
EKE Meets Tight Security in the Universally
Composable Framework

Xiangyu Liu1,2, Shengli Liu1,2,3(B), Shuai Han1,2, and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{xiangyu_liu,slliu,dalen17,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. (Asymmetric) Password-based Authenticated Key Exchange
((a)PAKE) protocols allow two parties establish a session key with a pre-
shared low-entropy password. In this paper, we show how Encrypted Key
Exchange (EKE) compiler [Bellovin and Merritt, S&P 1992] meets tight
security in the Universally Composable (UC) framework. We propose a
strong 2DH variant of EKE, denoted by 2DH-EKE, and prove its tight
security in the UC framework based on the CDH assumption. The effi-
ciency of 2DH-EKE is comparable to the original EKE, with only O(λ)
bits growth in communication (λ the security parameter), and two (resp.,
one) extra exponentiation in computation for client (resp., server).

We also develop an asymmetric PAKE scheme 2DH-aEKE from
2DH-EKE. The security reduction loss of 2DH-aEKE is N , the total
number of client-server pairs. With a meta-reduction, we formally prove
that such a factor N is inevitable in aPAKE. Namely, our 2DH-aEKE
meets the optimal security loss. As a byproduct, we further apply our
technique to PAKE protocols like SPAKE2 and PPK in the relaxed UC
framework, resulting in their 2DH variants with tight security from the
CDH assumption.

Keywords: (Asymmetric) PAKE · UC Framework · Tight Security

1 Introduction

Password-based Authenticated Key Exchange (PAKE) [8] allows two parties
(client and server) who share a low-entropy password pw to agree on a session
key via public networks. Such session keys can later be used to establish se-
cure channels. Different from authenticated key exchange (AKE) which needs
a PKI to authenticate the validity of public keys, PAKE takes short human-
memorizable passwords rather than long cryptographic keys. Therefore, PAKE
is more convenient for deployments and applications.

For PAKE, the server has to store all clients’ passwords and once compro-
mised, all clients are in high risk. Asymmetric PAKE (aPAKE) [9, 19] is a variant
of PAKE that considers security against server compromise. In the scenario of

aPAKE, the server stores a password file (usually a hash value H(pw)) for the
client, rather than a plain password. A client can establish a session key with a
server if it holds a pre-image of the password file.

Started from the pioneering works by Belloven and Merritt [8, 9], (a)PAKE
has been studied extensively, and a variety of protocols have been proposed
over the past decades. For example, SPEKE [28], PPK/PAK [35], SPAKE2 [4],
Dragonfly [24], J-PAKE [23], KOY [31], KV [32] for PAKE, and VB-PAKE
[33], OPAQUE [30], KC-SPAKE2+ [41], KHAPE [21], YLZT [44], aEKE and
OKAPE [39] for aPAKE. Among these protocols, SPAKE2, J-PAKE, OPAQUE
are under the process of standardization [40, 5, 27, 38]. (a)PAKE protocols have
also been increasingly applied to numerous settings, including TLS [30, 37], ad
hoc networks [43], and the Internet of Things [42].

Since passwords have limited entropy, an adversary A can always try a pass-
word guess and actively engage in a session, and hence break the security with a
noticeable probability. Such online attacks are inherit to (a)PAKE, but we can
still fence these attacks via engineering methods, e.g., by limiting the number
of online password guesses. Another type of attacks is offline dictionary attacks,
i.e., the adversary eavesdrops on executions of the protocol and tries to break
the security via a brute-force attack with all possible passwords in a given dic-
tionary. Intuitively, a PAKE protocol is secure, if offline dictionary attacks help
nothing to the adversary, and the only feasible way to break the security, is to
engage in an online attack. In aPAKE, we further consider security when the
server is compromised. That is, the password files help nothing for the adversary
in impersonating a client, as long as A does not obtain the correct password
from the compromised password file via brute-force search.
Security models for (a)PAKE. There are two types of security notions for
(a)PAKE, namely, the game-based security in the Indistinguishability (IND)
model (see [7] for PAKE and [33, 10, 11] for aPAKE) and the simulation-based
security in the Universally Composable (UC) framework (see [15] for PAKE and
[19] for aPAKE). The IND model is formalized as an experiment between a
challenger C and an adversary A. We say an (a)PAKE protocol is secure in this
model, if A cannot distinguish a real session key from a random session key,
after it implements a variety of attacks.

The UC framework/model is another popular approach to formalize the secu-
rity of (a)PAKE. In the UC framework, an ideal function F is defined to capture
the essential functionality of an (a)PAKE protocol in the ideal world. We say
that an (a)PAKE protocol is secure in the UC framework, if it securely emulates
F , i.e., no PPT environment can distinguish the real world execution from the
ideal world execution (involving F and an ideal world simulator).

The UC framework is preferable to the IND model in a number of important
aspects.

– The UC framework allows an arbitrary correlation and distribution for pass-
words. But in the IND model, passwords are required to be uniformly dis-
tributed over the password set (or at least have a min-entropy) for the sake
of security proofs, e.g., [7, 31].

2

– UC security is preserved even if the protocol is running in arbitrary networks,
where multiple different protocols may run concurrently. This is guaranteed
by the universal composition theorem [14] in the UC framework.

– PAKE with UC security implies simulation-based security of secure-channel
protocols built on PAKE [15]. In contrast, it is not sure for the IND security
[41].

Tight security. The security of (a)PAKE (in both the IND and UC models) is
achieved by a security reduction under proper assumptions. The security reduc-
tion transforms the ability of a successful adversary A to an algorithm B solving
some well-known hard problem in about the same running time. If A’s attack
succeeds with probability ϵ, then B solves the problem with probability ϵ/L.
Here L is defined as the security loss factor. We say that the reduction is tight
if L is a constant. Otherwise the reduction is loose. A loose factor L is generally
a polynomial of Q, where Q is the total number of queries involved by A, and it
can be of arbitrary polynomial. PAKE and aPAKE are generally implemented
in the multi-user and multi-challenge setting. With a loose security reduction,
the deployment of (a)PAKE has to choose a larger security parameter to com-
pensate the loss factor L, resulting in larger elements and slower computations
in the execution of (a)PAKE. Therefore, pursuing tight security of (a)PAKE is
not only of theoretical value but also of practical significance.

There are very few works considering tight security of (a)PAKE. Becerra et
al. [6] proved that the security of the PAK protocol [35] can be tightly reduced to
the Gap DH assumption in the IND model. Under the same assumption, Abdalla
et al. [1] proved that SPAKE2 [4] is tightly secure in the relaxed UC framework.
However, both of the works used the non-standard Gap DH assumption, which
states that it is hard to compute gxy, given gx, gy, and an oracle deciding whether
the input (ga, gb, gc) is a DDH tuple. Besides, their securities are proved in the
IND or relaxed UC model [1], rather than the (regular) UC framework. Up to
now, there is no research on (a)PAKE with tight security in the UC framework.

Therefore, a challenging question is:

Can we construct a tightly secure (a)PAKE protocol in the UC framework,
preferably from the standard assumption?

Our contributions. In this paper, we aim to answer the above question. For
PAKE, we propose a tightly secure PAKE protocol based on the CDH assump-
tion in the UC framework, and hence answer the question for PAKE in affirma-
tive. For aPAKE, we prove a negative result via a meta-reduction, showing that
a loss factor L = N (the number of client-server pairs) is inevitable in aPAKE.
Nevertheless, we still come up with an aPAKE protocol that meets this optimal
security loss. In more detail, we revisit the EKE compiler/protocol in [8], and
make the following contributions.

1. We propose a strong 2DH variant of EKE, denoted by 2DH-EKE, and prove
that it is a tightly secure PAKE from the CDH assumption in the UC frame-
work. The efficiency of 2DH-EKE is comparable to the original EKE, with

3

only O(λ) bits growth in communication (λ the security parameter) and two
(resp., one) extra exponentiation in computation for client (resp., server).

2. We show a negative result for aPAKE, indicating that it is impossible for
aPAKE to be tightly secure. With a meta-reduction, we prove that the se-
curity loss of aPAKE is lower bounded by N , the number of client-server
pairs.

3. We develop our 2DH-EKE to an aPAKE protocol, denoted by 2DH-aEKE,
that meets the optimal security loss N based on the CDH assumption. Com-
pared with 2DH-EKE, the 2DH-aEKE protocol adds one extra round for
message authentications.

4. As a byproduct, we further apply our technique to PAKE protocols like
SPAKE2 [4] and PPK [35] in the relaxed UC framework [1], resulting in
their 2DH variants with tight security from the CDH assumption.

Related works. Bellovin and Merritt started the research of PAKE in [8],
and proposed the well-known EKE compiler/protocol. The security of EKE was
formally proved later by Bellare et al. [7] in the IND model, and by Dupont et
al. [17] in the UC framework. Most of the efficient PAKE constructions ([35,
13, 4, 12, 36], to name a few) rely on Random Oracles (RO), and they can be
viewed as different variants of the classical EKE compiler [8]. There are some
works [31, 18, 20, 32] that consider PAKE in the standard model (i.e., without
any ideal functions), but the constructions usually rely on heavy building blocks
like CCA2-secure PKE [20] or NIZK [32], and hence are less efficient.

Given the advantages of the UC framework over the IND model, a large
amount of (a)PAKE protocols [41, 30, 21, 39] are proposed and proved in the UC
framework recently. There are some other works [3, 2] focusing on the existing
IND-secure (a)PAKE schemes and aiming to prove their security in the stronger
UC framework. In [1], Abdalla et al. relaxed the UC framework by introducing
a modified lazy-extraction PAKE functionality, which allows the adversary in
the ideal world to postpone its password guess until after the session is com-
pleted. Under this relaxed model, they proved that SPEKE [29], SPAKE2 [4],
and TBPEKE [36] are UC-secure.

The only two works considering tight security of PAKE are [6] by Becerra
et al., and [3] by Abdalla et al. (both of them are in the RO model). However,
their securities are proved in the IND model or the relaxed UC framework [3],
based on the non-standard Gap DH assumption. As far as we know, there exists
no tightly secure (a)PAKE schemes in the regular UC framework up to now.

