
Fine-grained Verifier NIZK and Its Applications

Xiangyu Liu1,2, Shengli Liu1,2,3(B), Shuai Han1,2(B), and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
{xiangyu liu,slliu,dalen17,dwgu}@sjtu.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. In this paper, we propose a new type of non-interactive zero-
knowledge (NIZK), called Fine-grained Verifier NIZK (FV-NIZK), which
provides more flexible and more fine-grained verifiability of proofs than
standard NIZK that supports public verifiability and designated-verifier
NIZK (DV-NIZK) that supports private verifiability. FV-NIZK has two
statistically equivalent verification approaches:

• a master verification using the master secret key msk;

• a fine-grained verification using a derived secret key skd, which is
derived from msk w.r.t. d (which may stand for user identity, email
address, vector, etc.).

We require unbounded simulation soundness (USS) of FV-NIZK to hold,
even if an adversary obtains derived secret keys skd with d of its choices,
and define proof pseudorandomness which stipulates the pseudorandom-
ness of proofs for adversaries that are not given any secret key.

We present two instantiations of FV-NIZK for linear subspace lan-
guages, based on the matrix decisional Diffie-Hellman (MDDH) assump-
tion. One of the FV-NIZK instantiations is pairing-free and achieves
almost tight USS and proof pseudorandomness.

We illustrate the usefulness of FV-NIZK by showing two applications
and obtain the following pairing-free schemes:

– the first almost tightly multi-challenge CCA (mCCA)-secure inner-
product functional encryption (IPFE) scheme without pairings;

– the first public-key encryption (PKE) scheme that reconciles the
inherent contradictions between public verifiability and anonymity.
We formalize such PKE as Fine-grained Verifiable PKE (FV-PKE),
which derives a special key from the decryption secret key, such that
for those who obtain the derived key, they can check the validity of
ciphertexts but the anonymity is lost from their views (CCA-security
still holds for them), while for others who do not get the derived key,
they cannot do the validity check but the anonymity holds for them.

Our FV-PKE scheme achieves almost tight mCCA-security for
adversaries who obtain the derived keys, and achieves almost tight
ciphertext pseudorandomness (thus anonymity) for others who do
not get any derived key.

1 Introduction

NIZK with Unbounded Simulation Soundness (USS). Over decades,
non-interactive zero-knowledge (NIZK) proofs have shown great power in con-
structing a variety of cryptographic primitives, e.g., public-key encryption (PKE)
[27, 14], digital signatures [7], etc. Towards better efficiency and shorter proofs,
Jutla and Roy [23] defined a weaker notion called quasi-adaptive NIZK (QA-
NIZK), where the common reference string (CRS) might depend on the specific
language. In this paper, we will focus on quasi-adaptive NIZK and omit the term
“quasi-adaptive” for simplicity.

One important security property for NIZK is unbounded simulation sound-
ness (USS) [30, 25], which plays an important role in many applications of NIZK,
e.g., CCA-secure PKE [21, 16], publicly verifiable CCA identity-based encryp-
tion (IBE) [22], structure preserving signatures [5, 4], etc. Loosely speaking, USS
requires the computational hardness for an adversary to generate a valid proof
for an instance outside the language, even if the adversary has access to an oracle
that outputs simulated proofs for instances (not necessarily in the language) of
its choices.

Tight Security and NIZK with Tight USS. The security of a cryptographic
primitive is usually proved via a reduction, which turns an adversary A that
breaks the security of the primitive with running time t and advantage ϵ into
an algorithm B that solves some hard problem with running time t′ ≈ t and
advantage ϵ′. Intuitively, we would desire ϵ′ to be as large as ϵ. To reflect this,
we define L := ϵ/ϵ′ as the security loss factor, which is the smaller the better.
We call the reduction tight if L is a small constant or almost tight if L is linear
(or even better, logarithmic) in the security parameter λ. For a loose reduction,
L usually depends on A’s behaviours, e.g., the number of A’s queries, which can
be as large as 250 in practical settings.

