
Multi-Instance Secure Public-Key Encryption

Carlo Brunetta1 , Hans Heum2 , and Martijn Stam1

1 Simula UiB, Bergen, Norway.
carlob,martijn@simula.no

2 Department of Mathematical Sciences, NTNU - Norwegian University of Science
and Technology, Trondheim, Norway.

hans.heum@ntnu.no⋆⋆

Abstract. Mass surveillance targets many users at the same time with
the goal of learning as much as possible. Intuitively, breaking many users’
cryptography simultaneously should be at least as hard as that of only
breaking a single one, but ideally security degradation is gradual: an
adversary ought to work harder to break more. Bellare, Ristenpart and
Tessaro (Crypto’12) introduced the notion of multi-instance security to
capture the related concept for password hashing with salts. Auerbach,
Giacon and Kiltz (Eurocrypt’20) motivated the study of public key en-
cryption (PKE) in the multi-instance setting, yet their technical results
are exclusively stated in terms of key encapsulation mechanisms (KEMs),
leaving a considerable gap.

We investigate the multi-instance security of public key encryption. Our
contributions are twofold. Firstly, we define and compare possible se-
curity notions for multi-instance PKE, where we include PKE schemes
whose correctness is not perfect. Secondly, we observe that, in general,
a hybrid encryption scheme of a multi-instance secure KEM and an
arbitrary data encapsulation mechanism (DEM) is unlikely to inherit
the KEM’s multi-instance security. Yet, we show how with a suitable
information-theoretic DEM, and a computationally secure key deriva-
tion function if need be, inheritance is possible. As far as we are aware,
ours is the first inheritance result in the challenging multi-bit scenario.

Keywords: Multi-Instance Security · Hybrid Encryption · Property
Inheritance · Mass Surveillance

1 Introduction

Security of cryptographic schemes is increasingly studied concretely. The ques-
tion changes from whether a scheme is secure or not, to how secure it is. The
change in emphasis also results in increased importance in more realistic secu-
rity notions that model a world where an adversary might have many potential
targets. If an adversary simply tries to learn something about one of its κ tar-
gets, then intuitively the more targets there are, the easier the adversary’s job

⋆⋆ Work by Hans Heum performed as part of his PhD studies at Simula UiB.

https://orcid.org/0000-0001-9363-7585
https://orcid.org/0000-0003-0527-2999
https://orcid.org/0000-0002-5319-4625

2

becomes. Indeed, using simple hybrid arguments results in a security degrada-
tion that is linear in κ. But what happens if the adversary is greedy and wants
to learn more, maybe even targets everyone? On the one hand, one could argue
that if breaking one instance is hard, then so is breaking many. Yet, on the other
hand, one would hope that breaking multiple instances, say n, is strictly harder
than breaking just a single one.

This second perspective made Bellare, Ristenpart and Tessaro [12], hence-
forth BRT, realize that new security notions are needed to reason about such
greedy adversaries. They were motivated by how salts in password hashing pro-
tect against attackers re-using precomputation to retrieve multiple passwords.
For their study into probabilistic symmetric schemes, they identified left-or-right
indistinguishability under xor as the strongest notion. Roughly speaking, there
are κ keys in the system each associated with its own left-or-right challenge bit
bi and the goal of the adversary is to guess the xor of all those bits.

Recently, Auerbach, Giacon and Kiltz [4], henceforth AGK, argued the im-
portance of BRT’s concept to protect against mass surveillance. They introduced
the (n, κ) scaling factor as the effort to break n out of κ instances relative to
the effort needed to break a single instance. After recalling several well-known
greedy attacks against public key schemes with dubious scaling factors, they set
out to provide an encryption scheme with good, non-trivial scaling factor.

They discussed various versions of Hashed ElGamal that differed in whether
users shared group parameters and/or generators, plus whether the underly-
ing group was elliptic curve or finite field based. In the programmable random
oracle model, they showed that the multi-instance security of Hashed ElGamal
tightly relates to a novel multi-instance Gap Computational Diffie–Hellman (MI-
GapCDH) assumption, whose validity was further supported by an analysis in
the generic group model.

There was, or rather is, just one small problem: Hashed ElGamal is a key
encapsulation mechanism (KEM), not a public key encryption (PKE) scheme.
Indeed, although AGK use PKE as their motivation, their formalization is en-
tirely centred around KEMs. Of course, Cramer and Shoup [18] already showed
how a secure KEM can be combined with a secure data encapsulation mechanism
(DEM) to create a secure PKE (for various notions of security). This so-called
hybrid encryption paradigm is widely deployed in the real world, yet, can its
composition theorem be easily lifted to the multi-instance setting?

For key unrecoverability, all seems fine, but for indistinguishability one quickly
uncovers various challenges. Consider an adversaryA that wants to recover n out
of κ challenge bits bi: it can attempt to recover roughly half of its bi by somehow
breaking the DEM, and recovering the remaining half by breaking the KEM. In-
tuitively, such a divide-and-conquer strategy essentially rules out inheriting full
multi-instance security of both KEM and DEM simultaneously. Instead, perhaps
we should aim to bound an adversary’s multi-instance advantage against the hy-
brid encryption in terms of either breaking the full multi-instance security of the
KEM or breaking only one of many instances of the DEM.

3

IND-CCA⋆ MKU-CCA⋆

ROR-CCA⋆ UKU-CCA⋆

C
o
r.

2

·2
n
(κ n

)

Thm. 2

·c−1

/

S
e
c
t.

3 +
κ
γ

T
h
m
.
1

Fig. 1. An overview of multi-instance security notions for public-key encryption, where
γ relates to imperfect correctness (Def. 1), and the loss factor c is explained in Thm. 2.

Special care would have to be taken to ensure that the corresponding multi-
user DEM advantage is not overwhelming the multi-instance KEM advantage.
After all, already when showing multi-user security of hybrid encryption, ensur-
ing the DEM advantage does not overshadow the multi-user KEM advantage is
challenging [23]. Furthermore, the study of multi-user KEMs highlights a second,
more technical problem.

For multi-user security, there are essentially two different formalizations pos-
sible: one where each user comes with its own challenge bit and one where the
users share a global challenge bit. Jager et al. [29] recently observed that only the
latter lends itself to an easy adaptation of composition theorems using KEMs, as
it allows a simple game-hop where all KEM-derived ephemeral keys are replaced
by randomly selected keys (decoupled from the KEM encapsulations). That proof
technique fails when there are multiple challenge bits. Unfortunately, for multi-
instance security, the only option available is a notion with multiple challenge
bits. In such a setting, inheritance of security properties of the KEM to any
construction based on the KEM is an open problem.

Our Contribution. As mentioned above, multi-instance security was intro-
duced by BRT in the context of probabilistic symmetric primitives and later
adapted to key encapsulation mechanisms by AGK, who provide an excellent
motivation for the study of multi-instance security in a public key setting. We
adapt those notions to multi-instance security for PKE schemes, but make a
number of non-trivial changes in the process. Firstly, we observe that the mech-
anisms used by BRT and AGK to model multi-instance games differ, which seems
to have gone unnoticed hitherto. BRT’s mechanism is stronger as it allows for
corruptions (denoted by ⋆), yet AGK’s mechanism is more expressive by making
explicit how many instances an adversary should break. We use elements of both
in our notions, incorporating both BRT’s corruptions and AGK’s explicit expres-
sion of the number of targeted instances. Secondly, we allow for correctness to
be imperfect, which has ramifications for how to deal with decryption oracles
(for chosen-ciphertext attacks) and corruptions. We delve into the differences
between the various mechanisms in Sect. 3.3, furthermore we use our revised
mechanism to study a number of related notions, as summarized in Fig. 1.

4

In more detail, we start out by porting BRT’s notion of key unrecoverability
to the public-key setting. In fact, we consider two distinct versions of key unre-
coverability: “Universal Key Unrecoverability” (UKU), where the adversary is
tasked to recover the exact challenge private key(s) and “Matching Key Unrecov-
erability” (MKU), where it suffices to recover suitably equivalent private keys,
where we leverage our imperfect correctness notion to define “suitably equiv-
alent”. As one would expect, this relaxed key unrecoverability notion implies
the stronger, exact notion up to a small loss related to how we model imperfect
correctness (Thm. 1).

For our main notion of multi-instance security, we follow BRT’s identification
of left-or-right xor-indistinguishability as the strongest notion and adapt it to
the public key setting. As for the symmetric encryption setting studied by BRT,
this indistinguishability notion implies the above key unrecoverability notions
(Thm. 2); however, the differences between perfect symmetric encryption and
imperfect PKE affect the corresponding implications and their proofs.

Finally, we explore an alternative notion, namely real-or-random xor-indistin-
guishability (ROR). Trivially, left-or-right tightly implies real-or-random and in
the multi-instance setting BRT showed that the usual factor-2 loss from the
single instance implication between real-or-random to left-or right, becomes an
exponential factor-2κ loss. A similar loss is possible in our setting, however, we
can also achieve a typically preferable bound of

(
κ
n

)
2n (Cor. 2).

With suitable notions for multi-instance PKE available, we focus on how to
turn a suitably multi-instance secure KEM into a multi-instance secure PKE
scheme using hybrid encryption. For key unrecoverability, inheritance is imme-
diate, yet we would like to guarantee good multi-instance indistinguishability
(the left-hand branch of Fig. 1). We summarize our findings in Fig. 2.

Our first observation is that we can expand the length of the ephemeral key
to any desired length using a pseudorandom extendable output function (XOF).
The resulting extendable KEM, or XEM, inherits the multi-instance security
of the underlying KEM, provided the XOF is secure against multi-challenge
adversaries (Thm. 5). To ensure that the XOF does not become the weakest link,
its seed will need to be long enough, which in turn implies that the underlying
KEM already needs to output a sufficiently long ephemeral key.

The XOF above of course plays the role of key derivation function, but it is
more common that it is modelled as part of any key expansion done by the DEM.
Moving it into the KEM allows us to use an information-theoretic DEM, read
one-time pad (OTP), irrespective of the message length. The OTP’s properties
enable a simplified proof for the security of hybrid encryption (Thm. 6), where
the PKE does indeed inherit the multi-instance security of the XEM, with two
important caveats. Firstly, the OTP is only passively secure, so the PKE only
achieves CPA not CCA security, and secondly, standard KEM indistinguisha-
bility only tightly provides real-or-random indistinguishability for the PKE (see
the top line of Fig. 2).