1.1 Technical Overview

In this subsection we briefly overview the technique used in this paper.
The main challenge to achieve tight security for (a)PAKE, is to embed the

hard problem into multiple sessions, while keeping the ability to output their
session keys in case the adversary A has the power to compute them (e.g., A
correctly guesses the password). Furthermore, the reduction algorithm should

4

extract (possibly from a set) the correct solution for the hard problem, if A wins
the security experiment non-trivially.

Now let us consider the EKE compiler/protocol [8]. The client samples x and
sends E(pw, gx), where E(·) is a symmetric encryption under key pw. Similarly,
the server samples y and sends E(pw, gy). The session key is computed as key =
H(aux, Z = gxy, pw) with aux some public information. Now we explain why it
is difficult for EKE to achieve tight security based on the CDH assumption.

In the reduction, given a CDH problem instance (gx̄, gȳ), the reduction al-
gorithm B may use the random self-reducibility of the DH problem to generate
multiple (gxi , gyj), and embed them into multiple protocol sessions. Since H(·)
works as a random oracle, A has no advantage in distinguishing a real session
key from a random key, unless it queries H(·) on the right CDH value gxiyj .
Now suppose that A does query H(·) on the right CDH value, here come two
problems for B.

(1) A may ask hash queries on (aux, Zi, pw) with different Zi, but B cannot
identify/compute the right CDH value gx̄ȳ from all Zi. Therefore, B has to
guess one for the CDH problem, leading to a loose security factor Qh (maximum
number of hash queries).

(2) A may correctly guess the password and send gy out after seeing some
gxi , i.e., A has the power to compute gxiy and hence the session key. However,
without the knowledge of xi, B is unable to compute gxiy.

To solve these two problems, a natural idea is resorting to a decision oracle,
and that is exactly what [1, 6] did. However, [1, 6] rely on the non-standard Gap
DH assumption. In this paper, we solve these two problems with the twin DH
decision oracle and the standard CDH assumption.

Twin DH decision oracle. In [16], Cash et al. proposed the strong twin-
DH (st2DH) assumption and proved its equivalence to the (standard) CDH
assumption. Here the strong 2DH problem is to compute (gx̄1ȳ, gx̄2ȳ), given
gx̄1 , gx̄2 , gȳ, as well as a decision oracle 2DH(·, ·, ·) that inputs (Y, Z1, Z2) and
outputs whether (X̄1, Y, Z1) and (X̄2, Y, Z2) are both DDH tuples. Inspired by
[16], we propose our 2DH variant protocol for EKE, named 2DH-EKE. Now the
client sends E(pw, gx1 ||gx2) and the server sends E(pw, gy), and the session key
is computed as key = H(aux, Z1 = gx1y, Z2 = gx2y, pw) with aux some public
information. Next, we show how the twin DH decision oracle can be used to
solve the above two problems.

(1) With the decision oracle 2DH(·, ·, ·), the reduction algorithm B can easily
locate the correct Z1, Z2 among all possible candidates, by checking whether
2DH(Y, Z1, Z2) = 1. In this way, B succeeds in solving the strong 2DH problem,
and avoiding the loose factor Qh.

(2) In the reduction B may need to simulate the session key key = H(aux, gx1y,
gx1y, pw) for some adversarially generated gy, and the exponents x1||x2 are un-
known to B due to the embedded hard problem. In this case, B randomly samples
a key and implicitly sets it as the “right” key. Since H(·) works as a random or-
acle, A will not obverse this difference unless it asks a hash query on the right
2DH values Z1, Z2 later. If this happens, B can detect it with the decision oracle,

5

and reprogram the random oracle such that H(aux, Z1, Z2, pw) = key, and the
view of A is consistent.
Towards UC security. To achieve UC security, we need to construct a PPT
simulator to simulate the interactions with the environment in the real world,
with the help of the ideal functionality F . In our 2DH-EKE protocol, the sym-
metric encryption (E,D) is modeled as an Ideal Cipher (IC), and hence the tran-
scripts (e1 = E(pw, X1||X2) and e2 = E(pw, Y)) are perfect hiding. Consequently,
the simulator can perfectly simulate the transcripts with random messages.

To deal with the adversarially generated message (say e′1), we can always look
up the IC list to extract the password A guesses “in mind”. Then the simulator
can resort to the TestPW interface provided by F , to check whether A succeeds
in guessing the password. If yes, the simulator can compute the “real” session
key, with the help of the twin DH decision oracle, as discussed above. Otherwise,
the session key is simulated as a random key, and this is indistinguishable to the
adversary due to the CDH assumption.
Asymmetric PAKE. Generally in the scenario of aPAKE, the server stores a
password file (usually a hash of the password) rather than the password in plain.
The resistance to server compromise requires that getting the password file helps
nothing for the adversary in impersonating a client, unless it implements a brute-
force attack and successfully recovers the pre-image pw. In this paper, we develop
our 2DH-EKE to an aPAKE protocol 2DH-aEKE, with only one extra round to
transmit a confirming message.

2DH-aEKE inherits the idea of the generic CDH-based compiler in [26], and
it works as follows. Let H0(·) be a hash function, H0(pw) = (h, v1, v2) and
V1 := gv1 , V2 := gv2 . Now the password file stored in the server is (h, V1, V2).
In the execution of 2DH-aEKE, the client and the server first run the symmet-
ric 2DH-EKE protocol using h as the key of symmetric encryption. Recall that
the client and the server’s unencrypted messages are (X1||X2) = (gx1 ||gx2) and
Y = gy, respectively. Let H(aux, gx1y, gx2y, gv1y, gv2y, h) = (key, σ), where aux
is the public information, key is the sesssion key, and σ is the key confirmation
message. Then the client sends σ to the server as an extra round message. From
the strong 2DH assumption we know that it is hard to compute gv1y||gv2y, even
with the password file (h, V1, V2) and Y . That is how the security of 2DH-aEKE
is guaranteed even after the server compromise. Note that the security reduc-
tion has a loss factor of N , the number of total client-server pairs, due to the
commitment of client’s password in the password file.

With a meta-reduction, we prove that the security loss of aPAKE is lower
bounded by N . Hence, our 2DH-aEKE meets the optimal reduction loss. Now we
give an intuition why the loss factor N is inevitable in aPAKE. In the reduction,
the hard problem (X̄1, X̄2, Ȳ) is embedded into the password file V1||V2 and
the server’s message Y , respectively. Meanwhile, if A asks the value of H0(pw)
with the correct password, then the discrete log of V1||V2 should be returned.
However, the reduction algorithm does not know whether and when A will issue
such a query. Hence, it has to choose a particular client-server pair among all N
pairs, embed the hard problem into this password file, and hope A breaks the

6

security of one session involving this password file but does not query H0(pw) at
the time being.

Recall that almost all previous aPAKE schemes [26, 41, 21] have a loose
reduction loss at least QhNθ, where Qh, N, θ denote the maximum numbers of
hash queries, client-server pairs, and protocol executions per client-server pair,
respectively. We stress that the decision oracle 2DH helps us improving the loss
factor from QhNθ to the optimal bound N (note that QhNθ � N in general).

Extend to the relaxed UC framework. Our method can also apply to some
IC-free protocols like SPAKE2 [4] and PPK [35], to get their 2DH variants.
And the tight security can be proved based on the CDH assumption in the
relaxed UC framework [1]. We take the SPAKE2 protocol as an example. In
SPAKE2, the transcript messages are X · Mpw and Y · Npw with M,N pub-
lic parameters. In our 2DH-SPAKE2, X is replaced by (X1||X2) = (gx1 ||gx2),
Y is replaced by (Y1||Y2) = (gy1 ||gy2), and the session key is computed as
key = H(aux, gx1y1 , gx1y2 , gx2y1gx2y2 , pw). Similar to the proof of 2DH-EKE, the
decision oracle 2DH is essential to make a tight reduction in the relaxed UC
framework.

Forward security. Both 2DH-EKE and 2DH-aEKE achieve Perfect Forward
Security [22] (PFS, a.k.a. perfect forward secrecy). PFS means that once a party
is corrupted at some moment, then all session keys completed before the corrup-
tion remain hidden from the adversary. Let us take 2DH-EKE as an example.
Note that a completed session has already uniquely determined e1 and e2, even
if one of them is adversarially generated. If A later gets pw via a corruption,
the information it obtains from the corruption is limited by X1||X2 = D(pw, e1)
and Y = D(pw, e2). However, given X1||X2 and Y , computing the session key
is as hard as solving the 2DH problem, and PFS is guaranteed as a result. The
analysis of PFS for SPAKE2 (2DH-SPAKE2) can be found in [1].

1.2 Roadmap

This paper is organised as follows. In Section 2 we present preliminaries, includ-
ing notations and some hardness assumptions. In Section 3 we describe the UC
framework for PAKE, propose the 2DH-EKE protocol, and prove its security. In
Section 4 we describe the UC framework for aPAKE, and propose the asymmet-
ric variant 2DH-aEKE protocol. The optimal reduction loss in aPAKE is shown
in Section 5. Consequently, we extend our technique to SPAKE2 to obtain 2DH-
SPAKE2 in Section 6. We refer the full version [34] for details of the proofs, and
the functionalities of ideal ciphers, random oracles, and lazy-extraction PAKE.

2 Preliminaries

We use λ ∈ N to denote the security parameter throughout the paper. Denote
by x := y the operation of assigning y to x. Denote by x

$←− X the operation of
sampling x uniformly at random from a set X . For an algorithm A, denote by

7

y ← A(x; r), or simply y ← A(x), the operation of running A with input x and
randomness r and assigning the output to y. “PPT” is short for probabilistic
polynomial-time.

The the functionalities of ideal ciphers and random oracles are given in the
full version [34].

2.1 Hardness Assumptions

Let GGen be a group generation algorithm such that (G, q, g)← GGen(1λ), where
G is a cyclic group of prime order q with generator g.

Definition 1. For any adversary A, its advantage in solving the Computational
Diffie-Hellman (CDH) problem is defined as

AdvCDH
G,A (λ) := Pr[x, y

$←− Zq : A(g, gx, gy) = gxy].

In [16], Cash et al. proposed the Strong Twin Diffie-Hellman (strong 2DH or
st2DH) problem, and proved that it is as hard as the CDH problem.