Pursuing (almost) tight security has both theoretical and practical signifi-
cance. For a scheme with a loose security reduction, the deployer has to choose
larger security parameters to compensate the security loss, resulting in larger
elements and lower efficiency. In contrast, schemes with (almost) tight security
enjoy many advantages like universal key recommendations and more flexible
choices of parameters. Recently, (almost) tight security has been explored in
many areas, including PKE [21, 16, 17, 20], signatures [21, 24, 8, 19], IBE [11, 9],
etc.

In the scenario of NIZK, Libert et al. [25] proposed the first scheme with
(almost) tight USS, and Gay et al. [16] gave a more efficient construction later.
In both schemes, the size of the CRS (in terms of the number of group elements)
is linear in λ. The first (almost) tightly secure NIZK with constant-size CRS was
designed by Abe et al. [5]. Recently in [4], Abe et al. proposed a shorter NIZK
with both constant-size CRS and proofs.

Designated-Verifier NIZK (DV-NIZK). Standard NIZK allows public veri-
fication, so that anyone who gets the CRS can verify the validity of proofs. Such
a property is useful in certain applications, e.g., when constructing signature

2

schemes [7, 4], the public verifiability of signatures requires the public verifia-
bility of NIZK proofs. However, in some other applications such as constructing
CCA-secure PKE [12, 16], public verification is not necessary, and in fact, a
designated-verifier NIZK (DV-NIZK) [16] that supports only private verification
of proofs is sufficient. Roughly speaking, DV-NIZK is the same as NIZK except
that, the verification algorithm additionally takes a secret key sk as input, so
that only the designated verifier can check the validity of proofs. Moreover, the
secret key should be kept private, since otherwise the (simulation) soundness
might not hold any more.

Compared to NIZK, DV-NIZK usually has more succinct and more efficient
constructions, since it is only required to support private verification. For exam-
ple, the efficient hash proof systems (HPS) in [12] can be viewed as DV-NIZKs.
As another example, to the best of our knowledge, all NIZK schemes with tight
USS (constructed in discrete-logarithm setting) relies on bilinear pairings to
support public verification [25, 16, 5, 4], while DV-NIZK with tight USS can be
constructed without pairings [16].

However, both NIZK (that supports public verification) and DV-NIZK (that
supports private verification) have their limitations on the flexibility of verifica-
tion in certain applications. We demonstrate with two examples below.

Fine-grained Verification Setting in IPFE. Inner-product functional en-
cryption (IPFE) [1] is a special subclass of functional encryption [28, 10] for
inner-product functions. In an IPFE scheme, a ciphertext is an encryption of a

vector x ∈ Zm, a secret key s̃ky (delegated from the master secret key m̃sk)
is related with a vector y ∈ Zm, and the decryption just returns their inner
product ⟨x,y⟩. The inner-product function supports a large set of computation
formulas, ranging from conjunctions and disjunctions to descriptive statistics
and polynomial evaluations.

There are many explorations of CPA-secure IPFE schemes over the past
years, e.g., [6, 2, 31]. All ciphertexts in these constructions fall into the HPS
paradigm [12] with a pattern (c, v), where c is an instance in a language specified
by the public key and v masks the message m.

To lift these CPA-secure IPFE schemes to CCA-secure IPFE schemes, one
may want to resort to NIZK or DV-NIZK to reject ill-formed ciphertexts (i.e., ci-
phertexts with c outside the language) in decryption, thus making the decryption
oracle useless to the adversary. This can be done by adding a NIZK/DV-NIZK
proof in the ciphertext to prove that c belongs to the language. However, here
comes the dilemma when choosing a suitable NIZK argument:

– DV-NIZK does not work in this setting with the following reason. To verify
the well-formedness of ciphertexts, the decryption algorithm of IPFE has
to know the secret key sk of DV-NIZK to verify the DV-NIZK proofs in

ciphertexts. Thus all secret keys s̃ky of IPFE should contain the secret key
sk. However, note that an adversary in the CPA/CCA-security experiment

of IPFE is free to ask s̃ky for vectors y of its choices. Consequently, the

adversary only needs to ask a single s̃ky to know the secret key sk of DV-

3

NIZK, in which case the (simulation) soundness of DV-NIZK might not hold
any more, and consequently, the CCA-security of IPFE might not hold.