Switching to the TagKEM framework [2], or in our case TagXEM, takes care
of the first shortcoming and tightly achieves multi-instance ROR-CCA secure

5

PKE, or IND-CCA non-tightly (Thm. 7). For the PKE to inherit multi-instance
IND-CCA security tightly, we introduce a novel KEM indistinguishability no-
tion that more closely matches PKE’s left-or-right idea, namely real-or-permuted
(ROP). Finally, we can show tight multi-instance inheritance for the most de-
sirable PKE notion, based on a ROP-secure TagXEM (Thm. 8).

One small hiccough remains, as our KEM-to-XEM result unfortunately only
works for classical KEM indistinguishability, not for ROP indistinguishability,
nor does it look feasible to convert a KEM or XEM to a TagKEM or TagXEM,
respectively, inheriting multi-instance security using standard reductions. Here,
the random oracle, as used by AGK to prove their construction secure, comes
to the rescue, although rather than looking at Hashed ElGamal under the MI-
GapCDH assumption, we consider more general KEMs that are multi-instance
one-way under plaintext checking attacks (unfortunately, also at this point we
need to restrict to perfect correctness), which we combine with Abe et al.’s
TagKEM construction from a KEM and a MAC (message authentication code).

Recalling that the original random oracle [14] was in fact a XOF, we can
bake the extendability into the random oracle, including the key needed for
an information-theoretic secure MAC. Moreover, the power of the ROM al-
lows proving the stronger ROP indistinguishability just as easily as classical
KEM indistinguishability. All in all, with Thm. 9 we achieve a suitably multi-
instance secure TagXEM based on a KEM that can be instantiated by Hashed
ElGamal. In that case, the security relies on the MI-GapCDH⋆ assumption, i.e.
with corruptions. As an added benefit of using the random oracle, the resulting
multi-instance bounds no longer rely on sufficiently long XOF inputs, thus for
determining a suitable group size (when instantiating by Hashed ElGamal) the
MI-GapCDH⋆ advantage is leading.

For low granularity, which corresponds to a setting where every user generates
its own group as part of its public key, AGK’s technique can easily be extended to
include corruptions and in the generic group model we arrive at the same bound
for the hardness of MI-GapCDH⋆, so with corruptions, as AGK did without
corruptions. Unfortunately, for the more realistic high granularity setting, where
users share the same (standardized) group, AGK’s proof strategy does not easily
allow incorporating corruptions. We provide details in the full version [17].

Thus, we can conclude that XOF-based Hashed ElGamal combined with a
suitable information-theoretically secure MAC and the one-time-pad, provides
good multi-instance security in the programmable random oracle model and
generic group model, provided that users each select their own independent
group. We briefly touch upon a concrete interpretation in the full version, where
we also informally address AGK’s scaling factor.

Related Work. Farshim and Tessaro [20] recently followed up BRT’s line of
work on the multi-instance security of password hashing by combining it with
the related preprocessing setting. AGK [4] motivated their investigation into
multi-instance security by the threat of mass surveillance. The latter had previ-
ously motivated Bellare et al. [11] to consider subversion, namely the ease with

6

IND-CCA⋆
KEM IND-CCA⋆

XEM ROR-CPA⋆
PKE

MI-GapCDH⋆ IND-CCA⋆
TXEM ROR-CCA⋆

PKE

OW-PCA⋆
KEM ROP-CCA⋆

TXEM IND-CCA⋆
PKE

AGK [4] + RO

Thm. 5

+ XOF

Thm. 6

+ OTP

Thm. 7

+ OTP

Thm. 9

+ MAC + RO

Thm. 8

+ OTP

Lemma 4 (full version)

Fig. 2. An overview of our constructions achieving various flavours of multi-instance
security. The left upwards arrow is dotted, as AGK did not consider corruptions.

which a “big brother” might subvert an encryption algorithm by replacing it
surreptitiously with a trapdoored one with otherwise identical behaviour.

The multi-instance setting is closely related to the multi-user setting, in which
the adversary is tasked with breaking only one rather than n out of κ possible
instances. Multi-user security was introduced by Bellare et al. [7] in the public-
key setting, with the goal of deriving concrete security parameters in a more
realistic setting. There have been many recent follow-up works, including how
the hybrid paradigm generalizes to the setting without corruptions [23], and later
with corruptions [33], as well as the construction of tightly-secure authenticated
key exchange (AKE) from multi-user KEMs [29]. Various versions of the multi-
user GapCDH problem with corruptions were recently proposed and analysed in
that context [30].

One definitional subtlety of multi-user security is the number of challenge
bits: either a single one, as originally conceived, or many, as typical for the
multi-instance setting. The various definitions do not appear to imply each other
tightly [26], which slightly hinders regarding the multi-user setting as a special
case of the multi-instance setting (due to potential tightness losses).

2 Preliminaries

2.1 Notation

For a positive integer n, we write [n] for the set {1, . . . , n}. We use code-based
experiments, where ← denotes deterministic assignment and ←$ denotes proba-
bilistic assignment. By convention, all sets and lists are initialized empty. For a

set X, we use the shorthand X
∪←− x for the operation X← X ∪ {x}. If X is a list,

then X
⌢←− x denotes appending the element x to X; to retrieve the ith element

of the list, we write X[i] where by convention X[i] = ∅ for out-of-bounds i.
We use Pr[Code : Event |Condition] to denote the conditional probability

of Event occurring when Code is executed, conditioned on Condition. We omit
Code when it is clear from the context and Condition when it is not needed.

7

For Boolean values, we use {true, false} and {0, 1} interchangeably, where by
convention 1 corresponds to true.

When proving relations between notions and security of constructions, we
will often refer to simple fully black box (SFBB) reductions. A reduction is fully
black box iff it works for all schemes and adversaries, and only accesses them in
a black box manner [6, 38] (we leave the black box dependence implicit in our
notation). Moreover, if the reduction only runs its adversary once and without
rewinding, then the reduction is simple [34].

Finally, the respective games that the adversary and the reduction are playing
often have matching (though not identical) oracles; for instance, both may have
access to a decryption oracle or a key corruption oracle. We call a reduction
type-preserving with respect to, say, a decryption oracle iff the reduction will
make decryption queries iff its black-box adversary makes decryption queries.
Type-preservation, without explicit mention of any oracles, is implicitly meant
to imply for all meaningfully matching oracles (unless otherwise specified).

Type-preservation of reductions appears folklore and can easily be established
by inspection. Intuitively, a type-preserving reduction can be used to show si-
multaneously that CCA security of some kind implies CCA security of another
kind and that CPA security of the same kind implies CPA security of the other
kind. In Sect. 3.3 we will encounter several reductions that are only partially
type-preserving.

2.2 PKE Syntax

A public-key encryption scheme PKE consists of four algorithms: the proba-
bilistic key generation algorithm PKE.Kg, which takes as input some system pa-
rameter pm (see also Remark 1) and outputs a public/private key pair (pk, sk);
the deterministic key validation algorithm PKE.Check, which takes as input the
system parameters pm as well as a purported public/private key pair (pk, sk)
and returns true or false (see Remark 2 below), the probabilistic encryption al-
gorithm PKE.Enc, which on input a public key pk and a message m ∈ M (see
Remark 3), outputs a ciphertext c; and the deterministic decryption algorithm
PKE.Dec, which on input of a secret key sk and a ciphertext c, outputs either a
message m, or a special symbol ⊥ denoting failure.

Remark 1. The system parameters pm are implicitly input to PKE.Enc and
PKE.Dec as well; for concreteness, they can for instance be the description of
an elliptic curve group with generator for an ECDLP-based system or the di-
mensions and noise sampling algorithm for an LWE-based system. When one is
interested in re-phrasing our results in an asymptotic setting, the parameters pm
will be generated by a probabilistic, polynomial-time algorithm that only takes
the security parameter as input.

Remark 2. For various modern cryptosystems, especially schemes targeting post-
quantum security or tight multi-user security, the relationship between public
and private keys is not one-to-one. For instance, a single public key can have var-
ious private keys [23] or a single private key can lead to various public keys [16].

8

Naively, one could check whether a public key and private key belong together
by simply verifying whether encrypting and then decrypting a number of ran-
dom messages always returns the original messages. With imperfect correctness,
such a canonical checking algorithm can produce both false positives and false
negatives. Yet, it is usually still possible to ckeck whether a private–public key
pair matches more directly, which we model by the key validation algorithm
PKE.Check. We will define both correctness and key unrecoverability in terms of
this key validation algorithm.

Remark 3. The message space M may depend on the parameters pm, but for
simplicity we assume it independent of the public key pk. Often M consists
of arbitrary length bitstrings, or at least all bitstrings up to some large length
(e.g. 264) and messages of the same length are deemed equivalent as they are ex-
pected to yield ciphertexts of identical lengths. We will model these equivalences
more abstractly by assuming that pm implicitly defines a number m of equiva-
lence classes, together with an efficient method J·K :M→ [m] to determine the
class (e.g. length) of a message and an efficient algorithm to sample uniformly
from a given equivalence class. We write ∼ for the equivalence, so for m ∈ M,
m ∼ m′ iff JmK = Jm′K.

Correctness. Perfect correctness states that for all parameters pm, all key pairs
(pk, sk) that can be output by PKE.Kg(pm), and all messages m ∈ M, we al-
ways have that PKE.Decsk(PKE.Encpk(m)) = m. Yet modern schemes, especially
lattice-based ones, often allow a small decryption error, where occasionally de-
cryption will fail or it will return a wrong message.

Various relaxations of correctness have appeared in the literature in order to
argue about such schemes as it turns out that some classical results implicitly
or subtly relied on perfect correctness. In order for our work to be meaningful
for a large range of both classical and modern schemes, we introduce a stronger
version of imperfect correctness based on the key validation algorithm.

Definition 1 ((γ, δ)-Correctness). Let γ, δ ∈ [0, 1]. Then a public-key encryp-
tion scheme PKE is called (γ, δ)-correct iff for all pm,

1. Pr[(pk, sk)←$ PKE.Kg(pm) : PKE.Check(pm, pk, sk) = false] ≤ γ;

2. for all (pk, sk) and all m ∈M, if PKE.Check(pm, pk, sk) = true then

Pr[PKE.Decsk(PKE.Encpk(m)) ̸= m] ≤ δ .

Perfect correctness corresponds to (0, 0)-correctness and any scheme is trivially
both (1, 0)-correct and (0, 1)-correct. For good schemes γ and δ can simultane-
ously be chosen small, where typically increasing γ allows for decreasing δ. As
we will see, both γ and δ will appear in various bounds, thus allowing larger γ
to enable smaller δ (or vice versa) might give preferable bounds.