Definition 2. [16] For any adversary A, its advantage in solving the st2DH
problem is defined as

Advst2DH
G,A (λ) := Pr[x̄1, x̄2, ȳ

$←− Zq : A2DH(·,·,·)(g, gx̄1 , gx̄2 , gȳ) = (gx̄1ȳ, gx̄2ȳ)],

where the decision oracle 2DH(·, ·, ·) inputs (gy, gz1 , gz2) and outputs 1 if (x̄1y =
z1) ∧ (x̄2y = z2) and 0 otherwise.

The st2DH assumption was proven equivalent to the CDH assumption [16].

Theorem 1. [16] For any PPT adversary A against the st2DH problem, there
exists a PPT algorithm B against the CDH problem such that Advst2DH

G,A (λ) ≤
AdvCDH

G,B (λ) +Q/q, where Q is the maximum number of decision oracle queries.

In the following sessions, we also use the notations CDH(gx, gy) = gxy, and
2DH(gx1 , gx2 , gy) = (gx1y, gx2y) for arbitrary elements gx, gy, gx1 , gx2 in G.

3 PAKE with Tight Security in the UC Framework

3.1 UC Framework for PAKE

We assume basic familiarity with the Universally Composable framework (UC
framework, a.k.a. UC model) for PAKE. The ideal functionality Fpake is shown
in Fig. 1. We mainly follow the definition by Shoup in [41], which is a modified
version of [15] by Canetti et al. For a full understanding of UC framework, we
refer [15, 41] for details.
Overview of the UC framework. The ideal functionality Fpake plays the role
of a trusted authority in the ideal world. A client and a server first share the same

8

password when registration, after which Fpake records the password privately.
When initializing a new PAKE session, both the two parties send a query to
Fpake, and the client additionally sends a password (since it is very possible for
a client to mistype the password, see the description below). Then Fpake verifies
whether the password from the client matches the (correct) password stored
by the server. If yes, these two parties are “matched” and they will get the
same random session key from Fpake. Otherwise, they are “dismatched” and the
execution of PAKE fails (the output may be arbitrary in this case). Security in
this ideal model holds inherently, since nothing except the identities of involved
parties is leaked to the simulator/adversary Sim in the ideal world, and the only
attack Sim can apply, is an online attack.

The security target of a PAKE protocol Π, is to emulates the ideal func-
tionality Fpake in the real world. More precisely, consider an environment Z that
controls passwords for all parties4, and it aims to distinguish the real world from
the ideal world, i.e., distinguish the case where outputs including session keys
are produced via executions of Π compelled by an adversary A, from the case
where outputs are obtained from Fpake and an simulator Sim interacting with
Fpake. If for any PPT environment Z, the distinguishing advantage is negligible,
we say PAKE protocol Π securely emulates Fpake.

Now we describe Fpake in more detail.

Password storage and sessions. We require two parties involved in a PAKE
execution have different roles (client or server), and each party has a unique iden-
tity, namely, C(i) or S(j). In the registration stage, the environment Z allocates
a password p̂w for each client-server pair (C(i), S(j)). The functionality Fpake then
records this password after a StorePWFile query from C(i) or S(j). Without loss
of generality, we assume each pair of (C(i), S(j)) has only one password.

For a party P , we call an execution of protocol a (session) instance, and
index it with an instance identity iid. After registration, P can initialize a new
session instance via a NewClient or NewServer query to Fpake. For a server S(j),
the password pw used in this instance is set to be the correct password p̂w pre-
shared between C(i) and S(j). For a client C(i), it is possible that pw 6= p̂w due
to a mistyped/misremembered password.

Following the definition in [41], we explicitly model mistyped or misremem-
bered passwords in Fpake, instead of absorbing it into an active attack by the
adversary A (though this is enough from the perspective of PAKE security, i.e.,
preventing a bad client from logging into the server). Actually, a mistyped pass-
word is very close to the correct password, and an accidental mismatch would
not compromise this nearly-identical password to A.

Active attacks. To capture online attacks in the real world, Fpake allows the
simulator Sim in the ideal world to make a password guess per instance via the
interface TestPW. If the guess is correct, then the session instance is marked as
4 Let the environment deciding passwords captures the security in case users’ pass-

words are arbitrarily distributed and correlated. This is one aspect in which the UC
framework is superior to the IND model.

9

Functionality Fpake

The functionality Fpake is parameterized by a security parameter λ. It interacts with a simulator Sim
and a set of parties via the following queries:
Password Storage

Upon receiving a query (StorePWFile,C(i), S(j), p̂w) from a client C(i) or a server S(j):
If there exists a record ⟨file,C(i), S(j), ·⟩, ignore this query.
Otherwise, record ⟨file,C(i), S(j), p̂w⟩, and send (StorePWFile,C(i), S(j)) to Sim.

Sessions
Upon receiving a query (NewClient, iid(i), S(j), pw) from a client C(i):

Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewClient,C(i), iid(i), S(j), pw = p̂w?) to Sim.
Record (C(i), iid(i), S(j), pw) and mark it as fresh.
In this case, S(j) is called the intended partner of (C(i), iid(i)).

Upon receiving a query (NewServer, iid(j),C(i)) from a server S(j):
Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewServer, S(j), iid(j),C(i)) to Sim. Set pw := p̂w,
record (S(j), iid(j),C(i), pw) and mark it as fresh.
In this case, C(i) is called the intended partner of (S(j), iid(j)).

Two instances (C(i), iid(i)) and (S(j), iid(j)) are said to be partnered, if there are two fresh records
(C(i), iid(i), S(j), pw) and (S(j), iid(j),C(i), pw) sharing the same pw.

Active Session Attacks
Upon receiving a query (TestPW, P, iid, pw′) from Sim:

If there is a fresh record (P, iid, ·, pw):
– If pw′ = pw, mark the record compromised and reply to Sim with “correct guess”.
– If pw′ ̸= pw, mark the record interrupted and replay with “wrong guess”.

Key Generation
Upon receiving a query (FreshKey, P, iid, sid) from Sim:

If 1) there is a fresh or interrupted record (P, iid,Q, pw); and 2) sid has never been assigned to
P ’s any other instance (P, iid′):

Pick a new random key k, mark the record (P, iid,Q, pw) as completed, assign it with sid,
send (iid, sid, k) to P , and record (P,Q, sid, k).

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record (P, iid,Q, pw) and a completed record (Q, iid∗, P, pw) s.t. (P, iid) and
(Q, iid∗) are partnered; and 2) sid has never been assigned to P ’s any other instance (P, iid′);
and 3) there is a unique (Q, iid∗) that has been assigned with sid:

Retrieve the record (Q,P, sid, k), mark the record (P, iid,Q, pw) as completed, assign it with
sid, and send (iid, sid, k) to P .

Upon receiving a query (CorruptKey, P, iid, sid, k) from Sim:
If 1) there is a compromised record (P, iid,Q, pw); and 2) sid has never been assigned to P ’s any
other instance (P, iid′):

Mark the record (P, iid,Q, pw) as completed, assign it with sid, and send (iid, sid, k) to P .

Fig. 1. The PAKE functionality Fpake [41].

10

compromised, which means that the adversary succeeds in attacking this instance
and can affect the generation of the session key. If the guess is wrong, then the
instance is marked as interrupted, indicating a failed online attack, and the session
key is chosen at random.

Via (static) corruptions, a real world adversary can learn the password hold
by a party and control its behaviour completely. To make the view of the environ-
ment consistent, the simulator Sim in the ideal world also obtains the password
of that party, and simulates what it outputs in an indistinguishable way. Note
that the corruption process is not explicitly presented in Fpake in Fig 1.

Key generation. For an instance (P, iid), when the protocol execution is com-
pleted, Fpake will assign to the instance a key and a session identity sid which
is determined by Sim. And sid is required to uniquely index this completed in-
stance (the two parties in a session would share the same sid if there is no active
attack). Furthermore, Fpake provides three types of interfaces for key generation.

– FreshKey. When a successful protocol execution finishes and one instance
needs to output a session key first, or the passwords do not match (includ-
ing the case of a failed password guess), the instance is assigned with an
independent and random key.

– CopyKey. If there are two instances that match with each other, and a fresh
key has been assigned to one instance before, then a copy of the session key
is passed to the other instance.

– CorruptKey. If one of the participating parties is corrupted, or the adversary
successfully guesses the password, then the session key is totally determined
by Sim.

Remark 1 (Session identities). Fpake implicitly assumes that sid allocated by
the simulator differs for each instance (even for two different instances of the
same party) except for the two partnered instances. As we will see, this is indeed
the case in 2DH-EKE, since sid connects the identities of the client, the server,
and the session transcripts, and each instance contributes its own randomness
to transcripts. So once an instance is completed and has been assigned with
(sid, k), the information of sid is sufficient to locate the unique and partnered
pair (P, iid,Q, pw) and (Q, iid∗, P, pw), when dealing with CopyKey queries.

Remark 2 (Corruptions). Our PAKE framework deals with static corruptions,
i.e., the adversary can corrupt some parties and get their passwords prior to the
protocol execution. Note that there is a stronger model that supports adaptive
corruptions, where the adversary can corrupt parties adaptively throughout the
execution, and obtain not only the passwords but also the internal states. Almost
all UC frameworks [15, 41] for PAKE are defined in the way of static corruptions.

3.2 The 2DH-EKE Protocol

The EKE compiler/protocol was proposed by Bellovin and Merritt in [8], and
formally proved later by Bellare et al. in the IND model [7], and by Dupont et al.

11

in the UC framework [17]. The security proof is based on the CDH assumption
in the IC and RO model, and has a security loss L = Qh ·N ·θ, with Qh, N, θ the
maximum numbers of hash queries, client-server pairs, and protocol executions
per client-server pair, respectively.

In this subsection, we present a variant of EKE, named 2DH-EKE protocol,
and prove its tight security based on the strong 2DH assumption (equivalently,
the CDH assumption) in the UC framework.

The 2DH-EKE protocol is shown in Fig. 2. Here (E1,D1) is a symmetric
encryption with key space PW , plaintext space G2 and ciphertext space E1, and
(E2,D2) is a symmetric encryption with key space PW , plaintext space G and
ciphertext space E2. Hash function H is defined as H : {0, 1}∗ 7→ K with K the
space of session keys. C, S are identities of Client and Server.

