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Abstract Laconic function evaluation (LFE) allows Alice to compress
a large circuit C into a small digest d. Given Alice’s digest, Bob can
encrypt some input x under d in a way that enables Alice to recover
C(x), without learning anything beyond that. The scheme is said to be
laconic if the size of d, the runtime of the encryption algorithm, and the
size of the ciphertext are all sublinear in the size of C.

Until now, all known LFE constructions have ciphertexts whose size
depends on the depth of the circuit C, akin to the limitation of levelled
homomorphic encryption. In this work we close this gap and present
the first LFE scheme (for Turing machines) with asymptotically
optimal parameters. Our scheme assumes the existence of
indistinguishability obfuscation and somewhere statistically binding
hash functions. As further contributions, we show how our scheme
enables a wide range of new applications, including two previously
unknown constructions:

– Non-interactive zero-knowledge (NIZK) proofs with optimal prover
complexity.

– Witness encryption and attribute-based encryption (ABE) for
Turing machines from falsifiable assumptions.
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1 Introduction

Laconic function evaluation (LFE) is a cryptographic primitive recently
introduced by Quach, Wee, and Wichs [FOCS’18]. Using LFE, Alice can
compress a large circuit C into a small digest d. Given Alice’s digest, Bob can
encrypt some input x under d in a way that enables Alice to recover C(x)
without learning anything about Bob’s input. The scheme is said to be laconic
if the size of the digest d, the runtime of the encryption algorithm LFE.Enc,
and the size of the ciphertext c are all sublinear in the size of C.

LFE is particularly interesting in the context of two-party and multi-party
computation (2PC, MPC), since it enables the construction of protocols with
novel properties. As an example, LFE enables a “Bob-optimised” two-round
2PC protocol in which Alice does all the work, while Bob’s computation and
communication are smaller than both the function being evaluated and Alice’s
input. However, for all known LFE constructions [QWW18, AR21, NRS21], the
runtime of the encryption procedure and the size of Bob’s ciphertext depend
on the depth of the circuit being evaluated by Alice. This is a severe limitation
which restricts the applicability of this primitive to “shallow” circuits. In some
sense, this mirrors the efficiency gap between levelled and fully homomorphic
encryption. This leaves us with the following open problem (also stated
in [QWW18]):

Is it possible to construct LFE where Bob’s work is independent of the circuit
size?

1.1 Our Results

We answer this question in the affirmative and our main result is the
construction of an asymptotically optimal LFE scheme assuming
indistinguishability obfuscation [BGI+01] and somewhere statistically binding
(SSB) hash functions [HW15]. Our construction enables the computation of
any Turing machine M and, unlike all prior
constructions [QWW18] [AR21] [NRS21], removes the dependency on the
depth of the circuit (the runtime of the Turing machine in our case). In the
standard simulation-security setting, we obtain the following result.

Theorem 1 (Informal). Assuming indistinguishability obfuscation for circuits
and somewhere statistically binding hash functions, there exists a simulation
secure LFE scheme with the following parameters:

– The size of the digest d is poly(λ).
– The runtime of the encryption procedure is O(|x|+ |M(x)|) · poly(λ).
– The size of the ciphertext c is O(|x|+ |M(x)|) · poly(λ).

If we relax the security to an indistinguishability-based notion, we can further
improve the parameters by removing the dependency on the size of the output.
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Theorem 2 (Informal). Assuming indistinguishability obfuscation for circuits
and somewhere statistically binding hash functions, there exists a LFE scheme
with ciphertext indistinguishability and the following parameters:

– The size of the digest d is poly(λ).
– The runtime of the encryption procedure is O(|x|) · poly(λ).
– The size of the ciphertext c is O(|x|) · poly(λ).

As for the underlying assumptions, SSB hash functions [OPWW15] can be
constructed from a variety of standard assumptions (e.g. LWE or DDH),
whereas indistinguishability obfuscation is a less understood primitive and
currently the subject of a large body of research. Numerous recent
works [BDGM20, GP20, JLS20, WW21] show provably-secure constructions of
indistinguishability obfuscation for circuits under simple assumptions, some of
which are regarded as well-founded.

We briefly describe some additional contributions which show how our
construction enables a wide range of new results in cryptography.

(1) Witness Encryption for Turing Machines: We construct the first
witness encryption where the size of the ciphertext depends only on the size of
the witness and the security parameter (but not on the NP relation R).
Furthermore, the decryption runtime is only proportional to the runtime of the
Turing machine computing R, rather than its circuit representation. This
implies the first ABE for Turing machines [GKP+13] from falsifiable
assumptions. Prior to our work, Goldwasser et al. [GKP+13] constructed the
same primitive from extractable witness encryption,4 which is a considerably
stronger and non-falsifiable assumption, whose validity has often been called
into question [GGHW14, BP15, BSW16].

(2) NIZKs with Optimal Prover Complexity: By applying a known
transformation [KNYY19], we construct the first prover-optimal NIZK proof
system, where the prover’s computational complexity depends only on the size
of the witness and on the security parameter (and is otherwise independent of
the size of the NP relation).

(3) MPC Compiler: By applying the transformation described in [QWW18]
we obtain a compiler for multi-party computation (MPC) that reduces the
communication complexity to be independent of the circuit size, without
introducing additional rounds of interaction.

1.2 Technical Overview

Following is a brief overview of the techniques developed in this work. Before
delving into our approach, we briefly discuss why trivial solutions fall short in
constructing LFE.

4 We should also mention a recent work of Ananth et al. [AFS19], which constructs
ABE for RAM programs from LWE, although it achieves only a weaker form of
efficiency where the public parameters and the ciphertexts grow with the runtime of
the RAM program.
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Why Trivial Solutions Fail. An astute reader may wonder why this is still a
challenging problem, given iO for circuits. One plausible approach to constructing
LFE via this route would be to place the hash of the circuit d := H(C) in the
common reference string. Bob could then obfuscate and send Alice the following
universal circuit

U(C′) : if d
?
= H(C′) return C′(x).

Intuitively, Alice should only be able to run the obfuscated circuit on C unless
she is able to find a collision for H. Unfortunately, this approach has two major
flaws:

(1) Efficiency: The construction is not laconic since both the runtime of Bob and
the size of the ciphertext depend on the size of C. Even recent constructions
of iO for Turing machines [AJS17] suffer from the drawback that the size
of the obfuscated Turing machine depends on the maximum input size. An
exception is the recent work of [BFK+19] which, however, requires a large
shared random string or a random oracle. At present, constructing iO without
input-size dependence remains an open problem.

(2) Provable Security: The above informal argument assumes the strong notion
of virtual-blackbox obfuscation, which is known to be impossible [BGI+01].
Constructing a provably secure scheme requires a significant modification of
the template in order to be able to leverage the weak indistinguishability
security of iO.

Even if iO for Turing machines does not appear to be sufficient to construct
LFE, it turns out that other techniques from the area [KLW15, CCHR15, CH16,
CCC+16, ACC+16, GS18] will help us in building a provably-secure scheme, as
we explain in the following.

To understand the challenge in more detail, it is useful to compare the notion
of LFE with succinct randomized encodings (SRE) [BGL+15]: SRE allows one
to encode an input x with respect to a public Turing machine M in such a way
that nothing is revealed beyond M(x). However, the runtime of the encoding
algorithm and the size of the encoding depend on the size of M, whereas in
LFE Bob’s ciphertext crucially only depends on the size of his input (and the
security parameter). Furthermore, SRE do not allow Alice to privately hash her
circuit/Turing machine.

