ,

where the probability is taken over the random choice of H1, . . . ,Hϵ.

Proof. Let Wi := Xi \
(⋂ℓ

m=1 Xm

)
for i ∈ [ℓ]. Assume

∣∣∣⋂ℓ
m=1 Xm

∣∣∣ > n − t,

then for each i ∈ [ℓ], it holds that |Wi| ≤ t. Fix some i ∈ [ℓ], j ∈ [ϵ], k ∈ [t]
and consider Xj

i,k, where (Xj
i,1, . . . , X

j
i,t) ← Hj(Xi). For v ∈ Wi, let Iv be the

indicator variable for whether v ∈ Xj
i,k or not. Then,

E

[∑
v∈Wi

Iv

]
=

∑
v∈Wi

1/t ≤ 1

and thus by Chernoff bound

Pr

[∑
v∈Wi

Iv ≥ 1 + 3 ln(2tℓ)

]
≤ e−

3 ln(2tℓ)
3 = 1/2tℓ.

By union bound over all t buckets and all ℓ sets, we can thus conclude that

Pr

[
∃k ∈ [t], i ∈ [ℓ] :

∣∣∣∣∣Xj
i,k \ (

ℓ⋂
m=1

Xj
m,k)

∣∣∣∣∣ > 1 + 3 ln(2tℓ)

]
≤ 1/2.

It follows that

Pr

[
∃ k1, . . . kϵ ∈ [t]
i1, . . . , iϵ ∈ [ℓ]

:

∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ 1 + 3 ln(2tℓ) ∀j ∈ [ϵ]

]

=

ϵ∏
j=1

Pr

[
∃kj ∈ [t], ij ∈ [ℓ] :

∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ 1 + 3 ln(2tℓ) ∀j ∈ [ϵ]

]
≤ 2−ϵ.

□

16

Corollary 4. Let n, t, t̃ ∈ N with t < n and t̃ ≥ 1 + 3 ln(2tℓ). For each j ∈ [ϵ],
let Hj : U → [t] be a random function. Let X1, . . . , Xℓ ∈ Un be sets of size
n and (Xj

i,1, . . . , X
j
i,t) ← Hj(Xi) for j ∈ [ϵ] and i ∈ [ℓ]. If there exist indices

k1, . . . kϵ ∈ [t] and i1, . . . , iϵ ∈ [ℓ], such that for all j ∈ [ϵ] it holds that∣∣∣∣∣Xj
ij ,kj
\

ℓ⋂
m=1

Xj
m,kj

∣∣∣∣∣ ≥ t̃,

then

Pr

[∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣ < n− t

]
≥ 1− 2−ϵ

where the probability is taken over the random choices of H1, . . . Hϵ.

When partitioning a set into several subsets randomly, one cannot guarantee
that all subsets will be of the same size. This is problematic, since we would like
to view each party’s buckets as inputs to smaller instances of a private multi-
party intersection cardinality testing problem. That is, if the different parties
have inputs of different (secret) sizes, then it is not clear what it means for an
intersection to be large enough. For this reason, each party will not directly
input its subset, but rather a padded version of it. Since the communication
complexities of our protocols never depend on the input sizes, we simply pad
each bucket to its maximum size.

Lemma 5. Let n, ℓ, t, t̃, b ∈ N with t ≤ t̃ < n and b := n and H : U → [t] be a
random function. Let X1, . . . , Xℓ ∈ Un be sets of size n and (Xi,1, . . . , Xi,t) ←
H(Xi) for i ∈ [ℓ].

If ∣∣∣∣∣Xj,k \
ℓ⋂

i=1

Xi,k

∣∣∣∣∣ < t̃,∀j ∈ [ℓ], k ∈ [t], t̃ ∈ N

then ∣∣∣∣∣Pad(Xj,k, b) \
ℓ⋂

i=1

Pad(Xi,k, b)

∣∣∣∣∣ < t̃,∀j ∈ [ℓ], k ∈ [t].