– In contrast, NIZK with public verification is sufficient, but seems to be
overqualified in this setting. In fact, it is not necessary for everyone, but

only those who hold secret keys s̃ky, to be able to check the well-formedness
of ciphertexts in decryption.

In summary, DV-NIZK does not work in converting CPA-secure IPFE schemes
into CCA-secure ones but it has more efficient constructions (e.g., pairing-free
constructions), while NIZK is sufficient but at the price of heavy constructions
(especially, the pairing operations) and it seems to be overqualified.

Actually, what we need is a NIZK with fine-grained verifiability, lying between
public verifiability and private verifiability. More precisely, there is a master
secret key msk for verification, and the ability of verification can be delegated
via deriving different secret keys skd from msk w.r.t. different d (which stands
for, e.g., user identity, email address, vector, etc.), so that one can use skd to do
the verification of NIZK proofs (hence execute decryptions of IPFE). On the one
hand, all these verification approaches, no matter using msk or using skd w.r.t.
any d, are statistically equivalent. On the other hand, (simulation) soundness is
guaranteed even if the adversary obtains several skd with d chosen by itself, as
long as msk is not leaked to the adversary.

In this work, we will formalize such NIZK as Fine-grained Verifier NIZK
(FV-NIZK), and show that it is sufficient for lifting CPA-secure IPFE schemes
to CCA-secure ones. FV-NIZK has pairing-free constructions, and hence solves
the aforementioned dilemma.

Fine-grained Verification Setting in PKE. In traditional PKE setting, only
the owner of the secret key sk can check the validity of a ciphertext (i.e., whether
a ciphertext decrypts to some plaintext or the decryption fails). In some appli-
cations, it is desirable to outsource this validity check to others. For example,
a manager may ask an assistant to filter out invalid ciphertexts for her/him so
that the manager can decrypt only the valid ciphertexts herself/himself, but the
manager does not want to reveal the secret key to the assistant. To solve such
problems, the concept of publicly verifiable PKE (PV-PKE) [3, 21] is developed,
in which anyone can check the validity of a ciphertext with only the public key
of the owner.

Though public verifiability is desirable in some scenarios, it also brings the
disadvantage of losing anonymity. Namely, anyone can identify the intended
receiver of a ciphertext, by just doing a verification under someone’s public key.

In order to reconcile the inherent contradictions between public verifiability
and anonymity, we put forward a new primitive called Fine-grained Verifiable
PKE (FV-PKE), which can derive a special key (for validity check of ciphertexts)
from the secret key (for decryption). Roughly speaking, with the derived key,
one can check the validity of ciphertexts but cannot decrypt the ciphertexts,
while without the key, the anonymity of ciphertexts holds. Let us move back
to the above example. Now the manager can safely give this derived key to the

4

assistant to filter out invalid ciphertexts. For the assistant, the anonymity is lost
but the CCA-security of the PKE still holds. For others who only obtain the
public key of the manager, the anonymity of ciphertexts holds. Furthermore, we
allow that different keys (for validity check) can be derived from the secret key
(for decryption), to achieve fine-grained verifiability.

Now we consider how to construct FV-PKE. Let us start from any CPA-
secure PKE scheme. To lift it to CCA-secure FV-PKE, one may want to resort to
NIZK (as in [27, 14]) or DV-NIZK (as in [12, 16]) to reject ill-formed ciphertexts.
However, neither NIZK nor DV-NIZK leads to FV-PKE:

– DV-NIZK does not support the delegation of verifiability. Thus to check the
validity of ciphertexts, the derived key of PKE should contain the secret
key of DV-NIZK. Then for anyone with the derived key (e.g., the assistant
in the above example), the (simulation) soundness of DV-NIZK might not
hold, and consequently, the CCA-security of PKE might not hold.

– NIZK allows public verification of proofs. Thus anyone (who obtains the CRS
of NIZK from the public key of PKE4) can check the validity of ciphertexts,
and consequently the anonymity of PKE is sacrificed. Even in the setting
that all users of a group (e.g., a company or a college) share the same CRS,
the identity of the group is still leaked.

