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Abstract. Homomorphic secret sharing (HSS) is a form of secret shar-
ing that supports the local evaluation of functions on the shares, with
applications to multi-server private information retrieval, secure compu-
tation, and more.
Insisting on additive reconstruction, all known instantiations of HSS
from “Learning with Error (LWE)”-type assumptions either have to rely
on LWE with superpolynomial modulus, come with non-negligible error
probability, and/or have to perform expensive ciphertext multiplications,
resulting in bad concrete efficiency.
In this work, we present a new 2-party local share conversion procedure,
which allows to locally convert noise encoded shares to non-noise plain-
text shares such that the parties can detect whenever a (potential) error
occurs and in that case resort to an alternative conversion procedure.
Building on this technique, we present the first HSS for branching pro-
grams from (Ring-)LWE with polynomial input share size which can
make use of the efficient multiplication procedure of Boyle et al. (Euro-
crypt 2019) and has no correctness error. Our construction comes at the
cost of a – on expectation – slightly increased output share size (which
is insignificant compared to the input share size) and a more involved
reconstruction procedure.
More concretely, we show that in the setting of 2-server private informa-
tion retrieval we can choose ciphertext sizes of only a quarter of the size
of the scheme of Boyle et al. at essentially no extra cost.

1 Introduction

In 1979, Shamir introduced the concept of secret sharing information in
his seminal paper How to Share a Secret [31]. In the two-party setting,
secret sharing allows to split up a secret value into two secret shares, such
that each share individually hides the secret, whereas the shares together
allow to recover it. The simplest secret-sharing scheme is additive secret
sharing, where a value x in an additive group G is split into x0, x1,
such that x0, x1 are distributed uniformly at random conditioned on
x0 + x1 = x. Despite its simplicity, additive secret sharing comes with a



number of nice properties. For example, it allows the local evaluation of
linear functions on the shares.
In 2019, Boyle, Gilboa and Ishai [10] extended this notion to homomor-
phic secret sharing (HSS), which allows the local evaluation of larger
classes of function on the shares, while keeping the nice properties of
additive secret sharing (so far possible). More precisely, a homomorphic
secret-sharing scheme for a function class F (over some input space G)
has the following properties:
– The secret shares individually hide the message (computationally).
– The secret shares are succinct, i.e., they are polyomial in the size of

the secret to be shared (in particular, they are independent of the
complexity of the function class F).

– The secret shares allow local evaluation of all functions f ∈ F . More
precisely, there exists an evaluation procedure Eval, such that given
secret shares x0, x1 of x ∈ G, it holds Eval(f, x0)+Eval(f, x1) = f(x).

Note that the last condition explicitly requires additive reconstruction,
i.e., evaluation results in an additive secret sharing of the output. While
this requirement can be relaxed to more general reconstruction functions
(as we will do in this work), it has a number of useful features, such as
allowing the local postprocessing with linear functions.
Since their introduction, homomorphic secret sharing has found numer-
ous applications, including 2-server private-information retrieval [24, 9,
19, 11, 32], low-communication secure computation [10, 12, 8, 20], and
succinct generation of correlated (pseudo-)randomness [6, 7].
In [10], Boyle et al. presented a homomorphic secret-sharing scheme from
the decisional Diffie-Hellman assumption for the class of restricted mul-
tiplication straight-line (RMS) programs. These programs are restricted
in that they only allow multiplication between an input value and a
memory value (where a memory value is an intermediate value in the
computation), but not a multiplication between two memory values. It
can be shown that this captures the class of polynomial-size branching
programs, and circuits of constant fan-out and logarithmic depth (i.e.,
circuits in the complexity class NC1).
Since then, further HSS constructions for RMS programs have been pro-
posed based on the decisional Diffie-Hellman assumption [8], the Paillier
assumption [23, 28, 30], and based on the learning with errors (LWE)
assumption [22, 14, 16]. All schemes, however, come with some efficiency
bottleneck: either the evaluation is computationally expensive [10, 22,
23, 8, 28, 30, 16] and/or the input shares have high concrete overhead
resulting in bad communication complexity [22, 14, 16].
In particular, while the scheme of Boyle et al. BKS [14] comes with desir-
able properties such as (plausible) post-quantum security and (compar-
atively) efficient multiplication on ciphertexts, it inherently has to rely
on LWE with (double-)superpolynomial modulus (and thus large cipher-
texts) in order to keep the error probability negligible. The reason for
their (double-)superpolynomial modulus is a share conversion procedure
to locally convert noise encoded shares modulo q to non-noisy shares
modulo q. In order to achieve negligible error probability, they need to
choose moduli p, q with 1 � p � q, where each � denotes a super-
polynomial gap. The starting point for our work can thus be phrased as
follows.
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Is it possible to design a share-conversion procedure for
polynomial-sized p, q without introducing a non-negligible error?

1.1 Our Contribution

In this paper, we answer this question (somewhat) affirmatively and
present an HSS scheme from LWE for RMS programs with polynomial
modulus, which otherwise inherits the nice properties from BKS. Our
core technique is a share conversion which allows to locally detect and
tentatively correct potential errors. On the downside, we have to re-
lax additive reconstruction to a more involved reconstruction procedure,
where the parties choose the output from an expected constant-size list
of potential output values. In the following we give a high-level overview
of our main results, which we discuss in more detail in the technical
overview.

Our core lemmas. Our core technique can be captured in the following
two lemmas for share conversion, a crucial step in the homomorphic eval-
uation of multiplications. Informally, the lemma states that (for round-
ing) there exist local conversion procedures that return shares flag0, z0
and flag1, z1, z

′
1, respectively, such that either z0 = z1 mod p or z0 = z′1

mod p, where the latter holds if and only if flag0 = flag1 = 1. This ex-
tends the technique of BKS, who only consider the case flag0 = flag1 = 0
and choose parameters to ensure that this holds except with negligible
probability.

Lemma 1 (Rounding with correction [Lemma 5, 6]). Let p, q ∈ N
with p|q. Then, there exist efficient procedures Round0 : Zq → {0, 1}×Zp
and Round1 : Zq → {0, 1} × Z2

p such that the following holds:
For any x ∈ Zp, any e ∈ Z with |e| < q/(4p), and any t0, t1 with

t0 + t1 = q

p
· x+ e mod q,

it holds

x =
{
z0 + z1 mod p if flag0 = 0 ∨ flag1 = 0 ,
z0 + z′1 mod p if flag0 = flag1 = 1 ,

where (flag0, z0)← Round0(t0) and (flag1, z1, z
′
1)← Round1(t1).

Further, for t0, t1 chosen at random, it holds flag0 = flag1 = 0 with
probability at least 1− (4 · |e| · p)/q.

Similarly, we extend their lemma for lifting.

Lemma 2 (Lifting with correction [Lemma 8, 9]). Let p, q ∈ N
with p|q. Then, there exist efficient procedures Lift0 : Zp → {0, 1} × Zq
and Lift1 : Zp → {0, 1} × Z2

q such that the following holds:
For any x ∈ Zp, with |x| < p/6, and any z0, z1 with

z0 + z1 = x mod p,
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it holds

x =
{
v0 + v1 mod q if flag0 = 0 ∨ flag1 = 0 ,
v0 + v′1 mod q if flag0 = flag1 = 1 ,

where (flag0, v0)← Lift0(z0) and (flag1, v1, v
′
1)← Lift1(z1).

Further, for z0, z1 chosen at random it holds flag0 = flag1 = 0 with
probability at least 1− (4 · |x|)/p.

Our HSS. We show that building on the core lemma, we obtain an HSS
with one-sided error correction. More precisely, P0 will follow a fixed
computation path (remembering the wires where flag0 = 1). Party P1
on the other hand, continues the computation for z1 and z′1 whenever
flag1 = 1 for some wire. In the end, the parties can reconstruct the value
by choosing the computation path that resorts to the alternative com-
putation for P1 whenever flag0 = 1 and flag1 = 1 for some wire. Note
that this potentially results in exponential computation time for P1. We
resolve this by choosing the parameters depending on the number of mul-
tiplications to be performed, such that the overall number of expected
errors is 1 (or less). This means that on expectation P1 has to perform
the computation twice (from some point in the program on) and finally
obtains two output shares. We want to stress that the output shares
(corresponding to plaintext values) are typically several orders of magni-
tude smaller than the input shares (corresponding to ciphertext values).
The increase in output values is therefore insignificant compared to the
savings in input shares.
For instantiating our HSS, we present a trade-off between ciphertext
size (equaling the input share size) and expected number of output
shares. More precisely, instantiating the underlying public-key encryp-
tion scheme PKE with the Ring-LWE based encryption scheme of Lyuba-
shevsky, Peikert and Regev [27] over the ring R = Z[X]/(XN + 1), we
obtain the following.