9

3 Multi-Instance Security of Public-Key Encryption

3.1 Two Flavours of Key Recovery

The minimal requirement for public-key encryption schemes is that, given a pub-
lic key, it should be difficult to recover the private key. Although key unrecover-
ability is a very weak notion theoretically, its study has two main motivations:
firstly, many multi-instance attacks target key recovery, and secondly, concep-
tually the notion is relatively simple, allowing both an instructive introduction
of formalizing multi-instance security and an initial comparison between BRT’s
perfect symmetric encryption and our imperfect public key encryption.

At first sight, the generalization to the multi-instance setting appears imme-
diate: an adversary tries to recover the respective private keys for a number of
public keys. BRT introduced universal key unrecoverability (UKU) as a suitable
notion for multi-instance security of symmetric encryption. We provide an ana-
logue for public-key encryption, but there are some crucial changes in the game’s
mechanics (see also Sect. 3.3).

Let 0 < n ≤ κ be integer parameters, then the universal key unrecoverability

experiment Exp
(n,κ)-uku-cca⋆
PKE (A) for public-key encryption scheme PKE and ad-

versary A is described in Fig. 3. It generates κ key pairs and provides the public
keys to A, who is then tasked with recovering exactly n of the corresponding
private keys.

The adversary has access to both a decryption oracle D and a key corruption
oracle K, giving rise to chosen ciphertexts attacks with corruptions (CCA⋆; the
⋆ denotes corruptions). The decryption oracle D(i, c) takes as input an index i
and a ciphertext c, and returns the output of the decryption algorithm PKE.Dec
on input ski and c. The corruption oracle K(i) simply takes as input a key index
i, and returns the corresponding private key ski. The game notes that the key
pair with index i has been corrupted by adding it to the global set K.

Eventually,A outputs a set of key indices I and a list (ŝki)i∈I of guesses of the
private keys corresponding to those indices. In order for I to be eligible, it needs
to have cardinality n without containing any corrupted key pairs, that is, the
sets of guessed keys I and corrupted keys K should be disjoint. If I is eligible and
every guessed private key matches the corresponding sampled one, the adversary
wins the game. In that case, the game halts with output 1; otherwise, it halts
with output 0. The advantage is the probability that the game outputs 1.

Definition 2. Let PKE be a public-key encryption scheme. Then the universal
key unrecoverability advantage of an adversary A is

Adv
(n,κ)-uku-cca⋆
PKE (A) = Pr

[
Exp

(n,κ)-uku-cca⋆
PKE (A) = 1

]
,

where the experiment is defined in Fig. 3.

Weaker notions emerge by dropping either or both of the two oracles. Without
key corruption, standard CCA security results. Without decryption oracle, cho-
sen plaintext security (CPA⋆ resp. CPA) emerges. As usual, an encryption oracle
is superfluous in the PKE setting.

10

Experiment Exp
(n,κ)-(u/m)ku-cca⋆

PKE (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ PKE.Kg

(I, (ŝki)i∈I)←$A
D,K(pk1, . . . , pkκ)

if |I| ̸= n ∨ I ∩ K ̸= ∅ then return 0

UKU : return
∧
i∈I

ski = ŝki

MKU : return
∧
i∈I

PKE.Check
(
pki, ŝki,

)

Oracle D(i, c)

m← PKE.Decski(c)

return m

Oracle K(i)

K
∪←− i

return ski

Fig. 3. The key recovery experiments Exp
(n,κ)-uku-cca⋆
PKE (A) and Exp

(n,κ)-mku-cca⋆

PKE (A);
they only differ in their win condition.

For cryptosystems where a single public key may have many matching private
keys (such as Cramer–Shoup [19]), universal key unrecoverability is rather weak.
Hence, we consider a second, slightly stronger notion of key recovery, in which
the recovered private keys are no longer required to be identical to those sampled
in the game. Instead, it suffices that each passes the keypair checking algorithm
PKE.Check; here we leverage our correctness definition (Def. 1). We call the
resulting notion matching key unrecoverability (MKU), whose game is included
in Fig. 3. That MKU security indeed implies UKU security is captured by Thm. 1
below, where the error term κγ results from the unique correct keys as output
by the key generation not always passing the PKE.Check algorithm(see the full
version for the proof).

Theorem 1 (MKU −→ UKU). Let 0 < n ≤ κ be integer parameters and let
PKE be a (γ, δ)-correct encryption scheme. Then, there is a type-preserving
SFBB reduction Bmku, such that for every adversary Auku,

Adv
(n,κ)-uku-cca⋆
PKE (Auku) ≤ Adv

(n,κ)-mku-cca⋆
PKE (Bmku) + κγ .

3.2 Left-or-Right XOR Indistinguishability

To capture a stronger notion of security than simply hardness of key recov-
ery, BRT considered various generalizations of indistinguishability to the multi-
instance setting. For perfect probabilistic symmetric encryption, they concluded
that left-or-right xor-indistinguishability is the strongest notion. Here each key
comes with its own challenge bit that determines the left-or-right nature of the
corresponding challenge encryption oracle; the adversary is tasked to retrieve the
xor of all the challenge bits. In Def. 3, we use our modified game mechanics to
adapt left-or-right xor-indistinguishability for potentially non-perfect public-key
encryption.

Definition 3. Let PKE be a public-key encryption scheme. Then the xor-indis-
tinguishability advantage of an adversary A is

Adv
(n,κ)-ind-cca⋆
PKE (A) = 2 · Pr

[
Exp

(n,κ)-ind-cca⋆
PKE (A) = 1

]
− 1 ,

11

Experiment Exp
(n,κ)-ind-cca⋆
PKE (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ PKE.Kg

b1, . . . , bκ ←$ {0, 1}

(I, b̂)←$A
E,D,K,B(pk1, . . . , pkκ)

if |I| ≠ n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂← 0

return ⊕i∈I bi = b̂

Oracle K(i)

K
∪←− i

return ski

Oracle B(i)

B
∪←− i

return bi

Oracle E(i,m0,m1)

if m0 ̸∼ m1 then return E

c←$ PKE.Encpki(mbi)

Mi(c)← mbi

Ci
∪←− c

return c

Oracle D(i, c)

m← PKE.Decski(c)

if c ∈ Ci ∧m = Mi(c) then return E

return m

Fig. 4. Our main notion of multi-instance indistinguishability. In blue the slightly
non-standard strengthening of the decryption oracle in case of imperfect correctness.

where the experiment is defined in Fig. 4.

In the experiment Exp
(n,κ)-ind-cca⋆
PKE (A), the adversary gets access to κ indepen-

dently drawn public keys and helper oracles D and K (as described in Sect. 3.1).
Furthermore, A gets access to a challenge encryption oracle E and a separate
bit corruption oracle B.

On input two equivalent messages m0 and m1 and a public key index i, the
challenge encryption oracle returns PKE.Encpki(mbi) where bi is the challenge
bit associated with the public key indexed by i. As usual for IND-CCA no-
tions, challenge ciphertexts cannot be queried to the decryption oracle, which
we catch on-the-fly [9]. Owing to the imperfect decryption, we allow a slight
relaxation: if a challenge ciphertext decrypts incorrectly, we do not suppress the
output and essentially allow the query. This relaxation strengthens the notion,
but as challenge ciphertexts are honestly generated, the advantage gained by
an adversary can be bound by the correctness parameters of the PKE using an
identical-until-bad argument; however such a generic approach might not give
bounds appropriate for the multi-instance setting.

Eventually, the adversary returns a set I of targets and a guess b̂ of the xor
of the corresponding challenge bits bi. If I is a set of n uncorrupted indices, then
intuitively an adversary’s uncertainty about any of the n challenge bits will be
affected in the final guess b̂, so in that sense b̂ neatly captures an adversary’s need
to break n instances in order to win. If I is not a set of n uncorrupted indices,
the game resets A’s guess b̂ to 0, ensuring an adversary gains zero advantage
from such a bad I.

The Relationship with Key Recovery. BRT showed that in their perfect
symmetric setting, multi-instance indistinguishability implies multi-instance uni-
versal key unrecoverability. While that may sound like a triviality, their proof [13,

12

App. C] was not entirely straightforward and, to ensure that the advantages car-
ried over neatly, the distinguishing reduction receiving recovered keys needed to
amplify its success probability by repeated random challenge encryptions. Their
bound ends up with an additive term that corresponds to the likelihood that
decrypting using an incorrect key results in the opposite message from the de-
crypted one.

Our imperfect public key setting is slightly different. On the one hand, the
reduction can check the recovered keys with the PKE.Check algorithm, yet on
the other hand correct keys can still cause incorrect decryptions. As a result,
our amplification based on multiple challenge encryptions differs from BRT’s,
as we move from unanimity to a plurality vote. Furthermore, our reduction can
use fixed messages (to match how correctness is defined), which reduces a de-
pendency (in the bound) on the size of the message space. We suspect that our
amplification can be tightened further by a combination of exploiting random-
ness and more fine-tuned voting, coupled with more fine-grained bounding of
probabilities.

As is, the complexity of the bound makes its behaviour somewhat opaque
and for some parameter choices vacuous (when c < 0). The main idea is that
Bind can increase q, the number of challenge encryptions per user, to counteract
the losses inferred by large n and/or large δ, with a small penalty to its running
time. For δ = 2−64, q = 1 already suffices for c > 1/2 for n < 225. In case of
perfect correctness for keys that check out, corresponding to δ = 0, the bound
is completely tight.

Theorem 2 (IND −→ MKU). Let PKE be a (γ, δ)-correct encryption scheme
with δ < 1/2. Then there is a type-preserving SFBB reduction Bind such that, for
every Amku,

Adv
(n,κ)-ind-cca⋆
PKE (Bind) ≥ c · Adv(n,κ)-mku-cca⋆

PKE (Amku) ,

with c = 2
(
1− 2q(δ(1− δ))

q
2

)n−1 where q ∈ Z>0 is an amplification parameter
of the reduction; Bind’s overhead consists of q ·n calls to E, n offline key checks,
and q · n offline decryptions.

Proof. Let Bind run adversary Amku on the same κ public keys as it received
itself. Whenever Amku makes a decryption or corruption query, Bind simply
forwards the queries to its own oracle, relaying the response back to Amku.
Eventually, Amku terminates with output (I, (ŝki)i∈I) and Bind first confirms
whether Amku won, by checking, for all the returned private keys, whether
PKE.Check(pki, ŝki) holds. If any check fails, Bind halts with output 0.