Our Approach and Differences to [GS18]. Readers familiar with the work
of [GS18] may wonder why their results cannot be used “off the shelf” as
follows. Alice computes the digest of her encrypted input along with the circuit
C. Then she sends the resulting hash to Bob, who computes a succinct
randomised encoding as specified in [GS18], except using Alice’s digest. Then
Alice can just load C into the memory of the Turing machine M, thus allowing
us to use the result of [GS18] off-the-shelf. Unfortunately, this solution does not
work, as [GS18] states that the hash is binding only for the non-⊥ locations of
the database (whose length is denoted by the parameter n). This raises the
question whether adding C to the database should result in a hash which is
“binding for C”. - If yes, namely the hash is binding for C, then the parameter
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n will grow with the size of |C|. In this case, the complexity of hash update
(and consequently the runtime of Bob) will be poly(n, λ, logM). Here, M
denotes the size of the database. Since n ≥ |C|, this means that the runtime of
Bob would depend on the size of C, which nullifies Bob’s efficiency. - If no,
namely the hash is not binding for C, then we do not see a direct way to prove
the security of the construction, since we cannot rule out that Alice knows a
different circuit C′ that collides with C, thus breaking the security of the
encryption. Note that the hash is compressing, so collisions always exist even if
the hash is computed honestly. The key observation here is that the size
of [GS18]’s hash doesn’t depend on the size of the unassigned (= ⊥) locations,
but does depend on the number of specified locations (= n). As such loading
the circuit C into memory, would increase the number of specified locations.

Our construction builds on the techniques introduced in [GS18], and requires
us to modify the construction in a non-blackbox manner, in order to constrain
Alice to execute the Turing machine M on Bob’s input while at the same time
making Bob’s runtime independent of it. To gain some intuition on the approach,
we consider the simplified setting in which both parties know a public Turing
machine M, where the transition function is denoted by CM and Bob holds an
input x. Later in this overview, we show that this template can be lifted to the
more generic setting where Alice evaluates a private Turing machine by letting
M be a universal Turing machine with an additional input. To establish some
notation, consider the insecure protocol where Bob sends his input x in plain:
Alice can evaluate M by maintaining a database D that encodes x and the
current state of the memory of M. Each operation of CM consists of reading the
current state, one bit from Alice, and one from Bob.

Garbled Circuits. One possible way to secure this approach is to use Yao’s
garbled circuits [Yao82, Yao86], that allow for the secure computation of a circuit

C by creating a garbled version C̃ and encoding the input x = (x1, . . . , xn) as
a set of labels (lbs1, . . . , lbsn). Security is guaranteed as long as a single input
encoding is revealed to the evaluator. If we were to garble the step circuit CM,
we immediately run into two problems: (1) From an efficiency perspective, Bob
would need to garble one circuit for each step of the computation, which would be
more expensive than just evaluating M locally. (2) With regards to functionality,
the evaluator needs to receive the labels corresponding to an input encoding. This
corresponds to a particular set of locations in D (depending on which bits CM

needs to read). The difficulty here stems from the fact that the state of D evolves
over the course of the computation, as it includes the memory tape of the Turing
machines. Thus, we would need a way to dynamically select labels depending on
the intermediate state of D. Fortunately, (1) can be solved using iO: Instead of
garbling all step circuits explicitly, Bob sends an obfuscated circuit that, given
an index i, returns the ith garbled step circuit. The remainder of this overview
is devoted to solving (2).

Updatable Laconic Oblivious Transfer. Before explaining our solution, we
recall the notion of updatable laconic oblivious transfer (ULOT) [CDG+17].
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With an ULOT protocol, a large database D can be hashed to a small digest d
offering the sender two operations.

Read: Given a pair of messages (m0,m1) and an index i, the sender can
compute a ciphertext c such that the receiver (knowing D and d) can
recover mD[i], where D[i] is the value of the bit at the ith location of D.

Write: Given |d|-many pairs of messages {m0,i,m1,i}i∈[|d|], a bit b, and index

i, the sender can compute a ciphertext c such that the receiver (knowing

D and d) can recover
(
mD′

1,1
, . . . ,mD′

|d|,|d|

)
. Here, d′ is the hash of D′, the

database D updated by writing b at index i.

Equipped with this functionality, we can now devise a mechanism to provide
the evaluator with the appropriate input encodings. Bob compresses his input x,
using the hashing procedure of the ULOT scheme and sends it to Alice, who will
act as the evaluator. At each step of the computation, Alice is provided with the
labels corresponding to the database locations needed by the current step circuit.
She then uses these labels to evaluate the garbled step circuit, which performs
the computation step and computes a ULOT ciphertext containing the pairs of
labels for the next step of the computation. In the next step, Alice will be able
to retrieve the set corresponding to the locations of the updated database, by
running the receive algorithm of the ULOT. These include an encoding of the
updated hash of D, as a result of the write operation of the step circuit.

Piecing it Together. Now only two problems remain. First, the state of D is
given in clear to Alice, meaning the intermediate values of the computation are
leaked. This is solved by adding a layer of symmetric encryption to the memory
of the Turing machine. To ensure the correctness of the computation, we remove
this layer before feeding the input into CM. The output is then re-encrypted
using a new key that is only available in the next step circuit. As this happens
within the garbled circuit, security is preserved. We can now lift the construction
to the setting where Alice’s M is not known to Bob. This is done by including an
additional ULOT digest of the description of the Turing machine, which allows
the step circuit to read the description (via ULOT read) and determines the
next operation of the computation. Given the above procedure, the database
lookup algorithm can be naturally extended to the case of an additional tape,
encoding the machine’s instructions. To ensure that the random coins used in
the garbled circuits are consistent across different computations steps, we use a
(puncturable) PRF to sample the labels.

The Final Scheme. We provide some intuition for the encryption and
decryption procedures in [Fig. 1]. For the encryption procedure, Bob starts by
obfuscating the Garbling Step Circuit and computing the first set of labels that
will be needed to evaluate the garbled circuit. These are then sent along with
his encrypted input to Alice. For the decryption procedure, Alice evaluates the
garbled circuit using the first set of labels sent by Bob. The output from the
Step Circuit is then used for receiving the updatable laconic oblivious transfer.
This is repeated for all steps of the computation until the final output is
returned by the decryption procedure.
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LFE.Enc(d, x)

1 : Block-wise encrypt x

2 : Obfuscate Garbling Step Circuit GarbleSC

iO(GarbleSC) : Garbling Step Cicruit

1 : Computes labels for current and next Step Circuit

2 : Computes Step Circuit SC

SC : Step Circuit

1 : Decrypts secret inputs

2 : Performs one step of the computation

3 : Encrypts secret outputs

4 : Writes outputs to D using ULOT.Write

5 : Sends next operation using ULOT.Read

3 : Compute initial labels for GarbleSC

4 : return encrypted x, iO(GarbleSC), initial labels

LFE.Dec(d, c)

1 : Compute GarbleSC at 1 using initial inputs

2 : while M is not done

3 : Compute GarbleSC at i

iO(GarbleSC)(i) : Garbling Step Cicruit

1 : Compute labels for current and next Step Circuit

2 : Compute Step Circuit SC at i

SCi : Step Circuit

1 : Decrypt secret inputs

2 : Perform one step of the computation

3 : Encrypt secret outputs

4 : Write outputs to D using ULOT.Write

5 : Send next operation using ULOT.Read

4 : Run ULOT.Receive to obtain labels used as inputs for iO(GarbleSC)(i+ 1)

5 : return final output from Step Circuit

Figure 1. High level overview of the encryption and decryption procedures.

Security Proof. Next, we provide some intuition about the security argument.
To prove the security of our construction we use a similar proof strategy to
that of [GS18]. In particular, our proof proceeds via a hybrid argument. In each
hybrid we change the way the obfuscated circuit computes the garbled circuits
for each step of the computation. Each garbled step circuit can be computed
in three modes. The first mode is real, where the computations are just as in
the real protocol. The second mode is dummy, where the output of the garbled
circuit is constant and hardwired, but the same as in the real execution. The
third mode is sim, which is similar to real mode, with the difference being that
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the garbled circuit only outputs dummy values which are not the same as in the
real execution. We cannot change directly from real mode to sim mode because
at each step of the computation the labels from the previous step are visible to
the adversary. Hence, we first need to change to dummy mode and then to sim
mode. We show a set of rules that define a pebbling game, where the pebbles are
represented by simulation slots. The aim of the game is to switch the pebbles
from real (white pebbles) to sim (black pebbles), while minimizing the number of
nodes in dummy (grey pebbles). Our objective is to minimize the number of grey
pebbles at any point in time because the size of the obfuscated circuit grows with
the number of simulation slots in dummy mode. Finally, with help of a pebbling
strategy [GS18], we prove that our LFE construction is secure while having only
a poly-logarithmic number of grey pebbles at any point in the simulation.