Public Parameter: (G, g, q), (E1,D1), (E2,D2), H

Client C (pw) Server S (pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

e1 ← E1(pw, X1||X2)

e1−−−−−−−−−−−−−−−→
e2←−−−−−−−−−−−−−−−

y
$←− Zq, Y := gy

e2 ← E2(pw, Y)

Y ← D2(pw, e2)
sid := C||S||e1||e2

Output keyC ← H(sid, Y x1 , Y x2 , pw)

X1||X2 ← D1(pw, e1)
sid := C||S||e1||e2

Output keyS ← H(sid,Xy
1 , X

y
2 , pw)

Fig. 2. The 2DH-EKE protocol.

Remark 3. The 2DH-EKE protocol can be modified to a variant protocol by in-
terchanging the operations of Client and Server: the client sends e1 = E1(pw, X)
and the server sends e2 = E2(pw, Y1||Y2). In this way, the computational cost of
Client is reduced, but Server has to initiate the session. In this paper we do not
take this variant, since Client will start a session in general cases.

Remark 4 (Ideal ciphers on group elements). The ideal cipher in the 2DH-EKE
protocol can be accomplished with a block cipher like AES. Take e1 = E1(pw, X)
as an example. First, the group element X is mapped to an n-bit string through a
quasi bijection [21], and then the encryption algorithm encrypts the n-bit string
with the password. The decryption algorithm D1 can be similarly defined. For
more details on implementations of IC, see [21].

Remark 5 (Comparisons with the twin DH protocol [16] and KC-SPAKE2 [41]).
Note that Cash et al. [16] extended the DH key exchange protocol to a twin
DH version and proved its tight security. In the twin DH protocol, one party
publishes (X1, X2) and the other party publishes (Y1, Y2), and the session key

12

is the hash value H(gx1y1 , gx1y2 , gx2y1 , gx2y2). In contrast, the server’s (plain)
message in our 2DH-EKE protocol consists of only one element Y , which greatly
decreases the computation/communication cost.

In [41], Shoup showed the (non-tight) security of KC-SPAKE2 based on the
CDH assumption, and argued that the reduction is tight under the Gap DH as-
sumption. In contrast, our tight reduction of 2DH-EKE is based on the standard
CDH assumption.

3.3 Security Analysis
Theorem 2 (Security of 2DH-EKE). If the st2DH assumption (equivalently,
the CDH assumption) holds in G, (E1,D1) and (E2,D2) work as ideal ciphers,
and H works as a random oracle, then the 2DH-EKE protocol in Fig. 2 securely
emulates Fpake. More precisely, for any PPT environment Z and real world ad-
versary A which has access to ideal ciphers (E1,D1), (E2,D2) and random oracle
H, there exist a PPT simulator Sim, which has access to the ideal functionality
Fpake, and algorithms B,B′, s.t. the advantage of Z in distinguishing the real
world running with A and the ideal world running with Sim is bounded by

Adv2DH-EKE,Z(λ) ≤2Advst2DH
G,B (λ) +

Q2
ic

|E1|
+

Q2
ic

|E2|
+ 2−Ω(λ)

≤2AdvCDH
G,B′(λ) + 2−Ω(λ).

where Qic denotes the maximum number of IC queries.
Proof. The main task of the proof, is to construct a PPT simulator Sim, which
has access to the ideal functionality Fpake and interactions with the environment
Z, and simulates the real world 2DH-EKE protocol interactions among the ad-
versary A, parties, and the environment Z. To this end, Sim needs to simulate
honestly generated messages from real parties, respond adversarial messages ap-
proximately, and simulate ideal functions (E1,D1), (E2,D2), and H, as shown in
Fig. 3. The functionality Fpake provides information to Sim through interfaces
including TestPW, NewClient, NewServer, FreshKey, CopyKey, and CorruptKey, as
defined in Fig. 1. Recall that Sim has no secret inputs (i.e., passwords).

The full description of the simulator Sim is given in Fig. 4. Let RealZ,A be the
real experiment where environment Z interacts with real parties and adversary
A, and IdealZ,Sim be the ideal experiment where Z interacts with simulator Sim.
We prove that |Pr[RealZ,A ⇒ 1]−Pr[IdealZ,Sim ⇒ 1]| is negligible via a series
of games Game 0−5, where Game 0 is RealZ,A, Game 5 is IdealZ,Sim, and
argue that the adjacent two games are indistinguishable from Z’s prospective of
view.

We consider the scenario of multi-users and multi instances. Let C(i) (resp.,
S(j)) denote clients (resp., servers) with superscript (i) (resp., (j)) indexing dif-
ferent clients (resp., servers). Let (C(i), iid(i)) denote client instances of C(i) with
iid(i) indexing its different instances. Similarly, let (S(j), iid(j)) denote server in-
stances of S(j) with iid(j) indexing its different instances. For better presentation
of the proof, we give some definitions as follows.

13

Fig. 3. The real world execution (left) and the ideal world execution (right).

Good/Bad client instance. We call a client instance (C(i), iid(i)) a good (resp.,
bad) one, if the password pw used in this instance equals (resp., differs from)
the correct password p̂w shared between C(i) and its intended partner S(j).
Note that a bad client instance indicates the case that the client mistypes
its password.

Linked instances. We say that a server instance (S(j), iid(j)) is linked to a
client instance (C(i), iid(i)) (no matter good or bad), if e1 generated by
(C(i), iid(i)) is received by one instance (S(j), iid(j)) of its intended part-
ner S(j). Similarly, we say a client instance (C(i), iid(i)) is linked to a server
instance (S(j), iid(j)), if e2 generated by (S(j), iid(j)) is received by one in-
stance (C(i), iid(i)) of its intended partner C(i). If the two instances are linked
to each other, then they are called linked instances.

Game 0. This is the real experiment RealZ,A. In this experiment, Z initial-
izes a password for each client-server pair, sees the interactions among clients,
servers and adversary A, and also obtains the corresponding session keys of pro-
tocol instances. Here A may implement attacks like view, modify, insert, or drop
messages over the network. We have

Pr[RealZ,A ⇒ 1] = Pr[Game 0⇒ 1].

Game 1. (Add an ideal layout.) From this game on, we add an ideal layout Sim5,
which is only a toy construction in Game 1, but will be complete with games
going on and arrive at the final Sim defined in Fig. 4. In Game 1, Sim still needs
to take passwords as inputs. With the help of passwords, it perfectly simulates
the executions in RealZ,A, except that the encryption of IC is simulated in
a collision-free way. Meanwhile, Sim also necessarily keeps the exponent values
of the decrypted group elements from D1 and D2. More precisely, it maintains
lists LIC1

,LIC2
, TIC1

, TIC2
,LH,DL (all initialized to be empty sets) and works as

follows.
5 The simulators in Game 1−4 are semi-manufactured, which help us to analyze the

differences between the real world and the ideal world step by step. For simplicity,
we still use the same notation Sim in Game 1− 4.

14

Sim maintains lists LIC1 ,LIC2 , TIC1 , TIC2 ,LH, T ,DL (all initialized to be empty) in the simulation.

– LIC1 ,LIC2 , TIC1 , TIC2 : store records w.r.t. ideal ciphers (E1,D1) and (E2,D2).
– LH: store records w.r.t. random oracle H.
– T : store messages sent by client/server instances.
– DL: store discrete logarithms.

PAKE Sessions
on (NewClient,C(i), iid(i), S(j), b) from Fpake:

e1
$←− E1\TIC1 , TIC1 := TIC1 ∪ {e1}, T := T ∪ {(C(i), iid(i), e1)}, send e1 from C(i) to A.

If b = 1: mark (C(i), iid(i)) as correct-pw. // client C(i) correctly inputs the password
on (NewServer, S(j), iid(j),C(i)) from Fpake and e1 from A as a client message from C(i) to (S(j), iid(j)):

e2
$←− E2\TIC2 , TIC2 := TIC2 ∪ {e2}, T := T ∪ {(S(j), iid(j), e2)}, send e2 from S(j) to A.

sid := C(i)||S(j)||e1||e2.
If ∃(pw′, X1||X2, e1, enc) ∈ LIC1 : ask (TestPW, S(j), iid(j), pw′) to Fpake, and if Fpake returns “correct
guess”:

Let X1||X2 ← D1(pw′, e1) and Y ← D2(pw′, e2), retrieve item (Y, y) ∈ DL, Z1 := Xy
1 , Z2 := Xy

2 ,
key← H(sid, Z1, Z2, pw′), send (CorruptKey, S(j), iid(j), sid, key) to Fpake.
In other cases: send (FreshKey, S(j), iid(j), sid) to Fpake.

on e2 from A as a server message from S(j) to (C(i), iid(i)):
Retrieve (C(i), iid(i), e1) ∈ T , sid := C(i)||S(j)||e1||e2.
If (C(i), iid(i)) is correct-pw, ∃(S(j), ·, e2) ∈ T , and Sim has queried (FreshKey, S(j), ·, sid):

Send (CopyKey,C(i), iid(i), sid) to Fpake.
If ∃(pw′, Y, e2, enc) ∈ LIC2 : ask (TestPW,C(i), iid(i), pw′) to Fpake, and if Fpake returns “correct
guess”:

Let X1||X2 ← D1(pw′, e1) and Y ← D2(pw′, e2), retrieve item (X1||X2, x1||x2) ∈ DL, Z1 := Y x1 ,
Z2 := Y x2 , key← H(sid, Z1, Z2, pw′), send (CorruptKey,C(i), iid(i), sid, key) to Fpake.
In other cases: send (FreshKey,C(i), iid(i), sid) to Fpake.