In fact, our new Fine-grained Verifier NIZK (FV-NIZK) is suitable in this
setting and can successfully convert a CPA-secure PKE into a CCA-secure FV-
PKE. More precisely, the owner can derive an skd from the master secret key
msk of FV-NIZK, so that skd can be used to do validity check of ciphertexts.
Meanwhile, obtaining skd does not compromise the (simulation) soundness of
FV-NIZK, and hence CCA-security of PKE holds, even for those who have the
derived key. Furthermore, for others who do not obtain the derived key, the
anonymity of PKE holds, as long as the underlying CPA-secure PKE is anony-
mous and FV-NIZK has pseudorandom proofs.

Our Contributions. Now we summarize our contributions in this paper. We
introduce a new primitive called Fine-grained Verifier NIZK (FV-NIZK), which
provides more flexible and more fine-grained verifiability than standard NIZK
(with public verifiability) and DV-NIZK (with private verifiability). Intuitively,
FV-NIZK has two main verification approaches:

• a master verification (MVer) using the master secret key msk;

• a fine-grained verification (FVer) using a derived secret key skd, which is
derived from msk w.r.t. d ∈ D. Here d belongs to a delegation space D, and
may stand for user identity, email address, vector, etc.

We equip FV-NIZK with a set of useful security properties. The statistical ver-
ification equivalence property requires that the two verification approaches, no

4 Note that the CRS of NIZK is contained in the public key of PKE, since the encryp-
tion algorithm of PKE involves NIZK proof generation which requires the CRS.

5

matter using msk or using skd w.r.t. any d ∈ D, are statistically equivalent.
Besides, we adapt unbounded simulation soundness (USS) to FV-NIZK, by ad-
ditionally allowing the adversary to obtain derived secret keys skd with d of its
choices. We also define proof pseudorandomness which stipulates the pseudoran-
domness of proofs for adversaries that are not given any secret key.

Then we propose two instantiations of FV-NIZK with almost tight USS
for linear subspace languages, based on the matrix decisional Diffie-Hellman
(MDDH) assumption [15] (which covers the standard DDH and k-Linear as-
sumptions).

– Our first instantiation is inspired by the DV-NIZK scheme constructed in
[16]. The resulting FV-NIZK is pairing-free, and achieves almost tight USS
and proof pseudorandomness, with a linear loss factor L = O(λ).

– Our second instantiation is inspired by the DV-NIZK and NIZK schemes
in [4]. The resulting FV-NIZK is pairing-based, but involves less pairing
operations than the NIZK scheme in [4]. It achieves almost tight USS with
a loss factor L = O(log λ), logarithmic in the security parameter λ.

Finally, we illustrate the usefulness of FV-NIZK by showing two applications.

– The first application is in constructing CCA-secure IPFE. Using our FV-
NIZK with almost tight USS as the core technique tool, we construct a
tightly multi-challenge CCA (mCCA)-secure IPFE scheme from the almost
tightly multi-challenge CPA (mCPA)-secure IPFE proposed in [31].

By instantiating FV-NIZK, we obtain the first almost tightly mCCA-
secure IPFE scheme without pairings, where the loss factor is L = O(λ). We
also obtain another almost tightly mCCA-secure IPFE scheme that uses less
pairing operations than the only known scheme [26] (12 vs. 2m+16 pairings,
with m the vector dimension of IPFE), where the loss factor is L = O(log λ),
the same as [26].

– The second application is in constructing Fine-grained Verifiable PKE (FV-
PKE). This is a new primitive formalized in this paper to reconcile the
inherent contradictions between public verifiability and anonymity of PKE.
Loosely speaking, FV-PKE derives a special key from the decryption secret
key, such that for those who obtain the derived key, they can check the
validity of ciphertexts but the anonymity is lost from their views (CCA-
security still holds for them), while for others who do not get the derived
key, they cannot do the validity check but the anonymity holds for them.

By using our first FV-NIZK instantiation with almost tight USS and
proof pseudorandomness as the core building block, we construct the first
FV-PKE scheme that achieves both almost tight mCCA-security and almost
tight ciphertext pseudorandomness (thus anonymity). Moreover, the FV-
PKE scheme is pairing-free.