Application: Witness Encryption for Turing Machines. We show how
our newly constructed LFE scheme allows us to construct witness encryption
for Turing machines. To encrypt a message m with respect to a relation R,
the witness encryption algorithm computes the crs of the LFE and hashes d ←
LFE.Hash(crs,MR), where the Turing machine is defined as

MR(m,w) :=

{
return m if R(x,w) = 1

return ⊥ else
.

Then it returns the obfuscation of a circuit obC ← iO(Cx,m) where Cx,m is
defined as

Cx,m(w) := return LFE.Enc(crs, d, (m,w)).

Given a witness w, one can recover m by querying the obfuscated circuit and
evaluating the LFE decryption algorithm:

LFE.Dec(crs,MR, obC(w)) = LFE.Dec(crs,MR,Cx,m(w))

= LFE.Dec(crs,MR, LFE.Enc(crs, d, (m,w)))

= MR(m,w)

= m.

Note that the size of the ciphertext is only dependent on the size of the witness
w, the size of the message m, and the security parameter. Furthermore, the
runtime of the decryption algorithm only depends on the runtime of the Turing
machine computing MR. Security follows via a standard puncturing argument.

Application: ABE for Turing Machines. We also sketch how to turn the
above witness encryption into an ABE for Turing machines. This is a standard
transformation [GGSW13] and therefore we only include an outline of the
construction. To delegate a decryption key for a Turing machine M, the
authority computes a signature σ on the tuple (crs, dM), where
dM ← LFE.Hash(crs, M̃) and M̃(x,m) returns m if and only if M(x) = 1. Then
encrypting a message m with respect to an attribute x can be done by
obfuscating

Cx,m(crs, d, σ, x) : if Verify(σ, (crs, d)) = 1; return LFE.Enc(crs, d, (m,x)).
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Note that the runtime of the encryption algorithm (and consequently the size
of the ciphertext) only depends on the size of the attribute x and the message
m. Furthermore, the runtime of the decryption algorithm is only proportional
to the runtime of the Turing machine M.

For additional details and further applications, we refer the reader to the full
version.

1.3 Related Works

The notion of LFE was introduced in the work of Quach et al. [QWW18], in
which they presented a construction for depth-bounded polynomial-size circuits
from the learning with errors problem. Work by Pang, Chen, Fan, and
Tang [PCFT20] extended the notion of (single-input) LFE to the multi-input
settings, by additionally assuming the existence of indistinguishability
obfuscation. Their protocol uses single-input LFE (and in particular the
scheme from [QWW18]) generically. Thus, our scheme can be plugged into
their work to obtain improved parameters.

Recent work by Agrawal and Roşie [AR21] shows a new construction of
LFE with adaptive security (based on the ring learning with errors assumption).
However, the scheme is limited to the computation of NC1 circuits. Another
recent work by Naccache, Roşie, and Spignoli [NRS21] improves the concrete
efficiency of LFE. In particular, the authors present a construction based on
the LWE assumption with asymptotically smaller parameters than those used
in [QWW18]. However, their construction is restricted to the class L/poly, i.e.,
the class of circuits that can be represented by branching programs of polynomial
length.

2 Definitions

Let λ ∈ N denote the security parameter. We say that a function negl(·) is
negligible if it vanishes faster than the inverse of any polynomial. Given a set
S, we denote by s ←$ S the uniform sampling from S. We say that an
algorithm is PPT if it can be implemented by a probabilistic Turing machine
running in time poly(λ). Let X and Y denote two random variables and let
{X}λ∈N and {Y }λ∈N be two distribution ensembles. We say that these
distributions are computationally indistinguishable if for all PPT algorithms A,
|Prx←Xλ

[A(x) = 1]− Prx←Yλ
[A(x) = 1]| ≤ negl(λ). We denote this by

Xλ
c
≈ Yλ. Let Gpar denote a game, defined relative to a set of parameters par,

where an adversary A interacts with a challenger that answers oracle queries
issued by A. We denote the output of the game Gpar, between a challenger and
an adversary A, as GApar. A is said to win the game if GApar = 1. We define the

advantage of A in Gpar as AdvGpar,A := Pr[GApar = 1].
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2.1 Laconic Function Evaluation for Turing Machines

Here, we adapt the definition of laconic function evaluation (LFE), a primitive
recently introduced by Quach, Wichs, and Wee [QWW18], to that of LFE for
Turing machines. The runtime of the Turing machine, denoted T , is publicly
known and available to all parties. Without loss of generality we assume the
Turing machine to be oblivious.

Definition 1 (Laconic Function Evaluation for Turing Machines). A
laconic function evaluation scheme LFE := (LFE.Gen, LFE.Hash, LFE.Enc,
LFE.Dec) for Turing machines is defined as the following tuple of PPT
algorithms.

crs← LFE.Gen
(
1λ, 1N

)
: Given the security parameter 1λ and the block size 1N

(encoded in unary), the generation algorithm returns a common reference
string crs.

d← LFE.Hash(crs,M): Given the common reference string crs and the
description of a Turing machine M, the compression algorithm returns a
digest d.

c← LFE.Enc(crs, d, x): Given the common reference string crs, a digest d, and
a message x, the encoding algorithm returns a ciphertext c.

y ← LFE.Dec(crs,M, c): Given the common reference string crs, the description
of a Turing machine M, and a ciphertext c, the decoding algorithm returns
a message y.

For correctness, we require the encoding of an input with respect to the digest
of a Turing machine, when decoded, to return the same result as evaluating the
machine on the input. A more formal definition follows.

Definition 2 (Correctness). A laconic function evaluation scheme LFE :=
(LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) for Turing machines is correct if for all
λ ∈ N, N ∈ N, for all Turing machines M, and all messages x it holds that

Pr

M(x) = y

∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ, 1N )
d← LFE.Hash(crs,M)
c← LFE.Enc(crs, d, x)
y ← LFE.Dec(crs,M, c)

 = 1,

where the probability is taken over the random coins of LFE.Gen and LFE.Enc.

The security notion captures the requirement that the encryption of a
message x with respect to a compressed Turing machine M reveals nothing
beyond M(x).

Definition 3 (Security: Sender-Privacy Against Semi-Honest
Receivers). A laconic function evaluation scheme LFE := (LFE.Gen, LFE.Hash,
LFE.Enc, LFE.Dec) for Turing machines is secure if there exists a PPT
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simulator SimLFE such that for any stateful PPT adversaries A = (A1,A2) and
N ∈ N there exists a negligible function negl(·) such that∣∣∣∣∣∣∣∣Pr

A2(c, st) = 1

∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ, 1N )

(x,M, st)← A1(crs)
d← LFE.Hash(crs,M)
c← LFE.Enc(crs, d, x)


− Pr

A2(c, st) = 1

∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ, 1N )

(x,M, st)← A1(crs)
d← LFE.Hash(crs,M)
c← SimLFE(crs, d,M,M(x), T )


∣∣∣∣∣∣∣∣ ≤ negl(λ),

where the probability is taken over the random coins of LFE.Gen, A1, LFE.Enc
and SimLFE. Here, T denotes the runtime of M(x) and st the state of A.

An additional security property of an LFE scheme is that of function hiding,
which captures the notion that the digest d← LFE.Hash(crs,M) should hide the
description of the Turing machine M. We note that our scheme can be generically
transformed to satisfy function-hiding using the transformation of [QWW18].
The transformation uses 2-round 2PC based on OT and garbled circuits, and
maintains the same asymptotic efficiency.

3 Laconic Function Evaluation for Turing Machines

In this section we will construct a laconic function evaluation scheme [Fig. 4]
with asymptotically optimal parameters.