Let m0 and m1 be two distinct yet equivalent messages. Then for all i ∈ I,
Bind creates a guess b̂i by querying its challenge encryption oracle q times on
those two messages, so q queries E(i,m0,m1) resulting in cij , for j ∈ [q]. It

then decrypts those ciphertexts using the private key ŝki it obtained from Amku,
resulting in purported messages mij ← PKE.Decŝki

(cij). If, for a fixed i, there

are strictly more than q/2 appearances of m0 amongst the mij , it sets b̂i to 0;

13

if there are strictly more than q/2 appearances of m1, then it sets b̂i to 1. If
neither message appears more than q/2 times, Bind halts with output 0. Once

Bind has created a guess b̂i for all i ∈ I, it terminates on output (I,
⊕

i∈I b̂i).

For i ∈ I, let Checki be the event that Amku outputs a key ŝki that passes the

test and let Goodi be the event that Bind’s guess b̂i actually equals bi. Let CheckI
be the event that all Checki hold (for i ∈ I) and define GoodI analogously.

As Bind’s simulation of Exp
(n,κ)-mku-cca⋆
PKE is perfect, we know that

Adv(n,κ)-mku-cca⋆(Amku) = Pr[CheckI] ,

moreover,

Pr
[
Exp

(n,κ)-ind-cca⋆
PKE (Bind) = 1

]
≥ Pr[CheckI ∧ GoodI] + Pr[¬CheckI ∧ b = 0]

= Pr[GoodI |CheckI] Pr[CheckI] +
1

2
(1− Pr[CheckI])

which implies that

Adv
(n,κ)-ind-cca⋆
PKE (Bind) ≥ (2Pr[GoodI |CheckI]− 1)Adv(n,κ)-mku-cca⋆(Amku) .

To bound Pr[GoodI |CheckI] we exploit the correctness definition, specifi-
cally that its quantification (Def. 1) ensures that whenever Checki holds, we

have that Pr
[
PKE.Decŝki

(PKE.Encpki(m)) = m
]
≥ 1 − δ, irrespective of m and

where the probability is only over the randomness of PKE.Enc.
If, for a given i, decryption is correct strictly more than q/2 times, then we

are guaranteed that Goodi occurs. If we let B
(
q, p
)
be the binomial distribution

over q trials and with probability p, then

Pr[Goodi |Checki] ≥ Pr
[
B
(
q, (1− δ)

)
>

q

2

]
and, as this bound only relies on the randomness of the challenge encryption
oracle, guaranteed independent for differing i, we may conclude that

Pr[GoodI |CheckI] ≥
(
Pr
[
B
(
q, (1− δ)

)
>

q

2

])n
.

Finally, we note that

Pr
[
B
(
q, (1− δ)

)
>

q

2

]
≥ 1− 2q (δ(1− δ))

q
2

by a standard application of known bounds on binomial tails, requiring δ ≤ 1/2
(see details below). Plugging in all the various bounds recovers the theorem
statement.

For the binomial tail bound, we use the Chernoff–Hoeffding bound [27], which
states that, for a binomial distribution B

(
q, p
)
over q trials and with probability

p, and any k satisfying p < k
q < 1 the tail bound

Pr
[
B
(
q, p
)
≥ k

]
≤ exp

[
−qD

(
k

q

∥∥∥∥ p

)]

14

holds, where D(a∥b) is the Kullback–Leibler divergence defined as D(a∥b) =

a ln
(
a
b

)
+ (1− a) ln

(
1−a
1−b

)
.

We further use the trick that Pr
[
B
(
q, (1− δ)

)
> q

2

]
= 1 − Pr

[
B
(
q, δ
)
≤ q

2

]
,

so the relevant Kullback–Leibler divergence becomes

D

(
1

2

∥∥∥∥ δ

)
=

1

2
ln

(1
2

δ

)
+

(
1− 1

2

)
ln

((
1− 1

2

)
1− δ

)

=
1

2
ln

(
1

2δ

)
+

1

2
ln

(
1

2(1− δ)

)
= ln

[(
1

4δ(1− δ)

) 1
2

]
,

which allows us to compute the bound

Pr
[
B
(
q, (1− δ)

)
>

q

2

]
≥ 1− exp

[
−qD

(
1

2

∥∥∥∥ δ

)]
= 1− exp

[
−q ln

[(
1

4δ(1− δ)

) 1
2

]]
= 1− 2q (δ(1− δ))

q
2 .

⊓⊔

Corollary 1 (IND −→ UKU). Let PKE be a (γ, δ)-correct encryption scheme
with δ < 1/2. Then there is a type-preserving SFBB reduction Bind such that, for
every Auku,

Adv
(n,κ)-ind-cca⋆
PKE (Bind) ≥ c · Adv(n,κ)-uku-cca⋆PKE (Auku)− κγ ,

with c, q, and Bind’s overhead as above (Thm. 2).

3.3 Alternative Mechanisms

As we mentioned before, our mechanism to capture multi-instance security differs
slightly from those used by BRT and AGK, respectively, even when accounting
for changes in primitive and correctness. At first sight, the differences might
appear mostly cosmetic, though there are some subtleties involved.

The BRT Notion: Requiring n = κ, Possibly Corrupted, Targets.
BRT require an adversary to return the xor of all bits, but allow those bits or
corresponding users to be corrupted. Fig. 5 reflects the small change needed
in the code of our security experiment to match BRT’s mechanism (ignoring
a minor, inconsequential difference, as BRT have a single, merged corruption
oracle that returns both key and bit). As motivation for including corruptions,

15

Experiment Exp
(≤κ,κ)-ind-cca⋆
PKE (A)

4 : if |I| ≠ κ then b̂← 0

Experiment Exp
(≥n,κ)-ind-cca⋆
PKE (A)

4 : if |I| < n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂← 0

Fig. 5. The main differences between our mechanism for multi-instance indis-
tinguishability (Fig. 4) and prior art revolve around line 4: BRT’s experiment

Exp
(≤κ,κ)-ind-cca⋆
PKE (A) (left) and AGK’s experiment Exp

(≥n,κ)-ind-cca⋆
PKE (A) (right). The

differences are highlighted in blue.

BRT discuss the scenario that, say, half of the keys generated are hopelessly
insecure: an adversary breaks the insecure half and corrupts the rest, thus being
successful. Moreover, they mention that their choice implies security under a
corruptionless notion with dynamically chosen I.

Although the implication is of course true, and something can be said to
target the strongest possible notion, corruptions have a habit of creating com-
plications for reductions and provable security in general. Yet, we believe the
inclusion of corruptions, or not, should reflect the threat model of the adversary
and that choice should be orthogonal to the number of users being targeted.
BRT, instead of having an explicit hardness parameter n, restrict an adversary
to make at most qc corruption queries to avoid trivial wins when qc = κ. Yet,
whether the resulting, intuitive hardness will or should then match n = κ− qc,
is unclear.

We address the equivalence between BRT’s mechanism and our general mech-
anism (with corruptions) in Lemmas 1 and 2. Both lemmas have in common
that the respective reductions may make up to κ−n additional bit corruptions.
In other words, the reductions are not type-preserving, making the equivalence
somewhat sloppy. As an aside, using techniques similar to those to prove Thm. 2,
the key corruption oracle could be used (at a loss) to simulate the bit corruption
oracle instead(see the full version for the proofs).

Lemma 1 (main notion =⇒ BRT). Let n ≤ κ and qc ≤ κ− n. Then there
is an SFBB reduction B such that, for every adversary A making at most qc
corruption oracle calls,

Adv
(≤κ,κ)-ind-cca⋆
PKE (A) ≤ Adv

(n,κ)-ind-cca⋆
PKE (B) ,

where B makes at most κ− n additional bit corruption oracle calls.

Lemma 2 (BRT =⇒ main notion). Let n ≤ κ. Then there is an SFBB
reduction B such that, for every adversary A,

Adv
(n,κ)-ind-cca⋆
PKE (A) ≤ Adv

(≤κ,κ)-ind-cca⋆
PKE (B) ,

where B makes at most κ− n additional bit corruption oracle calls.

The AGK Notion: Allowing More than n Targets without Corrup-
tions. When AGK studied KEMs in the multi-instance setting, they used a xor

16

notion with the n as the minimum number of targets to attack (out of κ possi-
ble) as an explicit parameter; moreover, an adversary would not have access to
any corruption oracles. Fig. 5 reflects the small change needed in the code of our
security experiment to match AGK’s mechanism with corruptions added (where

we fixed a minor bug in their code; rather than setting b̂ ← 0 their experiment
would immediately return 0 instead, inadvertently granting an adversary that
deliberately returns a compromised handle the significant advantage of −1).

Absent corruptions, AGK indicated that for some pathological schemes, break-
ing more targets might paradoxically be easier than breaking fewer [3, App. C].
In those cases, the freedom to return a set I of cardinality greater than n would
make life easier for an adversary, leading to a stronger notion.

In the presence of corruptions, requiring the adversary to target exactly n
users as we do is without loss of generality. As an example, if an adversary can
figure out the xor of n+1 honest bits, it can bit-corrupt any single one of these
n+ 1, and xor the resulting bit out of the initial guess to obtain a final one on
n bits instead. We formalize this intuition below.

Lemma 3 (main notion =⇒ AGK⋆). There is an SFBB adversary B such
that, for every A,

Adv
(≥n,κ)-ind-cca⋆
PKE (A) ≤ Adv

(n,κ)-ind-cca⋆
PKE (B) .

If A returns a list of n′ targets, B makes n′ − n additional calls to its bit cor-
ruption oracle.

3.4 Real-or-Random XOR Indistinguishability

An alternative notion of indistinguishability, known as real-or-random indistin-
guishability (ROR), sees the adversary tasked with figuring out whether a chal-
lenge ciphertext contains the adversarially chosen message m or an unknown,

randomly chosen message. The game Exp
(n,κ)-ror-cca⋆
PKE is exactly as in Fig. 4,

apart from the challenge encryption oracle EROR(i,m), which sets m0 ← m and
m1 ←$ [m] to then call (left-or-right) E(i,m0,m1).

By construction, left-or-right indistinguishability easily implies real-or-random
indistinguishability. That statement is as true in the multi-instance setting as it
is in the classical single-user setting. Conversely, in the single-user setting, it has
long been established that the reduction from ROR to IND loses a factor 2 [8].
However, BRT showed that in the multi-instance setting, the factor 2 blows up
exponentially to, in their case, 2κ. Yet, BRT argue that this exponential loss
is not as bad as it might seem, given that the multi-instance advantages are
supposed to be exponentially smaller than their single-user counterparts. Thus,
reductions incurring losses exponential in κ or n can still be valuable.