Lemma 3 (Corollary of Lemma 11). Let γ > 1. Let P be a branching
program with multiplicative size |P | (i.e., number of load and multipli-
cation operations) and magnitude bound Bmax (i.e., upper bound on all
intermediary computation values). Then, setting p ≥ 8 ·Bmax ·N · |P |/ ln γ
and q ≥ 8 · p ·N · |P |/ ln γ in our HSS construction party P1 obtains at
most γ output shares on expectation.

Setting γ = 1 + λ−ω(logλ) (and thus obtaining 1/ ln γ ≈ λω(logλ)) we can
recover the negligible error probability at the cost of superpolynomial
ciphertext sizes of BKS.

HSS with perfect correctness. As a corollary of our techniques, we can
obtain an HSS for RMS programs that satisfies perfect correctness, since
the parties can always detect and correct the errors.
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Bmax N log q

2 2048 71
216 2048 86
232 4096 104
264 4096 136
2128 8192 202
2256 8192 330

Table 1: Our HSS pa-
rameters for program size
|P | = 220, γ = 2.

Bmax N log q

2 4096 137
216 4096 167
232 8192 203
264 8192 267
2128 16384 399
2256 16384 655

Table 2: BKS HSS param-
eters with per gate error
probability 2−40.

Concrete efficiency. In Tables 1 and 2, we give concrete parameter
sizes in comparison with the scheme of BKS, depending on the program
size |P |. Note that the parameters of the BKS HSS scheme also have
to grow with the program size of the underlying program |P | to ensure
a fixed error probability, similarly to our scheme. Even without taking
this into account (i.e., considering an error probability of 2−40 after one
operation rather than |P |), it can be seen that our scheme can achieve a
factor 4 shorter ciphertexts.

HSS with expected constant-time evaluation. The focus of our paper
are applications where there is no privacy requirement for reconstruction,
and thus expected constant-time evaluation can be dealt with by cutting
off the computation after a fixed certain number of operations. We note
though that the expected running time of the evaluation algorithms im-
poses challenges in applications such as secure two-party computation,
where party P0 can potentially derive information about the input from
the response time of P1. We leave dealing with this issue as an interesting
open question.

Share reconstruction with privacy. We note that (apart from the above
described problem concerning run-time leakage) the problem of share
reconstruction with privacy can be viewed as (one-server) private infor-
mation retrieval by keywords [17] satisfying a strong notion of database
privacy, where the client (here party P0) is not allowed to learn anything
about the number and content of the database held by the server (here
party P1), except for the queried entry. This can be viewed as a special
case of labelled private-set intersection [15, 18] and can be instantiated
by relying on somewhat homomorphic encryption. (Note here that the
database for share reconstruction is very small on expectation, and thus
even using expensive ciphertext multiplication for the final reconstruc-
tion would in typical applications not have a significant impact on the
overall run time.)

Impossibility of fully local share conversion. To complement our re-
sult, we show that no direct local share conversion (i.e., not resorting to

5



an alternative conversion procedure) can achieve negligible error, show-
ing that the BKS HSS scheme inherently requires either superpolynomial
ciphertext or some postprocessing on the outputs.

Limitation to 2-party HSS. As for BKS, our techniques are inherently
limited to the two-party case, since we use some “symmetry” properties
between the two shares. More precisely, we rely on the fact that if t0+t1 =
q
p
·x+ e, then the distance of t0 and t1 to the next (potentially different)

multiple of q
p

differs only by |e|. This is no longer true for three or
more parties, where local rounding results in a constant error probability
(independent of p and q). Going beyond the two-party case therefore
inherently requires new techniques.

Beyond HSS. A corollary of our core lemma is that the secure recon-
struction of x mod p given t0 + t1 = q

p
· x+ e can be performed using a

single string-OT, where party P0 acts as the sender with input-bit flag0
and P1 acts as the receiver inputting (z1, z1) if flag1 = 0 and (z1, z

′
1) else.

This might have applications to encryption with 2-party distributed de-
cryption, as used, e.g., in lattice-based electronic voting schemes.

HSS rounding vs. learning with rounding (LWR). The rounding
function which underlies [14] and this paper is essentially the same as
the rounding function used for LWR [4]. While [4] uses non-distributed
rounding to reduce the hardness of LWR to LWE (essentially building
on the fact that the LWE error is “rounded away” with high probabil-
ity), the line of work on constructing HSS via rounding needs a stronger
property on distributed rounding towards achieving correctness. In par-
ticular, the techniques to reduce the modulus in the reduction from LWR
to LWE from super-polynomial to polynomial [2, 5] do not appear to help
in reducing the modulus for LWE-based HSS constructions.

1.2 Technical Overview

In the following, we give an overview of the idea behind our core lemma
and our HSS construction. For the purpose of the technical overview, we
assume R = Z, n ∈ N, and p = p(λ), q = q(λ) ∈ N such that p|q. By
writing p� q, we denote that q/p ∈ λω(1).

Restricted Multiplication Straight-Line Programs (RMS). Recall that
for RMS programs there is a distinction between input values (inputs to
the program) and memory values (intermediary computation values) and
the following operations are supported:
– Loading an input value into memory;
– Adding two memory values;
– Multiplying an input value with a memory value;
– Outputting a memory value.
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The HSS scheme of [14]. Our starting point is the HSS scheme of [14].
The basis of their construction is an encryption scheme with nearly linear
encryption. More precisely, let PKE = (Gen,Enc,Dec) be a public-key
encryption scheme over message space Zp, such that the secret key and
ciphertext space is Zdq . Recall that PKE satisfies nearly linear decryption,
if for all secret keys s, all messages m ∈ Zp, and and all encryptions c
of m, it holds

〈s, c〉 ≈ q

p
·m mod q.

Further, BKS requires that s has only entries in {−1, 0, 1} (or otherwise
small bounded values). As observed in [14], these requirements are indeed
satisfied by (variants of) many lattice-based encryption schemes [29, 3,
26, 4, 25].
Now, if Bmax ∈ N with Bmax � p � q/Bmax, then an HSS for RMS
programs with magnitude bound Bmax can be obtained as follows.
Key generation. The HSS key generation generates a key pair accord-

ing to the key generation algorithm PKE.Enc and outputs secret key
shares ek0 := s0 to P0 and ek1 := s1 to P1, s.t., s0 + s1 = s for the
secret key s ∈ {0, 1}d.

Input and memory values. Values are stored as follows.
– Input values: Input values |x| ≤ B are encrypted as
{Enc(x · si)}i∈[d], where si is the i-th component of s. (Note
that by the techniques of BKS this is possible given knowledge
only of the public key of the underlying encryption scheme. We
will give more details on this in the main body of the paper.)

– Memory values: Memory values |y| ≤ B are secret shared as
t0, t1, such that t0 + t1 = y · s mod q.

Note that adding two memory values is straightforward by the linearity
of additive secret sharing. Further, assuming that the first component
of the secret key s is always one (which is straightforward to achieve),
outputting a memory value mod q can be done by simply outputting the
first entry of the corresponding share. Finally, loading an input value is
equivalent to multiplying an input value by 1. We therefore restrict to
describing the restricted multiplication in the following.
To perform a multiplication of an input value x encrypted as {ci}i∈[d]
with a memory value y shared as (t0, t1), the idea is for the parties to
locally compute tpre

b as tpre
b,i := 〈ci, tb〉. By the property of nearly linear

decryption, this yields:

tpre
0,i + tpre

1,i = 〈ci, y · s〉 = y · 〈ci, s〉 ≈
q

p
· x · y · si mod q,

and thus
tpre

0 + tpre
1 ≈

q

p
· x · y · s mod q.

The challenging part is to locally convert the shares tpre
b into memory

values, i.e., tout
0 + tout

1 = x · y · s mod q. To that end, BKS [14] introduce
the rounding and lifting technique, which allow local share conversion. In
the following, we will focus on the rounding technique, since the lifting
technique (to lift shares modulo p to shares modulo q) can be adapted
similarly.
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P0 P1

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundRound

RoundRound

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundRound

RoundRound

Fig. 1: Depiction of the local rounding procedure. If both shares are
outside the area highlighted in red, then no rounding error occurs.

Lemma 4 (Rounding [BKS [14]]). Let p, q ∈ N such that p|q. Let
x ∈ Zp and let e ∈ Z with |e| � q/p. Let t0, t1 ∈ Zq be sampled uniformly
at random subject to

t0 + t1 = q

p
· x+ e mod q.