Notation. We consider the case where the protocol computes a function
F (mA,mB), where mA and mB are the inputs of Alice and Bob, respectively.
We assume that the function F (mA,mB) is computed by a Turing machine M,
where mA and mB are given to M on two different input tapes. We assume
without loss of generality that the Turing machine M is publicly known.5 More
formally, M denotes the 4-tape Turing machine consisting of two read-only
input tapes, a read/write work tape, and a read/write output tape. M is
described by the tuple (Γ,Q, δ), where Γ denotes the finite alphabet of M
containing a blank symbol □ as well as a start symbol ▷, and the numbers 0
and 1; Q denotes a finite set of states containing a start state qstart and a
halting state qhalt; and δ : Q× Γ 4 → Q× Γ 2 × {L,S,R}4 denotes the transition
function. We assume that the transition function δ of M is given by a circuit
CM. It is going to be convenient for us to load the input mB onto the working
tape of the Turing machine. For the remainder of this description, we consider
the working tape and the input tape of mB as a single tape. Furthermore, M is
an oblivious Turing machine, meaning its head movements do not depend on
the input but only on the input length. Note, that by a classical result of

5 One can always make the function F private by including an encoding of F in the
input of Alice and computing LFE of a universal Turing machine.
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Pippinger and Fischer, Turing machines can be simulated by an oblivious (and
deterministic) Turing machine with only a logarithmic slowdown [PF79]. For
convenience, we denote by HeadPos(i) the function that outputs the state st′,
the write location on the working tape Iw, and the read locations Ir, Jr on the
input tapes mB and mA respectively; all at step i of CM’s computation.

Description. Our scheme assumes the existence of:

– A symmetric encryption scheme Π := (Sym.Gen,Sym.Enc,Sym.Dec) that is
IND-CPA secure.

– An updatable laconic oblivious transfer ULOT := (ULOT.Gen,ULOT.Hash,
ULOT.Send,ULOT.Receive,ULOT.SendWriteRead,ULOT.ReceiveWriteRead)
with sender privacy against semi-honest receivers.

– An indistinguishability obfuscator iO.
– A garbling scheme GC := (GC.Garble,GC.Eval,GC.Input) with selective

security.
– A puncturable pseudorandom function PPRF := (PPRF.Gen,PPRF.Eval,

PPRF.Punc).

For convenience we make a few simplifying assumptions: (1) The Turing
machine never writes to the same position twice (this does not affect its runtime,
as we can just write to a new memory location every time) and (2) The input mB

is of length exactly N . Our scheme can be modified to handle the more general
case but the description and the proof become somewhat more contrived.

The step circuit [Fig. 2] handles the tasks performed at each step of M’s
computation. Namely, decrypting the secret input into CM, computing one step
of CM and encrypting the output with a new key. Furthermore, after each step,
additional outputs are used to specify a location in the database where the
encrypted data is to be written using the updatable laconic oblivious transfer.
The garbling step circuit [Fig. 3] garbles each step circuit and generates the
relevant labels and keys so that the garbled circuit can be evaluated.

We define the step circuit SCi as in Fig. 2. As inputs, CM takes the state
st ∈ Q of the Turing machine M, as well as two input blocks xA ⊆ mA and
xB = mB both of size N . After evaluating the circuit on its inputs, CM returns
a new state st′ ∈ Q; a write location Iw on the working tape, at which the next
block of symbols yB is written; a read location Ir on the input tape mB ; a read
location Jr on the input tape mA; and q = ⊥, unless the halting state qhalt has
been reached, in which case q is the only output of the computation.

Now we define the following circuit GarbleSC, which has the crs and a PRF
seed s hardwired [Fig. 3]. It takes as input an index i and outputs a garbled circuit

GC(i). We are now ready to present our laconic function evaluation protocol
[Fig. 4].

3.1 Correctness

The correctness of our LFE construction follows routinely from the correctness
of its components, namely the indistinguishability obfuscator iO, the garbling
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SCi

[
crs, ki, ki+1, lbsst, lbsA, lbsB

]
(st, zA, zB):

1. Parse (dA, xA) := zA
2. Parse (dB , x

′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. xB ← Sym.Dec(ki, x
′
B)

5. (st′, Iw, yB , Ir, Jr, q)← CM(st, xA, xB)
6. y′

B ← Sym.Enc(ki+1, yB)
7. eA ← ULOT.Send(crs, dA, Jr, lbsA)
8. eB ← ULOT.SendWriteRead

(
crs, dB , Iw, y

′
B , lbsB[0], Ir, lbsB[1]

)
9. ŝt← GC.Input(st′, lbsst)

return
(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Figure 2. Step Circuit.

GarbleSC[crs, s, k](i):
1. (lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i)
2. (lbs′st || lbs′A || lbs′B || ·)← PPRF.Eval(s, i+ 1)
3. (st, Iw, Ir, Jr)← HeadPos(i)
4. (st′, I ′w, I

′
r, J

′
r)← HeadPos(i+ 1)

5. ki ← PPRF.Eval(k, Iw)
6. ki+1 ← PPRF.Eval(k, I ′w)
7. C′ ← SCi

[
crs, ki, ki+1, lbs

′
st, lbs

′
A, lbs

′
B

]
8. GC← GC.Garble

(
1λ,C′, (lbsst

∣∣∣∣ lbsA ∣∣∣∣ lbsB ;R)
)

return GC

Figure 3. Garbling Step Circuit. The circuit is padded to the maximum size of
SimGarbleSC [See proof of Theorem 3].

scheme GC, the updatable laconic oblivious transfer protocol ULOT, the
symmetric encryption scheme Π and the puncturable pseudorandom function
PPRF.

Proposition 1 (Correctness). The Laconic Function Evaluation protocol in
Fig. 4 is correct.

Proof of Proposition 1. We prove the claim via an inductive argument. Let c
(i)
B

denote the contents of the databases at the beginning of the ith iteration of the
while loop in LFE.Dec. Let tr′i denote the transcript tri of M, except that we
remove Alice’s input tape mA, and let T denote the runtime of M. We argue

that ∀i ∈ {1, . . . , T}, c(i)B block-wise decrypts to the transcript tr′i at step i of
M’s computation. We also show that at each i, the garbled input labels

13



LFE.Gen
(
1λ, 1N

)
:

1. Compute crs← ULOT.Gen
(
1λ, 1N

)
return crs

LFE.Hash(crs,mA):
1. Compute (dA, m̂A)← ULOT.Hash(crs,mA)

return (dA, m̂A)
LFE.Enc(crs, dA,mB):

1. Choose two uniformly random PRF seeds (s, k)
2. Compute (lbsst || lbsA || lbsB || R)← PPRF.Eval(s, 1)
3. Compute k1 ← PPRF.Eval(k, 1)
4. Compute obG← iO (GarbleSC[crs, s, k])
5. Block-wise encrypt cB ← Sym.Enc(k1,mB)
6. Compute (dB , ĉB)← ULOT.Hash(crs, cB)
7. Set st← 0N

8. Set zA ←
(
dA, 0

N
)

9. Set zB ← (dB , cB)
10. Compute ŝt← GC.Input(st, lbsst)
11. Compute ẑA ← GC.Input(zA, lbsA)
12. Compute ẑB ← GC.Input(zB , lbsB)
13. Set c←

(
ĉB , obG, ŝt, ẑA, ẑB

)
return c

LFE.Dec(crs,mA, c):
1. Parse

(
ĉB , obG, ŝt, ẑA, ẑB

)
:= c

2. Set m
(1)
B ← ĉB , ŝt

(1) ← ŝt, ẑ
(1)
A ← ẑA, ẑ

(1)
B ← ẑB

3. Set i := 1
4. q := ⊥
5. while true do

if q ̸= ⊥ then
return q

Compute GC(i) ← obG(i)

Compute
(
ŝt

(i+1)
∣∣∣∣∣∣ Iw ∣∣∣∣∣∣ m(i+1)

B

∣∣∣∣∣∣ Ir ∣∣∣∣∣∣ Jr

∣∣∣∣∣∣ eA ∣∣∣∣∣∣ eB ∣∣∣∣∣∣ q) ←

GC.Eval
(
GC(i),

(
ŝt

(i)
∣∣∣∣∣∣ ẑ(i)A

∣∣∣∣∣∣ ẑ(i)B

))
Compute ẑ

(i+1)
A ← ULOT.ReceivemA (crs, eA, Jr)

Compute ẑ
(i+1)
B ← ULOT.ReceiveWriteReadĉB

(
crs, Iw,m

(i)
B , eB , Ir

)
Set i := i+ 1

Figure 4. Laconic Function Evaluation Protocol.

