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Abstract. In this work, we present the first construction of a fully
non-interactive publicly-verifiable delegation scheme for committed pro-
grams. More specifically, we consider a setting where Alice is a trusted
author who delegates to an untrusted worker the task of hosting a pro-
gram P , represented as a Boolean circuit. Alice also commits to a suc-
cinct value based on P . Any arbitrary user/verifier without knowledge of
P should be convinced that they are receiving from the worker an actual
computation of Alice’s program on a given input x.
Before our work, the only object known to imply this challenging form
of delegation was a SNARG/SNARK for NP. This is because from the
point of view of the user/verifier, the program P is an unknown wit-
ness to the computation. However, constructing a SNARG for NP from
standard assumptions remains a major open problem.
In our work, we show how to achieve delegation in this challenging con-
text assuming only the hardness of the Learning With Errors (LWE)
assumption, bypassing the apparent need for a SNARG for NP.

1 Introduction

We consider a scenario where a trusted software author Alice wishes to make
it possible for a set of users to make use of her program P , which we treat
as a (non-uniform) Boolean circuit. In particular, this program P may have
embedded within it a large proprietary database that Alice’s program makes use
of. However, Alice neither wants to release her program P nor does she want
to host and execute the program herself. Instead she wishes to delegate this
computation to an untrusted Worker, and the User/Verifier wants to be certain
that they are receiving an output obtained via a computation of Alice’s actual
program P . As illustrated in Figure 1, the way this works is:

1. Alice sends the program P along with some computed state to the Worker,
and Alice also publishes a succinct hash HP of her program, which the
User/Verifier obtains. This step is done once and for all.

2. An Input Provider chooses an input x, which is sent to both the Worker and
the User/Verifier. Note that the input provider could be some public source
of information like a news channel of bulletin board, and need not involve
the User/Verifier.
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3. Finally, the Worker computes the output y = P (x) along with a succinct
proof Π, and sends both of these to the User/Verifier. Steps 2 and 3 may be
repeated polynomially many times.

Fig. 1: The Delegation Setup

As illustrated in Figure 1, this process involves no back–and–forth commu-
nication. The communication is entirely unidirectional – which we call non-
interactive – from left to right. Furthermore, we say that this scenario is succinct
if all communication to the User/Verifier, and the runtime of the User/Verifier,
is poly(log |P |, λ, |x|), where λ is a security parameter.

Remark 1. Note that on one hand, the Worker is trusted with the program P
by Alice, whereas, it is not trusted by the verifier. This asymmetry of trust is
inherent in our setup and is well motivated. In a typical real world situation,
the verifier is typically a user on the internet who takes part in a one off inter-
action with a cloud service for some computation. The need to prove honesty in
this situation is significant. On the other hand, Alice might be able to have an
agreement with the cloud service before handing over her program, which would
make it hard for their Worker to breach trust without consequences.

Comparison to Prior Work. What we have just described is one of the most chal-
lenging variants of the classical problem of publicly verifiable delegation which
has been the subject of intense work for decades, for many relaxed variations of
the model that we describe above.

Specifically, delegation schemes without public verification based on standard
assumptions for deterministic and non-deterministic computations have been de-
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signed [40,12,38,37,11,22,39,25,1,6,7,24]. Restricting verification to a designated
verifier implies that the worker needs to produce a fresh proof unique for each
particular verifier for any computation, which is certainly not ideal. Another
line of work [15] achieves public verification but does not achieve public delega-
tion. In other words, the input provider needs to run a pre-processing algorithm
corresponding to the program P before being able to delegate. Another model
which has been extensively explored is when the User/Verifier is allowed to have
interaction with the Worker, i.e., interactive delegation. Influenced by the first
work on interactive efficient arguments by Kilian [27], there have been several
works from standard assumptions [24,33,34,5] and some even unconditional
soundness[17,36]. These are however not applicable in our setting where only
one-way communication is permitted between the parties, as can be seen in the
acyclic graph in Figure 1.

With regard to non-interactive publicly verifiable delegation, Starting from
the seminal work on computationally sound proofs by Micali [31] in the random
oracle model, there have been several constructions on publicly verifiable non-
interactive delegation schemes [2,3,13,4,16,18,28,32] based on the Random Ora-
cle Model or non-standard knowledge assumptions. From more standard assump-
tions, there have been several works recently [1,6,7,23]. An illustrative example is
the recent work of [23] that proposed the first publicly verifiable non-interactive
delegation scheme from a falsifiable decisional assumption on groups with bilin-
ear pairings. However, in contrast with the setting we describe above, they can
only achieve succinct delegation when the Verifier knows the program P . In our
setting of Boolean circuits, this trivializes the delegation problem, since reading
P ’s description takes as long as evaluating P . Indeed, the case that we consider
— where Alice’s program is large — is extremely well motivated: the program
P could be an ML model with billions of painstakingly learned parameters.

The SNARGs for NP barrier. Why has constructing a protocol that caters to
the fully non-interactive setting which we have defined been so elusive? Note
that in our problem, the User/Verifier and Input Provider do not know the
program P . Hence, from User/Verifier’s perspective, P is an NP witness. Thus,
it certainly seems that finding a solution is intricately related to a major goal
in the area of non interactive succinct proof systems, i.e., SNARGs for NP.
Unfortunately, the only known constructions of SNARGs for NP base their
soundness on the Random Oracle Model or non-standard knowledge assumptions.
Finding a solution solely relying on standard assumptions has been an open
problem for over a decade. In fact, the closest that we have come is the very
recent work achieving SNARGs for P [10] (see also [26]).

The major technical contribution in our work is to enable Non-Interactive
Publicly Verifiable Succinct Delegation for Committed Programs without having
to use SNARGs for NP.

Our Contribution: We present the first complete solution to achieving succinct
non interactive publicly verifiable delegation for committed programs. Indeed,
furthermore, we can also achieve zero-knowledge guarantees as well. Our only
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computational assumption is the hardness of the Learning with Errors (LWE)
problem. Somewhat surprisingly, we show that SNARGs for NP are not required
to solve this problem, even though the statement being proved looks like an NP
statement to the Verifier!

Instead, we show that many ideas from SNARGs for P [10] can in fact be
applied here. Although P is unknown to the User/Verifier, we show that it suffices
for Alice to communicate a tiny amount of information of size poly(log |P |) about
the program P (referred to as HP ) as shown in Figure 1. Because Alice is the
author of P , this HP can be trusted as correctly generated. We stress that Alice
does not need to know x to compute HP , hence this achieves public delegation
and public verification in the completely non-interactive model described above.
This leads to our main theorem,

Theorem 1. Assuming the hardness of the LWE problem, Figure 2 gives a con-
struction for publicly verifiable non-interactive succinct delegation for commit-
ted programs with CRS size, proof size and verifier time poly(λ, log |P |, |x|) and
prover run time being poly(λ, |P |).

Finally, in order to get zero-knowledge, it suffices for Alice to commit to HP

rather than sending it out in the open. We then present a generic transformation
to convert any delegation protocol of this form to attain zero-knowledge.

Theorem 2. Assuming the hardness of the LWE problem and existence of a
succinct delegation scheme, Figure 5 gives a construction for publicly verifiable
succinct delegation scheme with zero knowledge such that CRS size, proof size
and verifier time are poly(λ, log |P |) and prover run time is poly(λ, |P |).

Finally, we also show how to achieve zero knowledge versions of our delegation
scheme, meeting the same strong succinctness and efficiency goals, and under
the same assumption (LWE).

We present a more detailed explanation in the Technical Overview.

2 Technical Overview

Our Delegation Scenario Let us briefly recall the setup of our delegation scenario.
There are 4 parties, namely, (1) Alice-the program author ProgAuth who sends
a program P and some computed state state to a Worker, (2) an Input Provider
I that outputs some value x, (3) Worker W that takes as input (P, state, x) and
outputs P (x) and a proof Π, and (4) User/Verifier V gets as inputs (x, P (x), Π)
and outputs 1 if and only if Π was a valid proof. Assume that all the parties get
the security parameter λ as an input. An additional requirement is that |Π| and
runtime of V is poly(λ, log |P |, |x|), and W runs in time poly(λ, |x|, |P |). Thus,
any non-interactive publicly verifiable succinct delegation scheme can be viewed
as a collection of 4 algorithms: sDel = (ProgAuth,W, I, V ) with the input output
behaviour and efficiency guarantees as specified. Note that this is indeed a P
computation for the Worker but the primary challenge is that the verifier does
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not have knowledge of the “witness” P , hence this is an NP computation from
the verifier’s point of view. In this work, we observe that it is indeed feasible
to achieve our delegation scenario for all circuits without having to go through
SNARGs for NP. Our technique is based on the recent work of Choudhuri et.
al. [10] on SNARGs for P. We begin by giving a brief overview of their approach
and elaborate the challenges of directly incorporating their methodology for our
setting.

Challenges of implementing [10] Roughly, the work of [10] uses Batch Arguments
for NP (BARGs), which they build from LWE. BARGs allow an efficient prover
to compute a non-interactive and publicly verifiable “batch proof” of many NP
instances, with size poly(|w| log T ) for T -many NP statements with each witness
of size |w|. They begin by looking at P as a Turing machine and the steps of P ’s
computation are interpreted as an Index Circuit Cindex. Say, P terminates in T
steps. Formally, they construct a BARG for the Index Language Lindex, where

Lindex = {(Cindex, i)|∃wi, such that C(i, wi) = 1},

where i ∈ [T ] is an index. Let s0, s1, . . . , sT denote the encoding of internal states
of P along with its tape information, and let Step be its step function such
that Step(si−1) = si The witness for the ith intermediate computation is then
defined as wi = (si−1, si). The index circuit is built such that (Cindex, i) ∈ Lindex

essentially implies that the Turing machine step function was correctly computed
on si−1 to yield si. Note that this alone does not suffice as a proof because
the BARG only confirms that (si−1, si) and (s′i, si+1) are valid witnesses. If
si−1, si, s

′
i, si+1 are generated by the step function of the same Turing machine

P , they must be consistent with each other, i.e., si = s′i. However, this is not
guaranteed by a BARG.