Then there exists an efficient deterministic procedure Round such that

Round(t0) + Round(t1) = x mod p

except with negligible probability.

Towards HSS from polynomial-modulus LWE. A straightforward
approach towards HSS with polynomial modulus is to choose p, q of
polynomial-size and handle the resulting non-negligible error with the
generic error correction techniques of [10] introduced towards HSS from
decisional Diffie-Hellman (where a non-negligible error is inherent [21]).
These generic error correcting techniques come with a high concrete
overhead though: If the error probability is a constant, then ω(log λ)-
repetitions are necessary to achieve negligible error-probability via a ma-
jority vote. Thus, both the evaluation time and the size of the output
shares are increased by a factor of ω(log λ).

This work: HSS from polynomial-modulus LWE with fine-grained
error correction. In this work, we show that in the case of LWE –
and unlike decisional Diffie-Hellman – it is actually possible to detect
(potential) errors, and therefore only correct if an error really occurs (or
is very likely to occur). In order to outline our techniques, in the following
we take a closer look at the rounding procedure from above.
To simplify presentation, for the rounding technique we assume p = 2
and 4|q (to ensure q

2 and q
4 are integers). We give a depiction of the

rounding procedure in Figure 1, where Round : Zq → Z2 is defined as

Round(y) :=
⌊

2
q
· y
⌉

mod 2.
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P0 P1

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundDownRoundDown

RoundDownRoundDown

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundUpRoundUp

RoundUpRoundUp

Fig. 2: Depiction of the alternative local rounding procedure. If at least
one of the shares is inside the area highlighted in red, then no rounding
error occurs.

Now, assume to be given shares t0, t1 chosen at random conditioned on

t0 + t1 = q

2 · x+ e,

where x ∈ {0, 1} and e is some error. Then, as observed in BKS [14], if at
least one of the shares t0, t1 is outside the red area

[
− q4 ± |e|

]
∪
[
q
4 ± |e|

]
,4

then no rounding error occurs, i.e.,⌊
2
q
· t0
⌉

+
⌊

2
q
· t1
⌉

= x mod 2.

This crucially relies on the fact that for the shares it holds that t0+t1 = e
mod q or t0 + t1 = q

2 + e mod q. Now, assume t0 is outside the red area
and Round(t0) = 0 (the other cases are similar). Then, it must hold that
t0 has distance < q

4 − |e| from 0. Thus, if t0 + t1 = e, it must hold that
t1 has distance < q

4 from 0, and thus Round(t1) = 0 as required. On the
other hand, if t0 + t1 = q

2 + e mod q, then t1 must have distance < q
4

from q
2 , and thus Round(t1) = 1 as required.

If |e| � q
2 , then the probability of a random element y $← Zq lying in the

red area is negligible, and thus by the above considerations no rounding
error occurs except with negligible probability.
Towards correcting the error, we observe that – on the other hand – if at
least one of the shares t0, t1 is inside one of the bad areas, then following
an alternative procedure (depicted in Figure 2) no rounding error occurs.
The alternative rounding procedures RoundDown,RoundUp are defined
as

RoundDown(x) :=
⌊

2
q
· x
⌋

mod 2, RoundUp(x) :=
⌈

2
q
· x
⌉

mod 2.

4 Here, we consider Zq to be represented as integers in the interval
(
− q2 ,

q
2

]
. For

y ∈
{
− q4 ,

q
4

}
, by [y ± |e|] we denote the interval containing all z ∈ Zq having at

most distance |e| from y (considered as integer).
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P0 P1

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

Round(Down)Round

RoundRound(Down)

q
4 ± 2|e|

0→ 0

− q4 ± 2|e|

q
2 → 1

RoundRound

RoundRound

q
4 ± 2|e|

0→ 0

− q4 ± 2|e|

q
2 → 1

Round, flag = 0Round, flag = 0

Round, flag = 0Round, flag = 0

RoundUp, flag = 1

RoundUp, flag = 1

Fig. 3: Depiction of the asymmetric local rounding procedure, where
party P1 is fully in charge of the error correction.

In other words, party P0 rounds all negative numbers
(
− q2 ,−1

]
to−1 = 1

mod 2, and all positive number
[
1, q2
]
to 0, and P1 rounds all negative

numbers
(
− q2 ,−1

]
to 0, and all positive numbers

[
1, q2
]
to 1 (and 0 is

always rounded to 0).
The idea here is that if at least one of the shares t0, t1 is inside the red
area, then the other share is also |e|-close to the red area, and therefore
one party rounding up and the other party rounding down always yields
the correct result (as long as |e| < q

4 ). More precisely, assume that t0 is
in the red area and Round′(0, t0) = 0, i.e., t0 ∈

[
q
4 ± |e|

]
(the other cases

are similar). Now, if t0 + t1 = e mod q, then t1 ∈
[
− q4 ± 2 · |e|

]
, and

thus Round′(1, t1) = 0. If t0 + t1 = q
2 + e mod q, on the other hand, it

holds t1 ∈
[
q
4 ± |e|

]
and thus Round′(1, t1) = 1 as required.

Given these two observations, we obtain our first core lemma (Lemma
1). We present the corresponding rounding procedures in Figure 3. Here,
P0 always follows a fixed rounding procedure, where P0 uses the normal
rounding procedure outside the red area, and the rounding procedure
RoundDown inside the red area. If its share is within the red area, it sets
flag = 1 for the corresponding wire, and flag = 0 otherwise. If the share
of P1 is outside the (now larger) red area, it follows the standard round-
ing procedure, and sets flag = 0. If the share of P1 is inside the larger
red area, it follows both the standard rounding procedure (depicted by
the blue arrows) and the RoundUp rounding procedure (depicted by the

10



dashed arrows) and sets the flags to 0 and 1, respectively. For reconstruc-
tion, the parties resort to the alternative (“dashed”) computation path
whenever both parties set flag = 1 on the corresponding wire.
Together with our new lifting lemma, this yields our HSS scheme. A
crucial part of our construction is carefully taking account of the gates
with flag = 1, which we explain in the main body.

2 Preliminaries

In this section we define the HSS primitive as well as the computational
model for programs supported by our construction. We begin by intro-
ducing some notation. For n ∈ N, [n] denotes the set {1, . . . , n}. We
denote by λ the security parameter.
We will work with the ring R = Z[X]/(XN + 1), where N ≤ poly(λ) is
a power of 2. The infinity norm on R is defined as ‖x‖∞ = maxi∈[n] |xi|
for x ∈ R with coefficients x1, . . . , xn. For q ∈ N, let Rq = R/qR, where
we consider elements of Rq to have all their coefficients in the interval
(−q/2, . . . , q/2].

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing with a general decoding algo-
rithm for the reconstruction of shares, as defined by Boyle et al. [13],
in the public-key setting. We note that HSS is commonly defined with
the stronger requirement of additive reconstruction, which enjoys sev-
eral useful properties. By considering the more general definition, our
scheme is able to forego some of those properties for efficiency. More-
over, we show that the decoding functionality can be easily and securely
realized, depending on the application setting.

Definition 1 (Homomorphic Secret Sharing). A 2-party public-
key homomorphic secret sharing (HSS) scheme for a class of programs
P consists of algorithms (Gen,Enc,Eval,Dec) with the following syntax:
– Gen(1λ) : On input a security parameter 1λ, the key generation algo-

rithm outputs a public key pk and a pair of evaluation keys (ek0, ek1).
– Enc(pk, x) : On input the public key pk and an input value x, the

encryption algorithm outputs a ciphertext c.
– Eval(σ, ekσ, (c1, . . . , cn), P, β) : On input a party index σ ∈ {0, 1},

evaluation key ekσ, a vector of n ciphertexts, a program P ∈ P with n
input values, and an output modulus β, the homomorphic evaluation
algorithm outputs a share yσ.

– Dec(y0, y1, β) : On input shares y0, y1 and an output modulus β, the
decoding algorithm outputs a value y.

The algorithms (Gen,Enc,Eval,Dec) should satisfy the following correct-
ness and security requirements:

Perfect correctness. For all λ ∈ N, inputs x1, . . . , xn, program P ∈ P,
and integer β ≥ 2, we have

Dec(y0, y1, β) = P (x1, . . . , xn),
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where (pk, ek0, ek1) ← Gen(1λ), ci ← Enc(pk, xi) for i ∈ [n] and yσ ←
Eval(σ, ekσ, (c1, . . . , cn), P, β) for σ ∈ {0, 1}.