(
ŝt

(i)
∣∣∣∣∣∣ ẑ(i)A

∣∣∣∣∣∣ ẑ(i)B

)
are a valid encoding of the state of the Turing machine M,

dA the block of mA, and dB the block of cB all in step circuit SCi.

The base case, when i = 1, follows trivially. Initially, the database c
(1)
B

contains a block-wise encryption of mB [step 5 of LFE.Enc]. In step 9 of
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LFE.Enc x′B is set to c
(1)
B , i.e. x′B contains mB and the content of the (empty)

worktape. Similarly, xA is also initialised to 0N in step 8 of LFE.Enc. Hence,
the transcript tr′1 consists of the input tape mB concatenated with an empty

working tape and the state. Thus, Sym.Dec
(
k1, c

(1)
B

)
= tr′1. The garbled input

labels
(
ŝt

(1)
∣∣∣∣∣∣ ẑ(1)A

∣∣∣∣∣∣ ẑ(1)B

)
are passed to LFE.Dec in the ciphertext.

By the inductive hypothesis we assume that the database c
(i−1)
B block-wise

decrypts to give tr′i−1. We now show that Sym.Dec
(
ki, c

(i)
B

)
= tr′i. In the ith

iteration of the while loop in LFE.Dec, SCi is evaluated by GC(i). Due to the
correctness of the indistinguishability obfuscator iO, the obfuscated garbling step
circuit obG can be correctly evaluated on input i, and GC(i) is given by

GC(i) = obG(i)

= iO (GarbleSC[crs, s, k](i))

= GC.Garble
(
1λ,SCi

[
crs, ki, ki+1, lbs

′
st, lbs

′
A, lbs

′
B

]
(·, ·, ·), lbsst|| lbsA|| lbsB ;R

)
.

By the induction hypothesis, the garbled input labels
(
ŝt

(i)
∣∣∣∣∣∣ ẑ(i)A

∣∣∣∣∣∣ ẑ(i)B

)
are

a valid encoding of the state of the Turing machine M, dA and the block of mA,

and dB and the block of cB all in step circuit SCi. In SCi, the decryption of x′
(i)
B

gives x
(i)
B . After running CM, y

(i)
B is then written to the work tape at I

(i)
w , and

encrypted to y′
(i)
B . By the correctness of updatable laconic oblivious transfer,

ULOT.SendWriteRead specifies y′
(i)
B to be written to a database and in step 5 of

LFE.Dec, y′
(i)
B is written to cB at position I

(i)
w . Therefore, Sym.Dec

(
ki, c

(i)
B

)
=

tr′i−1 with y
(i)
B written on the work tape at I

(i)
w . I.e., Sym.Dec

(
ki, c

(i)
B

)
= tr′i.

Furthermore, the garbled input labels ẑ
(i+1)
A and ẑ

(i+1)
B are given by

ẑ
(i+1)
A = ULOT.Receivem

(i)
A

(
crs, e

(i)
A , J (i)

r

)
= ULOT.Receivem

(i)
A

(
crs,ULOT.Send

(
crs, dA, J

(i)
r , lbsA

)
, J (i)

r

)
,

and

ẑ
(i+1)
B = UL OT.ReceiveWriteReadĉ

(i)
B

(
crs, I

(i)
w ,m

(i)
B , e

(i)
B , I

(i)
r

)
= UL OT.ReceiveWriteReadĉ

(i)
B

(
crs, I

(i)
w ,m

(i)
B ,

ULOT.SendWriteRead
(
crs, dB , I

(i)
w , y′

(i)
B , lbsB[0], Ir, lbsB[1]

)
, I

(i)
r

)
,

respectively. ■

3.2 Proof of Security

We will now establish sender simulation security for our protocol, and start by
stating the main security theorem.
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Theorem 3 (Security). Assume that iO is an indistinguishability obfuscator,
(GC.Garble, GC.Input, GC.Eval) is simulation secure, (ULOT.Gen, ULOT.Hash,
ULOT.Send, ULOT.Receive, ULOT.SendWriteRead, ULOT.ReceiveWriteRead)
has sender privacy against semi-honest receivers, (Sym.Gen,Sym.Enc,Sym.Dec)
is IND-CPA secure, and that (PPRF.Gen, PPRF.Eval, PPRF.Punc) is a
puncturable pseudorandom function. Then (LFE.Gen, LFE.Hash, LFE.Enc,
LFE.Dec) has sender privacy against semi-honest receivers.

To prove the security of our construction we use a similar proof strategy to
that of [GS18]. In particular, our proof will proceed via a hybrid argument. In
each hybrid we change the way the circuit obG computes the garbled circuits
GC(i). Each garbled step circuit GC(i) can be computed in three modes
[Fig. 8]. The first mode is real, where the computations are just as in the real
protocol. The second mode is dummy, where the output of the garbled circuit
is constant and hardwired, but the same as in the real execution [Fig. 5-6]. The
third mode is sim, which is similar to real mode, with the difference being that
the garbled circuit only outputs dummy values which are not the same as in
the real execution [Fig. 2].

Both garbled circuits in real and dummy mode will keep the intermediate
states and memory consistent (recall that the memory is accessed via an
updatable laconic OT). On the other hand, a garbled circuit in sim mode will
only output the dummy state and perform dummy read and writes to memory.
Garbled circuits in real and sim mode are computed on-the-fly by obG, whereas
circuits in dummy need to be hardwired into obG. As a result, the size of obG
depends on the maximum number of dummy circuits needed in any given
hybrid.

We will briefly discuss the necessary conditions under which we can switch
the mode of a garbled step circuit. The first garbled circuit in the in line GC(1)

can always be switched from real to dummy or vice versa, provided there is a
free simulation slot available, i.e., the number of currently simulated garbled
circuits is less than some maximum amount t. For any other garbled circuit
GC(i), we can switch its mode from real to dummy or vice versa, given that the
circuit GC(i−1) is in dummy mode and a simulation slot is available. To switch
a node into sim mode, we require that its successor node is in sim mode and
that its predecessor is in dummy mode. In the case of the first node we only have
the requirement for its successor node and for the last node we only have the
requirement for its predecessor.

These rules define a pebbling game, where we identify pebbles as simulation
slots. The goal of the game is to switch the nodes from real (white pebbles)
to sim (black pebbles), while minimizing the number of nodes in dummy (grey
pebbles). To win the game, we can use the same pebbling strategy as in [GS18],
where O(log(T )) pebbles suffice to set a pebble at the last node (with index
T ) in poly(T ) steps. Consequently, with this strategy we only need to simulate
O(log(T )) = O(λ) nodes in any given hybrid. We refer the reader to the works
of [GPSZ17] and [GS18] for an optimal strategy for the pebbling game. For the
sake of completeness we state the main Lemmas here.
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Lemma 1 ([GPSZ17]). For any p ∈ Z, such that n + 1 ≤ p ≤ n + 2k − 1,
it is possible to make O

(
(p− n)log2 3

)
≈ O

(
(p− n)1.585

)
moves and get a black

pebble at position p using k gray pebbles.

Lemma 2 ([GS18]). For any T ∈ N, there exists a strategy for pebbling the
line graph {1, . . . , T} according to rules A and B by using at most log(T ) grey
pebbles and making poly(λ) moves.