Proof. Fix some k ∈ [t] and define tj :=
∣∣∣Xj,k \

⋂ℓ
i=1 Xi,k

∣∣∣ for j ∈ [ℓ]. Observe

that

tj +

∣∣∣∣∣
ℓ⋂

i=1

Xi,k

∣∣∣∣∣+ |Pad(Xj,k, b) \Xj,k| = b

and thus for j, j′ ∈ [ℓ] we have

tj +

∣∣∣∣∣
ℓ⋂

i=1

Xi,k

∣∣∣∣∣+ |Pad(Xj,k, b) \Xj,k| = tj′ +

∣∣∣∣∣
ℓ⋂

i=1

Xi,k

∣∣∣∣∣+ |Pad(Xj′,k, b) \Xj′,k|

17

⇐⇒ tj + |Pad(Xj,k, b) \Xj,k| − |Pad(Xj′,k, b) \Xj′,k| = tj′

Now consider index j′ such that |Xj′,k| ≥ |Xj,k| for any other j ∈ [ℓ]. For
that index j′ it holds that Pad(Xj′,k, b) \ Xj′,k ⊆ Pad(Xj,k, b) \ Xj,k. In other
words, this means that the elements that were used for padding the bucket
belonging to party j′ will be exactly the added elements in the intersection.
Thus, for any other j the number of elements not in the intersection will be
tj + |Pad(Xj,k, b) \Xj,k| − |Pad(Xj′,k, b) \Xj′,k|. Now if by assumption tj′ < t̃,
then tj + |Pad(Xj,k, b) \Xj,k| − |Pad(Xj′,k, b) \Xj′,k| < t̃. □

Combining all of the above observations, we now get the following lemma.

Theorem 6. Let n, ℓ, t, t̃, b ∈ N with t < n, t̃ ≥ 1 + 3 ln(2tℓ) and let b = n. For
each j ∈ [ϵ], let Hj : U → [t] be a random function. Let X1, . . . , Xℓ ∈ Un be sets
of size n and (Xj

i,1, . . . , X
j
i,t)← Hj(Xi) for j ∈ [ϵ] and i ∈ [ℓ]. If∣∣∣∣∣

ℓ⋂
i=1

Xi

∣∣∣∣∣ ≥ n− t,

then

Pr

[
∀k ∈ [t],∀i ∈ [ℓ],∃j ∈ [ϵ] :

∣∣∣∣∣Pad(Xj
i,k, b) \

ℓ⋂
m=1

Pad(Xj
m,k, b)

∣∣∣∣∣ < t̃

]
≥ 1− 2−ϵ,

where the probability is taken over the random choice of H1, . . . ,Hϵ.

Proof. By Theorem 5 we know that if
∣∣∣⋂ℓ

i=1 Xi

∣∣∣ ≥ n− t, then for all i ∈ [ℓ] and

k ∈ [t], there exist j ∈ [ϵ], such that
∣∣∣Xj

i,k \
⋂ℓ

m=1 X
j
m,k

∣∣∣ < t̃ with overwhelming

probability. Also from Lemma 5 we know
∣∣∣Pad(Xj

i,k, b) \
⋂ℓ

m=1 Pad(X
j
m,k, b)

∣∣∣ < t̃

in that case. The proof directly follows from these two observations.
□

Armed with the insights from above, we are now ready to present our mul-
tiparty construction. We will assume that we are given access to an ideal func-
tionality Fn,t,v

ℓ-∩ as depicted in Figure 10 and we will show how to concretely
instantiate it in Section 4.1. We also use two other simple functionalities Fℓ-min

and Fn,t,ϵ
ℓ-vec-intrvl in our protocol, which is described in Figure 4 and Figure 5 re-

spectively. Note that these functionalities can be implemented using any generic
MPC protocol with communication complexities that are independent of the
initial set size n or threshold t.

In Figure 11 we instantiate the protocol for multiparty private cardinality
testing. Similar to the two-party case, here all the parties throw their set elements
into t buckets and then run separate instances of cardinality test protocol among
those buckets with a threshold parameter t̃, as stated in Theorem 6.

18

Functionality Fn,t,v
ℓ-∩ (X1, . . . , Xℓ)

u :=

∣∣∣∣∣
ℓ⋂

i=1

Xi

∣∣∣∣∣
if u < n− t

return Sharen(v)

else

return Sharen(u)

Fig. 10. Functionality for computing the number of elements in the intersection.

Construction Πn,t
ℓ-pict(X1, . . . , Xℓ)

1 : for j ∈ [ϵ] :

2 : for i ∈ [ℓ] :

3 : Party i :

4 : (Xj
i,1, . . . , X

j
i,t)← Hj(Xi)

5 : for k ∈ [t] :

6 : (sj1,k, . . . , s
j
ℓ,k)← F

n,t̃,n+1
ℓ-∩

(
Pad(Xj

1,k, n+ 1), . . . , Pad(Xj
ℓ,k, n+ 1)

)
7 : (dj1,k, . . . , d

j
ℓ,k)← Fℓ-min

(
{
∣∣∣Pad(Xj

i,k, n+ 1)
∣∣∣− ∣∣∣Xj

i,k

∣∣∣}i∈[ℓ]

)
8 : for i ∈ [ℓ] :

9 : Party i : sji =
t∑

k=1

(sji,k − dji,k)

10 : (r1, . . . , rℓ)← Fn,t,ϵ
ℓ-vec-intrvl((s

1
1, . . . , s

ϵ
1), . . . , (s

1
ℓ , . . . , s

ϵ
ℓ))

11 : return (r1, . . . , rℓ)

Fig. 11. Protocol for multiparty private intersection cardinality testing.