On Ideal Ciphers and Random Oracles
on E1(pw, X1||X2) from A:

If ∃(pw, X1||X2, e1, ·) ∈ LIC1 : return e1.
Otherwise: e1 $←− E1\TIC1 , LIC1 := LIC1 ∪ {(pw, X1||X2, e1, enc)}, TIC1 := TIC1 ∪ {e1}, return e1.

on D1(pw, e1) from A:
If ∃(pw, X1||X2, e1, ·) ∈ LIC1 : return X1||X2.
Otherwise: x1, x2

$←− Zq, X1 := gx1 , X2 := gx2 , LIC1 := LIC1 ∪ {(pw, X1||X2, e1, dec)}, DL :=
DL ∪ {(X1||X2, x1||x2)}, return X1||X2.

on E2(pw, Y) from A:
If ∃(pw, Y, e2, ·) ∈ LIC1 : return e2.
Otherwise: e2 $←− E2\TIC2 , LIC2 := LIC2 ∪ {(pw, Y, e2, enc)}, TIC2 := TIC2 ∪ {e2}, return e2.

on D2(pw, e2) from A:
If ∃(pw, Y, e2, ·) ∈ LIC2 : return Y .
Otherwise: y $←− Zq, Y := gy, LIC2 := LIC2 ∪ {(pw, Y, e2, dec)}, DL := DL ∪ {(Y, y)}, return Y .

on H(C, S, e1, e2, Z1, Z2, pw) from A:
sid := C||S||e1||e2.
If ∃(sid, Z1, Z2, pw, key) ∈ LH for some key: return key.
Otherwise: key $←− K, record (sid, Z1, Z2, pw, key) in LH, and return key.

Fig. 4. Simulator Sim for 2DH-EKE in the proof of Theorem 2.
15

– On E1(pw, X1||X2): If there exists (pw, X1||X2, e1, ·) ∈ LIC1 , return e1. Oth-
erwise, e1

$←− E1\TIC1 , add (pw, X1||X2, e1, enc) in LIC1 , add e1 in TIC1 , and
return e1. Here “enc” indicates that the record is created in encryption.

– On D1(pw, e1): If there exists (pw, X1||X2, e1, ·) ∈ LIC1
, return X1||X2. Oth-

erwise, x1, x2
$←− Zq, X1 := gx1 , X2 := gx2 , add (pw, X1||X2, e1, dec) in LIC1 ,

add (X1||X2, x1||x2) in DL, and return X1||X2. Here “dec” indicates that
the record is created in decryption.

– On E2(pw, Y): If there exists (pw, Y, e2, ·) ∈ LIC2
, return e2. Otherwise, e2

$←−
E2\TIC2

, add (pw, Y, e2, enc) in LIC2
, add e2 in TIC2

, and return e2.
– On D2(pw, e2): If there exists (pw, Y, e2, ·) ∈ LIC2

, return Y . Otherwise, y $←−
Zq, Y := gy, add (pw, Y, e2, dec) in LIC2

, add (Y, y) in DL, and return Y .
– On H(C, S, e1, e2, Z1, Z2, pw): Let sid := C||S||e1||e2. If there exists (sid, Z1,

Z2, pw, key) ∈ LH, return key. Otherwise, key $←− K, add (sid, Z1, Z2, pw, key)
in LH and return key.
According to the ideal functionality of ideal ciphers, we know that distinct

inputs of E1 (and E2) collide to the same ciphertext with probability 1/|E1| (and
1/|E2|). By union bound, we have

|Pr[Game 1⇒ 1]− Pr[Game 0⇒ 1]| ≤ Q2
ic

|E1|
+

Q2
ic

|E2|
,

where Qic denotes the maximum number of IC queries.

Game 2. (Randomize keys for passively attacked instances.) In this game, for
any session, if A only eavesdrops on the protocol instance, then Sim returns a
random key instead of the real session key (the hash value of H). More precisely,
Game 2 is changed as follows.

(1) If server instance (S(j), iid(j)) is linked to a good client instance (C(i), iid(i)),
then Sim generates a random session key for (S(j), iid(j)).

(2) If a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)) are
linked to each other, and (S(j), iid(j)) has already been assigned with a random
key, then Sim copies the key as the session key for (C(i), iid(i)).

Define bad1 as the event that there exists a passively attacked session w.r.t.
a good client instance (C(i), iid(i)) and a server instance (S(j), iid(j)), and A ever
asks a hash query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, p̂w) such that

(Ẑ1, Ẑ2) = 2DH(D1(p̂w, e1),D2(p̂w, e2)),

where e1 and e2 are the transcripts, and p̂w is the correct password pre-shared
between them.

Obviously A will not detect the change in Game 2 unless bad1 happens. We
show that if bad1 happens, then we can construct an algorithm B1 to solve the
strong 2DH problem. Due to the page limitation, we provide the reduction in
our full version [34]. Consequently we have

|Pr[Game 2⇒ 1]− Pr[Game 1⇒ 1]| ≤ Advst2DH
G,B1

(λ).

16

Game 3. (Randomize simulated messages.) In this game, Sim directly samples
random messages to simulate the transcripts e1 and e2, and postpones the us-
age of ideal ciphers (E1,D1) and (E2,D2) until necessary (like the generation of
session keys). More precisely, Game 3 is now simulated by Sim as follows.

– For the simulation of a client instance (C(i), iid(i)) generating the first mes-
sage e1, Sim chooses a random e1

$←− E1\TIC1 (without any encryption) as
the output message and adds e1 in TIC1

.
– For the simulation of a server instance (S(j), iid(j)) generating the second

message e2 and the session key, Sim chooses a random e2
$←− E2\TIC2 (without

any encryption) as the output message and adds e2 in TIC2 . Let e1 be the
message that S(j) has received .
• If (S(j), iid(j)) is linked to some good client instance, then the session

key is set to be random, just like Game 2.
• If (S(j), iid(j)) is not linked to any good client instance, then Sim in-

vokes Y ← D2(p̂w, e2) by sampling y
$←− Zq, computing Y := gy and

adding (p̂w, Y, e2, dec) to LIC2
. The session key is generated by key ←

H(C(i), S(j), e1, e2, 2DH(D1(p̂w, e1), Y), p̂w) with the knowledge of y, where
C(i) is the intended partner of (S(j), iid(j)) and p̂w is the (correct) pass-
word. In this way, the session key is the same hash value as that in
Game 2.

– For the simulation of a client instance (C(i), iid(i)) that sends e1 out and
receives e2, if (C(i), iid(i)) is bad or e2 was adversarially generated, then Sim
invokes (X1, X2) ← D1(pw, e1) by sampling x1, x1,

$←− Zq, computing X1 :=
gx1 , X2 := gx2 and adding (pw, X1||X2, e1, dec) to LIC1

. The session key is
generated as key← H(C(i), S(j), e1, e2, 2DH(X1, X2,D2(pw, e2)), pw) with the
knowledge of x1, x2, where S(j) is the intended partner of (C(i), iid(i)) and
pw is the (possible incorrect) password used in this instance. In this way, the
session key is the same hash value as that in Game 2.

Recall that in Game 2, the transcripts e1 and e2 are randomly distributed
via the simulation of E1 and E2, so they have the same distribution as that in
Game 3. As shown above, the generation of all session keys in Game 3 is also
the same as that in Game 2. Therefore, we have

Pr[Game 3⇒ 1] = Pr[Game 2⇒ 1].

Game 4. (Randomize keys for actively attacked server/client instances in case
of incorrect password guesses.) In Game 4, the simulator further changes the
session key generation of server/client instances.

For any server instance (S(j), iid(j)) that receives e1, let C(i) be its intended
partner and pw(= p̂w) be the (correct) password used in this instance. Sim
generates the session key for it in the following way.

Case (S.1). If (S(j), iid(j)) is linked to some good client instance (C(i), iid(i)),
then Sim generates a random key for (S(j), iid(j)), just as that in Game 3.

17

Case (S.2). (S(j), iid(j)) is not linked to any good client instance (C(i), iid(i)).
We further divide it into the following two subcases.
Case (S.2.1). If there exists a record (pw′ = pw, X1||X2, e1, enc) ∈ LIC1

,
then Sim sets key ← H(C(i), S(j), e1, e2, 2DH(X1, X2,D2(pw, e2)), pw) as
the session key, just like that in Game 3. Note that there exists at most
one such record in LIC1

, since E1 is simulated in a collision-free way.
Case (S.2.2). If there does not exist a record (pw′ = pw, X1||X2, e1, enc) ∈
LIC1

, then Sim generates a random key for (S(j), iid(j)).

For any client instance (C(i), iid(i)) that sends e1 out and receives e2, let S(j)

be the intended partner and pw be the (possibly incorrect) password used in this
instance. Sim generates the session key for it in the following way.

Case (C.1). If (C(i), iid(i)) and some server instance (S(j), iid(j)) are linked to
each other, and (C(i), iid(i)) is good, then Sim assigns the same random
session key of (S(j), iid(j)) to (C(i), iid(i)), just as that in Game 3.

Case (C.2). If (C(i), iid(i)) is not linked to any server instance, or (C(i), iid(i))
is bad. We further divide it into the following two subcases.
Case (C.2.1). If there exists a record (pw′ = pw, Y, e2, enc) ∈ LIC2

, then Sim
sets key← H(C(i), S(j), e1, e2, 2DH(D1(pw, e1), Y), pw) as the session key,
just like that in Game 3. Note that there exists at most one such record
in LIC2

, since E2 is simulated in a collision-free way.
Case (C.2.2). If there does not exist a record (pw′ = pw, Y, e2, enc) ∈ LIC2 ,

then Sim generates a random key for (C(i), iid(i)).

Note that the differences between Game 3 and Game 4 lie in Cases (S.2.2)
and (C.2.2), since in Game 3 the session keys are the hash values (rather than
random elements) in Cases (S.2.2) and (C.2.2.).

We define bad2 as the event that there exists a server instance (S(j), iid(j))

in Case (S.2.2), or a client instance (C(i), iid(i)) in Case (C.2.2), and A ever asks
a hash query on H(C(i), S(j), e1, e2, Ẑ1, Ẑ2, pw) such that

(Ẑ1, Ẑ2) = 2DH(D1(pw, e1),D2(pw, e2)),

where e1 and e2 are the transcripts w.r.t. (S(j), iid(j)) or (C(i), iid(i)), and pw is
the password used in this instance.

Obviously Game 4 and Game 3 are the same unless bad2 happens. We show
that if bad2 happens, then we can construct a reduction algorithm B2 to solve
the strong 2DH problem. Due to the page limitation, we provide the reduction
in our full version [34].

|Pr[Game 4⇒ 1]− Pr[Game 3⇒ 1]| ≤ Advst2DH
G,B2

(λ) + 2−Ω(λ).