To adapt BRT’s reduction to our setting, we require n = κ, implying that
A cannot access its corruption oracles. Otherwise, corruptions would make the
reduction noticeable once at least one bi is set to 1, potentially influencing an
adversary’s behaviour in unpredictable ways(see the full version for the proof).

17

Theorem 3. There is an SFBB reduction B such that, for every adversary A,

Adv
(κ,κ)-ind-cca
PKE (A) ≤ 2κ · Adv(κ,κ)-ror-ccaPKE (B) ,

where B additionally draws κ bits uniformly at random.

Furthermore, a reduction playing an (n, n) game can exploit an adversary playing
a (n, κ) game by guessing in advance the set I of targets that the adversary will
return. A correct guess allows the reduction to simulate the remaining keys
without being noticed(see the full version for the proof).

Theorem 4. There is an SFBB reduction B such that, for every adversary A,

Adv
(n,κ)-ind-cca⋆
PKE (A) ≤

(
κ

n

)
· Adv(n,n)-ind-ccaPKE (B) .

B’s overhead consists of generating κ − n fresh keypairs, sampling κ − n bits,
and choosing a subset of [κ] of cardinality n uniformly at random.

Composing Thm. 3 and 4, we obtain the following bound.

Corollary 2 (ROR =⇒ IND). There is an SFBB reduction B such that, for
any adversary B,

Adv
(n,κ)-ind-cca⋆
PKE (A) ≤

(
κ

n

)
· 2n · Adv(n,n)-ror-ccaPKE (B) .

B’s overhead consists of generating κ − n fresh keypairs, sampling κ bits, and
choosing a subset of [κ] of cardinality n uniformly at random.

An alternative bound losing a factor 2κ is possible by combining Thm. 3 with
Lemma 2, however a simple analysis shows that whenever n < κ/5 the corollary
above is preferable.

At first glance, an exponential-looking loss of 2κ might seem severe, poten-
tially rendering the resulting bound vacuous. Yet, as BRT already highlighted,
the multi-instance advantages themselves might vanish exponentially in n, mak-
ing the bounds relevant for the notions being compared. Nonetheless, tigher
bounds still matter; unfortunately achieving even tighter bounds in the general
case seems challenging [5, 12].

4 Inheriting Multi-Instance Security

4.1 TagKEM: Definition and Notion of Security

Our goal is to turn the AGK multi-instance secure KEM into a PKE. Yet, for the
construction of hybrid encryption, the more general TagKEMs, where encapsu-
lation is split into two algorithms (TKEM.Key and TKEM.Enc) have proven more
powerful [2]: intuitively speaking, splitting the algorithm allows the tag and con-
sequently the key encapsulation to depend on the data encapsulation, making

18

Experiment Exp
(n,κ)-ind-cca⋆
TXEM (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ TXEM.Kg

b1, . . . , bκ ←$ {0, 1}

(I, b̂)←$A
C,E,D,K,B(pk1, . . . , pkκ)

if |I| ≠ n ∨ I ∩ (K ∪ B) ̸= ∅ then b̂← 0

return ⊕i∈I bi = b̂

Oracle D(i, ⟨c, τ⟩ , ℓ)

K ← TXEM.Decski(c, τ, ℓ)

if Pi(c, τ) ̸= ∅
K′ ← Pi(c, τ), ℓ

′ ← min{ℓ,
∣∣K′∣∣}

else

K′ ← ε, ℓ′ ← 0

if ⟨c, τ⟩ ∈ Ci ∧ KJℓ′K = K′Jℓ′K
return E

return K

Oracle C(i, ℓ)

(K0, σ)←$ TXEM.Keypki(ℓ)

Ei
⌢←− ⟨σ,K0⟩

K1 ←$ {0, 1}ℓ

return Kbi

Oracle E(i, j, τ)

if Ei[j] = ∅ then return E

⟨σ,K⟩ ← Ei[j], Ei[j]← ∅
c←$ TXEM.Enc(σ, τ)

Pi(c, τ)← K

Ci
∪←− ⟨c, τ⟩

return c

Oracle K(i)

K
∪←− i

return ski

Oracle B(i)

B
∪←− i

return bi

Fig. 6. Multi-instance indistinguishability notion for TXEM. In blue the same
strengthening as in Fig. 4 in the case of imperfect correctness, with a slightly more
complex admin to accomodate tags and length extension. We take KJℓK to mean the
first ℓ bits of K and ε as the empty string.

CCA security of the hybrid construction easier to achieve (cf. the Kurosawa–
Desmedt scheme [31]). In Def. 4 we introduce a further generalization, called
TagXEM, by allowing extendable output lengths for the ephemeral keys pro-
duced by the TagXEM.

Definition 4 (TagXEM). A TagXEM is a tuple of algorithms (TXEM.Kg,
TXEM.Key,TXEM.Enc,TXEM.Dec,TXEM.Check), where long-term key genera-
tion TXEM.Kg on input pm outputs a random keypair (pk, sk); ephemeral key
generation TXEM.Key on input pk and ℓ ∈ Z>0, outputs a random ephemeral
key K ∈ {0, 1}ℓ and an internal state σ, subsequently encapsulation TXEM.Enc
on input a state σ and a tag τ ∈ T , deterministically outputs an encapsulation
c, or a special symbol ⊥ denoting failure. The deterministic decapsulation algo-
rithm TXEM.Dec takes input a private key sk, an encapsulation c, a tag τ , and
a length ℓ, and outputs either a key K ∈ {0, 1}ℓ or ⊥ to denote failure. Finally,
the deterministic TXEM.Check takes as input the system parameters pm as well
as a purported public/private key pair (pk, sk) and returns true or false.

If we restrict to a single value ℓ, the usual notion of TagKEMs appears; moreover
if we restrict to a single value of τ , the TXEM.Key and TXEM.Enc algorithms can

19

be merged into a single key encapsulation mechanism, leading to normal KEMs
(or XEMs if the variable output length is still incorporated). Consequently, the
correctness and security definitions for the more general TagXEMs, as discussed
throughout this section, imply corresponding definitions for KEM, XEM, and
TagKEM.

For correctness, we allow the effective tag space Tℓ to depend on the length
ℓ of the ephemeral key. Similarly to Def. 1, we define (γ, δ)-correctness for
TagXEM. To ensure correctness for all τ , including those that depend on K,
τ ’s quantifier sits inside the probability statement.

Definition 5 ((γ, δ)-Correctness TagXEM). Let γ, δ ∈ [0, 1]. Then a tag
extendable-output key encapsulation mechanism TXEM is called (γ, δ)-correct
iff

1. Pr[(pk, sk)←$ TXEM.Kg(pm) : TXEM.Check(pm, pk, sk) = false] ≤ γ;
2. if TXEM.Check(pm, pk, sk) = true then for all ℓ ∈ Z>0 it holds that

Pr

[
(K,σ)←$ TXEM.Keypk(ℓ) : ∃τ ∈ Tℓ s.th.

c← TXEM.Enc(σ, τ)
TXEM.Decsk(c, τ, ℓ) ̸= K

]
≤ δ .

For security, Abe et al.’s notion of TagKEM indistinguishability [2] transfers
easily to the multi-instance setting. The relevant game is given in Fig. 6, where
we also made the necessary changes to deal with the variable output length
of TagXEMs, plus the strengthening of D in the case of imperfect correctness
(cf. Sect. 3.2).

Definition 6. Let TXEM be a TagXEM. Then the xor-indistinguishability ad-
vantage of an adversary A is

Adv
(n,κ)-ind-cca⋆
TXEM (A) = 2 · Pr

[
Exp

(n,κ)-ind-cca⋆
TXEM (A) = 1

]
− 1 ,

where the experiment is defined in Fig. 6.

If we fix ℓ and set Tℓ to a single element, the notion captures multi-instance
security for standard KEMs, which is near equivalent (see Sect. 3.3) the notion
that AGK used. In other words, provided MI-gapCDH is hard, their construction
achieves (n, κ)-IND-CCA security in the random oracle model, but only for fixed
ℓ and trivial Tℓ [4, Thm. 2].

4.2 Extending the Output of a TagKEM

First, we show how combining a TagKEM with a fixed output length and a
suitable pseudorandom extendable output function (XOF), yields a TagXEM
that inherits the MI security of the underlying KEM. Recall that a XOF, for
instance SHAKE128 and SHAKE256 as standardized by NIST [35], is a function
F : X ×Z>0 → {0, 1}∗ for some finite domain X that on input a seed s ∈ X and
a desired output length ℓ, outputs a value y ∈ {0, 1}ℓ. Moreover, if ℓ < ℓ′, then

20

TXEM.Keypk(ℓ)

(Kkem, σ)←$ TKEM.Keypk

Kxem ← F (Kkem, ℓ)

σ′ ← ⟨σ, ℓ⟩
return (Kxem, σ′)

TXEM.Enc(σ′, τ)

⟨σ, ℓ⟩ ← σ′

if τ ̸∈ Tℓ :
return ⊥

c← TKEM.Enc(σ, τ)

return c

TXEM.Dec(c, τ, ℓ)

if τ ̸∈ Tℓ :
return ⊥TAG

Kkem ← TKEM.Dec(c, τ)

if Kkem =⊥:
return ⊥KEM

Kxem ← F (Kkem, ℓ)

return Kxem

Fig. 7. A TagXEM TXEM from a TagKEM TKEM with keyspace {0, 1}k and a XOF
with seed space X = {0, 1}k. The key generation algorithm TXEM.Kg is unchanged
from TKEM.Kg.

F (s, ℓ) is a prefix of F (s, ℓ′) for all s. This prefix preservation is not a requirement
of our constructions; rather we model the property to ensure SHAKE128 and
SHAKE256 are suitable real-world instantiations.

As security notion for a XOF F we use its multi-challenge pseudorandomness,
which is a standard distinguishing advantage AdvpsrndF (A): an adversary needs to
distinguish between either a real oracle that, on input a desired length ℓ, samples
a seed s←$ X uniformly at random and returns F (s, ℓ), or an ideal oracle that,
on input said ℓ, simply returns a uniformly sampled string of length ℓ.

The construction of the TagXEM is given in Fig. 7 and the security claim
follows in Thm. 5 (see the full version for the proof). If the PsRND advantage
of F is sufficiently small, then TXEM inherits the multi-instance security of
TKEM; moreover, as the result holds for arbitrary T and Tℓ, it holds for the
trivial spaces, yielding a slightly simpler XEM from KEM result.