To resolve this issue, the prover also sends a Somewhere Extractable Hash
(SE) to the witnesses (s0, {si−1, si}i∈[T ]). The extraction property of this hash
allows the verifier to check if the witness of two consecutive BARG instances are
indeed consistent with each other. At this stage, we would like to remind the
reader of their efficiency goals where crucially, they desire proof size and verifi-
cation time to be poly(λ, log T ). However, note that |Cindex| grows linearly with
|si| and the known constructions [20] of SE hashes can only produce hashes with
size poly(|si|). This means that total communication and verifier run time will
be at least poly(|si|). This is certainly no good if the Turing machine has massive
states. To overcome this final barrier, they make use of Hash Trees which com-
press the states si to a short hash hi such that |hi| = poly(λ). Such trees [30] also
have a soundness property where a Prover must produce a succinct proof Πi that
the hash tree was indeed implemented correctly at the ith step of the Turing ma-
chine computation. Once the succinctness guarantee is ensured, the prover then
produces SE hashes corresponding to (h0, Π0, {hi−1, Πi−1, hi, Πi}i∈[T ]) along
with the openings to these hashes. To summarise, the proof consists of two parts,
(1) The BARG proof, and (2) A somewhere extractable hash of the witnesses.
Relying on the soundness of BARG, extraction correctness property of SE hash
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and soundness of the Hash Tree, a User/Verifier can check if each of these T
intermediate steps are indeed the correct states for P , i.e., the computation was
done honestly.

However, this approach only works if User/Verifier can confirm that the in-
puts used for the computation by the Worker, i.e. (P, x) are indeed the correct
starting values as provided by the Program Author and Input Provider. This
works fine for [10] because in their setting, the User/Verifier actually knows
(P, x). Unfortunately, this is not at all true in our scenario. Thus, the techniques
of Choudhuri et al. [10] cannot be implemented directly as the soundness of the
BARG proof cannot provide any guarantees if there is no way for to check that
the initial inputs used by the Worker are correct.

Our Idea. We start with an alternate way of interpreting the computation of P
on input x as the following: Consider a Circuit-Universal Turing Machine TM
which takes as input P, x, y and accepts (P, x, y) in T = Õ(|P |) steps if P (x) = y.
We can assume without loss of generality that P ∈ {0, 1}m, x ∈ {0, 1}n and
y ∈ {0, 1}, where m,n ≤ 2λ. Keeping this in mind, we introduce the notion of
Semi-Trusted SNARGs for NP. This new kind of SNARG is one that will work
for general NP computations, but only with a little bit of extra help from a
trusted party that knows the witness – which in our delegation scenario is Alice,
who knows the witness P !

A Semi-Trusted SNARG is a tuple of algorithms: stSNARG = (Setup,TrustHash,P,V),
where (1) Setup is a randomised algorithm that takes as input the security pa-
rameter and outputs a Common Random String (CRS). (2) a trusted determin-
istic TrustHash takes as input the (CRS, P ) and outputs a digest HP , (3) a de-
terministic prover P which takes as input CRS and (P, x, y), and outputs a proof
Π, and (4) a deterministic verifier V which gets CRS,(HP , x, y,Π) as input and
outputs 1 iff Π is valid. It must be that |Π| and run time of V is poly(λ, log T ),
and P runs in time poly(λ, |x|, |P |, T ). A simple reduction shows that in the CRS
model (or alternatively in a model where Alice chooses the CRS), existence of
stSNARG implies the existence of sDel. We show this formally in Lemma 11.
Hence, from here onwards, our goal is to construct a Semi-Trusted SNARG for
NP.

We briefly provide an informal explanation of our construction.
Like [10], every intermediate state of the Universal Turing Machine is en-

coded into a succinct hash (call it h0, . . . , hT ) accompanied with succinct proofs
{Πi}i∈[T ]. The prover computes two independent copies of Somewhere Extractable
(SE) hashes (c1, c2) of the encoding {h0, {(h1, Π1), . . . , (hT , ΠT )}} along with
their corresponding openings. Here h0 = (st0, HP , Hx, Hwork), where st0 is that
hash of TM’s starting state which is publicly known, Hx denote the hash of x,
and Hwork is the hash of TM’s blank work tape. The use of two independent
SE hashes are pivotal for soundness which we elaborate later.

We point out that TrustHash computes HP using the same hash tree which
is used for hashing the Turing machine states by the Prover. This is crucial to
ensure soundness of the protocol. We show in Figure 3 that once the public hash
is fixed by TrustHash, one can hard code (y, c1, c2, T,HP , Hx) to the index circuit
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Cindex for BARG. At this point, we can now follow the approach from [10]. V can
rely upon the binding property/collision resistance of the hash to ensure that the
prover has used P and x which were provided by Alice and the input provider
respectively. The main observation here is that once a trusted party fixed a hash
of the program P and V is convinced that computation was commenced with the
correct inputs, the soundness of BARG, extraction correctness of the SE hash
and soundness of hash tree ensures that the semi-trusted SNARG construction
is sound.

While our proof of soundness closely follows the blueprint of [10], we choose to
present our proof in a different, and arguably simpler, way. In [10], No-Signaling
Somewhere Extractable(NSSE) hashes are used extensively. In our proof, we
choose to omit explicit use of this notion, and instead we make direct use of
two independent SE hashes as mentioned above. A simple hybrid argument then
gives a straightforward proof for soundness. This shows that the “anchor and
step” use of SE hashes, which dates to the introduction of somewhere-binding
hashes [20] in 2015, is directly sufficient for this proof of soundness.

Zero-Knowledge We have only discussed soundness guarantees thus far. How-
ever, in our delegation scenario, it might also be extremely important to ensure
that no information about P leaked to V during the delegation process. Hence it
is important to add zero-knowledge guarantees to our protocol. We finally give a
generic transformation to modify a semi-trusted SNARG to add zero knowledge
guarantees. In order to do so we make use of a statistically binding extractable
commitment scheme and a NIZK 1, and roughly make the following modifica-
tions:

– We add an additional commitment to 0 in the CRS which is never used in
the proof but helps in proving zero knowledge.

– The public hash output by TrustHash is a binding commitment CP of HP .
It then sends (P,HP ) to the worker W only.

– The SE hashes c1, c2 are also committed as a part of the proof and not
published in the open.

– The prover wraps the BARG Π with a NIZK which proves that that the
BARG verification circuit indeed accepts the BARG proof.

– The Verifier then checks if the NIZK proof is valid.

The binding and hiding property of the commitment, and witness indistinguisha-
bility of NIZK guarantees zero knowledge.

3 Preliminaries

We use some standard tools as building blocks to perform the Succinct Delega-
tion.

1Multi-thoerem NIZK from LWE is possible by combining [35] and [14]. Note that
the weaker notion NIWI would also suffice to achieve zero knowledge in our setting.
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– Somewhere Extractable Hash [20,10,9]:
SE =(SE.Gen,SE.TGen,SE.Hash,SE.Open,SE.Verify,SE.Ext)

– Non Interactive Batch Arguments (BARG) for Index Language[10]:
BARG = (BARG.Gen,BARG.TGen,BARG.Prove,BARG.Verify)

– Hash Tree[23,30]:
HT = HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite

– Non Interactive Zero Knowledge Argument[35,8,19]:
(NIZK = NIZK.Gen,NIZK.Prove,NIZK.V)

– Statistically Binding Extractable Commitment[29]:
Combind = (Com.Gen,Com.TGen,Com.C,Com.Ext)

We use all the primitives in a standard way as prior works. The hash tree can be
constructed from any collision resistant hash function. The others are known to
be instantiated from LWE. Formal definitions and properties of the primitives
can be found in the Supplementary Material.

4 Publicly Verifiable Non Interactive Succinct Delegation

We formally define the notion of Publicly Verifiable Non Interactive Succinct
Delegation (sDel) which is similar to the definition proposed in prior works [21].
Such a delegation scheme in the CRS model involves the following PPT algo-
rithms, (1)Software/Program Author ProgAuth (3)Cloud Worker W , and (3)
Verifier VAn sDel comprises of the following polynomial time algorithms:

– sDel.Setup(1λ): A randomized setup algorithm which on input security pa-
rameter λ and outputs crs.

– sDel.ProgAuth(1λ, crs): A program author which takes as input λ, outputs a
(not public) program P ∈ {0, 1}m, m ≤ 2λ ∈ N, state and a public digest
HP .

– sDel.W (crs, P, state, HP , x): A deterministic cloud worker which on input crs,
program P , input x ∈ {0, 1}n, n ≤ 2λ ∈ N outputs a value y and proof Π.

– sDel.V (crs, x, y,HP , Π): A deterministic verifier which on input crs, digest
HP , x, y,Π either accepts or rejects.

A publicly verifiable succinct delegation scheme (sDel.Setup, sDel.ProgAuth, sDel.W, sDel.V )
satisfies the following properties:

– Completeness. For every PPT program generating algorithm sDel.ProgAuth,
every λ, n,m ∈ N, and for all x ∈ {0, 1}n such that n,m < 2λ, we have

Pr[sDel.V (crs, x, y,HP , Π) = 1 ∧ P (x) = y
∣∣crs← sDel.Setup(1λ),

((P, state), HP )← sDel.ProgAuth(1λ, crs),

(y,Π)← sDel.W (crs, P, state, HP , x)] = 1.