Security. For all λ ∈ N and for all PPT adversaries A,

Pr

A(state, pk, ekσ, c) = b

∣∣∣∣∣∣∣∣∣
(σ, x0, x1, state)← A(1λ)
b← {0, 1}

(pk, ek0, ek1)← Gen(1λ)
c← Enc(pk, xb)

− 1
2 ≤ negl(λ).

Remark 1. We relax the definition of HSS by not requiring the Eval al-
gorithm to run in polynomial time, but only expected polynomial time,
which will be the case in our construction. This can be converted into
polynomial time by halting the computation after some fixed number of
steps.

2.2 Restricted Multiplication Straight-line Programs

Our HSS scheme supports homomorphic evaluation of the class of Re-
stricted Multiplication Straight-line (RMS) programs. These are a re-
stricted form of arithmetic circuits in which multiplication of interme-
diate values is not possible; only multiplication of an input value by an
intermediate value (or memory value) is allowed.

Definition 2 (RMS programs).
An RMS program over the ring R consists of a magnitude bound Bmax
and a sequence of instructions of the four types below, each indicating its
ingoing and outgoing wires and ordered by a unique identifier id ∈ N.

– Load input into memory: instruction (load, id, x, w) sets input x as a
memory value in wire w (ŷw ← x̂).

– Add values in memory: instruction (add, id, u, v, w) adds the values
in wires u and v (ŷw ← ŷu + ŷv). 5

– Multiply input by memory value: instruction (mult, id, x, v, w) multi-
plies the input x and the memory value in wire v (ŷw ← x̂ · ŷv).

– Output from memory: instruction (out, id, w) outputs the value in
wire w as an element of Rβ.

If at any step of execution the magnitude of a memory value exceeds the
bound Bmax (i.e. ‖ŷw‖∞ > Bmax), the output of the program on the cor-
responding input is defined to be ⊥. Otherwise the output is the sequence
of values given by the out instruction.
We define the multiplicative size of an RMS program P as its number of
load and mult instructions, and we denote it by |P |.

5 We assume that for every instruction (add, id, u, v, w) such that u (resp. v) is the
output wire of a previous instruction with id idu (resp. idv) we have idu < idv. This
ensures that shares corresponding to u are computed before shares corresponding to
v in our evaluation algorithm.
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Note the distinction between the magnitude bound Bmax and the output
modulus β. For example, in an RMS program computing a Boolean func-
tion f : {0, 1}k → {0, 1}, the input values 0 and 1 would be interpreted
as integers, Bmax would be a bound on the greatest integer appearing as
the result of an operation, and the output modulus would be β = 2. Our
HSS scheme will require β ≤ Bmax < p < q, where p and q are, respec-
tively, the plaintext modulus and ciphertext modulus of the underlying
encryption scheme.

Remark 2. The definition of RMS program in [14] includes an additional
operation type which allows input values to be added. The class of func-
tions computable with this additional operation is the same, but it allows
some functions to be computed using fewer multiplications, which may
result in a more efficient homomorphic evaluation. We omit this opera-
tion from our definition, but we note that our HSS also supports it, in
identical fashion to the BKS scheme. In both constructions this feature
requires adjusting the bound on the ciphertext noise according to the
maximum number of input additions, which influences the parameters of
the scheme.

3 The Homomorphic Secret Sharing Scheme

In this section, we describe our homomorphic secret sharing scheme. Our
HSS is an adaptation of the BKS scheme [14]. It supports homomor-
phic evaluations of the same class of functions: Restricted Multiplication
Straight-Line (RMS) programs. Informally, we adapt the original BKS
scheme by incorporating a new error reconciliation procedure. The pro-
tocol parameters of the BKS scheme are chosen such that correctness er-
rors only occur with negligible probability. By contrast, our reconciliation
procedure allows for smaller protocol parameters, since potential errors
occurring during the homomorphic evaluations are corrected by the er-
ror reconciliation procedure. As a result the internal protocol parameters
can to chosen to be polynomial in the security parameter, whereas BKS
scheme requires superpolynomial protocol parameters, thereby reducing
the communication complexity.

3.1 The Protocol

Both the BKS scheme and our adaptation crucially rely on a public-
key encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with nearly
linear decryption, i.e., for all key-pairs (pk, s)← PKE.Gen(1λ), messages
m ∈ Zp and ciphertexts c← PKE.Encpk(m), it holds that

〈c, s〉 = q

p
·m+ e mod q ,

for some “small” noise term |e| ≤ Berr.
Since the PKE has nearly linear decryption, the decryption procedure
simply rounds the inner-product 〈c, s〉 of the ciphertext and the secret

13



Fig. 4: Homomorphic Secret Sharing - Key Generation

HSS.Gen(1λ): Generate (pk, s)← PKE.Gen(1λ) and sample a PRF key
K ← {0, 1}λ uniformly at random. Sample s0 ← Zdq and define

s1 := s− s0 mod q.

Output (pk, ek0, ek1), where ek0 := (K, s0), ek1 := (K, s1) ∈ {0, 1}λ × Zdq .

key, multiplied by 0 < p/q < 1, to the nearest integer, i.e.,

PKE.Dec(c, s) =
⌈
p

q
· 〈c, s〉

⌋
mod p .

We assume that the first coefficient of the secret key s ∈ Zd equals 1.
This property is crucially required by the HSS construction, and it is
satisfied by most PKE schemes with nearly linear decryption.
Further, for simplicity, we assume PKE to be defined over Z. For this
reason, our homomorphic secret sharing scheme will also be defined over
Z. However, all techniques and results have a straightforward general-
ization to rings of the form R = Z[X]/(XN + 1) for N a power of 2,
namely, the rounding and lifting procedures are applied to each of the
N coordinates of elements of R.
As shown in [14], if PKE has nearly linear decryption and pseudoran-
dom ciphertexts, there exists a Key Dependent Message (KDM) oracle
PKE.OKDM that, without knowledge of the secret key, outputs encryp-
tions of scalar multiples of the secret key ([14], Lemma 3). More precisely,
for all j ∈ {1, . . . , d} and x ∈ Z,

cj ← PKE.OKDM(pk, x, j) s.t. 〈cj , s〉 = x · sj + e mod q ,

where s = (s1, . . . , sd) and |e| ≤ Berr. By linearity, the KDM oracle
allows encryptions of arbitrary linear combinations of the secret key to
be generated.
Let us now continue to describe our 2-party homomorphic secret sharing
scheme HSS. Besides a PKE scheme with the above properties, the HSS
construction also requires a keyed pseudorandom function PRF. The key-
generation of our HSS scheme, described in Figure 4, is identical to that
of the BKS scheme. The HSS public key is simply a public key for the
PKE scheme and each evaluation key contains an additive secret share
sσ of the secret key together with a PRF key K.
The second functionality of the HSS is encryption. It allows parties to
encrypt the inputs to the RMS program that is to be evaluated. However,
an HSS encryption of an input value x ∈ Z is different from a standard
PKE encryption of x. Instead, it is an encryption of the key-dependent
vector x · s ∈ Zdq , where s ∈ Zdq is the secret key corresponding to the
public key pk generated in the key generation. Hence, the HSS encryption
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Fig. 5: Homomorphic Secret Sharing - Encryption

HSS.Enc(pk, x): Compute cj ← PKE.OKDM(pk, x, j) for j = 1, . . . , d.
Output the ciphertext C := (c1, . . . , cd).

of x is a vector of d PKE encryptions, each to a different key-dependent
message x · si for i ∈ {1, . . . , d}. Note that, since s = (1, s2, . . . , sd) ∈ Zdq ,
the first component of an HSS encryption is a standard PKE encryption
of x · 1 = x. The HSS encryption functionality, again identical to the one
used by the BKS scheme, is described in Figure 5. Intuitively, security of
our HSS scheme follows from the security of OKDM and from each share
sσ individually hiding s.
The reason for using this “key-dependent” encryption is that, by de-
ploying a distributed decryption, the two parties can take encrypted
input values and obtain additive secret shares of the vector x · s. The
BKS scheme shows how to perform certain operations on secret shares
of key-dependent messages of this form. More precisely, it shows that
the following operations can be performed locally (i.e., without requiring
interaction between the two parties):
– Addition: given a secret share of x ·s and a secret share y ·s, obtain

a secret share of (x+ y) · s.
– Multiplication by Input Value: given an HSS encryption of x

and a secret share of y · s, obtain a secret share of xy · s.
The HSS scheme thus distinguishes between (encrypted) input values
and intermediate computation values, also referred to as memory values.
The above functionalities immediately imply an HSS for RMS programs.
Our scheme deviates from BKS in how it performs the above HSS op-
erations. In the BKS scheme these operations involve a distributed de-
cryption, which in turn involves the rounding of a noisy value followed
by a “lifting” of shares mod p to shares mod q. Both of these steps may
fail, causing a correctness error, and the BKS scheme chooses its pa-
rameters such that such errors only occur with negligible probability. In
our approach, we employ procedures Round and Lift (defined in Section
3.2) which indicate whether an error may have occurred and correct it if
necessary.
In more detail, for party P0, the output of Round is of the form
(flag0, z0) ∈ {0, 1} × Zp. If flag0 = 0 (no error can occur), then z0 is
obtained by rounding as usual, while if flag0 = 1 (an error may occur),
then z0 is the result of an alternative “error-correcting” rounding.
Before describing the procedure for party P1, note that, since the parties
cannot communicate, there is no guarantee that their flags will coincide.
Moreover, the error-correcting requires the two parties to be in sync, i.e.
correctness is not guaranteed if one party follows the usual rounding and
the other the alternative rounding. Therefore, it may seem necessary that
each party computes both the usual and alternative values when their
flag is positive, in order to use one of them depending on the flag of the
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Fig. 6: Homomorphic Secret Sharing - Evaluation for party P0