Technical Overview of Our FV-NIZK Instantiations. Below we give a
high-level overview of our FV-NIZK instantiations from the MDDH assumption.

6

Let G be a cyclic group of order q with generator g. For a matrix A := (aij) ∈
Zn1×n2
q , we define [A] := (gaij) ∈ Gn1×n2 as the implicit representation of A in

G [15]. Our FV-NIZK instantiations are for linear subspace language L[A] :=
Span([A]) := {[c] ∈ Gn1 | ∃s s.t. c = As} and the delegation space is D := Zm

q .
Our starting point is the tag-based DV-NIZK scheme proposed by Gay et

al. [16], which is pairing-free and has almost tight USS, as recalled below. The

CRS is crs := ([k⊤A], [B], {[k̂⊤ℓ,bB]}ℓ,b), and the secret key msk for verification

is msk := (k, {k̂ℓ,b}ℓ,b), where k
$←−Zn1

q , B
$←−Z3k×k

q and k̂ℓ,b
$←−Z3k

q for 1 ≤ ℓ ≤
λ, b ∈ {0, 1}. With respect to a tag τ ∈ {0, 1}λ, the proof of [c] = [A]s ∈ L[A] is

π := ([t], [u]), where [t] := [B]r for r
$←−Zk

q and

[u] := [k⊤A]s+ [k̂⊤τ B]r, with k̂τ :=
∑λ

ℓ=1 k̂ℓ,τℓ ,

which can be verified via [u]
?
= k⊤[c] + k̂⊤τ [t] using msk.

How to derive keys for fine-grained verification? To support deriving keys for
different delegations d ∈ D = Zm

q , a natural idea is to extend the master se-
cret key in the DV-NIZK above from a set of vectors to a sets of matrices, i.e.,

crs := ([KA], [B], {[K̂ℓ,bB]}ℓ,b) and msk := (K, {K̂ℓ,b}ℓ,b) with K
$←−Zm×n1

q and

K̂ℓ,b
$←−Zm×3k

q . Accordingly, the proof is π := ([t], [u]) with

[u] := [KA]s+ [K̂τB]r, with K̂τ :=
∑λ

ℓ=1 K̂ℓ,τℓ ,

and the master verification checks [u]
?
= K[c] + K̂τ [t] using msk. One can view

it as m-parallel DV-NIZKs in [16].
Now we can derive a key skd w.r.t. a delegation d ∈ D = Zm

q as follows

skd := (d,d⊤K, {d⊤K̂ℓ,b}ℓ,b),

and the fine-grained verification using skd checks

d⊤[u]
?
= d⊤K[c] + d⊤K̂τ [t].

Intuitively, delegation algorithm for d derives a “projection” of msk on d, so
that this derived secret key can be used to check the proof on d’s projection.

However, here come two problems. Firstly, the two verification approaches
are not statistically equivalent. In fact, given only crs, an adversary A can easily
produce a proof π∗ = ([t∗], [u∗]) for [c] such that it passes the fine-grained
verification w.r.t. skd, but does not pass the master verification, i.e.,

d⊤[u∗] = d⊤K[c] + d⊤K̂τ [t
∗], but [u∗] ̸= K[c] + K̂τ [t

∗].

This can be done as follows. A first generates a proof π = ([t], [u]) for an instance
[c] ∈ L[A] honestly using crs, and then chooses a pair of non-zero orthogonal

vectors d, e ∈ Zm
q s.t. d⊤e = 0, and sets π∗ = ([t∗], [u∗]) := ([t], [u+e]). Clearly

7

[u∗] −K[c] − K̂τ [t
∗] = [u∗] − [u] = [e] ̸= [0], but d⊤([u∗] −K[c] − K̂τ [t

∗]) =
d⊤[e] = [0].

Moreover, USS cannot hold if an adversary A is allowed to obtain derived
keys. Due to the linearity of skd in d, each derived key skd leaks a part of
information aboutmsk. If A asks derived keys form linearly independent vectors
d, then the whole msk is exposed to A, and consequently, A can easily generate
a valid proof for an instance [c] /∈ L[A] via computing [u] := K[c] + K̂τ [t].