– Efficiency. sDel.Setup runs in time poly(λ), sDel.W runs in time poly(λ, |P |, |x|)
and outputs a proofs of length poly(λ, log |P |, |x|), and sDel.V runs in time
poly(λ, log |P |, |x|).
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– Soundness. For every PPT adversary A := (A1,A2), every PPT program
generating algorithm sDel.ProgAuth, and the tuple n = n(λ),m = m(λ),
there exists a negligible function negl(λ) such that for every λ ∈ N,

Pr[sDel.V (crs, x, y,HP , Π) = 1 ∧ P (x) ̸= y
∣∣, crs← sDel.Setup(1λ),

((P, state), HP )← sDel.ProgAuth(1λ, crs),

(x, aux)← A1(1
λ, crs), (y,Π)← A2(crs, P, state, HP , x, aux)]

≤ negl(λ).

To construct sDel, we introduce a notion of Semi-Trusted Succinct Non-
Interactive Arguments stSNARG which we formally introduce and construct in
Section 5. After that, we prove the following lemma (cf. Lemma 11) which shows
how to construct sDel using stSNARG as a building block.

Lemma 1. Assuming T = poly(m,n), T,m, n ≤ 2λ, the stSNARG protocol in
Figure 2 implies the unconditional existence of a publicly verifiable non interac-
tive succinct delegation scheme sDel as defined above.

4.1 sDel with Zero-Knowledge

A publicly verifiable non interactive succinct delegation scheme with zero knowl-
edge zk− sDel is defined by the following efficient algorithms:

– zk− sDel.Setup(1λ): A randomized setup algorithm which on input security
parameter λ and outputs crs.

– zk− sDel.ProgAuth(1λ, crs): A program author which takes as input λ, gener-
ates a program P ∈ {0, 1}m, m ≤ 2λ ∈ N. Additionally, it computes a digest
HP and creates a statistically binding and extractable commitment CP of
HP under randomness r. Finally it sends a private output (P, state) and
public output CP . Here state contains the randomness r and HP encoded in
it along with any other state information.

– zk− sDel.W (crs, P, state, CP , x): A deterministic cloud worker which on in-
put crs, program P , commitment CP , x ∈ {0, 1}n, n ≤ 2λ ∈ N outputs a
value y and proof Π.

– zk− sDel.V (crs, x, y, CP , Π): A deterministic verifier which on input (crs, CP , x, y,Π)
either accepts or rejects.

Apart from the Completeness, Efficiency and Soundness guarantees mentioned
above, a publicly verifiable succinct delegation scheme
(zk− sDel.Setup, zk− sDel.ProgAuth, zk− sDel.W, zk− sDel.V ) satisfies the fol-
lowing additional property:

Non Interactive Zero Knowledge. For all λ, n,m ∈ N such that n,m ≤
2λ, ∀, x ∈ {0, 1}n and y ∈ {0, 1}, there exists a PPT simulator Sim := (Sim1,Sim2,Sim3)
such that the distributions of
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(crs, x, y, CP , Π)
∣∣(crs, aux)← Sim1(1

λ), (CP , aux
′)← Sim2(crs, aux),

(y,Π)← Sim3(aux
′, crs, x, CP )

and

(crs, x, y, CP , Π)
∣∣crs← zk− sDel.Setup(1λ), ((P, state), CP )← zk− sDel.ProgAuth(1λ, crs),

(y := P (x), Π)← zk− sDel.W (crs, P, state, x, CP )

are indistinguishable.
In Section 6, we present a generic construction of a semi trusted non-interactive

succinct arguments with zero-knowledge (ZKstSNARG) from stSNARG. Analo-
gous to the previous lemma, we get the following corollary(cf. Corollary 2) from
Lemma 11

Corollary 1. Assuming T = poly(m,n), T,m, n ≤ 2λ, the ZKstSNARG proto-
col in Figure 5 implies the unconditional existence of a publicly verifiable non
interactive succinct delegation scheme with zero knowledge.

5 Semi-Trusted Succinct Non-Interactive Argument
(stSNARG)

We introduce a notion of “Semi-Trusted” SNARGs which is similar to the general
definition of SNARGs with an addition “trusted” polynomial time algorithm that
outputs a hash for the witness. Further, we provide an explicit construction of
an stSNARG for all of NP . Note that any SNARG for arbitrary NP language
L can be reformulated as a Turing Machine which takes in as input an instance
x along with witness w and accepts x,w in T steps if x ∈ L [10]. In this work,
we modify the definition of [10] by using a Universal Turing Machine TM which
takes as input an instance (x, y), a witness which is a program P and accepts
(P, x, y) in T steps if P (x) = y. We formalise this notion as follows:

Let TM be a Universal Turing Machine which takes as input a program
P ∈ {0, 1}m for some m < 2λ, and x ∈ {0, 1}n for some n < 2λ and y ∈ {0, 1}
which serve as an input and output for P respectively. TM accepts (P, x, y) in
T steps if P (x) = y. A prover produces a proof Π to convince a verifier that
TM accepts P, x, y in T . A publicly verifiable semi-trusted SNARG (stSNARG)
for TM has the following polynomial time algorithms:

– stSNARG.Setup(1λ, 1T ): A randomized setup algorithm which on input se-
curity parameter λ, and number of Turing Machine steps T , outputs crs.

– stSNARG.TrustHash(crs, P ): A deterministic and honest algorithm which on
input crs and a program P ∈ {0, 1}m for some m < 2λ, outputs a succinct
and public digest HP of P corresponding to crs.

– stSNARG.P(crs, P, x, y,HP ): A deterministic prover algorithm which on in-
put the crs, P ∈ {0, 1}m for some m < 2λ, x ∈ {0, 1}n for some n < 2λ,
y ∈ {0, 1} and the digest HP outputs a proof Π.
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– stSNARG.V(crs, x, y,HP , Π): A deterministic verification algorithm which on
input crs, x, y, digest HP and proof Π, either accepts(output 1) or re-
jects(output 0) it.

A Universal Turing Machine TM on input (P, x, y) outputs 1 if it accepts
(P, x, y) within T steps. We define the NP language LT M as,

LT M := {(P, x, y, T,HP , crs)
∣∣TM(P, x, y) = 1∧stSNARG.TrustHash(crs, P ) = HP }.

Note that here P is not considered a part of the witness although it is un-
known to the verifier because a typical NP statement puts a there exists con-
straint on the witness. In that case, the statement becomes trivial because there
will always exist a program P which on input x ignores the input and outputs
y. We need to ensure that P is the program output by the program author
independent of x. Moreover, this is indeed a P statement for the prover.

A publicly verifiable stSNARG scheme stSNARG =
(stSNARG.Setup, stSNARG.TrustHash, stSNARG.P, stSNARG.V) satisfies the fol-
lowing properties:

– Completeness. For every λ, T, n,m ∈ N such that T, n,m < 2λ, pro-
gram P ∈ {0, 1}m, input x ∈ {0, 1}n and output y ∈ {0, 1} such that
(P, x, y, T,HP , crs) ∈ LT M, we have

Pr[stSNARG.V(crs, x, y,HP , Π) = 1
∣∣crs← stSNARG.Setup(1λ, 1T ),

HP ← stSNARG.TrustHash(crs, P ), Π ← stSNARG.P(crs, P, x, y,HP )] = 1.

– Efficiency. stSNARG.Setup runs in time poly(λ, T ), stSNARG.TrustHash runs
in time poly(λ, |P |, T ), stSNARG.P runs in time poly(λ, |x|, |P |, T ) and out-
puts a proofs of length poly(λ, log T ), and stSNARG.V runs in time poly(λ, log T ).

– Soundness. For every PPT adversary A := (A1,A2) and the tuple T =
T (λ), n = n(λ),m = m(λ), there exists a negligible function negl(λ) such
that for every λ ∈ N,

Pr[stSNARG.V(crs, x, y,HP , Π) = 1 ∧ (P, x, y, T,HP , crs) /∈ LT M
∣∣,

crs← stSNARG.Setup(1λ, 1T ), (P, aux)← A1(1
λ, crs),

HP ← stSNARG.TrustHash(crs, P ), (x, y,Π)← A2(crs, P,HP , aux)] ≤ negl(λ).
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Protocol 1 (Semi-Trusted SNARG)

– stSNARG.Setup(1λ, 1T ) :
• SE.Keven ← SE.Gen(1λ, 1Mλ,T , 1Lλ)a

• SE.Kodd ← SE.Gen(1λ, 1M , 1L)
• BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)
• dk← HT.Gen(1λ)
• return crs := (SE.Keven, SE.Kodd,BARG.crs, dk).