HSS.Eval(0, ek0, (C1, . . . ,Cn), P, β): Parse ek0 = (K, s0) and P as a
sequence of RMS instructions. Initialize pos0 as the empty binary string.
Proceed as follows for each instruction in P .

– Load input into memory: On instruction (load, id,C, w), compute

(tw0 , pos0)← Mult0(K, id,C, s0, pos0) ,

where Mult0 is the algorithm described in Figure 8.
– Add values in memory: On instruction (add, id, u, v, w), set

tw0 := tu0 + tv0 mod q .

– Multiply input by memory value: On instruction (mult, id,C, v, w),
compute

(tw0 , pos0)← Mult0(K, id,C, tv0 , pos0) ,
where Mult0 is the algorithm described in Figure 8.

– Output from memory: On instruction (out, id, w), parse tw0 as tw0 =
(x0, t̂0) for some x0 ∈ Zq, t̂0 ∈ Zd−1

q and output

y0 := (H(pos0), x0 mod β),

where H(a1, . . . , ak) = {i ∈ [k] | ai = 1}.

other party. However, we are able to define Round in a way such that
whenever flag0 = 1 we have flag1 = 1 as well. This allows us to define
Round for P0 as described above, always computing a single value z0,
and have only P1 compute two different values when flag1 = 1.
For P1, Round either outputs flag1 = 0 and z1, or flag1 = 1 and (z1, z

′
1),

where z1 and z′1 denote the outputs of the usual and alternative rounding,
respectively. The following table displays the 3 different scenarios that
may occur, and whether the parties should use corrected values or not.

Flag of P0
0 1

Flag of P1
0 No Correction ———–
1 No Correction Error Correction

Similarly, errors can occur and be mitigated in the so-called lifting step,
which always follows rounding.
The homomorphic evaluation procedure for party P0 is presented in Fig-
ure 6. For every wire w in the RMS program P we compute a vector
tw0 ∈ Zdq which is P0’s additive share of xws, where xw is the value
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Fig. 7: Homomorphic Secret Sharing - Evaluation for party P1

HSS.Eval(1, ek1, (C1, . . . ,Cn), P, β): Parse ek1 = (K, s1) and P as a
sequence of RMS instructions. Initialize L1 as an empty list. Proceed as
follows for each instruction in P .

– Load input into memory: On instruction (load, id,C, w), compute

(Tw1 , L1)← Mult1(K, id,C, {(ε, s1)}, L1),

where Mult1 is the algorithm described in Figure 9 and ε denotes the
empty binary string.

– Add values in memory: On instruction (add, id, u, v, w), set

Tw1 :=
{

(pos1, tu1 + tv1 mod q)
∣∣ pos1 ∈ L1, (posu1 , t

u
1 ) ∈ Tu1 ,

(posv1 , t
v
1) ∈ T v1 , posu1 ⊆ posv1 ⊆ pos1

}
.

– Multiply input by memory value: On instruction (mult, id,C, v, w),
compute

(Tw1 , L1)← Mult1(K, id,C, T v1 , L1),
where Mult1 is the algorithm described in Figure 9.

– Output from memory: On instruction (out, id, w), output the list

y1 :=
{

(H(pos), x1 mod β)
∣∣ (pos, t1) ∈ Tw1 ,

t1 = (x1, t̂1), x1 ∈ Zq, t̂1 ∈ Zd−1
q

}
,

where H(a1, . . . , ak) = {i ∈ [k] | ai = 1}.

of P at w. Throughout this algorithm we keep track of the variable
pos0 ∈ {0, 1}∗ which denotes the sequence of flags of P0. After each “mul-
tiplicative” operation (i.e. load or mult instruction), the flags generated
during that operation are appended to the string pos0 ∈ {0, 1}∗. Adding
a pseudorandom value PRF(K, id) before each rounding step guarantees
that the shares are always close to uniform, and therefore the occur-
rences of positive flags are independent from one instruction to another.
Finally, the output of Eval consists of a compression H(pos0) of the flag
sequence of P0 and the first component of tw0 , which is an additive share
of P (x1, . . . , xn). The compression function H simply outputs the list of
indices with a flag set to 1 (which will be constant in number). The use
of H is crucial in obtaining succinct output shares, as the size of pos0 is
proportional to the size |P | of the program.
In Figure 7 we present the homomorphic evaluation procedure for party
P1, which is similar to that of P0 but has an added degree of complexity,
since P1 generates two different possible values for its additive share
whenever it gets a positive flag, and must keep track of all possible
combinations. The global variable L1 in this algorithm is the list of binary
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Fig. 8: Algorithm Mult0, employed by party P0 on loading and mul-
tiplication instructions.

Input (K, id,C, t, pos)

Parse C = (c1, . . . , cd)
For each i ∈ [d] :

(flagi, zi)← Round(0, 〈t, ci〉+ PRF(K, (id, i)) mod q)
(flag′i, vi)← Lift(0, zi)

t′ ← (v1, . . . , vd)
pos′ ← pos||flag1||flag′1|| . . . ||flagd||flag′d

Output (t′, pos′)

Fig. 9: Algorithm Mult1, employed by party P1 on loading and mul-
tiplication instructions.

Input (K, id,C, T, L)

Parse C = (c1, . . . , cd), T = ((pos1, t1), . . . , (pos`, t`))
For each (i, j) ∈ [d]× [`] :

Vij ← ∅
(flagij , z0

ij , z
1
ij)← Round(1, 〈tj , ci〉 − PRF(K, (id, i)) mod q)

(flag0
ij , v

00
ij , v

01
ij )← Lift(1, z0

ij)
Vij ← Vij ∪ {(00, v00

ij )}
If flag0

ij = 1:
Vij ← Vij ∪ {(01, v01

ij )}
If flagij = 1:

(flag1
ij , v

10
ij , v

11
ij )← Lift(1, z1

ij)
Vij ← Vij ∪ {(10, v10

ij )}
If flag1

ij = 1:
Vij ← Vij ∪ {(11, v11

ij )}
T ′ ←

{(
pos||a1|| . . . ||ad, (v1, . . . , vd)

) ∣∣ j ∈ [`], pos ∈ L,
posj ⊆ pos, (ai, vi) ∈ Vij

}
L′ ←

{
pos
∣∣ (pos, t) ∈ T ′

}
Output (T ′, L′)
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Fig. 10: Homomorphic Secret Sharing - Decoding

HSS.Dec(y0, y1, β): Parse the shares as y0 = (u0, x0) and y1 =
{(u(1)

1 , x
(1)
1 ), . . . , (u(k)

1 , x
(k)
1 )}. Output x0 + x

(i)
1 mod β, where i is the

unique index such that u0 = u
(i)
1 .

strings which includes all possible sequences of flags of P0 – recall that
whenever P1 has flag1 = 0 it knows that flag0 = 0, but if flag1 = 1 then
flag0 can be either 0 or 1. To each wire w in P we associate a list Tw1 of
pairs of the form (pos1, tw1 ), where tw1 is the additive share corresponding
to the value of P at w and pos1 is the corresponding sequence of flags.
The output of the evaluation algorithm for P1 is a list of pairs of the
same form as the output for P0, one for each possible flag sequence.
Finally, in the decoding algorithm, depicted in Figure 10, we identify the
additive shares x0, x1 which correspond to the same sequence of flags
and add them to obtain P (x1, . . . , xn).