First Idea. Introducing a Random Matrix as a Secret Permutation. In order to
solve the aforementioned problems, we introduce a uniformly random matrix

M ∈ Zm×m
q in msk, i.e., msk := (K, {K̂ℓ,b}ℓ,b, M) with M

$←−Zm×m
q . The

crs, the proof generation and the master verification approach are the same as
before, while the key deriving process and fine-grained verification are changed
as follows. Now the derived key skd w.r.t. d ∈ Zm

q is

skd := (d⊤M,d⊤MK, {d⊤MK̂ℓ,b}ℓ,b),

and the fine-grained verification using skd checks

d⊤M[u]
?
= d⊤MK[c] + d⊤MK̂τ [t].

Intuitively, now the skd no longer projects msk on vector d, but on a random
vector d⊤M which secretly rotates d by the matrix M in msk. As long as d⊤M
contains enough entropy from an adversary A’s view5, it is impossible for A to
output a proof π∗ = ([t∗], [u∗]) for [c] such that

d⊤M[u∗] = d⊤MK[c] + d⊤MK̂τ [t
∗], but [u∗] ̸= K[c] + K̂τ [t

∗],

except with negligible probability, since otherwise [u∗]−K[c]−K̂τ [t
∗] constitutes

a non-zero vector in the right kernel space of d⊤M. As a result, verification
equivalence is guaranteed.

However, USS still cannot hold, since the whole msk is still exposed to A if
A asks derived keys for m linearly independent vectors d.

Second Idea. Enlarging the Random Matrix as an Entropy Filter. To rescue USS,

we enlarge M to be a matrix in Zm×(m+1)
q . Now even if A queries derived keys

skd for m linearly independent vectors d, the information about msk leaked to
A is limited in

(M,MK, {MK̂ℓ,b}ℓ,b),

and there is still entropy left. More precisely, let m⊥ ∈ Zm+1
q be a vector s.t.

Mm⊥ = 0, and let (K, {K̂ℓ,b}ℓ,b) := (K′ +m⊥ k̃ , {K̂′ℓ,b +m⊥ k̃ℓ,b }ℓ,b), where

5 This entropy requirement is necessary to achieve verification equivalence, see Remark
1 in Sect. 3 for more discussions.

8

K′
$←−Zm×n1

q , K̂′ℓ,b
$←−Zm×3k

q and k̃
$←−Z1×n1

q , k̃ℓ,b
$←−Z1×3k

q . Then the entropy of

(k̃, {k̃ℓ,b}ℓ,b) is reserved from the derived key queries, by observing that

(M,MK, {MK̂ℓ,b}ℓ,b) = (M,MK′, {MK̂′ℓ,b}ℓ,b).

Consequently, the enlarged matrix M also works as an entropy filter in our
FV-NIZK instantiation.

Finally, by using the reserved (k̃, {k̃ℓ,b}ℓ,b) (which in turn corresponds to

the msk of the DV-NIZK in [16]), we can prove the almost tight USS of our
FV-NIZK following the proof strategy in [16].

Others. By using the MDDH assumption, we further prove the almost tight
pseudorandomness of the proofs π = ([t], [u]) for adversaries that are not given
any derived secret key. This property serves as the core technical tool to achieve
anonymity in the fine-grained verifiable PKE application.

Moreover, we note that our aforementioned ideas seem to be general ideas
to lift a DV-NIZK scheme with good linearity to an FV-NIZK. Following the
similar ideas, we also extend the DV-NIZK scheme proposed by Abe et al. [4] to
an FV-NIZK, as our second instantiation.

Roadmap. In Sect. 2 we present notations and recall the MDDH assumptions.
The definition and security properties of FV-NIZK are formally described in
Sect. 3. Then in Sect. 4, we propose two instantiations of FV-NIZK with almost
tight USS for linear subspace languages. In Sect. 5, we illustrate two applications
of FV-NIZK in IPFE and FV-PKE, respectively.