– stSNARG.TrustHash(crs, P )
• (tree20, rt

2
0)← HT.Hash(dk, P ), HP ← rt20

• return HP .
– stSNARG.P(crs, P, x, y,HP ) :
• □ := empty string
• (tree10, rt

1
0) ← HT.Hash(dk, x), (tree20, rt

2
0) ← HT.Hash(dk, P ),

(tree30, rt
3
0)← HT.Hash(dk,□)

• initialize s with the start state of TM
• st0 := (0, 0, 0, s)
• h0 := (st0, rt

1
0, rt

2
0, rt

3
0)

• for every i = 1 to T ,
rt1i ← rt1i−1, rt

2
i ← rt2i−1

(l1i , l
2
i , l

3
i )← StepR(sti−1){

(bji , Π
j
i )← HT.Read(treeji−1, l

j
i )
}
j∈[3]

(b′i, l
′
i, sti)← StepW(sti−1, b

1
i , b

2
i , b

3
i )

(tree3i , rt
3
i , Π

′
i)← HT.Write(tree3i−1, l

′3
i , b′3i )

hi ← (sti, rt
1
i , rt

2
i , rt

3
i )

• A :=
(
h0,

(
h1, {bj1, Π

j
1}j∈[3], Π

′
1

)
, . . . ,

(
hT , {bjT , Π

j
T }j∈[3], Π

′
T

))
• ceven ← SE.Hash (SE.Keven, A) and codd ← SE.Hash (SE.Kodd, A)
• c := (ceven, codd)
• Ix ← {[i1, i2]

∣∣A[i1, i2] = x}
• ρh0 ← SE.Open(SE.Keven, A, Ih0)

b

• for every i ≤ [⌊T/2⌋],
for B ∈ {h2i, {bj2i, Π

j
2i}j∈[3], Π

′
2i}, ρB ← SE.Open(SE.Keven, A, IB)

• for every i ≤ [⌊T/2⌋],
for B ∈ {h2i+1, {bj2i+1, Π

j
2i+1}j∈[3], Π

′
2i+1}, ρB :=

SE.Open(SE.Kodd, A, IB)
• Let Cindex be as defined in Figure 3

• Π := BARG.P
(
crs, Cindex, h0, {hi−1, hi, {bji , Π

j
i }j∈[3], Π

′
i, ρhi−1 , ρhi ,

{ρ
b
j
i
, ρ

Π
j
i
}j∈[3], ρΠ′

i
}i∈[T ]

)
• return (c,Π) c.

– stSNARG.V(crs, (x, y), HP , (c,Π)) :
• Compute Cindex

• return 1 if and only if BARG.V(BARG.crs, Cindex, Π) = 1.

aMλ,T = O(T poly(λ)) and Lλ = O(poly(λ)) are arbitrary and efficiently com-
putable values which can be fixed in advance and hardcoded to the Setup algo-
rithm during instantiation.

bNote that for simplification, we abuse notation here by specifying opening to
more than a single bit.

cWe often abuse notation and use (c,Π) to denote a proof. This can be done
without loss of generalization by defining a new proof Π ′ = (c∥Π).

Fig. 2: Semi-Trusted SNARG
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Circuit 1 (Circuit Cindex)

– Hard-coded: y, c, start, ϕ, SE.Keven, SE.Kodd, T,HP , Hx := HT.Hash(dk, x)
– Input:(

i, (hi := (sti, rt
1
i , rt

2
i , rt

3
i ), ρhi

)
), if i = 0(

i, ({hi−1, hi, {bji , Π
j
i }j∈[3], Π

′
i, ρhi−1 , ρhi , {ρbji , ρΠj

i
}j∈[3], ρΠ′

i
})
)
, ∀i ∈ [T ]

– Output: return 1 if and only if
• if i = 0

a. st0 = start
b. Hx = rt10
c. HP = rt20
d. HT.Hash(dk,□) has rt30 as root

• else
∗ if i is even:

a. SE.Verify(SE.Kodd, codd, hi−1, ρhi−1) = 1
b. SE.Verify(SE.Keven, ceven, hi, ρhi) = 1

c.
{
SE.Verify(SE.Keven, ceven, b

j
i , ρbji

) = 1
}

j∈[3]

d.
{
SE.Verify(SE.Keven, ceven, Π

j
i , ρΠj

i
) = 1

}
j∈[3]

e. SE.Verify(SE.Keven, ceven, Π
′
i, ρΠ′

i
) = 1

∗ if i is odd:
a. SE.Verify(SE.Keven, ceven, hi−1, ρhi−1) = 1
b. SE.Verify(SE.Kodd, codd, hi, ρhi) = 1

c.
{
SE.Verify(SE.Kodd, codd, b

j
i , ρbji

) = 1
}

j∈[3]

d.
{
SE.Verify(SE.Kodd, codd, Π

j
i , ρΠj

i
) = 1

}
j∈[3]

e. SE.Verify(SE.Kodd, codd, Π
′
i, ρΠ′

i
) = 1

∗ ϕ(hi−1, hi, {bji , Π
j
i }j∈[3], Π

′
i) = 1

∗ if i = T
a. HT.Hash(dk, y) has rt3T as root.
b. stT indeed encodes the accept state.

Fig. 3: Circuit Cindex

5.1 Our Construction

Our construction is formulated similar to that of [10]. Specifically, we use the
notion of non-interactive BARG for index language and SE Hash functions in our
scheme.

Setup for Universal Turing Machine. For a cleaner analysis, we assume without
loss of generality that TM consists of three tapes, namely, Tp1,Tp2,Tp3. Tp1
and Tp2 are read only tapes that store x and P respectively. Tp3 is the work
tape which is initialized with □ to denote an empty string.

13



Transition steps for TM. TM’s state information along with the head locations
of the three tapes are encoded as st. To handle Turing Machines with arbitrarily
long tapes, we encode {Tpi}i∈[3] using three Hash Trees as defined in previous
sections and produce tree roots rt1, rt2, rt3 respectively.

Let the each intermediate transition state of TM be encoded as hi :=
(sti, rt

1
i , rt

2
i , rt

3
i ) for i ∈ [T ]. A single step of TM can be interpreted in the

manner described below which is similar to one described for a RAM in [23]. We
break down the step function at the ith stage into two deterministic polynomial
time algorithms:

– StepR: On input sti−1 of TM, outputs head positions l1i−1, l
2
i−1, l

3
i−1 which

denote the memory locations of Tp1,Tp2,Tp3 which TM in the current state
sti−1 would read from.

– StepW: On input sti−1, and bits b1i−1, b
2
i−1, b

3
i−1 outputs bit b

′, location l′ and
sti such that TM upon reading b1i−1, b

2
i−1, b

3
i−1 at locations l1i−1, l

2
i−1, l

3
i−1

using HT.Read, would write b′ at location l′ of Tp3, thereby transition to
new state sti.

Now, we translate the ith single step of TM to the circuit ϕ which is de-
fined such that on input digests hi−1 := (sti−1, rt

1
i−1, rt

2
i−1, rt

3
i−1) and hi :=

(sti, rt
1
i , rt

2
i , rt

3
i ), bits b

1
i , b

2
i , b

3
i , and proofsΠ1

i , Π
2
i , Π

3
i , Π

′
i, ϕ(hi−1, hi, b

1
i , b

2
i , b

3
i , Π

1
i , Π

2
i , Π

3
i , Π

′
i) =

1 if and only if the following hold:

1. (l1i , l
2
i , l

3
i )← StepR(sti−1)

2. (b′, l′, st′)← StepW(sti−1, b
1
i , b

2
i , b

3
i )

3. st′ = sti
4. HT.VerRead(dk, rt1i−1, l

1
i , b

1
i , Π

1
i ) =

1
5. HT.VerRead(dk, rt2i−1, l

2
i , b

2
i , Π

2
i ) =

1

6. HT.VerRead(dk, rt3i−1, l
3
i , b

3
i , Π

3
i ) =

1

7. rt1i = rt1i−1

8. rt2i = rt2i−1

9. HT.VerWrite(dk, rt3i−1, l
′, b′, rt3i , Π

′
i) =

1

Here, dk denote the hash keys used to build the three hash trees. Note that
the efficiency of hash tree implies that ϕ can be constructed such that it can
represented as a formula in L = poly(λ) variables. For the T steps of TM, we
have the following formula over M = O(L · T ) variables:

Φ(h0, {hi, b
1
i , b

2
i , b

3
i , Π

1
i , Π

2
i , Π

3
i , Π

′
i}i∈[T ]) =

∧
i∈[T ]

ϕ(hi−1, hi, b
1
i , b

2
i , b

3
i , Π

1
i , Π

2
i , Π

3
i , Π

′
i)

Following the techniques in [10], we use a combination of SE Hash along with ϕ
to produce the circuit for index languages.

Our semi-trusted SNARG scheme is given in Figure 2 and the corresponding
index language circuit is shown as Figure 3.

Theorem 3. Assuming the existence of Somewhere Extractable Hash functions,
non-interactive Batch Arguments for Index Languages, and Collision Resistant
Hash Trees as described in section 3,, Figure 2 is a publicly verifiable non-
interactive semi-trusted SNARG with CRS size, proof size and verifier time
poly(λ, log T ) and prover run time being poly(λ, T ).
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Completeness. Here we give a sketch arguing completeness of our scheme. Our
construction in Figure 2 tells that

Pr[stSNARG.V(crs, x, y,HP , Π) = 1
∣∣crs← stSNARG.Setup(1λ, 1T ),

HP ← stSNARG.TrustHash(crs, P ), Π ← stSNARG.P(crs, P, x, y,HP )] =

Pr[BARG.V(BARG.crs, Cindex, Π) = 1
∣∣crs← stSNARG.Setup(1λ, 1T ),

HP ← stSNARG.TrustHash(crs, P ), Π ← stSNARG.P(crs, P, x, y,HP )]

where Cindex is the index circuit as shown in Figure 3. Observing stSNARG.P
algorithm in our scheme tells it is sufficient to show that if the prover is honest
and uses a valid witness, then (Cindex, i) ∈ Lindex,∀i ∈ {0} ∪ [T ]. If we can argue
that this is indeed the case, then the completeness of BARG gives the desired
result.

If (P, x, y, T,HP , crs) ∈ LT M, then (Cindex, 0) ∈ Lindex is trivially true by ob-
servation. Now, let us look at (Cindex, 1). We start by analysing that ϕ(h0, h1, {bj1, Π

j
1}j∈[3], Π

′
1) =

1 is true. {rti1 = rti0}i∈[2] follow from the read-only nature of tapes Tp1,Tp2.