Remark 3. We omit an optimization step consisting of checking if the two
values associated with a positive flag for P1 are the same, which provides
a reduction of the flag probability by a factor of 2 in both rounding and
lifting.

Remark 4. Like the BKS scheme, our protocol can also be converted into
a secret-key HSS version, which is more efficient for those applications
which do not require the public-key capabilities.

3.2 Rounding and Lifting

Below we present our rounding procedure and analyse its properties. The
corresponding step in the BKS protocol consists of multiplying the share
v ∈ Zq by p/q and rounding it to the nearest integer to obtain a share in
Zp. This introduces a correctness error with probability proportional to
p/q (see Lemma 7). Our approach solves this issue by flagging instances
in which an error could occur if both parties were to round their shares
to the nearest integer and correcting it by having one party round up
and the other round down in those instances.
Recall that we consider the representation Zn = {−d(n−1)/2e, . . . , b(n−
1)/2c} for any n ∈ N. We first define the operations RoundDown,
RoundUp and RoundNear, which map a value v from Zq to Zp by scaling
and then rounding it down, up, or to the nearest integer, respectively:

RoundDown(v) = b(p/q) · vc mod p,

RoundUp(v) = d(p/q) · ve mod p,

RoundNear(v) = d(p/q) · vc mod p.
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The deterministic procedure Round, which takes as input a party identi-
fier σ ∈ {0, 1} and a value v ∈ Zq, is defined as follows:

Round(0, v) =
{

(1,RoundDown(v)), if v ∈ badBerr ,
(0,RoundNear(v)), otherwise,

Round(1, v) =
{

(1,RoundNear(v),RoundUp(v)), if v ∈ bad2Berr ,
(0,RoundNear(v),⊥), otherwise,

where badBerr =
{
v ∈ Zq

∣∣ |v mod (q/p)| ≥ q/(2p)−Berr
}
and bad2Berr is

analogously defined.

Lemma 5 (Rounding correctness). Let p, q, Berr ∈ N be such that q
is a multiple of p and Berr < q/(4p). Then, for any v0, v1 ∈ Zq, m ∈ Zp
and e ∈ Z such that |e| ≤ Berr and

v0 + v1 = (q/p) ·m+ e mod q,

the outputs (flag0, z0) ← Round(0, v0), (flag1, z1, z
′
1) ← Round(1, v1) sat-

isfy the following:
(i) If flag0 = 0, then z0 + z1 = m mod p.
(ii) If flag0 = 1, then flag1 = 1 and z0 + z′1 = m mod p.

Proof. Let v0, v1,m, e be such that v0+v1 = (q/p)·m+e mod q and |e| ≤
Berr, and let (flag0, z0)← Round(0, v0), (flag1, z1, z

′
1)← Round(1, v1). To

prove the first claim, assume that flag0 = 0. Then there exist k, r ∈ Z
such that v0 = (q/p) · k + r and |r| < q/(2p)−Berr. Therefore

v1 = (q/p) · (m− k) + e− r mod q

and |e− r| ≤ |e|+ |r| < q/(2p). It follows that

z0 = d(p/q) · v0c = dk + (p/q) · r︸ ︷︷ ︸
∈(−1/2,1/2)

c = k mod p,

z1 = d(p/q) · v1c = dm− k + (p/q) · (e− r)︸ ︷︷ ︸
∈(−1/2,1/2)

c = m− k mod p,

which shows that z0 + z1 = m mod p.
We now prove the second claim. If flag0 = 1, there exist k, r ∈ Z such that
v0 = (q/p) · k+ r and q/(2p)−Berr ≤ r ≤ q/(2p) +Berr. The other share
is then v1 = (q/p) ·(m−k)+e−r mod q, where q/(2p)−2Berr ≤ e−r ≤
q/(2p)+2Berr, since |e| ≤ Berr. Therefore |v1 mod (q/p)| ≥ q/(2p)−2Berr
and flag1 = 1. Moreover, observe that e < r and (p/q) · (r− e) < 1, since

r ≤ q/(2p) +Berr < q/p−Berr ≤ q/p+ e.

It follows that

z0 = b(p/q) · v0c = bk + (p/q) · r︸ ︷︷ ︸
∈[0,1)

c = k mod p,

z′1 = d(p/q) · v1e = dm− k + (p/q) · (e− r)︸ ︷︷ ︸
∈(−1,0]

e = m− k mod p,

and therefore z0 + z′1 = m mod p.
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Lemma 6 (Rounding flag probability). Let p, q, Berr ∈ N be such
that q is a multiple of p and Berr < q/(4p). Let v0, v1 ∈ Zq be uniformly
random subject to

v0 + v1 = (q/p) ·m+ e mod q,

where m ∈ Zp and |e| ≤ Berr are fixed. Let also (flag1, z1, z
′
1) ←

Round(1, v1). Then

Pr[flag1 = 1 and z1 6= z′1] = 2Berr · (p/q).

Proof. Let u1 = v1 mod (q/p) and note that u1 is uniformly distributed
in Zq/p. Recall that flag1 = 1 if and only if |u1| ≥ q/(2p) − 2Berr.
Moreover, RoundNear(v1) 6= RoundUp(v1) if and only if the fractional
part of (p/q) · v1 is in the interval (0, 1/2), which holds if and only if
0 < u1 < q/(2p). Define the set

S =
{
u ∈ Zq/p

∣∣ q/(2p)− 2Berr ≤ u < q/(2p)
}
.

If q/p = 2k + 1 for some k ∈ N, then S = {k − 2Berr + 1, . . . , k}, while
if q/p = 2k then S = {k − 2Berr, . . . , k − 1}. In both cases |S| = 2Berr.
Therefore Pr[flag1 = 1 and z1 6= z′1] = Pr[u1 ∈ S] = |S| · (p/q) = 2Berr ·
(p/q).

Lemma 7 (Rounding error probability). Let p, q, Berr ∈ N be such
that q is a multiple of p and Berr < q/(4p). Let v0, v1 ∈ Zq be random
subject to

v0 + v1 = (q/p) ·m+ e mod q,

where m ∈ Zp and |e| ≤ Berr are fixed. Then

Pr[RoundNear(v0) + RoundNear(v1) 6= m mod p] ≥ (|e| − 1) · (p/q).

Proof. Define uσ = vσ mod (q/p), for σ = 0, 1, and assume first that
e < 0. Observe that, if u0, u1 ∈ (0, q/(2p)), then a rounding error occurs:
since e = u0 + u1 mod (q/p) and −(q/p) < e < 0, it must be the case
that e = u0 +u1−(q/p), and therefore RoundNear(v0)+RoundNear(v1) =
m− 1. If q/p = 2k + 1 for some k ∈ N, then

Pr[u0, u1 ∈ (0, q/(2p))] = Pr[u0 ∈ {k + e+ 1, . . . , k}] = |e| · (p/q).

Alternatively, if q/p = 2k, then

Pr[u0, u1 ∈ (0, q/(2p))] = Pr[u0 ∈ {k+e+1, . . . , k−1}] = (|e|−1) ·(p/q).

By a similar reasoning it can be seen that in the case e ≥ 0 a rounding
error occurs with probability at least |e| · (p/q), if q/p is odd, or (|e| +
1) · (p/q), if q/p is even.

Now we present the lifting procedure, which always follows rounding. In
the BKS protocol this step is simply an inclusion: a share z ∈ Zq becomes
z ∈ Zp. However, as shown in Lemma 10, a correctness error occurs with
probability proportional to 1/p. Again, our new procedure overcomes
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this issue by predicting and correcting possible errors to guarantee that
additive shares modulo p are always converted into shares modulo q of
the same secret value.
The deterministic procedure Lift, which takes as input a party identifier
σ ∈ {0, 1} and a value z ∈ Zp, is defined as follows:

Lift(0, z) =


(1, z), if z ∈ bad+

Bmax
,

(1, z + p), if z ∈ bad−Bmax
,

(0, z), otherwise,

Lift(1, z) =


(1, z, z − p), if z ∈ bad+

2Bmax
,

(1, z, z), if z ∈ bad−2Bmax
,

(0, z,⊥), otherwise,

where bad+
Bmax

= [p/2 − B, p/2), bad−Bmax
= [−p/2,−p/2 + B], and

bad+
2Bmax

, bad−2Bmax
are analogously defined. The proofs of the following

three lemmas can be found in the full version of this paper.

Lemma 8 (Lifting correctness). Let p,Bmax ∈ N be such that Bmax <
p/6. Then, for any z0, z1 ∈ Zp, m ∈ Z such that |m| ≤ Bmax and

z0 + z1 = m mod p,

the outputs (flag0, v0)← Lift(0, z0), (flag1, v1, v
′
1)← Lift(1, z1) satisfy the

following:
(i) If flag0 = 0, then v0 + v1 = m over Z.
(ii) If flag0 = 1, then flag1 = 1 and v0 + v′1 = m over Z.