Now in Game 4, Sim does not use pw any more, except the case of ses-
sion key generation when the adversary A correctly guesses the password pw
and actively engages into a client/server instance, i.e., there exists a record

18

(pw, X1||X2, e1, enc) ∈ LIC1 or (pw, Y, e2, enc) ∈ LIC2 . Now we are ready to in-
troduce the complete simulator in Fig. 4, which helps us stepping to the ideal
experiment IdealZ,Sim.
Game 5. (Use Fpake interfaces.) In the final game we introduce the ideal func-
tionality Fpake. By using interfaces to interact with Fpake, the simulator Sim can
perfectly simulates Game 4 as follows.

– It simulates (E1,D1), (E2,D2), and H as described in Game 4.
– When Sim receives (NewClient,C(i), iid(i), S(j), b) from Fpake, it marks this

instance as correct-pw if b = 1, indicating that C(i) inputs the correct pass-
word in this client instance. Meanwhile, Sim chooses a random e1

$←− E1\TIC1

as the output message and adds e1 in TIC1
.

– When server instance (S(j), iid(j)) receives e1 and (NewServer, S(j), iid(j),C(i))

from Fpake, Sim chooses a random e2
$←− E2\TIC2 as the output message

and adds e2 in TIC2
. Meanwhile, it sets the session identity to be sid :=

C(i)||S(j)||e1||e2 and checks whether (S(j), iid(j)) is linked to a good client
instance (C(i), iid(i)).
• If it is the case, Sim allocates a random key to (S(j), iid(j)) by directly

asking a query (FreshKey, S(j), iid(j), sid) to Fpake. According to the def-
inition of FreshKey interface, this performs identically as that in Game
4.

• Otherwise, Sim checks whether there exists a record (pw′, ·, e1, enc) ∈
LIC1 . If such a record exists, Sim issues a TestPW query (TestPW, S(j),
iid(j), pw′) to ask Fpake whether pw′ = pw, where pw is the (correct)
password used in (S(j), iid(j)).

∗ If the record exists and Fpake returns “correct guess” (i.e., pw′ = pw),
then Sim computes the session key as key← H(sid, 2DH(D1(pw, e1),
D2(pw, e2)), pw), and allocates sid and key to (S(j), iid(j)) via a query
(CorruptKey, S(j), iid(j), sid, key) to Fpake. According to the definition
of CorruptKey interface, the environment Z has the same view as that
in Game 4.

∗ If the record does not exist, or Fpake returns “wrong guess” (i.e.,
pw′ 6= pw), then Sim allocates sid and a random key to (S(j), iid(j))

by asking a query (FreshKey, S(j), iid(j), sid) to Fpake. According to
the definition of FreshKey, this results in the same view to the envi-
ronment Z as that in Game 4.

– When client instance (C(i), iid(i)) receives e2, let e1 be the message sent
out and S(j) be its intended partner. Sim sets the session identity to be
sid := C(i)||S(j)||e1||e2 and checks whether (C(i), iid(i)) and a server instance
(S(j), iid(j)) are linked to each other, and (C(i), iid(i)) is marked as correct-pw.
• If it is the case, then sid and a random key key must have been assigned

to (S(j), iid(j)). Sim assigns the same sid and key to (C(i), iid(i)) via a
query (CopyKey,C(i), iid(i), sid) to Fpake. According to the definition of
CopyKey, this performs identically as that in Game 4.

19

• Otherwise, Sim retrieves the record (pw′, Y, e2, enc) ∈ LIC2 if it exists, and
uses the TestPW interface provided by Fpake to check whether pw′ = pw,
where pw is the (possible incorrect) password used in (C(i), iid(i)).

∗ If the record exists and Fpake returns “correct guess” (i.e., pw′ = pw),
then Sim computes the session key as key← H(sid, 2DH(D1(pw, e1),
D2(pw, e2)), pw), and allocates sid and key to (C(i), iid(i)) via a query
(CorruptKey,C(i), iid(i), sid, key) to Fpake. According to the definition
of CorruptKey interface, the environment Z has the same view as
that in Game 4.

∗ If the record does not exist, or Fpake returns “wrong guess” (i.e.,
pw′ 6= pw), then Sim allocates sid and a random key to (C(i), iid(i))

by asking a query (FreshKey,C(i), iid(i), sid) to Fpake. According to
the definition of FreshKey, this results in the same view to the envi-
ronment Z as that in Game 4.

The full description of Sim is shown in Fig. 4. From the analysis above we
know Game 4 and Game 5 are conceptually identical. Furthermore, one can
easily see that Game 5 is just the experiment in the ideal world. Therefore, we
have

IdealZ,Sim = Game 5 = Game 4.

Theorem 2 follows immediately from Game 0 to Game 5, and Theorem 1.

4 Asymmetric PAKE with Optimal Tightness in the UC
Framework

4.1 UC Framework for aPAKE

In aPAKE, the server stores a password file (usually a hash of the password)
rather than the password in plain. This somehow protects the password even
if the server is compromised. If the server’s password file is obtained by the
adversary due to compromise, the adversary can implement offline attacks to
guess the password, or impersonate the server to run the aPAKE protocol with
the client. However, it is still infeasible for the adversary to impersonate the
client to log in the server, if it fails to find the correct password and actively
engage into one protocol execution.

To capture the attacks due to server compromise6 in the asymmetric setting,
the ideal functionality Fapake is augmented with more interfaces like StealPWFile
and OfflineTestPW, compared with Fpake. Meanwhile, the CorruptKey interface
also takes into consideration the case of server compromise. Furthermore, we
add a new interface Abort to deal with the case that the explicit authentication
fails. The augments of Fapake are shown below.
6 In the real world, the server continues to faithfully execute protocols as normal after

a compromise of password files.

20

Functionality Fapake

The functionality Fapake is parameterized by a security parameter λ. It interacts with an adversary Sim
and a set of parties (clients and servers) via the following queries:
Password Storage

Upon receiving a query (StorePWFile,C(i), S(j), p̂w) from a client C(i) or a server S(j):
If there exists a record ⟨file,C(i), S(j), ·⟩, ignore this query.
Otherwise, record ⟨file,C(i), S(j), p̂w⟩, mark it as fresh, and send (StorePWFile,C(i), S(j)) to Sim.

Stealing Password File
Upon receiving a query (StealPWFile,C(i), S(j)) from server S(j):

Mark the password data record ⟨file,C(i), S(j), p̂w⟩ as compromised, and send
(StealPWFile,C(i), S(j)) to Sim.
If there is a record ⟨offline,C(i), S(j), p̂w⟩, then send p̂w to Sim.

Upon receiving a query (OfflineTestPW,C(i), S(j), pw′) from Sim:
If there exists a record ⟨file,C(i), S(j), p̂w⟩ marked compromised, check whether pw′ = p̂w: return
“correct guess” if yes, and “wrong guess” otherwise.
Else, store ⟨offline,C(i), S(j), pw′⟩.

Sessions
Upon receiving a query (NewClient, iid(i), S(j), pw) from a client C(i):

Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewClient,C(i), iid(i), S(j), pw = p̂w?) to Sim.
Record (C(i), iid(i), S(j), pw) and mark it as fresh.
In this case, S(j) is called the intended partner of (C(i), iid(i)).

Upon receiving a query (NewServer, iid(j),C(i)) from a server S(j):
Retrieve the record ⟨file,C(i), S(j), p̂w⟩. Send (NewServer, S(j), iid(j),C(i)) to Sim. Set pw = p̂w,
record (S(j), iid(j),C(i), pw) and mark it as fresh.
In this case, C(i) is called the intended partner of (S(j), iid(j)).

Two instances (C(i), iid(i)) and (S(j), iid(j)) are said to be partnered, if there are two fresh records
(C(i), iid(i), S(j), pw) and (S(j), iid(j),C(i), pw) sharing the same pw.

Active Session Attacks
Upon receiving a query (TestPW, P, iid, pw′) from Sim:

If there is a fresh record (P, iid, ·, pw):
– If pw′ = pw, mark the record compromised and reply to Sim with “correct guess”.
– If pw′ ̸= pw, mark the record interrupted and replay with “wrong guess”.

Key Generation
Upon receiving a query (FreshKey, P, iid, sid) from Sim:

If 1) there is a fresh or interrupted record (P, iid,Q, pw); and 2) sid has never been assigned to
P ’s any other instance (P, iid′):

Pick a new random key k, mark the record (P, iid,Q, pw) as completed, assign it with sid,
send (iid, sid, k) to P , and record (P,Q, sid, k).

Upon receiving a query (CopyKey, P, iid, sid) from Sim:
If 1) there is a fresh record (P, iid,Q, pw) and a completed record (Q, iid∗, P, pw) s.t. (P, iid) and
(Q, iid∗) are partnered; and 2) sid has never been assigned to P ’s any other instance (P, iid′);
and 3) there is a unique (Q, iid∗) that has been assigned with sid:

Retrieve the record (Q,P, sid, k), mark the record (P, iid,Q, pw) as completed, assign it with
sid, and send (iid, sid, k) to P .

Upon receiving a query (CorruptKey, P, iid, sid, k) from Sim:
If 1) sid has never been assigned to some record (P, iid′); and 2) either: 2.1) there is a compromised
record (P, iid,Q, pw), or 2.2) there is a fresh record (P, iid,Q, pw) with P a client, and there is a
compromised record ⟨file, P,Q, p̂w⟩ such that pw = p̂w:

Mark the record (P, iid, ·, pw) as completed, assign it with sid, and send (iid, sid, k) to P .
Upon receiving a query (Abort, P, iid) from Sim:

If P is a server: mark the record (P, iid, ·, pw) as completed, and send (iid,⊥) to P .

Fig. 5. The aPAKE functionality Fapake [41].
21

– The StealPWFile interface. The server may send a StealPWFile query to
Fapake, indicating that the password file stored in it has been compromised
by the adversary. Then Fapake will pass this query message to the simulator
Sim (so that Sim “simulates” a password file for the adversary).

– The OfflineTestPW interface. Sim issues OfflineTestPW together with a pass-
word guess, and Fapake tests whether the guess is the pre-image of the pass-
word file and returns the test result to Sim.7.