Since,
{
(bj1, Π

j
1)← HT.Read(treej0, l

j
1)
}
j∈[3]

, the hash tree completeness of read

ensures that {HT.VerRead(dk, rti0, li1, bi1, Πi
1) = 1}i∈[3] = 1 and {Tpi[li1] = bi1}i∈[3].

This along with the correctness of Turing Machine StepR function implies that
b11, b

2
1, b

3
1 are indeed the correct input for the StepW function of TM. Finally,

(tree31, rt
3
1, Π

′
1)← HT.Write(tree30, l

′
1, b

′
1) implies HT.VerWrite(dk, rt30, l

′, b′, rt31, Π
′
1) =

1 from the hash tree completeness of write property. The same property also en-
sures that Tp3 changes only at the l′th memory location. When paired with the
correctness of StepW, we get that st1 = st′

The completeness of the SE hash implies that the verification algorithm cer-
tainly accepts all the local openings. Thus, (Cindex, 1) ∈ Lindex. Now, (Cindex, T ) ∈
Lindex because TM accept (P, x, y) in T steps. We can show in a similar man-
ner that for all other i, (Cindex, i) ∈ Lindex. This proves the completeness of the
scheme in Figure 2.

Efficiency.

– Runtime of stSNARG.Setup is poly(λ, T ). This follows from the efficiency of
underlying primitives.

– stSNARG.TrustHash computes HP in time |P | · poly(λ) which is poly(|P |, λ).
– |Cindex| = poly(λ, log T ). This follows from the efficiency of the SE hash and

the efficiency of hash tree construction.
– CRS Size: By the corresponding properties of the underlying primitives,
|crs| = poly(λ, log T ).

– The prover’s computation time is dominated by the hashes corresponding to
x, P and the Turing Machine step functions that is run T times. This requires
a total time of poly(λ, |x|) + poly(λ, |P |) + poly(λ, T ) = poly(λ, |x|, |P |, T ).

– Proof Length: |c|+|Π| = poly(λ, log T )+poly(λ, log T, |Cindex|) = poly(λ, log T ).
– Verifier Time: Time taken to compute Cindex and verify the BARG. This is

poly(λ, log T, |Cindex|) = poly(λ, log T ).
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Soundness. Let us assume for the sake of contradiction that our scheme in
Figure 2 is not sound, i.e., there exists a PPT adversary A := (A1,A2), a value
T and a polynomial function poly(λ) such that for infinitely many values of
λ ∈ N,

Pr[GA = 1] ≥ 1

poly(λ)
,

where A plays Game G described below

Real Game G
1. crs← stSNARG.Setup(1λ, 1T )
2. (P, aux)← A1(1

λ, crs)
3. HP ← stSNARG.TrustHash(crs, P )
4. ((x, y)(c,Π))← A2(crs, P,HP , aux)
5. if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M,

return 1
6. else return 0

Let Si denote the following set:

Si =

{
h0 if i = 0{
hi, {bi}j∈[3], {Πi}j∈[3], Π

′
i

}
if i ∈ [T ]

Let D denote the string
(
h0,
{
hi, {bi}j∈[3], {Πi}j∈[3], Π

′
i

}
i∈[T ]

)
. ISi

⊂ |D|
denotes the following:

ISi
=
{
[a, b]

∣∣a, b ∈ |D|, D[a, b] = Si

}
.

In game G, say we have (tree10, rt
1
0)← HT.Hash(dk, x), (tree20, rt

2
0)← HT.Hash(dk, P ),

(tree30, rt
3
0)← HT.Hash(dk,□). Also, let st0 := (0, 0, 0, s), where s is the start state

of TM. We say that h̄0 := (st0, rt
1
0, rt

2
0, rt

3
0) defines a unique “true” digest for the

starting step of TM.
If stSNARG.V(crs, x,HP , c,Π) = 1, then Algorithm Step(x, P, crs, i) in Fig-

ure 4 computes the unique true digest h̄i after the i
th Turing Machine Step along

with the other uniquely correct values of the set S̄i := {h̄i, {b̄i}j∈[3], {Π̄i}j∈[3], Π̄
′
i}.

We use the notation Step(x, P, crs, i).x to denote x ∈ S̄i. We proceed by perform-
ing an induction on the following sequence outer hybrid games Gi, i from 1 to T .
We use a sequence of inner hybrid games to transition between subsequent outer
hybrids. Our induction hypothesis is that, under suitable assumptions, for all
i ∈ 1 to T , there exists a negligible function λ such that,

Pr[GA = 1] ≤ Pr[GA
i = 1] + negl(λ).

Intuitively, the ith game Gi is similar to the real life soundness game with
the following two changes: (1) The key generation for the SE hash and BARG is
done in the trapdoor mode at the ith game. This allows for extractability of the
ith block of the string D from the commitment c. (2) The adversary wins the
game if they break the soundness assumption as the real life game G and the
extracted block is indeed the correct one.
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Algorithm Step(x, y, P, crs, i)

– □ := empty string
– (tree10, rt

1
0) := HT.Hash(dk, x), (tree20, rt

2
0) := HT.Hash(dk, P ), (tree30, rt

3
0) :=

HT.Hash(dk,□)
– initialize s with the start state of TM
– st0 := (0, 0, 0, s)
– h̄0 := (st0, rt

1
0, rt

2
0, rt

3
0)

– if i = 0, return S̄0 := (st0, rt
1
0, rt

2
0, rt

3
0)

– else
• for count = 1 to i,

(l1count, l
2
count, l

3
count)← StepR(stcount−1){

(bkcount, Π
k
count) := HT.Read(treekcount−1, l

k
count)

}
k∈[3]

(b′3count, l
′3
count, stcount) := StepW(stcount−1, b

1
count, b

2
count, b

3
count)

(tree3count, rt
3
count, Π

′
count) := HT.Write(tree3count−1, l

′3
count, b

′3
count)

• h̄i := (sti, rt
1
i , rt

2
i , rt

3
i )

• b̄i := (b1i , b
2
i , b

3
i )

• l̄i := (l1i , l
2
i , l

3
i )

• r̄ti := rt1i−1, rt
2
i−1, rt

3
i

• Π̄i := (Π1
i , Π

2
i , Π

3
i , Π

′
i)

• return S̄i := (h̄i, b̄i, r̄ti, Π̄i)

Fig. 4: Turing Machine ith step.

Outer Hybrid Game Gi

1. if i is even
SE.Keven ← SE.TGen(1λ, 1M , ISi)
SE.Kodd ← SE.TGen(1λ, 1M , ISi−1)

2. if i is odd
SE.Keven ← SE.TGen(1λ, 1M , ISi−1)

SE.Kodd ← SE.TGen(1λ, 1M , ISi)
3. BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, i)
4. dk← HT.Gen(1λ)
5. crs := (SE.Keven, SE.Kodd,BARG.crs, dk).
6. (P, aux)← A1(1

λ, crs)
7. HP ← stSNARG.TrustHash(crs, P )
8. ((x, y), (c,Π))← A2(crs, P, aux)
9. Parse c as (codd, ceven)

10. if i is even and i ̸= 0
• (hi, {bki }k∈[3], {Πk

i }k∈[3], Π
′
i)← SE.Exteven(ceven, SE.Keven)

• (hi−1, {bki−1}k∈[3], {Πk
i−1}k∈[3], Π

′
i−1)← SE.Extodd(codd, SE.Kodd)

11. if i is odd
• (hi, {bki }k∈[3], {Πk

i }k∈[3], Π
′
i)← SE.Extodd(codd, SE.Kodd)

• if i−1 > 0 then (hi−1, {bki−1}k∈[3], {Πk
i−1}k∈[3], Π

′
i−1)← SE.Exteven(ceven, SE.Keven)

• if i− 1 = 0 then h0 ← SE.Exteven(ceven, SE.Keven)
12. if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ hi =

Step(x, y, P, crs, i).h̄i, return 1
13. else return 0

17



Base Case: Assuming key indistinguishability and soundness of SE hash and
BARG, we need to show that Pr[GA = 1] ≤ Pr[GA

1 = 1] + negl(λ).
We begin by using a sequence of hybrids to transition from G to an interme-

diate game G0. The colored texts in the hybrids below indicate the steps in the
hybrids exclusively appear in a particular game. We only present proof sketches
for the intermediate lemmas in this section due to lack of space. Concrete proofs
have been shifted to the Supplementary Material.

Hybrid Games Ga,Gb,Gab,G0

1. SE.Keven ← SE.TGen(1λ, 1M , IS0) ...(Ga,Gb,Gab,G0)
2. SE.Kodd ← SE.Gen(1λ, 1M ) ...(Ga)
3. SE.Kodd ← SE.TGen(1λ, 1M , IS1) ...(Gb,Gab,G0)
4. BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)...(Ga,Gb)
5. BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)...(Gab,G0)
6. dk← HT.Gen(1λ)
7. crs := (SE.Keven, SE.Kodd,BARG.crs, dk).
8. (P, aux)← A1(1

λ, crs)
9. HP ← stSNARG.TrustHash(crs, P )

10. if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧((x, y), T, P,HP , crs) /∈ LT M, return
1

11. h0 ← SE.Exteven(ceven, SE.Keven)...(G0)...(Ga,Gb,Gab)
12. if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h0 =

Step(x, y, P, crs, 0).h̄, return 1 ...(G0)
13. else return 0

Lemma 2. Assuming key indistinguishability of SE,
∣∣Pr[GA = 1]− Pr[GA

a = 1]
∣∣ ≤

negl(λ).

Proof. The only difference in Game G and Ga is that the key generation al-
gorithm of the SE hash (SE.Gen) is replaced by the trapdoor key generation
(SE.TGen).