Lemma 9 (Lifting flag probability). Let p,Bmax ∈ N be such that
Bmax < p/6. Let z0, z1 ∈ Zp be random subject to

z0 + z1 = m mod p,

where m ∈ Zp. Let also (flag1, v1, v
′
1)← Lift(1, z1). Then

Pr[flag1 = 1 and v1 6= v′1] = 2Bmax/p.

Lemma 10 (Lifting error probability). Let p,Bmax ∈ N be such that
Bmax < p/6. Let z0, z1 ∈ Zp be random subject to

z0 + z1 = m mod p,

where m ∈ Zp. Then

Pr[z0 + z1 6= m] ≥ (|m| − 1)/p.

We can now prove our main result.

Theorem 1 (HSS correctness and security). Let PKE be a public-
key encryption scheme with plaintext space Rp and ciphertext space Rdq ,
satisfying the properties of nearly linear decryption (with error bound
Berr) and pseudorandom ciphertexts, such that Berr < q/(4p). Let also
PRF be a pseudorandom function taking values in Rq. Then the 2-party
homomorphic secret sharing scheme described in Figures 4 to 10 is per-
fectly correct and secure, as per Definition 1, and supports homomorphic
evaluation of polynomial-sized RMS programs with magnitude bound Bmax
and output modulus β such that β ≤ Bmax < p/6.
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Proof. Security follows immediately from the security of the BKS HSS
[14], as the algorithms Gen and Enc are identical in the two schemes and
the security definition is independent of the Eval algorithm. Note that
this is a consequence of KDM security and of the fact that the evaluation
keys individually hide the secret encryption key.
We will now show that our scheme satisfies perfect correctness. Let
y0 = (H(pos0), z0) and y1 = {(H(pos(1)

1 ), z(1)
1 ), . . . , (H(pos(k)

1 ), z(k)
1 )}

be the evaluated shares corresponding to an RMS program P on input
x1, . . . , xn.
Observe that, according to the definition of the algorithms Mult0 and
Mult1, there always exists i∗ ∈ [k] such that pos(i∗)

1 = pos0. This follows
from the fact that, at any rounding or lifting step with position tag pos,
party P1 always computes a value associated to pos||0 and, by part (ii)
of Lemmas 5 and 8, if P0 has a value associated to pos||1 then so does
P1. Furthermore, the index i∗ is unique, since the binary strings pos(j)

1
are all distinct. Since the compression function H is injective, the only
index i such that H(pos(i)

1 ) = H(pos0) is i∗.
We will show below that, during homomorphic evaluation of P , for all
wires w we have

tw0 + tw1 = xws mod q (1)

whenever (pos1, tw1 ) ∈ Tw1 and posw1 = posw0 , where posw0 is the flag
sequence pos0 of P0 at the time wire w is evaluated, xw ∈ R denotes the
value of P at w and s = (1, ŝ) ∈ R×Rd−1 is the PKE secret key.
The final output will be Dec(y0, y1, β) = z0 + z

(i∗)
1 mod β, where

(z0, t̂0) = tw0 , (z(i∗)
1 , t̂1) = tw1 , (pos(i∗)

1 , tw1 ) ∈ Tw1 for an output wire
w and pos(i∗)

1 = pos0. If equation (1) holds, then by looking only at the
first component of each vector in the equation we see

z0 + z
(i∗)
1 = xw · 1 = P (x1, . . . , xn) mod q,

hence Dec(y0, y1, β) = P (x1, . . . , xn) with probability 1. 6

It remains only to check that equation (1) holds for every instruction in
P of type load, add or mult.
– For instruction (load, id, (c1, . . . , cd), w), where ci ←

PKE.OKDM(pk, y, i), by the nearly linear decryption property
we have

(tw0 )i + (tw1 )i = 〈s0, ci〉+ PRF(K, (id, i)) + 〈s1, cj〉 − PRF(K, (id, i))
= 〈s, ci〉 = (q/p) · y · si + ei mod q

for some |ei| ≤ Berr. 7 We can thus apply Lemma 5 followed by
Lemma 8 to conclude that, for the matching flags (i.e. posw1 = posw0 ),
the corresponding shares tw0 , tw1 satisfy tw0 + tw1 = y s mod q.

6 We assume here that β divides q, so that shares mod q are also shares mod β. If we
wish to avoid this assumption, we can simply perform a lifting step to obtain shares
over Z before reducing them mod β.

7 Here we again consider the case R = Z for simplicity. For R of dimension N , the
equation applies to each coordinate of y.
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– For instruction (add, id, u, v, w), assume equation (1) holds for
(tu0 , tu1 ) and (tv0 , tv1), where posu1 ⊆ posv1 ⊆ posw1 and posτ0 = posτ1
for τ ∈ {u, v, w}. Then

tw0 + tw1 = tu0 + tv0 + tu1 + tv1 = xus + xvs = xws mod q.

– For instruction (mult, id, (c1, . . . , cd), v, w), assuming equation (1)
holds for (tv0 , tv1) we have

(tw0 )i + (tw1 )i = 〈tv0 , ci〉+ PRF(K, (id, i)) + 〈tv1 , cj〉 − PRF(K, (id, i))
= xv〈s, ci〉 = (q/p)xv · y · si + ei mod q

and as in the load instruction we conclude that tw0 + tw1 = xv y s
mod q.

3.3 Impossibility of Local Share Conversion
The next theorem shows that the local share conversion procedure that
lies at the heart of lattice-based HSS cannot achieve perfect correctness
with additive reconstruction. Therefore one must either allow correct-
ness error (which can only be made negligible with a superpolynomial
modulus) or relax the requirement for reconstruction.

Theorem 2 (Correctness error of share conversion). Let m ∈ Zp
and e ∈ D, where {0, 1,−1} ⊆ D ⊆ (−q/(2p), q/(2p)). Let also v0, v1 ∈
Zq be sampled uniformly subject to

v0 + v1 = (q/p) ·m+ e mod q.

Then, for any local share conversion functions g0, g1 : Zq → Zq, there
exist m ∈ Zp and e ∈ D such that

Pr[g0(v0) + g1(v1) 6= m mod q] ≥ p/(3q).

Proof. We show that in each interval Ik ⊆ Zq of the form Ik := [k ·
q/p, (k+1) ·q/p) there exists v0 ∈ Ik such that an error g0(v0)+g1(v1) 6=
m occurs for at least one of the pairs (m, e) := (0, 0), (m, e) := (1,−1) or
(m, e) := (0, 1). Since there are p disjoint intervals Ik, one of these three
choices of (m, e) must have at least p/3 values v0 in the above conditions
and the result follows from the fact that v0 is uniform.
To prove the above claim, consider v0 := k · q/p and v1 := −v0. If
g0(v0)+g1(v1) 6= 0 we have found an error for (m, e) := (0, 0), as v0+v1 =
0 and v0 ∈ Ik. Meanwhile, v′0 := (k+1)·q/p−1 satisfies v′0+v1 = q/p·1−1,
hence if g0(v′0) + g1(v1) 6= 1 we have found an error for (m, e) := (1,−1).
Suppose now that g0(v0) + g1(v1) = 0 and g0(v′0) + g1(v1) = 1. Then
g0(v0) 6= g0(v′0) and there must exist ṽ0 ∈ [v0, v

′
0) such that g0(ṽ0) 6=

g0(ṽ0 + 1). Note that ṽ0, ṽ0 + 1 ∈ Ik. Then, unless an error occurs with
ṽ0 and (m, e) := (0, 0) or ṽ0 + 1 and (m, e) := (0, 1), by taking ṽ1 := −ṽ0
we obtain

g0(ṽ0) + g1(ṽ1) = g0(ṽ0 + 1) + g1(ṽ1) = 0,
since ṽ0 + ṽ1 = 0 and (ṽ0 + 1) + ṽ1 = 1. This contradicts the assumption
g0(ṽ0) 6= g0(ṽ0 + 1).
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4 Efficiency and Parameters

In this section we compute concrete parameters for our HSS scheme
and compare them with the BKS scheme [14]. The next lemma gives
us an expression for the average number of elements of the list that
constitutes the share y1 of party P1 after evaluating a program P . We
are then able to choose parameters such that this number is bounded
by a constant. Since the running time of the evaluation algorithm of P1
is proportional to this quantity, the lemma also implies that it runs in
expected polynomial time.