– The CorruptKey interface. Beyond the cases considered in Fpake, if the pass-
word file has been compromised by the adversary, Sim also assigns a key to
a client instance by issuing a CorruptKey query8.

– The Abort interface. If the explicit authentication from the client to the
server fails, Sim assigns the session key k =⊥ to the server instance via an
Abort query, indicating that the execution of aPAKE fails.

The functionality of Fapake is shown in Fig. 5. We mainly follow the definition
by Shoup in [41], which is a modified version of [19] by Gentry et al. and [25] by
Hesse.

Remark 6. Perfect Forward Security [22] (PFS, a.k.a. perfect forward secrecy)
requires that once a party has been corrupted at some moment, the session keys
completed before the corruption remain hidden from the adversary. An aPAKE
protocol with implicit authentication cannot achieve PFS due to the following
reason. For the adversary who steals the password file and actively engages into
one session as the client, it can always stage a (successful) offline dictionary
attack, to find out the correct password, and hence obtain the “completed”
session key. A canonical approach to PFS is to add an explicit authentication
from the client to the server. And the server will output a specific key k =⊥ to
terminate the session, once the authentication fails.

4.2 The 2DH-aEKE Protocol

In this section, we provide an asymmetric variant of 2DH-EKE, named 2DH-
aEKE. The 2DH-aEKE protocol meets the optimal reduction loss factor L = N ,
the maximum number of client-server pairs. A formal proof for the optimality is
shown in Section 5.

The 2DH-aEKE protocol is shown in Fig. 6. Here (E1,D1) is a symmetric
encryption with key space H, plaintext space G2 and ciphertext space E1, and
(E2,D2) is a symmetric encryption with key space H, plaintext space G and
ciphertext space E2. Two hash functions are defined as: H : {0, 1}∗ 7→ K with
K the space of session keys, and H0 : {0, 1}∗ × PW 7→ H × Z2

q. And C, S are
identities of Client and Server.
7 Such definitions seem reasonable only in a hybrid world where random oracles or

ideal ciphers exist. See further discussions in [21, 41, 25].
8 More precisely, a (corrupted) session key is assigned via CorruptKey, if ⟨file, P,Q, p̂w⟩

is compromised and the password pw used in the client instance is correct. If pw is
incorrect, then Sim would assign a random key for this client instance via FreshKey.

22

In the registration stage, Server stores the password file S.file[C] := (h, V1, V2),
where (h, v1, v2)← H0(C, S, pw), and V1 := gv1 , V2 := gv2 .

Public Parameter: (G, g, q), (E1,D1), (E2,D2), H, H0

Client C (pw) Server S (h, V1, V2)

(h, v1, v2)← H0(C, S, pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

e1 ← E1(h, X1||X2)

e1−−−−−−−−−−−−−−−→

e2←−−−−−−−−−−−−−−−
y

$←− Zq, Y := gy

e2 ← E2(h, Y)

Y ← D2(h, e2) X1||X2 ← D1(h, e1)
sid := C||S||e1||e2 sid := C||S||e1||e2

(keyC , σC)← H(sid, Y x1 , Y x2 , Y v1 , Y v2 , h) σC−−−−−−−−−−−−−−−→ (keyS , σS)← H(sid,Xy
1 , X

y
2 , V

y
1 , V y

2 , h)

Output keyC
If σS = σC : output keyS
Otherwise : output ⊥

Fig. 6. The 2DH-aEKE protocol.

4.3 Security Analysis

Theorem 3 (Security of 2DH-aEKE). If the st2DH assumption (equiva-
lently, the CDH assumption) holds in G, (E1,D1), (E2,D2) work as ideal ciphers,
and H,H0 work as random oracles, then the 2DH-aEKE protocol in Fig. 6 se-
curely emulates Fapake. More precisely, for any PPT environment Z and real
world adversary A which has access to ideal ciphers (E1,D1), (E2,D2) and ran-
dom oracles H,H0, there exist a PPT simulator Sim, which has access to the
ideal functionality Fapake, and algorithms B,B′, s.t. that advantage of Z in dis-
tinguishing the real world running with A and the ideal world running with Sim
is bounded by

Adv2DH-aEKE,Z(λ) ≤(N + 3) · Advst2DH
G,B (λ) +

Q2
ic

|E1|
+

Q2
ic

|E2|
+

Q2
H0

|H|
+ 2−Ω(λ)

≤(N + 3) · AdvCDH
G,B′(λ) + 2−Ω(λ),

where Qic and QH0 denote the maximum numbers of IC and H0 queries, and N
denotes the number of client-server pairs.

The proof is shown in the full version [34].

Remark 7 (On the optimal tightness of 2DH-aEKE). As we can see, the security
reduction in Theorem 3 has a loss factor of N . Actually, such a loose factor is
unavoidable in the scenario of aPAKE, since the correct password is committed
by the hash value to the adversary in the form of password file, and it can be

23

adaptively revealed via offline dictionary attacks (i.e., password hash queries). In
Section 5 we give a formal proof to show that, the loss factor L = N is essentially
optimal — at least for “simple” reductions.

Nevertheless, the optimal factor N is superior to a loose factor (Qh · N · θ)
(the maximum numbers of hash queries, client-server pairs, and protocol execu-
tions per client-server pair, respectively). Usually there are thousands of protocol
executions per user (especially for the server), and QhNθ � N in general.

5 Optimal Reduction Loss in aPAKE

In this section we show that the security loss of L = N in Theorem 3 is essen-
tially optimal, at least for “simple” reductions. Here “simple” means that the
reduction algorithm runs a single copy of the adversary only once. Almost all
known security reductions (for PAKE and aPAKE) are either of this type, or
use the forking lemma (e.g., KHAPE-HMQV [21]).

We consider the class of DH-type aPAKE protocols defined as follows.

Definition 3 (DH-Type aPAKE Protocol). An asymmetric PAKE protocol
Π is DH-type, if it satisfies the following properties.

1. In the phase of password storage (registration), the server stores a password
file file based on the pre-shared password pw (and some salts, perhaps).

2. In an execution of Π, the honest client first obtains a secret input si from
the identities of the two parties, the password pw (and the first message by
the server, perhaps). In this case, we say si is matched with the password file
file (stored in the server).

3. For each file, there exists only one matching secret input si. And there exists
an efficiently comutable function R(file, si), to check whether si is matched
with file.

4. There exists an efficiently computable function F that inputs the identities
of the two parties, the password pw, and the password file file (stored in the
server), and outputs the matching secret input si.

5. With secret input si, an adversary can impersonate the client to communicate
with the server and compute the session key.

We take 2DH-aEKE protocol in Fig. 6 as an example, to show how it satisfies
the definition of DH-type aPAKE protocol.

1. Let pw be the password shared between C and S. The password file stored
in S is file = (h, V1, V2).

2. In the execution, C first obtains the secret input (h, v1, v2)← H0(C, S, pw).
3. For each file = (h, V1, V2), there exists only one matching si = (h, v1, v2). And

the matching relation can be efficiently verified.
4. Given identities C, S, pw, and file = (h, V1, V2), the secret input si can be

efficiently obtained by computing H0(C, S, pw).
5. The last property is self-evident.

24

Apart from 2DH-aEKE, a large number of existing aPAKE protocols, in-
cluding KC-SPAKE2+ [41], KHAPE-HMQV [21], aEKE-HMQV and OKAPE-
HMQV [39], fall into the DH-type class.

Definition 4 (Simple Reduction). A simple reduction R to a problem class
P interacts with an adversary/environment Z as follows.

1. R receives a problem instance P ∈ P from its own challenger, it also has
access to an oracle O provided by the challenger.

2. R randomly samples a bit β
$←− {0, 1}. If β = 0, then R simulates the real

world running for Z. And if β = 1, then R simulates the ideal world running
for Z.

3. R outputs its solution s.

We say R is a simple (tR, ϵR, ϵZ)-reduction, if it runs in time at most tR, and
for any adversary/environment Z with distinguishing advantage ϵZ , the output
s is a solution to P with probability at least ϵR.

The specification of oracle O depends on the problem class P (and of cause O
can be defined as NULL). In this paper we consider the strong twin DH problem,
where a problem instance is P = (X̄1, X̄2, Ȳ), and O takes (Y, Z1, Z2) as inputs
and outputs whether (Z1, Z2) = 2DH(X̄1, X̄2, Y).

Theorem 4. Let Π be a DH-type aPAKE protocol, and K be the session key
space of Π. For any simple (tR, ϵR, 1 − 1/|K|)-reduction R from the security
of Π defined in Subsec. 4.1 to the hardness of P, there exists a meta-reduction
algorithm M that solves P in time tM and with success probability ϵM, such
that tM ≈ N · tR, and

|ϵR − ϵM| ≤ 1/N,

where N denotes the total number of client-server pairs.

The proof is shown in the full version [34] due to the page limitation.

From the inequality |ϵR − ϵM| ≤ 1/N we know ϵM ≥ ϵR − 1/N . Namely,
even with a “perfect” adversary Z whose advantage is overwhelming, the success
probability ϵR of R cannot significantly exceed 1/N , as otherwise there exists
an efficient algorithm M against the hard problem P (e.g., the strong 2DH
problem). This implies that the reduction of R leads to a loss factor at least N .

6 Tight Security for 2DH-SPAKE2 in the Relaxed UC
Framework

In [1], Abdalla et al. relaxed the definition of PAKE functionality to a so-called
lazy-extraction PAKE (lePAKE), and proved some widely used PAKE proto-
cols, like SPEKE [29], SPAKE2 [4], and TBPEKE [36], are secure under this

25

relaxed model. We provide the definition of lazy-extraction UC PAKE func-
tionality Fle-pake in our full version [34]. Informally, Fle-pake allows the adver-
sary/simulator in the ideal world to postpone its password guess until after the
session is completed.

In this section, we show how our technique can be extended to get tightly
secure and ideal cipher-free protocols in the relaxed UC framework. We take
2DH-SPAKE2 (Fig. 7) as an example. Here randomly sampled (M1,M2, N1,M2)
servers as the common reference string (CRS), and hash function H is defined
as: H : {0, 1}∗ 7→ K with K the space of session keys. C, S are identities of Client
and Server.