If
∣∣Pr[GA = 1]− Pr[GA

a = 1]
∣∣ > negl(λ), then one can construct a PPT ad-

versary B that breaks the key indistinguishability of SE using IS0 with Key as
input from the key generation algorithm of the SE hash and runs A on Key.
Here, Key is either SE.Gen(1λ, 1M ) or SE.TGen(1λ, 1M , IS0

) based on whether
A is interacting with game G or Ga respectively. Note that the reduction can
simulate the other steps of games G or Ga. Now, the probability that B returns 1
in either case is exactly equal to the probability that A wins the corresponding
games, hence, B breaks if

∣∣Pr[GA = 1]− Pr[GA
a = 1]

∣∣ ≥ negl(λ). This leads to a
contradiction of our assumption.

Lemma 3. Assuming key indistinguishability of SE,
∣∣Pr[GA

a = 1]− Pr[GA
b = 1]

∣∣ ≤
negl(λ).

This again follows from the key-indistinguishability of SE as shown in the
previous lemma as the only difference in these games is that the key generation
algorithm for the SE hash has been changed to TGen, hence we skip the proof.

Lemma 4. Assuming key indistinguishability of BARG,
∣∣Pr[GA

b = 1]− Pr[GA
ab = 1]

∣∣ ≤
negl(λ).
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Proof. The only difference in Game Gb and Gab is that the key generation al-
gorithm of the BARG (BARG.Gen) is replaced by the trapdoor key generation
(BARG.TGen) at index 0.

If
∣∣Pr[GA

b = 1]− Pr[GA
ab = 1]

∣∣ > negl(λ), then one can construct a PPT ad-
versary B getting Key as input that breaks the key indistinguishability of BARG,
where Key is either BARG.Gen(1λ, 1T+1, 1|Cindex|) or BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)
based on whether A is interacting with game Gb or Gab respectively. The re-
duction then following in a similar manner as the SE key indistinguishability
adversary described above.

Lemma 5. Assuming somewhere soundness of BARG,∣∣Pr[GA
ab = 1]− Pr[GA

0 = 1]
∣∣ ≤ negl(λ).

Proof. The only difference in Games Gab and G0 is that there is an additional
step which computes the true digest at index 0 and extracts at the 0th index
from ceven using the extraction function of SE. Finally, the adversary wins if and
only if the extracted value matches the true digest along with the usual win
conditions in the previous game.

Note that,∣∣Pr[GA
ab = 1]− Pr[GA

0 = 1]
∣∣ ≤ Pr[BARG.V(BARG.crs, Cindex, Π) = 1∧

((x, y), T, P,HP , crs) /∈ LT M ∧ h0 ̸= Step(x, P, crs, 0).h̄] ≤
Pr[BARG.V(BARG.crs, Cindex, Π) = 1 ∧ h0 ̸= Step(x, P, crs, 0).h̄].

Let us assume that there exists a PPT adversary A such that for infinitely
many values of λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex, Π) = 1 ∧ h0 ̸= Step(x, y, P, crs, 0).h̄] ≥ 1

poly(λ)
.

Notice that h0 ̸= Step(x, P, crs, 0).h̄ implies that at least one of the conditions
st0 = start, Hx = rt10, HP = rt20 and HT.Hash(dk,□) having rt30 as root must not
be true. If this is indeed true then our construction of Cindex in Figure 3 implies
that (Cindex, 0) /∈ Lindex.

We now construct the following PPT adversary B playing the semi-adaptive
somewhere soundness game of the BARG as follows

Adversary B playing semi adaptive somewhere soundness game of BARG.
• SE.Keven ← SE.TGen(1λ, 1M , IS0)
• SE.Kodd ← SE.TGen(1λ, 1M , IS1)
• BARG.crs← BARG.TGen(1λ, 1T+1, 1|Cindex|, 0)
• dk← HT.Gen(1λ)
• crs := (SE.Keven, SE.Kodd,BARG.crs, dk).
• (P, aux)← A1(1

λ, crs)
• HP ← stSNARG.TrustHash(crs, P )
• ((x, y), (c,Π))← A2(crs, P, aux)
• return (Cindex, Π)

19



By our assumption, it is clear that BARG.V(BARG.crs, Cindex, Π) = 1 with
non negligible probability but (Cindex, 0) /∈ Lindex. Thus, B will break the semi-
adaptive somewhere soundness of BARG at index 0. Therefore, it must be the
case that for every PPT adversary A, there exists a negligible function negl(λ)
such that for all λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex, Π) = 1 ∧ h0 ̸= Step(x, y, P, crs, 0).h̄] ≤ negl(λ)

=⇒
∣∣Pr[GA

ab = 1]− Pr[GA
0 = 1]

∣∣ ≤ negl(λ)

.

Now, we transition from G0 to the base case for our induction, G1 using the
following sequence of indistinguishable hybrids:

G0,a Identical to G0 except we add an extraction: (h1, {bk1}k∈[3], {Πk
1 }k∈[3], Π

′
i)←

SE.Extodd(codd,SE.Kodd) which is not used in the hybrid, hence indistin-
guishability follows.

G0,b The BARG key generation’s trapdoor is changed from 0 to 1. This can be
done due to key indistinguishability of BARG.

G0,c The winning condition is changed to: if stSNARG.V (crs, (x, y), HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h0 = Step(x, y, P, crs, 0).h̄ ∧ {bk1}k∈[3] =

Step(x, y, P, crs, 1).b̄∧{rtk1}k∈[3] = Step(x, y, P, crs, 1).r̄t∧st1 = Step(x, y, P, crs, 1).s̄t,
return 1

G0,d The winning condition is changed to: if stSNARG.V (crs, (x, y), HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h0 = Step(x, y, P, crs, 0).h̄ ∧ {bk1}k∈[3] =
Step(x, y, P, crs, 1).b̄∧rt31 = Step(x, y, P, crs, 1).r̄t∧st1 = Step(x, y, P, crs, 1).s̄t∧
h1 = Step(x, y, P, crs, 1).h̄, return 1

G0,e The winning condition is changed to: if stSNARG.V (crs, (x, y), HP , (c,Π)) =
1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧ h1 = Step(x, y, P, crs, 1).h̄, return 1

The indistinguishability of the last three hybrids follow from the following
lemmas.

Lemma 6. Assuming semi-adaptive somewhere soundness of BARG, extraction
correctness of SE, read and write soundness of HT,∣∣Pr[GA

0,b = 1]− Pr[GA
0,c = 1]

∣∣ ≤ negl(λ).

Proof. The only difference in Games G0,b and G0,c is that we have added some
additional conditions for the adversary to win along with the ones in the previous
game.

Note that,∣∣Pr[GA
0,b = 1]− Pr[GA

0,c = 1]
∣∣ ≤ Pr[BARG.V(BARG.crs, Cindex, Π) = 1∧

h0 = Step(x, P, crs, 0).h̄ ∧
(
{bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄

∨ {rtk1}k∈[3] ̸= Step(x, y, P, crs, 1).r̄t ∨ st1 = Step(x, y, P, crs, 1).s̄t
)
].

20



Let us assume that there exists a PPT adversary A such that for infinitely
many values of λ ∈ N,

Pr[BARG.V(BARG.crs, Cindex, Π) = 1 ∧ h0 = Step(x, y, P, crs, 0).h̄

∧
(
{bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄ ∨ {rtk1}k∈[3] ̸= Step(x, y, P, crs, 1).r̄t

∨ st1 = Step(x, y, P, crs, 1).s̄t
)
] ≥ 1

poly(λ)
.

Notice that h0 = Step(x, P, crs, 0).h̄ implies that the conditions st0 = start,
Hx = rt10, HP = rt20 and HT.Hash(dk,□) having rt30 as root are true. In other
words, h0 is indeed the true digest at step 0.

Assuming extraction correctness of SE, read and write soundness of HT, we
construct the following PPT adversary B playing the semi-adaptive somewhere
soundness game of the BARG similar to the one in the proof of Lemma 5.

Thus, B will break the semi-adaptive somewhere soundness of BARG at index
1 if (Cindex, 1) /∈ Lindex.

It is now left to show that (Cindex, 1) /∈ Lindex.

Case 1 If the SE verifications in Cindex do not all return 1, then by construction of
Cindex, we have that (Cindex, 1) /∈ Lindex.

Case 2 All SE verifications return 1. Extraction Correctness/ Somewhere binding
property of SE hash implies that h0 = (st0, rt

1
0, rt

2
0, rt

3
0), h1, {bk1 , Πk

1 }k∈[3], Π
′
1

were indeed committed by the prover as the Turing machine output at step 0
and step 1. Now, let us analyze ϕ(h0, h1, {bk1 , Πk

1 }k∈[3], Π
′
1). By assumption,

we know that h0 = h̄0, i.e., ¯st0, r̄t
1
0, r̄t

2
0, r̄t

3
0 = st0, rt

1
0, rt

2
0, rt

3
0. StepR being a

deterministic function ensures that (l11, l
2
1, l

3
1) are indeed the correct Turing

machine memory locations to be read at step 1. Thus (l̄11, l̄
2
1, l̄

3
1) = (l11, l

2
1, l

3
1).