Lemma 11 (Expected share size). Consider the HSS scheme de-
scribed above, with ciphertext space Rdq , where R = Z[X]/(XN + 1). Let
P be an RMS program of multiplicative size |P |. Denote by pround, plift
the probabilities of party P1 having a positive flag in a single rounding or
lifting step, respectively. Then the expected total number E of terminal
values in the homomorphic evaluation of P by P1 is

E =
(
(1 + pround)(1 + plift)

)dN|P |
.

We defer the proof of Lemma 11 to the full version. As a consequence of
Lemmas 6, 9 and 11, we obtain the following bound, which we can use
to choose parameters for the HSS scheme:

E ≤
(
(1 + 2Berrp/q)(1 + 2Bmax/p)

)dN|P |
.

We instantiate PKE with the Ring-LWE based encryption scheme of
Lyubashevsky, Peikert and Regev [27] over the ring R = Z[X]/(XN +1),
giving us Berr = 1, d = 2. Then, if we wish to bound the expected number
of terminal values E by some value γ > 1, setting p ≥ 8BmaxN |P |/ ln γ
and q ≥ 8pN |P |/ ln γ gives

E ≤ (1 + ln γ/(4N |P |))4N|P | ≤ γ,

which justifies that γ is indeed an upper bound. For instance, if we choose
γ = 2, party P1 will have, on average, a single positive flag throughout
the homomorphic evaluation and two terminal values on which to per-
form reconstruction.
In Tables 3 and 4 we present parameters of our scheme in this RLWE
instantiation, namely the ring dimension N and the ciphertext modulus
q, when we choose the bound γ = 2 for the expected number of termi-
nal values and maximum program sizes 210 and 220, respectively. These
are given in function of the magnitude bound Bmax of plaintexts during
the computation. For comparison, Table 5 shows the parameters for the
corresponding instantiation of the BKS HSS scheme. We observe that
our scheme reduces the size of the modulus q by nearly a factor of 2 for
programs with up to 220 operations (or by a greater factor, if we further
restrict the program size) while also reducing N by a factor of 2 and
attaining similarly high estimated computational security.
The security estimates on Tables 3 – 5 were obtained by computing, for
magnitude bound Bmax, the smallest pair (N, q) with at least 80 bits
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Bmax N log q Security

2 2048 51 147.3
216 2048 66 109.4
232 2048 82 86.0
264 4096 116 122.9
2128 8192 182 159.5
2256 8192 310 89.1
Table 3: HSS pa-
rameters for |P | =
210, γ = 2.

Bmax N log q Security

2 2048 71 100.9
216 2048 86 81.6
232 4096 104 139.0
264 4096 136 103.0
2128 8192 202 141.7
2256 8192 330 83.6
Table 4: HSS pa-
rameters for |P | =
220, γ = 2.

Bmax N log q Security

2 4096 137 103.3
216 4096 167 83.7
232 8192 203 142.0
264 8192 267 104.9
2128 16384 399 143.9
2256 16384 655 84.6
Table 5: BKS HSS pa-
rameters, with error
probability 2−40.

of computational security, as predicted by the lattice estimator tool of
Albrecht et al. [1]. Note that the parameters of the BKS HSS scheme
are also dependent on the size of the program P . The parameters on
Table 5 correspond to a correctness error probability of 2−40 for each
(multiplicative) operation in P .
The parameter γ can be adjusted to reduce the frequency of raised flags
for a relatively small cost in the size of lattice parameters. For instance,
setting γ = 1.01 boosts the probability that there are no raised flags in
the entire computation to at least 1 − (γ − 1) = 0.99, at the price of
increasing the modulus q by a factor of (ln 2/ ln 1.01)2 ≈ 212, compared
to the choice γ = 2.
On the other hand, since the size of the input shares is much larger
than the size of the output shares, it can make sense to choose larger
parameter γ for certain applications. One should note though, that if the
parties wish to execute linear postprocessing on the output shares (e.g.,
a counting query over a large database), then the total expected number
of shares scales with 2γ .

5 Applications

Our scheme retains most of the standard applications of HSS, even with-
out having the usual property of additive reconstruction. It is particu-
larly suited for scenarios where there is asymmetry between the parties
performing the computation (e.g. two servers of different sizes).

Private database queries. We explore in detail one of the applications
of the BKS HSS scheme and show that our construction provides an
overall improvement in efficiency. A 2-server private database query pro-
tocol involves two non-colluding servers, each holding a copy of a public
database DB, and a client, who can issue queries on the database. The
protocol should allow the client to obtain the answer of its query while
hiding both the query and the answer from the servers. HSS gives a sim-
ple solution to this problem with only one round of communication: in
this protocol the client sends an encryption of its query to both servers,
who then homomorphically compute shares of the answer and return
them to the client. HSS for branching programs supports many expres-
sive queries, such as conjunctive keyword search and pattern matching.
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Remark 5. Unlike with secure 2-party computation, in this setting there
are no concerns with the security of the reconstruction procedure. We can
simply have both servers send their shares to the client, who evaluates
the decoding algorithm directly with minimal computational cost.

Linear post-processing of shares. There are scenarios in which the ad-
ditive reconstruction property of other HSS schemes is quite useful, such
as when computing a counting query. This type of query returns the num-
ber of elements of the database satisfying some predicate Q, which can
be written as

∑
x∈DB Q(x), where Q(x) = 1 if x satisfies Q and Q(x) = 0

otherwise. Because of this additive representation, instead of homomor-
phically evaluating the query on the database at once, the servers can
evaluate the predicate individually on each database element. The shares
qxσ corresponding to each element x can then be locally summed to ob-
tain qσ =

∑
x∈DB q

x
σ and this value sent to the client, who recovers the

result of the query as q0 + q1 mod β. In the BKS HSS scheme, this ap-
proach allows using the optimal case of Bmax = 2 on the individual HSS
evaluations, even though the query output is not bounded by 2.
Although our construction does not benefit from the additive reconstruc-
tion property, we can employ a similar technique and show that even in
this setting we obtain a performance improvement. Recall that, in our
scheme, a share evaluated by party P0 is of the form (u, q) where u is the
compression of the flag sequence of P0 and q is the additive share of the
result, while a share evaluated by P1 is a list of pairs of the same form.
P0 can homomorphically evaluate Q on each x ∈ DB to obtain (ux0 , qx0 )
and then send y0 = (ux1

0 , . . . , uxM
0 , q0 :=

∑
x∈DB q

x
0 ) as its final share to

the client, where M = |DB| is the database size. Similarly, P1 obtains
M lists from evaluating Q on every database element and its output to
the client is a list of shares of the same form as y0, one for each possible
choice of a single element from each of the M lists. The client can then
reconstruct by summing q0 and the corresponding value from P1’s share.
This solution may look terribly inefficient for the fact that the size of
P1’s output is proportional to the product of the number of elements of
all M lists, but we can set the probability of any list having more than
one element to be very low.

A concrete example. Consider a database DB with entries of the form
(x,Wx) where x is a document and Wx is a list of keywords. Given a
target list of keywords W , we wish to count the number of documents
containing all the keywords in W . That is, we consider a counting query
for the predicateQW (x,Wx) = 1 ifW ⊆Wx. Suppose the database size is
M = 1024, the client’s query consists of 4 keywords, and each document
has 10 keywords with 128 bits of length. This can be achieved by an RMS
program P with around |P | = 5120 multiplications. For this application
the BKS scheme requires as parameters N = 4096 and log q = 137, which
gives a share size of 3N log q ≈ 210kB for each input bit, for a total
of 107MB of communication to each server. In our scheme, choosing
γ = 1.0001 allows us to use N = 2048, log q = 81. This results in an
input share size of 60.7kB and a total of 31MB sent from client to server.
Since the (expected) size of the compressed flag sequence is |H(pos)| =
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γ log |pos| and the output modulus of the query should be β = M , the
size of the first output share is |y0| = Mγ log(4N |P |)+log β ≈ 3.2kB and
the size of the second output share is |y1| = γM |y0| ≈ 3.5kB. Meanwhile,
the output share size in BKS is only log β ≈ 1.2B for both servers. Note
that only a single output share is sent from each server to the client,
so the bulk of communication lies in the input sharing step for both
approaches.
A drawback of our solution is that the size of the output shares grows
with the size of the database (linearly for P0, and exponentially with
base γ for P1). However, the communication bottleneck is still the size
of the input shares and not of the output, as illustrated in the example
above. For more general queries, for which this technique relying on
additive reconstruction is not applicable, our scheme again provides an
improvement over BKS HSS in both computation and communication
costs.
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