Theorem 5. Let TKEM be a (γ, δ)-correct TagKEM sampling keys from {0, 1}k
and with tagspace T , let F : {0, 1}k × Z>0 → {0, 1}∗ be a XOF, and let TXEM
be a TagXEM as given in Fig. 7 for arbitrary Tℓ ⊆ T . Then TXEM is (γ, δ)-
correct, and there are SFBB reductions B and C such that, for every adversary
A,

Adv
(n,κ)-ind-cca⋆
TXEM (A) ≤ Adv

(n,κ)-ind-cca⋆
TKEM (B) + 2 · AdvpsrndF (C) .

If A calls C qc times and D qd times, then B’s overhead consists of at most
qc + qd evaluations of F , while C’s overhead consists of doing κ executions of
TKEM.Kg, at most qc executions of TKEM.Key and TKEM.Enc, and at most qd
executions of TKEM.Dec.

One concern is whether the PsRND advantage of F will be sufficiently small.
Suppose k is the output length of the underlying TagKEM. A generic attacker
would always be able to fix ℓ > k and evaluate F for, say, N seeds offline in the
hope of colliding with any of the challenge evaluations. The PsRND distinguish-
ing advantage of such an adversary is of order (qc+ qd)N/2k, indicating that the

21

PKE.Encpk(m)

(K, c1)←$ XEM.Encpk(|m|)
c2 ← K ⊕m

return ⟨c1, c2⟩

PKE.Decsk(⟨c1, c2⟩)

K ← XEM.Decsk(c1, |c2|)
if K =⊥ then return ⊥
m← K ⊕ c2

return m

PKE′.Encpk(m)

(K,σ)←$ TXEM.Keypk(|m|)
c2 ← K ⊕m

c1 ← TXEM.Enc(σ, c2)

return ⟨c1, c2⟩

PKE′.Decsk(⟨c1, c2⟩)

K ← TXEM.Decsk(c1, c2, |c2|)
if K =⊥ then return ⊥
m← K ⊕ c2

return m

Fig. 8. Two hybrid encryption schemes: PKE (top row) is a conventional hybrid
scheme combining a XEM with the OTP to yield a CPA-secure PKE, while PKE′

(bottom row) combines a TagXEM with the OTP to yield a CCA-secure PKE. The
key generation and checking algorithms are equivalent to their XEM resp. TXEM
counterparts.

underlying TagKEM already needs to provide keys long enough for Thm. 5 to
yield meaningful multi-instance security.

4.3 A PKE Inheriting (Tag)XEM Security

As a multi-instance secure XEM provides us with ephemeral keys of any de-
sired length, we can combine it with an information-theoretic DEM in order to
achieve PKE. Here we opt for the one-time-pad (OTP), as it is the simplest and
best-known primitive providing perfect secrecy. The beauty of the OTP is that
whether you switch out the ephemeral key for a uniform random one, or the
message for a uniform random one, the resulting ciphertext distribution is the
same. It allows the PKE to tightly inherit the MI-security of the XEM, albeit
yielding only real-or-random security under chosen-plaintext attacks. The con-
struction is provided in full in Fig. 8 (top row); the security claim is captured in
Thm. 6(see the full version for the proof).

Theorem 6 (ROR-CPA PKE). Let XEM be a (γ, δ)-correct XEM, and let
PKE be a hybrid encryption scheme as given in Fig. 8. Then PKE is (γ, δ)-
correct, and there is a type-preserving SFBB reduction B such that for every
adversary A,

Adv
(n,κ)-ror-cpa⋆
PKE (A) ≤ Adv

(n,κ)-ind-cpa⋆
XEM (B) .

One might hope that adding information-theoretic MACs to the DEM would
result in the inheritance of CCA security, but that is easier said than shown.
For instance, the usual proof technique of a game hop where all decryption
queries are disallowed does not work: after breaking only a single KEM private

22

Oracle CROP(i, ℓ,Π)

(K0, σ)←$ TXEM.Keypki(ℓ)

Ei
⌢←− σ

K1 ← Π(K0)

return Kbi

Fig. 9. Fig. 6 is upgraded to Exp
(n,κ)-rop-cca⋆
TXEM by letting CROP replace C.

key, the reduction will be found out as not being faithful. Sadly, a single-instance
break (of the reduction) suffices to show that that reduction cannot demonstrate
multi-instance security.

Luckily, TagKEMs allow for a modified hybrid scheme for which the DEM
no longer needs to satisfy CCA security for the resulting PKE to be guaranteed
CCA-secure: in the single-instance setting, if the TagKEM is CCA-secure, then
so is the PKE [2]. We upgrade the construction to use TagXEMs and the OTP
in Fig. 8 (bottom row) and show its multi-instance inheritance in Thm. 7(see
the full version for the proof).

Theorem 7 (ROR-CCA PKE). Let TXEM be a (γ, δ)-correct TagXEM, and
let PKE′ be a hybrid encryption scheme as given in Fig. 8. Then PKE′ is (γ, δ)-
correct, and there is a type-preserving SFBB reduction B such that for every
adversary A,

Adv
(n,κ)-ror-cca⋆
PKE′ (A) ≤ Adv

(n,κ)-ind-cca⋆
TXEM (B) .

While encouraging, the claim that the constructed PKE inherits the multi-
instance security of the TagXEM is dampened by the exponential separation
between the ROR security notion and IND, as argued in Sect. 3.4. Indeed, ex-
trapolating to the latter notion by combining Thm. 7 with Cor. 2, we have only
achieved the following bound.

Corollary 3. Let TXEM be a (γ, δ)-correct TagXEM, and let PKE′ be a hybrid
encryption scheme as given in Fig. 8. Then PKE′ is (γ, δ)-correct, and there is
a type-preserving SFBB reduction B such that for every adversary A,

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤

(
κ

n

)
· 2n · Adv(n,n)-ind-ccaTXEM (B) ,

where B’s overhead is dominated by generating κ−n fresh keypairs, sampling κ
bits, and choosing a subset of [κ] of cardinality n uniformly at random.

4.4 Real-Or-Permuted: A Strengthened Notion for KEM Security

If we want to achieve an IND-CCA PKE more tightly, we seem to need a different
notion of security for our TagXEMs. What could such a notion look like?

23

Our solution is a novel, stronger KEM notion, which we will refer to as
“real-or-permuted”, or ROP for short. Fig. 9 provides the crucial new challenge
oracle. The adversary has to guess whether a tentative K is the one encapsulated
under c, or whether an adaptively chosen permutation has been applied to it.
As permutations preserve the distribution of the sampling space, there are no
choices of Π that make the game generically and trivially winnable.

Technically, we need to specify how the adversary provides Π such that it is
guaranteed, or can be checked, to be a permutation. Hence, formally we define
ROP with respect to a class of permutations P, reminiscent of for instance key-
dependent message [24] or related-key attack [10] definitions. We require that
membership Π ∈ P is easy to check (e.g. ROP can simply index an element in P)
and that, by definition, P can be verified to indeed only contain permutations.
For our main results, it suffices if P is the class of one-time pads, in the sense
that Π specifies the key (or pad) of the one-time pad enciphering. Henceforth,
we will assume that ROP is defined with respect to that class, unless explicitly
stated otherwise.

The new notion ROP and IND relate to each other much the same way as
IND and ROR for PKE. It is not hard to see that ROP tightly implies IND,
whereas the other direction seems to incur the same loss as the ROR-to-IND
implication for PKE (see the full version). For completeness, ROP lends itself
equally well to XEMs and KEMs, or notions without corruptions or a decryption
oracle. Finally, if any of the above primitives are constructed using an IND-secure
PKE (e.g. using a Fujisaki–Okamoto style transform [21,22,28]), then achieving
ROP is as easy as achieving IND: simply let K be the “left” message, and Π(K)
be the “right”!

4.5 PKE′ Tightly Inherits IND-CCA Security

Using ROP in place of IND, we are able to show directly that the PKE con-
structions of Fig. 8 are IND-CPA resp. IND-CCA secure, by (as before) giving a
(Tag)XEM reduction that provides a perfect simulation for the PKE adversary.

The crucial observation is that for any pair of messages m0,m1 ∈ {0, 1}ℓ,
there exist a permutation Πm0→m1

on {0, 1}ℓ such that the message encapsula-
tions are related as K⊕m1 = Πm0→m1(K)⊕m0. Namely, the permutation that
on input K, outputs m0 ⊕m1 ⊕K(see the full version for the proof).

Theorem 8 (IND-CCA PKE). Let TXEM be a (γ, δ)-correct TagXEM, and
let PKE′ be a hybrid encryption scheme as given in Fig. 8. Then PKE′ is
(γ, δ)-correct, and there is a type-preserving SFBB reduction B such that for
every adversary A,

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤ Adv

(n,κ)-rop-cca⋆
TXEM (B) .

We leave it to the reader to verify that as before, employing a ROP-CPA XEM
in place of the TagXEM yields IND-CPA security for the PKE of Fig. 8 (top
row), by adapting the proof of Thm. 6 to the above. We again stress that using
an information-theoretically CCA-secure DEM together with a CCA XEM does
not seem to yield a proof of CCA inheritance to the PKE (see Sect. 4.3).

24

TXEM.Kg

(pk′, sk′)←$ KEM.Kg

pk← pk′

sk←
〈
pk′, sk′

〉
return (pk, sk)

TXEM.Check(pk, sk)〈
pk′, sk′

〉
← sk

if pk ̸= pk′ then return 0

return KEM.Check(pk′, sk′)

TXEM.Enc(σ, τ)

⟨c,Kmac⟩ ← σ

mac← MACKmac(τ)

return ⟨c,mac⟩

TXEM.Keypk(ℓ)

(Kkem, c)←$ KEM.Encpk

ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem ← F
(
pk, c,Kkem, ℓ′

)
σ ← ⟨c,Kmac⟩
return Kxem

TXEM.Decsk(⟨c,mac⟩ , τ, ℓ)〈
pk′, sk′

〉
← sk

Kkem ← KEM.Decsk′(c)

if Kkem =⊥ then return ⊥
ℓ′ ← ℓ+ ℓmackey

Kmac∥Kxem ← F
(
pk′, c,Kkem, ℓ′

)
if MACKmac(τ) ̸= mac then return ⊥
return Kxem

Fig. 10. A TagXEM from a KEM, a MAC, and an XOF F .