This along with the deterministic nature of hash tree read write operations
means that we must have,

• (l̄11, l̄
2
1, l̄

3
1)← StepR(s̄t0)

•
{
(b̄j1, Π̄

k
1 ) := HT.Read( ¯treek0 , l̄

k
1)
}
k∈[3]

• (b̄′31 , l̄
′3
1 , s̄t1) := StepW(s̄t0, b̄

1
1, b̄

2
1, b̄

3
1)

• ( ¯tree31, r̄t
3
1, Π̄

′
1) := HT.Write( ¯tree30, l̄

′3
1 , b̄

′3
1 )

Read and Write Completeness of the hash tree implies
HT.VerRead(dk1, r̄t

1
0, l̄

1
1, b̄

1
1, Π̄

1
1 ) = 1

HT.VerRead(dk2, r̄t
2
0, l̄

2
1, b̄

2
1, Π̄

2
1 ) = 1

HT.VerRead(dk3, r̄t
3
0, l̄

3
1, b̄

3
1, Π̄

3
1 ) = 1

HT.VerWrite(dk3, r̄t
3
0, l̄

′3
1 , b̄

′3
1 , r̄t

3
1Π̄

′
1) = 1

If {bk1}k∈[3] ̸= Step(x, y, P, crs, 1).b̄, then the read soundness assumption of
HT implies that(
HT.VerRead(dk, r̄t10, l̄

k
1 , b

k
1 , Π

k
1 ) = 1

)
k∈[3]

happens with a negligible probabil-

ity. Thus, with all but negligible probability we have that (Cindex, 1) /∈ Lindex

and we are done.
Let us say this is not the case, i.e., {bk1}k∈[3] = Step(x, y, P, crs, 1).b̄, then the
deterministic nature of the Turing machine write function StepW implies that
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st1 = s̄t1. Thus, for our assumption to be valid, it must be that {rtk1}k∈[3] ̸=
Step(x, y, P, crs, 1).r̄t. If rt11 ̸= ¯rt11 = rt10 or rt21 ̸= ¯rt21 = rt20, then the definition
of ϕ implies that (Cindex, 1) /∈ Lindex. If this is not the case, then the only other
possible option is rt31 ̸= ¯rt31. Now, the write soundness of HT implies that with
all but negligible probability, HT.VerWrite(dk3, r̄t

3
0, l̄

′3
1 , b̄

′3
1 , rt

3
1, Π1) ̸= 1 must

hold. If this is indeed true then our construction of Cindex in Figure 3 implies
that (Cindex, 1) /∈ Lindex.

Lemma 7.
Pr[GA

0,c = 1] = Pr[GA
0,d = 1].

Proof. Note that by definition, h1 = st1, rt
1
1, rt

2
1, rt

3
1. We already have that rt11, rt

2
1, rt

3
1 =

Step(x, y, P, crs, 1).r̄t and st1 = Step(x, y, P, crs, 1).s̄t. Thus h1 = Step(x, y, P, crs, 1).h̄
if and only if rt31 = Step(x, y, P, crs, 1).r̄t ∧ st1 = Step(x, y, P, crs, 1).s̄t.

Lemma 8.
Pr[GA

0,d = 1] ≤ Pr[GA
0,e = 1].

Proof. The number of conditions for the adversary to win simply decreases from
Game G0,d to Game G0,e, thus the probability of success must not increase.

A closer observation shows that G0,e is indeed identical to the case when one
puts i = 1 in game Gi.

Combining these together, we show the base case of the induction to be true.
Thus,

Pr[GA = 1] ≤ Pr[GA
1 = 1] + negl(λ).

Assuming that our induction hypothesis holds for some j ∈ [T − 1], we prove
that it holds for j + 1 as well. We note that by chain rule, it suffices to show
that Pr[GA

j = 1] ≤ Pr[GA
j+1 = 1] + negl(λ). We can show this by a sequence of

indistinguishable inner hybrids to transition from Game Gj to Gj+1 which look
like the following:

Gj,a Identical to Gj except the SE hash extraction is done at Sj+1 instead of Sj .
Indistinguishability follows from the key indistinguishability of SE hash.

Gj,b Extraction for one of the SE hashes changes from ISj−1
to ISj+1

. However,
this does not affect the reduction in any way as extraction at indices j − 1
and j + 1 are not used by the reduction at any stage.

Gj,c The BARG key generation has a trapdoor at j + 1. This can be done due to
key indistinguishability of BARG.

Gj,d The winning condition is changed to: if stSNARG.V (crs, (x, y), HP , (c,Π)) =
1∧ ((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j ∧{bkj+1}k∈[3] =

Step(x, y, P, crs, j + 1).b̄j+1 ∧ rt3j+1 = Step(x, y, P, crs, j + 1).r̄tj+1 ∧ st1 =
Step(x, y, P, crs, 1).s̄t, return 1.

Gj,e The winning condition is changed to: if stSNARG.V (crs, (x, y), HP , (c,Π)) =
1∧ ((x, y), T, P,HP , crs) /∈ LT M∧hj = Step(x, y, P, crs, j).h̄j ∧{bkj+1}k∈[3] =

Step(x, y, P, crs, j + 1).b̄j+1 ∧ rt3j+1 = Step(x, P, crs, j + 1).r̄tj+1 ∧ st1 =

Step(x, y, P, crs, 1).s̄t ∧ hj+1 = Step(x, y, P, crs, j + 1).h̄, return 1
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Gj,f if stSNARG.V (crs, (x, y), HP , (c,Π)) = 1 ∧ ((x, y), T, P,HP , crs) /∈ LT M ∧
hj+1 = Step(x, y, P, crs, j + 1).h̄, return 1

The last three steps follow identically as Lemmas 67,8.
Observe Gj,f is identical to outer Game Gj+1 with indices renamed.
Thus, combining the lemmas above, we get

Lemma 9. Assuming extraction correctness of SE, semi-adaptive somewhere
soundness of BARG, read and write soundness of HT,

Pr[GA
j = 1] ≤ Pr[GA

j+1 = 1] + negl(λ).

This follows from the combination of previous lemmas where we showed that the
winning probability in the sequence of inner hybrids are either negligibly close
to each other or increases (from Game Gj,e to Game Gj,f ).

Finally, we will show that the winning probability of A is 0 in the final game
GT .

Lemma 10. Assuming extraction correctness of SE hash,

Pr[GA
T = 1] = 0.

Proof. The extraction correctness of SE ensures that hT was indeed the state
committed by the prover. Now, hT = h̄T cannot be true since our assumption
of (x, y, T, P,HP , crs) /∈ LT M means that Turing Machine state after T steps
cannot be an accept state. Thus, the adversary’s win conditions cannot be si-
multaneously satisfied.

Note that this step does not require us to resort to BARG soundness. Due to
our specific construction of h̄T , all we need ensure is that the state committed
by the prover does not correspond to the correct state.

Compiling the lemmas together and using chain rule, it must be true that

Pr[GA = 1] ≤ negl(λ)

which is a contradiction to our assumption that the scheme is not sound.

Lemma 11. Assuming T = poly(m,n), T,m, n ≤ 2λ, the stSNARG protocol in
Figure 2 implies the unconditional existence of a publicly verifiable non interac-
tive succinct delegation scheme sDel as defined above.

Proof. We provide an explicit construction of sDel assuming a semi-trusted
SNARG stSNARG. Without loss of generality, we can assume that T is known
a-priory.

– sDel.Setup(1λ): Run stSNARG.Setup to generate crs.
– sDel.ProgAuth(1λ, crs): Generate a program P ∈ {0, 1}m, state and run

stSNARG.TrustHash(crs, P ) to get HP .
– sDel.I(1λ, crs): Generate x ∈ {0, 1}n .
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– sDel.W (crs, P, state, HP , x): Generate y ∈ {0, 1} and run stSNARG.P(crs, P, x, y,HP )
to get Π.

– sDel.V (crs, x, y,HP , Π): Run stSNARG.V(crs, x, y,HP , Π) return V’s output.

Completeness and soundness of sDel follows from the completeness of stSNARG
in a straightforward way. Refer to Supplementary material for detailed analysis.
The proof size and verifier run time of stSNARG is poly(λ, log T )=poly(λ, log |P |, log |x|).
Similarly, the prover run time of sDel is also poly(λ, |P |, |x|).

6 Semi-Trusted Succinct Non-Interactive Argument with
Zero Knowledge (ZK-stSNARG)

A publicly verifiable semi-trusted non interactive argument with zero-knowledge
scheme
ZKstSNARG : (ZKstSNARG.Setup,ZKstSNARG.TrustHash,ZKstSNARG.P,ZKstSNARG.V)
is defined as

– ZKstSNARG.Setup(1λ, 1T ): A randomized setup algorithm which on input
security parameter λ, and number of Turing Machine steps T , outputs crs.

– ZKstSNARG.TrustHash(crs, P ): A deterministic an honest algorithm which on
input crs and a program P ∈ {0, 1}m for some m < 2λ, computes a succinct
digest HP of P . It then produces a statistically binding and extractable
commitment CP of HP under randomness r1. It then gives out a pair public
output POut = CP and private output SOut = (HP , r). Here SOut is made
available to the prover only.

– ZKstSNARG.P(crs, P, x, y,SOut,POut): A deterministic prover algorithm which
on input the crs, P ∈ {0, 1}m for some m < 2λ, x ∈ {0, 1}n for some n < 2λ,
y ∈ {0, 1}, SOut, and POut outputs a proof Π.

– ZKstSNARG.V(crs, x, y,POut, Π): A deterministic verification algorithm which
on input crs, x, y, public output POut of stSNARG.TrustHash and proof Π,
either accepts(output 1) or rejects(output 0) it.

We define the following language

LT M := {(P, x, y, T,POut, crs)
∣∣∃(HP , r1) such that TM(P, x, y) = 1∧

(POut, (HP , r1)) = ZKstSNARG.TrustHash(crs, P )}.