19

Theorem 7. Let n, t, t̃ ∈ N with n > t and t̃ ≥ 1+3 ln(2tℓ). The protocol Πℓ-pict

depicted in Figure 11 securely realizes Fn,t
ℓ-pict using ϵ·t calls to F

b,t̃,n+1
ℓ-∩ and Fℓ-min

and one call to Fn,t,ϵ
ℓ-vec-intrvl.

Proof. We prove correctness and privacy separately.

Correctness. If
∣∣∣⋂ℓ

i=1 Xi

∣∣∣ < n− t, then by Theorem 6, we know that no bucket

will overflow with an overwhelming probability in which case the protocol com-

putes the size of the intersection correctly. If
∣∣∣⋂ℓ

i=1 Xi

∣∣∣ ≥ n− t, then two things

can happen. Either there will exist indices k1, . . . kϵ ∈ [t] and i1, . . . , iϵ ∈ [ℓ],

such that for all j ∈ [ϵ] it holds that
∣∣∣Xj

ij ,kj
\
⋂ℓ

m=1 X
j
m,kj

∣∣∣ ≥ t̃. In this case, by

Corollary 4, we know that the intersection was too small with an overwhelming
probability. By construction, each sum of secret shared values per partitioning
will contain a summand of n+1 and thus the sums will always be larger than n
in which case Fn,t,ϵ

ℓ-vec-intrvl returns 0 as desired.
Otherwise, the intersection is too small, but no bucket overflows. Since no

bucket overflows, the parties correctly compute a secret sharing of the actual
intersection and thus Fn,t,ϵ

ℓ-vec-intrvl will produce the correct output of the compu-
tation.

Privacy. Without loss of generality assume that P1, . . . , Pℓ−1 are corrupted.
We observe that the only communication the parties have during a protocol
execution is through oracle calls. Each oracle call returns a fresh secret sharing
of some random value and the parties always receives a subset of shares that is
insufficient to reconstruct. To simulate the corrupted parties’ views, we simply
return shares of fresh secret sharings of 0 for each oracle call.

□

4.1 Instantiating Fn,t,v
ℓ-∩

To instantiate Fn,t,v
ℓ-∩ , we use Fn,i

ℓ-pict once for each threshold i ∈ [t] and then

accumulate the result. We also use Fn−t,v
ℓ-geq functionality which is described in

Section 2. Fn−t,v
ℓ-geq checks whether the secret shared values obtained from Fn,i

ℓ-pict

indicates that the size of the intersection is greater than n− t. If that is the case
Fℓ-geq returns the exact size of the intersection, otherwise it returns the default
value v. The protocol Πn,t,v

ℓ-∩ is described in Figure 12.

Theorem 8. Let n, t ∈ N with n > t and v ∈ F. The protocol Πn,t,v
ℓ-∩ depicted

in Figure 12 securely implements Fn,t,v
ℓ-∩ using one call to Fn,i

ℓ-pict for each i ∈ [t]

and one call to Fn−t,v
ℓ-geq .

Proof. For correctness, we observe that Fn,i
ℓ-pict(X1, . . . , Xℓ) outputs sharing of

1, when the size of the intersection is greater than equal to n − i. Thus, if

20

Construction Πn,t,v
ℓ-∩ (X1, . . . , Xℓ)

1 : for i ∈ [t]

2 : (r1,i, . . . , rℓ,i)← Fn,i
ℓ-pict(X1, . . . , Xℓ)

3 : for i ∈ [ℓ]

4 : Party i : ri :=

t∑
j=1

ri,j

5 : Party 1 : r1 := n− t− 1 + r1

6 : (d1, . . . , dℓ)← Fn−t,v
ℓ-geq (r1, . . . , rℓ)

7 : return (d1, . . . , dℓ)

Fig. 12. Protocol Πn,t,v
ℓ-∩ realizing Fn,t,v

ℓ-∩ .

∣∣∣⋂ℓ
j=1 Xj

∣∣∣ ≥ n − t then Fℓ-pict will return sharing of 1 exactly t − t∗ + 1 times,

where n − t∗ is the true intersection size. Consequently the protocol produces
the correct output.

Privacy. Without loss of generality assume that P1, . . . , Pℓ−1 are corrupted. The
view of the corrupted parties only contain received messages from the oracles.
Each oracle query to Fn,i

ℓ-pict returns a fresh secret sharing, which can be simulated
by providing the corrupted parties with fresh shares of secret sharings of 0. The
last query to Fn−t,v

ℓ-geq (r1, . . . , rℓ) can be simulated by returning the outputs given
to the simulator. Indistinguishability of the simulated transcript from the real
one directly follows from the security guarantees of additive secret sharing.