Thus, our proof strategy will proceed as follows. First we will use the above
pebbling argument to switch the last node, i.e. the node with index T to sim
mode. This will take poly(T ) steps. Next, we will again use the same pebbling
argument to switch node T−1 to sim mode. This will take poly(T − 1) = poly(T )
steps. Consequently, we replace nodes T − 2, T − 3, . . . , 2, 1 with sim nodes, in
this order. In total, this will require T · poly(T ) = poly(T ) steps. In the very last
hybrid, we will replace the encryption of that database mB by an encryption of
0. Once all pebbles (step circuits) are in sim mode, and the encryption of mB

has been replaced with the encryption of 0, this corresponds to the simulator
SimLFE, which takes as input the crs, d, the machine M, the output M(x) and
the time bound T . The simulator then outputs the ciphertext c. As a result, the
view of the adversary, in this last hybrid, is independent of the sender input mB .
Hence, we can use this hybrid to simulate the view of a semi-honest receiver by
only using the receiver’s output. The full proof of Theorem 3 follows from that
of two lemmas [Lem. 3, Lem. 4].

SCdummy
i∗ [crs, ki∗ , ki∗+1, lbsst, lbsA, lbsB ](st, zA, zB):
1. Parse (dA, xA) := zA
2. Parse (dB , x

′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. xB ← Sym.Dec(ki∗ , x
′
B)

5. (st′, Iw, yB , Ir, Jr, q)← CM(st, xA, xB)
6. y′

B ← Sym.Enc(ki∗+1, yB)
7. d∗B ← ULOT.Hash (crs,m∗

B)
8. eA ← SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr ]

))
9. eB ← SimULOT.WR

(
crs,mB , Iw, y

′
B ,GC.Input

(
lbsB[0], d

∗
B

)
, Ir,

GC.Input
(
lbsB[1],m

∗
B[Ir ]

) )
10. ŝt← GC.Input(st′, lbsst)

return
(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Figure 5. Step Circuit in dummy mode. Let m∗
B denote the database that is identical

to mB except that m∗
B [Iw] = y′

B .
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GCdummy
i∗ [crs, s, k]:
1. (lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i)
2. (lbs′st || lbs′A || lbs′B || ·)← PPRF.Eval(s, i+ 1)
3. (st, Iw, Ir, Jr)← HeadPos(i)
4. (st′, I ′w, I

′
r, J

′
r)← HeadPos(i+ 1)

5. ki ← PPRF.Eval(k, Iw)
6. ki+1 ← PPRF.Eval(k, I ′w)

7. Lst ← GC.Input
(
lbsst, st

(i∗)
)

8. LA ← GC.Input
(
lbsA, z

(i∗)
A

)
9. LB ← GC.Input

(
lbsB , z

(i∗)
B

)
10. out← SCdummy

i∗
[
crs, ki∗ , ki∗+1,lbs

′
st, lbs

′
A, lbs

′
B

](
st(i

∗+1),z
(i∗+1)
A ,z

(i∗+1)
B

)
11. GC← SimGC

(
1λ, 1|SC

dummy
i∗ |, out, (Lst || LA || LB ;R)

)
return GC

Figure 6. Garbling Step Circuit in dummy mode.

SCsim
i∗ [crs, ki∗ , ki∗+1, lbsst, lbsA, lbsB ](st, zA, zB):
1. Parse (dA, xA) := zA
2. Parse (dB , x

′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. (st′, Iw, Ir, Jr)← HeadPos(i∗)
5. y′

B ← Sym.Enc(ki∗+1, 0)
6. if i∗ = T then

q := C(x)
7. else

q := ⊥
8. eA ← ULOT.Send(crs, dA, Jr, lbsA)
9. eB ← ULOT.SendWriteRead

(
crs, dB , Iw, y

′
B , lbsB[0], Ir, lbsB[1]

)
10. ŝt← GC.Input(st′, lbsst)

return
(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Figure 7. Step Circuit in sim mode.

Circuit Configuration. A circuit configuration conf consists of a subset of
garbling step circuits in dummymode as well as an index i∗ ∈ {1, . . . , T} denoting
the garbling step circuit to be changed by the rule.

Rules of Indistinguishability. We define the rules of indistinguishability
(which determine the configurations in the pebbling game) below.
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SimGarbleSC[crs, s](i∗):
1. if i∗ ∈ dummy then

return GCdummy
i∗ [crs, s, k]

2. else
(lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i)
(lbs′st || lbs′A || lbs′B || ·)← PPRF.Eval(s, i+ 1)
(st, Iw, Ir, Jr)← HeadPos(i)
(st′, I ′w, I

′
r, J

′
r)← HeadPos(i+ 1)

ki ← PPRF.Eval(k, Iw)
ki+1 ← PPRF.Eval(k, I ′w)

3. if i∗ ∈ real then
Set C′ ← SCi∗ [crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B ]

4. if i∗ ∈ sim then
Set C′ ← SCsim

i∗ [crs, ki∗ , ki∗+1, lbs
′
st, lbs

′
A, lbs

′
B ]

GC← GC.Garble
(
1λ,C′, (lbsst

∣∣∣∣ lbsA ∣∣∣∣ lbsB ;R)
)

return GC

Figure 8. Garbling Step Circuit in real, dummy and sim mode.

Rule A: Rule A dictates when a garbling step circuit can be indistinguishably
changed from real mode to dummy mode. Let conf and conf ′ be two valid
configurations and i∗ be an index of the garbling step circuit, such that:

– Index i∗ is changed from real mode to dummy mode, and there are no
indices in sim mode to the left of i∗.

– Index i∗ is either the first or its predecessor is in dummy mode.
– The garbling step circuits in sim mode remain unchanged.

In Lemma 3 we show that for two valid circuit configurations conf and conf ′,
satisfying the above constraints, the two distributions Hconf and Hconf′ are
computationally indistinguishable.

Rule B: Rule B dictates when a step circuit can be indistinguishably changed
from dummy mode to sim mode. Let conf and conf ′ be two valid
configurations and i∗ be an index of the garbling step circuit, such that:

– Index i∗ is changed from dummy mode to sim mode.
– Index i∗ is either the last or its predecessor is in dummy mode.
– The garbling step circuits in real mode remain unchanged.

In Lemma 4 we show that for two valid circuit configurations conf and conf ′,
satisfying the above constraints, the two distributions Hconf and Hconf′ are
computationally indistinguishable.

3.3 Proof of Indistinguishability for the Rules

Implementing Rule A
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Lemma 3 (Rule A). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule A. Assume that iO is an indistinguishability
obfuscator, GC is simulation secure, ULOT has sender privacy against semi-
honest receivers, and that PPRF is a puncturable pseudorandom function. Then,
for the two distribution ensembles {Hconfλ}λ∈N and {Hconf′λ}λ∈N it holds that∣∣∣∣∣ Pr

c←Hconfλ

[
A
(
1λ, c

)
= 1

]
− Pr

c←Hconf′λ

[
A
(
1λ, c

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

Proof of Lemma 3. We prove this with help of a hybrid argument.

Hconfλ : The garbling step circuit is in real mode.
H1: Instead of hardwiring the PPRF key s into SimGarbleSC, we hardwire the

key s{i∗} ← PPRF.Punc(s, i∗), that is punctured at i∗. Since we cannot
evaluate PPRF.Eval(s{i∗}, i∗), we additionally hardwire the labels and key
that are output by PPRF.Eval(s, i∗) into SimGarbleSC.

(lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i∗)

To be able to use the security of iO, the size of GarbleSC is padded to be
the same size as SimGarbleSC.

Claim (Hconf → H1). The advantage of any PPT adversary in distinguishing
between Hconf and H1 is:

AdvHconf→H1

A1
≤ AdviO-sec

iO,B1
.