Public Parameter: (G, g, q),M1,M2, N1, N2,H

Client C (pw) Server S (pw)

x1, x2
$←− Zq, X1 := gx1 , X2 := gx2

X∗
1 := X1 ·Mpw

1 , X∗
2 := X2 ·Mpw

2

X∗
1 ,X∗

2−−−−−−−−−−−−→
Y ∗
1 ,Y ∗

2←−−−−−−−−−−−−

y1, y2
$←− Zq, Y1 := gy1 , Y2 := gy2

Y ∗
1 := Y1 ·Npw

1 , Y ∗
2 := Y2 ·Npw

2

Z1,1 := (
Y ∗
1

N
pw
1
)x1 , Z1,2 := (

Y ∗
2

N
pw
2
)x1

Z2,1 := (
Y ∗
1

N
pw
1
)x2 , Z2,2 := (

Y ∗
2

N
pw
2
)x2

sid := C||S||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

Output keyC ← H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw)

Z1,1 := (
X∗

1

M
pw
1
)y1 , Z1,2 := (

X∗
1

M
pw
1
)y2

Z2,1 := (
X∗

2

M
pw
2
)y1 , Z2,2 := (

X∗
2

M
pw
2
)y2

sid := C||S||X∗
1 ||X∗

2 ||Y ∗
1 ||Y ∗

2

Output keyS ← H(sid, Z1,1, Z1,2, Z2,1, Z2,2, pw)

Fig. 7. The 2DH-SPAKE2 Protocol.

Theorem 5 (Security of 2DH-SPAKE2). If the CDH assumption holds in
G, H works as a random oracle, then the 2DH-SPAKE2 protocol in Fig. 7 securely
emulates Fle-pake. More precisely, for any PPT environment Z and real world
adversary A which has access to random oracle H, there exist a PPT simulator
Sim, which has access to the ideal functionality Fle-pake, and an algorithm B, s.t.
that advantage of Z in distinguishing the real world running with A and the ideal
world running with Sim is bounded by

Adv2DH-SPAKE2,Z(λ) ≤ 3AdvCDH
G,B (λ) + 2−Ω(λ).

The proof is shown in the full version [34].

Note that the technique can be further used to extend PAKE protocol PPK
[35] to 2DH-PPK, that achieves tight security in the relaxed UC framework. We
omit the details due to the similarity.

Acknowledgments. We would like to thank the anonymous reviewers for their
constructive comments, especially on the perfect forward security of 2DH-aEKE.

26

Shengli Liu and Xiangyu Liu were partially supported by National Nat-
ural Science Foundation of China (NSFC No. 61925207), Guangdong Major
Project of Basic and Applied Basic Research (2019B030302008), and the Na-
tional Key R&D Program of China under Grant 2022YFB2701500. Shuai Han
was partially supported by National Natural Science Foundation of China (Grant
No. 62002223), Shanghai Sailing Program (20YF1421100), Young Elite Scien-
tists Sponsorship Program by China Association for Science and Technology
(YESS20200185), and Ant Group through CCF-Ant Research Fund (CCF-AFSG
RF20220224). Dawu Gu is partially supported by the National Key Research and
Development Project (Grant No. 2020YFA0712302).

References
[1] Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally

composable relaxed password authenticated key exchange. In: Advances in Cryp-
tology - CRYPTO 2020. vol. 12170, pp. 278–307. Springer (2020)

[2] Abdalla, M., Barbosa, M., Rønne, P.B., Ryan, P.Y.A., Sala, P.: Security charac-
terization of J-PAKE and its variants. IACR Cryptol. ePrint Arch. p. 824

[3] Abdalla, M., Haase, B., Hesse, J.: Security analysis of cpace. In: Advances in
Cryptology - ASIACRYPT 2021. vol. 13093, pp. 711–741. Springer (2021)

[4] Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA 2005. vol. 3376, pp.
191–208. Springer (2005)

[5] Anderson, T.: Local-use ipv4/ipv6 translation prefix. RFC 8215, 1–7 (2017)
[6] Becerra, J., Iovino, V., Ostrev, D., Sala, P., Skrobot, M.: Tightly-secure PAK(E).

In: Capkun, S., Chow, S.S.M. (eds.) Cryptology and Network Security. vol. 11261,
pp. 27–48. Springer (2017)

[7] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Advances in Cryptology - EUROCRYPT 2000.
vol. 1807, pp. 139–155. Springer (2000)

[8] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium
on Research in Security and Privacy. pp. 72–84. IEEE Computer Society (1992)

[9] Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise.
In: CCS ’93. pp. 244–250. ACM (1993)

[10] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for sphfs and efficient one-round PAKE protocols. In: Advances in
Cryptology - CRYPTO 2013. vol. 8042, pp. 449–475. Springer (2013)

[11] Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key ex-
change: New models and constructions. IACR Cryptol. ePrint Arch. p. 833 (2013)

[12] Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient
password-based key exchange. In: CCS 2003. pp. 241–250. ACM (2003)

[13] Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted
key exchange. In: Public Key Cryptography - PKC 2004. vol. 2947, pp. 145–158.
Springer (2004)

[14] Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp.
136–145. IEEE Computer Society (2001)

27

[15] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally compos-
able password-based key exchange. In: Advances in Cryptology - EUROCRYPT
2005. vol. 3494, pp. 404–421. Springer (2005)

[16] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Advances in Cryptology - EUROCRYPT 2008. vol. 4965, pp. 127–145. Springer
(2008)

[17] Dupont, P., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy password-
authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. vol. 10822, pp. 393–424. Springer (2018)

[18] Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Advances in Cryptology - EUROCRYPT 2003. vol. 2656, pp. 524–543.
Springer (2003)

[19] Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-
based key exchange resilient to server compromise. In: Advances in Cryptology
- CRYPTO 2006. vol. 4117, pp. 142–159. Springer (2006)

[20] Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: CCS 2010. pp. 516–525. ACM (2010)

[21] Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding
key exchange. In: Advances in Cryptology - CRYPTO 2021. vol. 12828, pp. 701–
730. Springer (2021)

[22] Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J., Van-
dewalle, J. (eds.) EUROCRYPT 1989. vol. 434, pp. 29–37. Springer (1989)

[23] Hao, F., Ryan, P.Y.A.: J-PAKE: authenticated key exchange without PKI. Trans.
Comput. Sci. 11, 192–206 (2010)

[24] Harkins, D.: Dragonfly key exchange. RFC 7664, 1–18 (2015)
[25] Hesse, J.: Separating symmetric and asymmetric password-authenticated key ex-

change. In: SCN 2020. vol. 12238, pp. 579–599. Springer (2020)
[26] Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced

modular construction of asymmetric password-authenticated key exchange. In:
SCN 2018. vol. 11035, pp. 485–504. Springer (2018)

[27] ISO/IEC: Iso/iec 11770-4:2017 information technology — security techniques —
key management — part 4: Mechanisms based on weak secrets, https://www.
iso.org/standard/67933.html

[28] Jablon, D.P.: Strong password-only authenticated key exchange. Comput. Com-
mun. Rev. 26(5), 5–26 (1996)

[29] Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: 6th Workshop on Enabling Technologies (WET-ICE ’97). pp. 248–255.
IEEE Computer Society (1997)

[30] Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Advances in Cryptology - EUROCRYPT
2018. vol. 10822, pp. 456–486. Springer (2018)

[31] Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Advances in Cryptology - EUROCRYPT
2001. vol. 2045, pp. 475–494. Springer (2001)

[32] Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Theory of Cryptography - 8th Theory of Cryptography Conference,
TCC 2011. vol. 6597, pp. 293–310. Springer (2011)

[33] Kwon, J.O., Sakurai, K., Lee, D.H.: One-round protocol for two-party verifier-
based password-authenticated key exchange. In: CMS 2006. vol. 4237, pp. 87–96.
Springer (2006)

28

https://www.iso.org/standard/67933.html
https://www.iso.org/standard/67933.html

[34] Liu, X., Liu, S., Han, S., Gu, D.: Eke meets tight security in the univer-
sally composable framework. Cryptology ePrint Archive, Paper 2023/170 (2023),
https://eprint.iacr.org/2023/170

[35] Mackenzie, P.: The pak suite: Protocols for password-authenticated key exchange
(12 2002)

[36] Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password expo-
nential key exchange. In: AsiaCCS 2017. pp. 301–312. ACM (2017)

[37] Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
1–160 (2018)

[38] RFC: Crypto forum (cfrg), https://datatracker.ietf.org/rg/cfrg/
documents/

[39] Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: EUROCRYPT 2022. vol. 13276, pp. 127–
156. Springer (2022)

[40] Shin, S., Kobara, K.: Efficient augmented password-only authentication and key
exchange for ikev2. RFC 6628, 1–20 (2012)

[41] Shoup, V.: Security analysis of SPAKE2+. IACR Cryptol. ePrint Arch. p. 313
(2020)

[42] Tanwar, S., Vora, J., Kaneriya, S., Tyagi, S., Kumar, N., Sharma, V., You, I.:
Human arthritis analysis in fog computing environment using bayesian network
classifier and thread protocol. IEEE Consumer Electronics Magazine 9(1), 88–94
(2020)

[43] Williams, M., Benfield, C., Warner, B., Zadka, M., Mitchell, D., Samuel, K., Tardy,
P.: Magic Wormhole, pp. 253–284. Apress, Berkeley, CA (2019)

[44] Yu, J., Lian, H., Zhao, Z., Tang, Y., Wang, X.: Provably secure verifier-based
password authenticated key exchange based on lattices. Adv. Comput. 120, 121–
156 (2021)

29

https://eprint.iacr.org/2023/170
https://datatracker.ietf.org/rg/cfrg/documents/
https://datatracker.ietf.org/rg/cfrg/documents/

	EKE Meets Tight Security in the Universally Composable Framework
	Introduction
	Technical Overview
	Roadmap

	Preliminaries
	Hardness Assumptions

	PAKE with Tight Security in the UC Framework
	UC Framework for PAKE
	The 2DH-EKE Protocol
	Security Analysis

	Asymmetric PAKE with Optimal Tightness in the UC Framework
	UC Framework for aPAKE
	The 2DH-aEKE Protocol
	Security Analysis

	Optimal Reduction Loss in aPAKE
	Tight Security for 2DH-SPAKE2 in the Relaxed UC Framework