□

We can use the protocol of Branco, Döttling, and Pu [BDP21] to instantiate
Fn,t

ℓ-pict in F
n,t,v
ℓ-∩ . They present an ℓ-party protocol with a communication com-

plexity of O(λℓt2 polylog t) bits based on additively homomorphic encryption.
Their protocol can easily be extended to use generic secure computation tech-
niques in all places, where additively homomorphic encryption was used. With
this change, their protocol provides a solution based on, for instance, oblivious
transfer with a communication complexity of O(λℓpoly(t)) bits.

In our instantiation, we have ϵt buckets and for each of them we execute the
protocol of Branco et al. O(ln t) times with a threshold of O(ln t). Thus we get
a total communication complexity of O(ϵλℓtpolylog t).

Corollary 5. Assuming the existence of oblivious transfer and or additively ho-
momorphic encryption, there exists a protocol for securely computing the ℓ-party
private intersection cardinality test for threshold t with communication complex-
ity of O(ϵ2ℓtpolylog t) bits.

21

Combining the results in our paper with the protocols for actually computing
the intersection, once it is known that it is large enough, from by Ghosh and
Simkin [GS19], we get the following result.

Corollary 6. Assuming the existence of oblivious transfer or additively homo-
morphic encryption, there exists a passively secure protocol for threshold private
set intersection among ℓ parties with threshold t with communication complexity
of O(ϵ2ℓtpolylog t) bits.

References

BDP21. Pedro Branco, Nico Döttling, and Sihang Pu. Multiparty cardinality testing
for threshold private intersection. In Juan Garay, editor, PKC 2021: 24th
International Conference on Theory and Practice of Public Key Cryptog-
raphy, Part II, volume 12711 of Lecture Notes in Computer Science, pages
32–60, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany.

BMRR21. Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Pe-
ter Rindal. Multi-party threshold private set intersection with sublinear
communication. In Juan Garay, editor, PKC 2021: 24th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II, volume
12711 of Lecture Notes in Computer Science, pages 349–379, Virtual Event,
May 10–13, 2021. Springer, Heidelberg, Germany.

CD01. Ronald Cramer and Ivan Damg̊ard. Secure distributed linear algebra in
a constant number of rounds. In Joe Kilian, editor, Advances in Cryptol-
ogy – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 119–136, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013: 20th Confer-
ence on Computer and Communications Security, pages 789–800, Berlin,
Germany, November 4–8, 2013. ACM Press.

DPT20. Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated PSI car-
dinality with applications to contact tracing. In Shiho Moriai and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part III, vol-
ume 12493 of Lecture Notes in Computer Science, pages 870–899, Daejeon,
South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan Camenisch, edi-
tors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 1–19, Interlaken, Switzerland, May 2–6,
2004. Springer, Heidelberg, Germany.

GS19. Satrajit Ghosh and Mark Simkin. The communication complexity of thresh-
old private set intersection. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part II, volume 11693 of
Lecture Notes in Computer Science, pages 3–29, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious PRF with applications to private set intersection.

22

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Com-
puter and Communications Security, pages 818–829, Vienna, Austria, Oc-
tober 24–28, 2016. ACM Press.

KS05. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 241–257, Santa Barbara,
CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.

Lin17. Yehuda Lindell. How to simulate it–a tutorial on the simulation proof
technique. Tutorials on the Foundations of Cryptography, pages 277–346,
2017.

Mar14. Moxie Marlinspike. The difficulty of private contact discovery.
whispersystems.org/blog/contact-discovery., 2014.

Mea86. Catherine A. Meadows. A more efficient cryptographic matchmaking pro-
tocol for use in the absence of a continuously available third party. In Pro-
ceedings of the 1986 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 7-9, 1986, pages 134–137, 1986.

NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. Botgrep: Finding P2P bots with structured graph anal-
ysis. In 19th USENIX Security Symposium, Washington, DC, USA, August
11-13, 2010, Proceedings, pages 95–110, 2010.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light:
Lightweight private set intersection from sparse OT extension. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 401–431, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Heidelberg, Germany.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS:
Fast, malicious private set intersection. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part II, volume
12106 of Lecture Notes in Computer Science, pages 739–767, Zagreb, Croa-
tia, May 10–14, 2020. Springer, Heidelberg, Germany.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, Au-
gust 12-14, 2015., pages 515–530, 2015.

23

whispersystems.org/blog/contact-discovery.

	Threshold Private Set Intersection with Better Communication Complexity