Hconf → H1. The proof relies on the security of the indistinguishability
obfuscator iO to be able to switch the PPRF key and hardwire the labels.
The reduction B1 gets a bit b from the adversary A1, where b = 0 if the
obfuscated circuit is as described in Hconf and b = 1 if the obfuscated
circuit is as described in H1. If A1 wins the game with advantage ϵ, B1
wins the iO-sec game with greater than ϵ probability. □

H2: As opposed to using the labels output by PPRF.Eval(s, i∗), we sample a
string u from the uniform distribution Uλ.

Claim (H1 → H2). The advantage of any PPT adversary in distinguishing
between H1 and H2 is:

AdvH1→H2

A2
≤ AdvPPRF-randPPRF,B2

.

H1 → H2. The proof relies on the pseudorandomness property of PPRF, to
be able to switch the output of PPRF.Eval(s, i∗) with u. The reduction B2 gets
a bit b from the adversary A2, where b = 0 if the output of PPRF.Eval(s, i∗)
is used, and b = 1 if the uniform string is used. If A2 wins the game with
advantage ϵ, B2 wins the PPRF-rand game with greater than ϵ probability.

□
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H3: Since each label is computed twice, once in step i∗ − 1 and once in step i∗,
we now remove the following labels at step i∗ − 1;

lbsst \ GC.Input
(
lbsst, st

(i∗−1)
)

lbsA \ GC.Input
(
lbsA, z

(i∗−1)
A

)
lbsB \ GC.Input

(
lbsB , z

(i∗−1)
B

)
.

I.e., those used in steps 8-10 in SCdummy
i∗−1 . This is possible, since by the

constraints of rule A, the previous step is known to be in dummy mode.

Claim (H2 → H3). The distributions H2 and H3 are identical.

H2 → H3. We note that SCdummy
i∗ is not executed in the obfuscated circuit,

but rather computed locally by the simulator. The output is hardwired in
the obfuscated circuit, and we are simply removing unused variables. □

H4: We hardwire the output out of

GC.Garble
(
1λ,SCi∗

[
crs, ki∗ , ki∗+1, lbs

′, lbs′A, lbs
′
B

]
, (lbsst || lbsA || lbsB ;R)

)
into SimGarbleSC. iO reduction.

Claim (H3 → H4). The advantage of any PPT adversary in distinguishing
between H3 and H4 is:

AdvH3→H4

A4
≤ AdviO-sec

iO,B4
.

H3 → H4. The proof relies on the security of the indistinguishability
obfuscator iO to be able to hardwire the output of the garbling scheme.
The reduction B4 gets a bit b from the adversary A4, where b = 0 if the
obfuscated circuit is as described in H3 and b = 1 if the obfuscated circuit
is as described in H4. If A4 wins the game with advantage ϵ, B4 wins the
iO-sec game with greater than ϵ probability. □

H5: We simulate the garbling step circuit, as

GC← SimGC

(
1λ, 1|SCi∗ |, out, (Lst || LA || LB ;R)

)
,

where out ← SCi∗
[
crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B

] (
st(i

∗+1), z
(i∗+1)
A , z

(i∗+1)
B

)
,

and (lbs′st || lbs
′
A || lbs

′
B || R′) ← PPRF.Eval (s{i∗}, i∗ + 1). Recall that

st(i
∗+1), z

(i∗+1)
A , and z

(i∗+1)
B denote the state of the Turing machine M; the

digest dA and the input block xA; as well as the digest dB and the
encrypted input block xB , respectively, each at step i∗ + 1 of the
computation.
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Claim (H4 → H5). The advantage of any PPT adversary in distinguishing
between H4 and H5 is:

AdvH4→H5

A5
≤ AdvGC-secGC,B5

.

H4 → H5. The proof relies on the selective simulation security of the
garbling scheme GC to be able to simulate the garbling step circuit. The
reduction B5 gets a bit b from the adversary A5, where b = 0 if A5

identified {
GC.Garble

(
1λ,SCi∗

[
crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B

]
,

(lbsst || lbsA || lbsB ;R)
)
, (Lst || LA || LB ;R)

}
and b = 1 if A5 identified{

SimGC

(
1λ, 1|SCi∗ |, out, (Lst || LA || LB ;R)

)
, (Lst || LA || LB ;R)

}
.

If A5 wins the game with advantage ϵ, B5 wins the GC-sec game with greater
than ϵ probability. □

H6: We simulate the ULOT.Send ciphertext as
eA ← SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr]

))
. Recall that mA[Jr]

denotes M’s input tape mA at read location Jr, all at step i∗.

Claim (H5 → H6). The advantage of any PPT adversary in distinguishing
between H5 and H6 is:

AdvH5→H6

A6
≤ AdvSenPriExptULOT,B6

.

H5 → H6. The proof relies on the semi-honest sender privacy of ULOT to
be able to simulate the ciphertext. The reduction B6 gets a bit b from the
adversary A6, where b = 0 if A6 identified the ciphertext as

{ULOT.Send (crs, dA, Jr, lbsA)}

and b = 1 if A6 identified the ciphertext as{
SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr]

))}
.

If A6 wins the game with advantage ϵ, B6 wins the SenPriExpt game with
greater than ϵ probability. □

H7: We simulate the ULOT.SendWriteRead ciphertext as

eB ← SimULOT.WR

(
crs,mB , Iw, y

′
B , GC.Input

(
lbsB[0], d

∗
B

)
, Ir,

GC.Input
(
lbsB[1],m

∗
B[Ir]

))
. Here, m∗B denotes the database that is

identical to mB except that m∗B [Iw] = y′B , and d∗B ← ULOT.Hash (crs,m∗B).
Recall that Iw, Ir, and y′B denote the write location on the working tape;
the read location on the input tape mB ; and the encrypted block of
symbols that are output by M, respectively, all step i∗ of the computation.

22



Claim (H6 → H7). The advantage of any PPT adversary in distinguishing
between H6 and H7 is:

AdvH6→H7

A7
≤ AdvWriReaSenPriExpt

ULOT,B7
.

H6 → H7. The proof relies on the semi-honest sender privacy for writes and
reads of ULOT to be able to simulate the ciphertext. The reduction B7 gets
a bit b from the adversary A7, where b = 0 if A7 identified the ciphertext as{

ULOT.SendWriteRead
(
crs, dB , Iw, y

′
B , lbsB[0], Ir, lbsB[1]

)}
and b = 1 if A7 identified the ciphertext as{

SimULOT.WR

(
crs,mB , Iw, y

′
B ,GC.Input

(
lbsB[0], d

∗
B

)
, Ir,

GC.Input
(
lbsB[1],m

∗
B[Ir]

))}
.

If A7 wins the game with advantage ϵ, B7 wins the WriReaSenPriExpt game
with greater than ϵ probability. □

H8 −H10: Finally, we revert the changes made in H1 − H3. Here, the
indistinguishability between H8 − H10 follows analogous to that of
H1 −H3.

Hconf′λ : The step circuit is in dummy mode.

This concludes the proof of Lemma 3. ■

Implementing Rule B

Lemma 4 (Rule B). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule B. Assume that iO is an indistinguishability
obfuscator, GC is simulation secure, ULOT has sender privacy against semi-
honest receivers, and that PPRF is a puncturable pseudorandom function. Then,
for the two distribution ensembles {Hconfλ}λ∈N and {Hconf′λ}λ∈N it holds that∣∣∣∣∣ Pr

c←Hconfλ

[
A
(
1λ, c

)
= 1

]
− Pr

c←Hconf′λ

[
A
(
1λ, c

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

Proof of Lemma 4. We prove this with help of a hybrid argument. To keep the
proof similar to that of Lemma 3, we start with hybrid Hconf′ and end with
hybrid Hconf .

Hconf′ : The garbling step circuit is in sim mode.
H1: Same as H1 in Lemma 3.
H2: Same as H2 in Lemma 3.
H3: Same as H3 in Lemma 3.
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H4: Instead of hardwiring the PPRF key k into SimGarbleSC, we hardwire the
key k{i∗} ← PPRF.Punc(s, Iw), where Iw is the position of the writing head
of the Turing Machine at step i∗. We additionally hardwire the labels and
key that are output by PPRF.Eval(k, Iw) into SimGarbleSC.

ki∗ ← PPRF.Eval(k, Iw)

To be able to use the security of iO, the size of GarbleSC is padded to be
the same size as SimGarbleSC.