4.6 TagXEM from a KEM, a MAC, and a Random Oracle

With Thm. 8, we achieved what we set out to do: demonstrating tight MI in-
heritance from a TagXEM to an IND-CCA PKE. However, AGK only showed
how to construct an IND-CCA KEM, providing a reduction to the MI-GapCDH
assumption in the programmable random oracle model. Without the crucial sup-
port of tags, our construction only achieves CPA security. Furthermore, Thm. 5
does not easily transfer to the ROP setting: it is not clear how to combine a
ROP-CCA KEM with a XOF to yield a ROP-CCA XEM.

We complete the picture by providing a TagXEM construction from a KEM, a
MAC, and a XOF. Our construction (Fig. 10) is inspired by Abe et al.’s TagKEM
construction [2] and we show that with an information-theoretic MAC, if the
KEM is perfectly correct, has unique encapsulations [25] and is multi-instance
one-way secure under plaintext-checking attacks (OW-PCA), then the TagXEM
is ROP-CCA secure in the programmable random oracle model (to model the
XOF). Before stating our concrete security result (Thm. 9), we will define the
relevant concepts and advantages below.

Preliminaries. One-wayness for KEMs tasks an adversary to retrieve the ephemeral
key that has been encapsulated, given the public key and the encapsulation. In
the multi-instance setting, an adversary has access to many public keys and
various encapsulations per public key and endeavours to find ephemeral keys
for encapsulations for as many different public keys as possible (no reward for
breaking multiple encapsulations under the same public key).

25

Exp
(n,κ)-ow-pca⋆

KEM (A)

(pk1, sk1), . . . , (pkκ, skκ)←$ KEM.Kg

(I, (ji, K̂i)i∈I)←$A
E,P,K(pk1, . . . , pkκ)

if |I| ≠ n ∨ I ∩ K ̸= ∅ then return 0

return
∧
i∈I

Pi[ji] = K̂i

P(i, c,K)

K′ ← KEM.Decski(c)

return K = K′

E(i)

(K, c)←$ KEM.Encpki

Pi
⌢←− K

return c

K(i)

K
∪←− i

return ski

Fig. 11. Multi-instance one-way security in the presence of plaintext checking attacks.

Plaintext-checking attacks (PCA) were introduced by Okamoto and Point-
cheval [36, Definition 8] in a single-user public key encryption setting. Intuitively,
PCA provides the adversary access to an oracle that, on input a pair (m, c)
determines whether c encrypts m or not; more formally [1], the oracle checks
whether c decrypts to m or not. In the context of KEMs, the PCA oracle takes
a pair (Kkem, c) as input and determines whether c decapsulates to Kkem or
not. The multi-user or multi-instance generalization is straightforward and the
definition (in its modern decryption incarnation) inherently deals with imperfect
correctness in the decryption.

Definition 7 considers one-wayness under plaintext checking attacks. For stan-
dard ElGamal KEM, where a (multiplicative) discrete-log group with generator
g and of prime order q is given as part of the parameters, a public key con-
sists of h = gx with x ←$ Zq the private key, and an encapsulation outputs
(Kkem, c) = (hr, gr) for random r ←$ Zq, the one-wayness problem (in the
single-user case) is equivalent to the computational Diffie–Hellman (CDH) prob-
lem. The plaintext checking oracle allows an adversary to learn, for group ele-
ments (k, c) of its choice, whether k = cx or not. The corresponding hardness
assumption for OW-PCA is known as the Strong CDH assumption. An even
stronger assumption is the GapCDH assumption, where an adversary instead
can use an oracle that determines whether a quadruple of group elements is a
Diffie–Hellman tuple or not.

Definition 7 (OW-PCA). Let KEM be a key encapsulation mechanism. Then
the one-way advantage under plaintext-checking attacks of an adversary A is

Adv
(n,κ)-ow-pca⋆
KEM (A) = Pr

[
Exp

(n,κ)-ow-pca⋆
KEM (A) = 1

]
,

where the experiment is defined in Fig. 11.

In addition to perfect correctness and OW-PCA security, the security reduction
for our construction (Thm. 9) relies on two further properties of the underlying
KEM. Unique encapsulation captures that for a fixed public key and ephemeral

26

key, the encapsulation corresponding to that ephemeral key is unique (without
saying anything about how to compute it). Unique encapsulations have been
used before, for instance by Heuer et al. [25] (see also Remark 4 below).

Definition 8 (Unique Encapsulation). Let KEM be a perfectly correct KEM.
Then it has unique encapsulations iff

Pr

 (pk, sk)←$ KEM.Kg
(Kkem

0 , c0)←$ KEM.Encpk
(Kkem

1 , c1)←$ KEM.Encpk

: Kkem
0 = Kkem

1 ∧ c0 ̸= c1

 = 0 .

The second additional property we require from the KEM is that collisions
amongst encapsulations (under a single randomly drawn public key) are suitably
rare. Def. 9 captures the relevant probability of a k-way encapsulation collision.
If a KEM is perfectly correct with unique encapsulations, then colliding encap-
sulations are equivalent to colliding ephemeral keys; if, as is usually the case,
these ephemeral keys are furthermore chosen uniformly at random from a finite
set X , we can upper bound ϵk(q) by qk/|X |k−1 using a standard bound on k-way
collisions (see e.g. [37, Appendix B]).

Definition 9 (Encapsulation Multi-Collisions). Let KEM be a KEM, and
let q, k ∈ Z>1 be parameters. Then the k-out-of-q encapsulation multi-collision
probability is

ϵk(q) = Pr

[
(pk, sk)←$ KEM.Kg
∀i∈[q](K

kem
i , ci)←$ KEM.Encpk

: ∃J⊆[q],|J|=k∀i,j∈Jci = cj

]
.

For completeness, we also present definitions of a deterministic message authen-
tication code, so we dispense with an explicit verification algorithm in Def. 10
(for concreteness, we restrict to bitstrings for both keys and tags, of length ℓmackey

and ℓmac respectively), and an information-theoretic notion of forgeries (Def. 11)
where we use the same parameter k as above (or rather k − 1 in Thm. 9), but
this time to denote the number of valid message–tag pairs available to an adver-
sary. The usual choice is k = 1, e.g. when considering strongly universal2 hash
functions, but Wegman and Carter [40] already investigated k > 1. Provided
ℓmackey is large enough (at least k · ℓmac), one can achieve ϵ̂k = 2−ℓmac , which is
optimal.

Definition 10 (Message Authentication Code (MAC)). A message au-
thentication code MAC is a pair of algorithms MAC.Kg and MAC.Mac, where
MAC.Kg randomly generates a Kmac ∈ {0, 1}ℓmackey , and the deterministic MAC.Mac
takes a key Kmac and a message m ∈M to output tag mac← MAC.MacKmac(m) ∈
{0, 1}ℓmac .

Definition 11 (Information-Theoretic MAC Forgeries). Let MAC be given
and let k ∈ Z≥0 be a parameter, then the forging advantage after observing k
valid message–tag pairs is defined as

ϵ̂k = max
∀i∈{0}∪[k]

(mi,maci)

Pr
[
MAC.MacKmac(m0) = mac0

∣∣∣ ∀i∈[k]MAC.MacKmac(mi) = maci
]
.

27

Security Claim. With all elements in place, we can state the security of
Fig. 10’s TXEM, in Thm. 9(see the full version for the proof). The security
bound depends on a tuning parameter k that feeds into both the collision prob-
ability of the underlying KEM and the forgery advantage of the MAC, with
opposite effects. The ability to tune the bound therefore allows some flexibility
when instantiating the three underlying primitives KEM, MAC, and XOF: for
fixed qc, increasing k will result in a smaller upper bound on ϵk(qc), but to ensure
that ϵ̂k−1 does not dominate, it might then be necessary to increase the key size
ℓmackey (and possibly tag size ℓmac) of the information-theoretic MAC (see Cor. 5
for a concrete instantiation) . Otherwise, instantiating the information-theoretic
MAC and the XOF is relatively straightforward (with the usual ROM caveats
for the latter).

Theorem 9. Let TXEM be as in Fig. 10, let KEM be a perfectly correct KEM
with unique encapsulations, and let k ∈ Z>1. Then there is an SFBB reduction
B such that, for all A that makes qc challenge and qd decryption oracle queries,

Adv
(n,κ)-rop-cca⋆
TXEM (A) ≤ Adv

(n,κ)-ow-pca⋆
KEM (B) + 2

(
qdϵ̂k−1 + ϵk(qc)

)
in the programmable random oracle model, where ϵ̂k−1 is the forging advantage
after observing k − 1 valid message–tag pairs (Def. 11) and ϵk(qc) is the k-out-
of-qc encapsulation multi-collision probability of KEM (Def. 9). If A makes qf
queries to the random oracle, then B makes at most qf queries to its plaintext
checking oracle.

The proof borrows some ideas already used to prove AGK’s Thm. 2. In fact, it is
relatively straightforward to recast AGK’s Thm. 2 as the multi-instance version
of a OW-PCA KEM plus a programmable random oracle yielding an IND-CCA
KEM, although the presence of the error terms ϵ̂k−1 and especially ϵk(qc) render
recovery of AGK’s Thm. 2 as a special case of our Thm. 9 not immediate.

Combining Thm. 8 and 9 in Cor. 4, we can finally conclude that our con-
struction yields a PKE inheriting the multi-instance security of the underlying
KEM (for parameter regimes where the loss term does not dominate).

Corollary 4. Let PKE′ be as in Fig. 8, let the underlying TagXEM be as in
Fig 10, let KEM be a perfectly correct KEM with unique encapsulations, and let
k ∈ Z>1. Then, there is an SFBB reduction B such that, for all A that makes
qc challenge and qd decryption oracle queries,

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤ Adv

(n,κ)-ow-pca⋆
KEM (B) + 2

(
qdϵ̂k−1 + ϵk(qc)

)
in the programmable random oracle model, where ϵ̂k−1 is the forging advantage
after observing k − 1 valid message–tag pairs (Def. 11) and ϵk(qc) is the k-out-
of-qc encapsulation multi-collision probability of KEM (Def. 9). If A makes qf
queries to the random oracle, then B makes at most qf queries to its plaintext
checking oracle.

28

Remark 4. The resulting construction is remarkably similar to the PKE stud-
ied by Heuer et al. [25] in the context of selective opening attacks (and to a
lesser extent its predecessor by Steinfeld et al. [39] and successor by Lai et
al. [32]). They too use a random oracle to derive a MAC key and a one-time
pad from an ephemeral KEM key. The only two differences are that Heuer et al.
do not consider arbitrary length messages and that their random oracle outputs
Kxem∥Kmac, i.e. the opposite order from what we do.