A ZKstSNARG satisfies the standard completeness, soundness and efficiency
properties as stSNARG. It also has an additional property:

Non Interactive Zero Knowledge. For all (P, x, y, T,POut, crs) ∈ LT M,
there exists a PPT simulator Sim := (Sim1,Sim2,Sim3) such that the distribu-
tions of

(crs, x, y,POut, Π)
∣∣(crs, aux)← Sim1(1

λ, 1T ),

(POut, aux′)← Sim2(crs, aux),

Π ← Sim3(aux
′, crs, (x, y),POut)
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and

(crs, x, y,POut, Π)
∣∣crs← ZKstSNARG.Setup(1λ, 1T ),

(POut,SOut)← ZKstSNARG.TrustHash(crs, P ),

Π ← ZKstSNARG.P(crs, P, x, y,POut,SOut)

are indistinguishable.
To achieve non interactive zero knowledge, we use the following additional

primitives, namely (1) a statistically binding extractable commitment scheme
Combind as defined in Section 3, and (2) a Non Interactive Zero Knowledge ar-
gument NIZK := (NIZK.Gen,NIZK.P,NIZK.V).

The protocol in Figure 5 demonstrates the extension of stSNARG to achieve
Zero-Knowledge. The CRS in Figure 5 contains a statistically binding commit-
ment to 0. This lets us extend LT M to the language,

Lhyb :=

{
(P, x, y, T, CP , crs)

∣∣∃(HP , r1) such that TM(P, x, y) = 1

∧ (CP , (HP , r1)) = ZKstSNARG.TrustHash(crs, P )

∨
(
∃r such that crs contains a commitment to 1 under randomness r

)
.

}
such that any witness to LT M is vacuously a witness to Lhyb due to binding

property of the commitment. We use NIZK for the following NP language:

L :=

{
(c.com, Π.com, (crs, x, y, T ), CP )

∣∣∣∃r1, r2, r3, r4, c,Π,HP such that(
CP = Com.C(Combind.Key1, HP ; r1) ∧ c.com = Com.C(Combind.Key2, c; r2)

∧Π.com = Com.C(Combind.Key3, Π; r3)∧stSNARG.V(crs, ((x, y), T,HP ), (c,Π)) = 1

)

∨ crs contains Com.C(Combind.Key4, 1; r4)

}
Also, note that in this construction, the underlying stSNARG is built for the

index circuit C ′
index which is identical to Cindex except that HP is a part of the

input and not hard-coded in the circuit as it is not known to the verifier.

Theorem 4. Assuming the existence of semi-trusted SNARGs and Extractable
Statistically Binding Commitment Schemes, and NIZK as described in sections 3
and 5, Figure 5 is a publicly verifiable non-interactive semi-trusted SNARG with
zero knowledge such that CRS size, proof size and verifier time are poly(λ, log T )
and prover run time is poly(λ, T ).
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Protocol 2 (stSNARG with Zero-Knowledge)

– ZKstSNARG.Setup(1λ, T ) :
• crs1 ← stSNARG.Setup(1λ, 1T )
• Combind.Key1 ← Com.Gen(1λ)
• Combind.Key2 ← Com.Gen(1λ)
• Combind.Key3 ← Com.Gen(1λ)
• Combind.Key4 ← Com.Gen(1λ)
• r4←$ {0, 1}λ, z ← Com.C(Com.Key4, 0; r4)
• NIZK.crs← NIZK.Gen(1λ)
• return (crs1,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs).

– ZKstSNARG.TrustHash(crs, P )
• HP ← stSNARG.TrustHash(crs, P )
• r1←$ {0, 1}λ, CP ← Com.C(Combind.Key1, HP ; r1) return (SOut :=

(P, r1),POut := CP ).
– ZKstSNARG.P(crs, x, y, SOut,POut) :
• (c,Π)← stSNARG.P(crs, x, y,HP )
• r2←$ {0, 1}λ, c.com← Com.C(Combind.Key2, c; r2)
• r3←$ {0, 1}λ, Π.com← Com.C(Combind.Key3, Π; r3)

• NIZK.Π ← NIZK.Prove
(
NIZK.crs, (c.com, Π.com, (crs, x, y, T ), CP ) ,

((HP , r1), (c, r2), (Π, r3),⊥)
)

• return (c.com, Π.com,NIZK.Π).
– ZKstSNARG.V(crs, (x, y),POut = CP , c.com, Π.com,NIZK.Π) :
• return 1 if and only if

NIZK.V(NIZK.crs, (c.com, Π.com, (crs, x, y, T ), CP ),NIZK.Π) = 1.

Fig. 5: Semi-Trusted Universal Turing Machine Delegation with Non Interactive
Zero-Knowledge

Completeness and Efficiency. Completeness follows from the completeness of
the underlying stSNARG,NIZK and the binding property of the commitment.
Similarly succinctness follows from the efficiency of stSNARG, NIZK, and the
binding commitment Combind.

Soundness. The soundness following by a straightforward reduction using the
CRS indistinguishability and Statistical Binding of Combind, and the soundness
of the underlying stSNARG. We can construct an adversary that breaks the
soundness of the underlying stSNARG using the following steps:

1. Change the keys for Combind to be generated by TGen. This can be done due
to CRS indistinguishability.

2. The reduction can now extract the committed proof from c.com and Π.com.
This is because the reduction has access to the trapdoor commitment key.

3. The stSNARG can now output the extracted proof. The extraction correct-
ness of Combind ensures that if ZKstSNARG is not sound, then this adversary
breaks the soundness of stSNARG.
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A formal analysis is presented in the Supplementary Material.

Zero-Knowledge.

zk − stSNARG Simulator NIZK.Sim := (Sim1, Sim2, Sim3)
• Sim1(1

λ, 1T ) :
1. SE.Keven ← SE.Gen(1λ, 1Mλ,T , 1Lλ)
2. SE.Kodd ← SE.Gen(1λ, 1M , 1L)
3. BARG.crs← BARG.Gen(1λ, 1T+1, 1|Cindex|)
4. dk← HT.Gen(1λ)
5. Combind.Key1 ← Com.Gen(1λ)
6. Combind.Key2 ← Com.Gen(1λ)
7. Combind.Key3 ← Com.Gen(1λ)
8. Combind.Key4 ← Com.Gen(1λ), r4←$ N, z ← Com.C(Com.Key4, 1; r4)
9. NIZK.crs← NIZK.Gen(1λ)

10. return
crs := (SE.Keven, SE.Kodd,BARG.crs, dk,Combind.Key1.Combind.Key2,Combind.Key3, z,NIZK.crs)
and aux := r4

• Sim2(crs, aux) :
1. r1←$ {0, 1}λ, CP ← Com.C(Combind.Key1, 0; r1) return POut := CP .
2. return (POut, aux′ := aux)

• Sim3(crs, aux
′, (x, y),POut := CP ) :

1. r2←$ {0, 1}λ, c.com← Com.C(Combind.Key2, 0; r2)
2. Generate a dummy proof Π̂
3. r3←$ {0, 1}λ, Π.com← Com.C(Combind.Key3, 0; r3)
4. NIZK.Π ← NIZK.Prove (NIZK.crs, (c.com, Π.com, (crs, x, y, T ), CP ) , (⊥,⊥,⊥, aux))
5. return (c.com, Π.com,NIZK.Π).

The proof of zero-knowledge follows from a sequence of hybrids.

– We define a game G′ which is identical to G0 except that crs has a commitment of 1
instead of 0. Note that an honest prover does not make use of this section of the crs
in its proof. Consider hyb′ as the output distribution of intermediate G′. All other
algorithms in G′ remains identical as G0. hyb0 must be indistinguishable from hyb′,
otherwise we can construct an efficient adversary that breaks the computational
hiding property of Combind.

– The hybrid game G′′ with output distribution hyb′′ works like G′ except stSNARG.P
computes (c.com,NIZK.Π) honestly and then ignores c.com and outputs (c1,NIZK.Π)
where c1 is the statistical binding commitment to the 0 string using Combind. The
indistinguishability of hyb′ and hyb′′ follows from the computational hiding prop-
erty of Combind.

– We now define another hybrid game G′′′ where everything remains identical as
G′′ but the NIZK proof NIZK.P proves that crs has a commitment of 1 using
randomness r as a witness. This is indeed a valid witness for the same language L∗

hyb.
Observe that G′′ and G′′′ have identical CRS. However, NIZK.P in each case uses
different witnesses, namely r and ((c, rcom2), Π) respectively. Thus, the Witness
Indistinguishability of NIZK implies indistinguishability of G′′ and G′′′.

– In the next hybrid G′′′′, trusted commitment generator is replaced by Sim2 which on
input crs simply outputs a hiding commitment to the 0 string. Note that the output
of Sim2 is not used anywhere else in the proof and its output is computationally
indistinguishable from the public output of ZKstSNARG.TrustHash(crs, P ) because
of the hiding property of commitment scheme.
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– In the final game G1, Sim1 uses the same crs as the previous hybrid. Sim3 ignores
all operations performed by the prover and only outputs c1 which is the statistical
binding commitment to the 0 string using Combind and sends a NIZK proof as G′′′′.
The output distributions of G′′′′ and G1 are indeed identical as the output of Sim3

solely depends on the output of Sim1, Sim2 and the commitment of the 0 string c1.

Combining all the hybrids, we prove that G0 and G1 have output distributions which
are computationally indistinguishable.

Public Verifiable Non Interactive Succinct Delegation with Zero Knowledge A
direct extension of Lemma 11 gives us the following corollary,

Corollary 2. Assuming T = poly(m,n), T,m, n ≤ 2λ, the ZKstSNARG protocol in
Figure 5 implies the unconditional existence of a publicly verifiable non interactive
succinct delegation scheme with zero knowledge.

The zero knowledge simulator for the delegation scheme

zk− sDel.Sim := (zk− sDel.Sim1, zk− sDel.Sim2) can simply run the stSNARG ZK-

simulator. More specifically, zk− sDel.Sim1 and zk− sDel.Sim2 call zk− stSNARG.Sim1

and zk − stSNARG.Sim2 respectively above. The proof follows in a straightforward

manner, hence we skip the details.
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