Claim (H3 → H4). The advantage of any PPT adversary in distinguishing
between H3 and H4 is:

AdvH3→H4

A4
≤ AdviO-sec

iO,B4
.

H3 → H4. The proof follows by a reduction to the security of the obfuscator,
since the two circuits are functionally equivalent. □

H5: As opposed to using the key output by PPRF.Eval(k, Iw), we sample a string
u from the uniform distribution Uλ.

Claim (H4 → H5). The advantage of any PPT adversary in distinguishing
between H4 and H5 is:

AdvH4→H5

A5
≤ AdvPPRF-randPPRF,B5

.

H4 → H5. Follows by the pseudorandomness of the puncturable PRF. □

H6: We hardwire the output out of

GC.Garble
(
1λ,SCsim

i∗
[
crs, ki∗ , ki∗+1, lbs

′, lbs′A, lbs
′
B

]
, (lbsst || lbsA || lbsB ;R)

)
into SimGarbleSC.

Claim (H5 → H6). The advantage of any PPT adversary in distinguishing
between H5 and H6 is:

AdvH5→H6

A6
≤ AdviO-sec

iO,C6 .

H5 → H6. The proof relies on the security of the indistinguishability
obfuscator iO to be able to hardwire the output of the garbling scheme.
The reduction C6 gets a bit b from the adversary A6, where b = 0 if the
obfuscated circuit is as described in H5 and b = 1 if the obfuscated circuit
is as described in H6. If A6 wins the game with advantage ϵ, B6 wins the
iO-sec game with greater than ϵ probability. □

H7: We simulate the garbling step circuit, as

GC← SimGC

(
1λ, 1|SC

sim
i∗ |, out, (Lst || LA || LB ;R)

)
,
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where out ← SCsim
i∗ [crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B ]

(
st(i

∗+1), z
(i∗+1)
A , z

(i∗+1)
B

)
,

and (lbs′st || lbs′A || lbs′B ;R
′) ← PPRF.Eval (s{i∗}, i∗ + 1). Recall that

st(i
∗+1), z

(i∗+1)
A , and z

(i∗+1)
B denote the state of the Turing machine M; the

digest dA and the input block xA; as well as the digest dB and the
encrypted input block xB , respectively, each at step i∗ + 1 of the
computation.

Claim (H6 → H7). The advantage of any PPT adversary in distinguishing
between H6 and H7 is:

AdvH6→H7

A7
≤ AdvGC-secGC,B7

.

H6 → H7. The proof relies on the selective simulation security of the
garbling scheme GC to be able to simulate the garbling step circuit. The
reduction B7 gets a bit b from the adversary A7, where b = 0 if A7

identified {
GC.Garble

(
1λ,SCsim

i∗
[
crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B

]
,

(lbsst || lbsA || lbsB ;R)
)
, (Lst || LA || LB ;R)

}
and b = 1 if A7 identified{

SimGC

(
1λ, 1|SC

sim
i∗ |, out, (Lst || LA || LB ;R)

)
, (Lst || LA || LB ;R)

}
.

If A7 wins the game with advantage ϵ, B7 wins the GC-sec game with greater
than ϵ probability. □

H8: Same as H6 in Lemma 3.
H9: Same as H7 in Lemma 3.
H10: Instead of computing the state st′, the write location Iw, the read locations

Ir and Jr using HeadPos(i), as well as computing y′B as Sym.Enc
(
ki∗+1, 0

)
;

we compute the output of CM, and y′B as Sym.Enc
(
ki∗+1, yB

)
.

Claim (H9 → H10). The advantage of any PPT adversary in distinguishing
between H9 and H10 is:

AdvH9→H10

A10
≤ AdvΠ,B10

.

H9 → H10. The proof relies on the chosen plaintext attack security of the
symmetric encryption scheme Π to be able to switch from encrypting 0 to
yB . We can do this, since the constraints of rule B ensure that the next
circuit is in sim mode and therefore the key ki∗+1 is not present in the view
of the distinguisher. The reduction C10 gets a bit b from the adversary A10,
where b = 0 if the plaintext is 0, and b = 1 if the plaintext is yB . If A10 wins
the game with advantage ϵ, B10 wins the symmetric encryption game with
greater than ϵ probability. □
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H11 −H13: Finally, we revert the changes made in H1 − H3. Here, the
indistinguishability between H11 − H13 follows analogously to that of
H1 −H3.

Hconf : The garbling step circuit is in dummy mode.

This concludes the proof of Lemma 4. ■

Proof of Theorem 3. The sequence of hybrids shown in the proof of Lemma 3
and Lemma 4 are reversible, and imply an inverse of rule A and rule B. Thus, the
proof of Theorem 3 follows directly from the proofs of Lemma 3 and Lemma 4.

■

3.4 Removing the Output Dependency

We note that our whilst our construction [Fig. 4] outputs only one bit, a generic
transformation can be used to output multiple bits. Depending on the security
definition that we want to achieve, there are two generic ways to carry out such
a transformation.

Simulation Security. If we insist on simulation security (which is the same
definition achieved by the protocol in [Fig. 4]) we can simply hash the circuit
Φ as d ← LFE.Hash(crs, Φ), where Φ takes as input an mB and an index i and
returns the i-th output bit of C(x)i. Then, for all output bits we let the sender
compute

c :=
(
c1 ← LFE.Enc(crs, d, (x, 1)), . . . , c|y| ← LFE.Enc(crs, d, (x, |y|))

)
where |y| denotes the output size. The reciever can then recover the output
bit-by-bit. Security follows from a standard hybrid argument.

Indistinguishability. If we relax the requirements to
indistinguishability-based security, then it becomes possible to remove the
output dependency entirely. Specifically, we require that LFE.Enc(crs, d, x) and
LFE.Enc(crs, d, x̄) are computationally indistinguishable, for pairs (x, x̄) such
that C(x) = C(x̄).

Our scheme proceeds as described above except that the sender does not
explicitly compute the ciphertexts

(
c1, . . . , c|y|

)
, instead the sender obfuscates a

circuit that given an index i ∈ {1, . . . , |y|} returns

LFE.Enc
(
crs, d, (x, i);PPRF.Eval(k, i)

)
where k is the key of a puncturable PRF. To compute the output, the receiver
evaluates the obfuscated circuit on all possible indices to recover

(
c1, . . . , c|y|

)
,

then she applies the LFE.Dec algorithm to recover the output bit-by-bit. Observe
that now the size of the ciphertext depends on |y| only logarithmically.

In terms of security, we can show indistinguishabilty by defining (|y|+1)-many
intermediate distributions, where in the i∗-th distribution Hi∗ we obfuscate the
circuit that given an index i ∈ {1, . . . , |y|} returns

LFE.Enc
(
crs, d, (x̄, i);PPRF.Eval(k, i)

)
, if i < i∗

LFE.Enc
(
crs, d, (x, i);PPRF.Eval(k, i)

)
, otherwise.
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Note that H0 is functionally equivalent to the original obfuscated circuit,
whereas H|y|+1 is functionally equivalent to the encryption of x̄. Thus, it suffices
to show that Hi∗ and Hi∗+1 are computationally indistinguishable. This is done
with help of a five-steps argument:

– First we puncture the PRF key at point i∗, and indistinguishability follows
from the security of iO.

– We switch PPRF.Eval(k, i∗) with a uniform string u, which is
indistinguishable by the security of the puncturable PRF.

– We hardwire the output of c∗ ← LFE.Enc(crs, d, (x, i∗);u) in the obfuscated
circuit. Again, indistinguishability follows from the security of iO.

– We set c∗ ← LFE.Enc(crs, d, (x̄, i∗);u). Indistinguishability follows from the
security of LFE.

– We undo the modifications done by the first three steps.

Note that the first distribution is identical to Hi∗ , whereas the latter is identical
to Hi∗+1.
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