For fixed length messages, the order in which those two keys are output does
not matter. However, when moving to arbitrary length-messages, the order of the
XOF output does matter. Outputting Kxem∥Kmac instead would allow a length
extension attack enabling the adversary to recover the MAC key, at which point
producing forgeries would be trivial.

In a way, the construction is quite brittle that these small details matter.
Another example of brittleness is that our reduction for Theorem 9 requires ⊥
produced from a KEM decryption error to be indistinguishable from a failed
MAC verification. In implementations, a timing attack might well break this
requirement.

Remark 5. The proof of Thm. 9 does rely on perfect correctness of the under-
lying KEM, thus excluding many popular post-quantum KEMs based on the
hardness of LWE. Having said that, establishing the post-quantum security of
TXEM would require a proof in the quantum random oracle model [15]. We
leave the construction of a post-quantum TagXEM as an enticing open problem.

A Concrete Instantiation. We conclude by providing a concrete bound for the
construction when instantiating with low granularity ElGamal KEM on groups
of size ≥ p. ElGamal KEM satisfies perfect correctness and unique encapsulation
(ensuring compatibility with Thm. 9) and produces uniformly random group el-
ements as ephemeral keys, so ϵk(qc) ≤ qk/pk−1. Furthermore, the relevant multi-
instance OW-PCA security can be linked to the low granularity MI-GapCDH
problem with corruptions (Thm. 12 of the full version). By extending AGK’s
low granularity bound [4, Thm. 6] to include corruptions (Thm. 11 of the full
version) and combining with Cor. 4, we arrive at a clean information-theoretic
bound (Cor. 5) in the generic group and programmable random oracle model. To
keep the bound easier to interpret, we assume that the adversary makes at most√
p queries to the encryption and decryption oracles; realistically, an adversary

will be able to make far more offline queries q to its generic group and for q ≈ √p
a single discrete logarithm instance can already be broken. In a similar vein, the
requirement that each group instance receive at least max{60 log2 p,

√
qf/2} group

operation calls (allowing some simplifications in the MI-GapCDH bound) is a
reasonable one, as already argued by AGK, given that the number of group
operations performed by an ElGamal adversary is “typically large”.

Corollary 5. Let PKE′ be as in Fig. 8, let the underlying TagXEM be as in
Fig 10, let KEM be instantiated as low granularity ElGamal (see the full version
for details) and let p be a lower bound on the generated groups. Let k ∈ Z>1,

29

let MAC be an information-theoretic MAC with key length ℓmackey and output
length ℓmac and satisfying ϵ̂k−1 = 2−ℓmac . Then, for any information-theoretic A
that makes at most

√
p challenge oracle queries, at most

√
p decryption oracle

queries, qf queries to the random oracle, and a total of q queries to the group-
operation oracles with at least max{60 log2 p,

√
qf/2} queries per group instance,

it holds that

Adv
(n,κ)-ind-cca⋆
PKE′ (A) ≤

(
4 · e · q2

n2 · p

)n

+ 2

(√
p

2ℓmac
+

1

p
k
2−1

)
in the programmable random oracle and generic group model.

For the construction to exhibit meaningful multi-instance security, we want the
upper bound on the adversary’s advantage to diminish with increasing n. Since
the second term on the right hand side of Cor. 5 is independent of n, the first
term has to dominate for advantages of interest. Thus, for a fixed p, we want to
set ℓmac and k so that, irrespective of n, we do not really care about the other
two terms, where ℓmac directly corresponds to the PKE’s ciphertext expansion
and increasing k will require longer ephemeral keys as output by the XOF to
ensure that ℓmackey ≥ k · ℓmac. To minimize overhead, having both terms equal
is optimal, corresponding to 2ℓmac = (k − 1) log2 p. Some reasonable options are
then (ℓmac, k) = (log2 p, 3) or (ℓmac, k) = (3/2 log2 p, 4).

Alternatively, the bound can be interpreted in terms of the scaling factor,
which focuses on the minimum resources needed to achieve an overwhelming
advantage (see the full version for details). In that case, the second term, be-
ing independent of n, is manifestly of little interest for either of our suggested
parameter choices.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (Mar / Apr 2015). https://doi.org/
10.1007/978-3-662-46447-2_15

2. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework for hy-
brid encryption. Journal of Cryptology 21(1), 97–130 (Jan 2008). https://doi.
org/10.1007/s00145-007-9010-x

3. Auerbach, B., Giacon, F., Kiltz, E.: Everybody’s a target: Scalability in public-key
encryption. Cryptology ePrint Archive, Report 2019/364 (2019), https://eprint.
iacr.org/2019/364

4. Auerbach, B., Giacon, F., Kiltz, E.: Everybody’s a target: Scalability in public-key
encryption. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS,
vol. 12107, pp. 475–506. Springer, Heidelberg (May 2020). https://doi.org/10.
1007/978-3-030-45727-3_16

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016). https://doi.org/10.
1007/978-3-662-49896-5_10

https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/s00145-007-9010-x
https://doi.org/10.1007/s00145-007-9010-x
https://doi.org/10.1007/s00145-007-9010-x
https://doi.org/10.1007/s00145-007-9010-x
https://eprint.iacr.org/2019/364
https://eprint.iacr.org/2019/364
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-030-45727-3_16
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10

30

6. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, re-
visited. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 296–315. Springer, Heidelberg (Dec 2013). https://doi.org/10.
1007/978-3-642-42033-7_16

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (May 2000). https://doi.
org/10.1007/3-540-45539-6_18

8. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO’98.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (Aug 1998). https://doi.org/
10.1007/BFb0055718

9. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: When
and how should challenge decryption be disallowed? Journal of Cryptology 28(1),
29–48 (Jan 2015). https://doi.org/10.1007/s00145-013-9167-4

10. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (May 2003). https://doi.org/10.
1007/3-540-39200-9_31

11. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014). https://doi.org/
10.1007/978-3-662-44371-2_1

12. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its appli-
cation to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (Aug 2012).
https://doi.org/10.1007/978-3-642-32009-5_19

13. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its applica-
tion to password-based cryptography. Cryptology ePrint Archive, Report 2012/196
(2012), https://eprint.iacr.org/2012/196

14. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

15. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec 2011).
https://doi.org/10.1007/978-3-642-25385-0_3

16. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (EuroS
P). pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

17. Brunetta, C., Heum, H., Stam, M.: Multi-instance secure public-key encryption.
Cryptology ePrint Archive, Report 2022/909 (2022), https://eprint.iacr.org/
2022/909

18. Cramer, R., Shoup, V.: SIAM Journal on Computing
19. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (Aug 1998). https://doi.org/10.1007/
BFb0055717

https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-642-32009-5_19
https://doi.org/10.1007/978-3-642-32009-5_19
https://eprint.iacr.org/2012/196
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://eprint.iacr.org/2022/909
https://eprint.iacr.org/2022/909
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717

31

20. Farshim, P., Tessaro, S.: Password hashing and preprocessing. In: Can-
teaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol.
12697, pp. 64–91. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/
978-3-030-77886-6_3

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48405-1_34

22. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of Cryptology 26(1), 80–101 (Jan 2013). https://doi.
org/10.1007/s00145-011-9114-1

23. Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user set-
ting, revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol.
10769, pp. 159–189. Springer, Heidelberg (Mar 2018). https://doi.org/10.1007/
978-3-319-76578-5_6

24. Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: Ning, P., De
Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007. pp. 466–475.
ACM Press (Oct 2007). https://doi.org/10.1145/1315245.1315303

25. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of prac-
tical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 27–51. Springer, Heidelberg (Mar / Apr 2015). https://doi.org/10.1007/
978-3-662-46447-2_2

26. Heum, H., Stam, M.: Tightness subtleties for multi-user pke notions. In: Paterson,
M.B. (ed.) Cryptography and Coding. pp. 75–104. Springer International Publish-
ing, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_5

27. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58, 13–30 (1963)

28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Heidelberg (Nov 2017). https://doi.org/10.
1007/978-3-319-70500-2_12

29. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key ex-
change, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https:
//doi.org/10.1007/978-3-030-77870-5_5

30. Kiltz, E., Pan, J., Riepel, D., Ringerud, M.: Multi-user CDH problems and the
concrete security of NAXOS and HMQV. In: Rosulek, M. (ed.) CT-RSA 2023
(to appear). Springer, Heidelberg (2023), available as https://eprint.iacr.org/
2023/115.

31. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (Aug 2004). https://doi.org/10.1007/978-3-540-28628-8_26

32. Lai, J., Yang, R., Huang, Z., Weng, J.: Simulation-based bi-selective opening
security for public key encryption. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021, Part II. LNCS, vol. 13091, pp. 456–482. Springer, Heidelberg (Dec
2021). https://doi.org/10.1007/978-3-030-92075-3_16

33. Lee, Y., Lee, D.H., Park, J.H.: Tightly cca-secure encryption scheme in a multi-user
setting with corruptions. Des. Codes Cryptogr. 88(11), 2433–2452 (2020)

34. Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5_4

https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/978-3-030-77886-6_3
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1007/978-3-319-76578-5_6
https://doi.org/10.1145/1315245.1315303
https://doi.org/10.1145/1315245.1315303
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-030-92641-0_5
https://doi.org/10.1007/978-3-030-92641-0_5
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://eprint.iacr.org/2023/115
https://eprint.iacr.org/2023/115
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-030-92075-3_16
https://doi.org/10.1007/978-3-030-92075-3_16
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4

32

35. NIST: SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication 202, NIST (Aug 2015)

36. Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmet-
ric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 159–175. Springer, Heidelberg (Apr 2001). https://doi.org/10.
1007/3-540-45353-9_13

37. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. Ph.D. thesis,
KU Leuven (Feb 1993)

38. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility be-
tween cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 1–20. Springer, Heidelberg (Feb 2004). https://doi.org/10.1007/
978-3-540-24638-1_1

39. Steinfeld, R., Baek, J., Zheng, Y.: On the necessity of strong assumptions for the
security of a class of asymmetric encryption schemes. In: Batten, L.M., Seberry, J.
(eds.) ACISP 02. LNCS, vol. 2384, pp. 241–256. Springer, Heidelberg (Jul 2002).
https://doi.org/10.1007/3-540-45450-0_20

40. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/3-540-45450-0_20
https://doi.org/10.1007/3-540-45450-0_20

	 Multi-Instance Secure Public-Key Encryption