2 Preliminaries

Let λ ∈ N denote the security parameter and ∅ the empty set. For µ ∈ N, define
[µ] := {1, 2, ..., µ}. For a, b ∈ Z with a < b, define [a, b] := {a, a+1, ..., b}. Denote

by x := y the operation of assigning y to x. Denote by x
$←−Q the operation of

sampling x uniformly at random from a set Q. For a distribution D, denote by
x← D the operation of sampling x according to D. For an algorithm A, denote
by y ← A(x; r), or simply y ← A(x), the operation of running A with input x
and randomness r and assigning the output to y. “PPT” is short for probabilistic
polynomial-time. poly(λ) and negl(λ) denote polynomial and negligible functions
in λ, respectively.

We use bold lower-case letters to denote vectors (e.g., x), and bold upper-
case letters to denote matrices (e.g., A). Unless specific description, all vectors
are column vectors in this paper. For matrices A and B, we use A⊗B for their
tensor (or Kronecker) product (ai,jB)i,j . For vectors x,y ∈ Zm, let ⟨x,y⟩ denote
their inner product x⊤y ∈ Z. Let In and 0n1×n2 denote the identity and zero
matrices respectively.

9

For random variablesX and Y , the min-entropy ofX is defined asH∞(X) :=
− log(maxx Pr[X = x]), and the average min-entropy of X conditioned on Y is

defined as H̃∞(X|Y) := − log(Ey←Y [maxx Pr[X = x|Y = y]]), following [13].

Definition 1 (Collision Resistant Hash Families). Let X ,Y be two finite
sets. A family of hash functions H = {H : X → Y} is collision resistant, if for
any PPT adversary A, it holds that

AdvcrH,A(λ) := Pr[H
$←−H, (x, x′)← A(H) : x ̸= x′ ∧H(x) = H(x′)] ≤ negl(λ).

2.1 Group Assumptions

Let G = (G, g, q) ← GGen be a group generation algorithm that inputs 1λ and
returns a cyclic group G of order q with generator g. For matrix A := (aij)n1×n2

with aij ∈ Zq, we define [A] := (gaij)n1×n2
as the implicit representation of A

in G [15]. For A ∈ Zn1×n2
q , the linear subspace spanned by A is Span(A) :=

{c | ∃s s.t. c = As}, and similarly, Span([A]) := {[c] | ∃s s.t. c = As}. Given

A ∈ Zn1×n2
q , it is efficient to sample an A⊥ ∈ Z(n1−n2)×n1

q s.t. A⊥A = 0.
Let ℓ, k ∈ N and ℓ > k. A matrix distribution Dℓ,k is a probabilistic distribu-

tion that outputs matrices in Zℓ×k
q of full rank k in polynomial time. Especially,

if Dℓ,k is a uniform distribution, then we denote it by Uℓ,k. In the case ℓ = k+1,
we simply denote it as Dk or Uk.
Definition 2 (Dℓ,k-MDDH Assumption). Let Dℓ,k be a matrix distribution.
The Dℓ,k-Matrix Decisional Diffie-Hellman (Dℓ,k-MDDH) assumption holds in
G, if for any PPT adversary A, it holds that

Advmddh
Dℓ,k,G,A(λ) := |Pr[A(G, [A], [As]) = 1]− Pr[A(G, [A], [u]) = 1]| ≤ negl(λ),

where G ← GGen(1λ), A← Dℓ,k, s
$←− Zk

q , and u
$←− Zℓ

q.

Definition 3 (n-fold Dℓ,k-MDDH Assumption). Let n ≥ 1 and let Dℓ,k be
a matrix distribution. The n-fold Dℓ,k-MDDH assumption holds in G, if for any
PPT adversary A, it holds that

Advn-mddh
Dℓ,k,G,A := |Pr[A(G, [A], [AS]) = 1]− Pr[A(G, [A], [U]) = 1]| ≤ negl(λ),

where G ← GGen(1λ), A← Dℓ,k, S
$←− Zk×n

q , and U
$←− Zℓ×n

q .

Lemma 1 (Random Self-Reducibility [15, 16]). Let n ≥ 1. For any adver-
sary A, there exists an algorithm B s.t. Time(B) ≈ Time(A) + n · poly(λ), and
Advn-mddh

Dℓ,k,G,A(λ) ≤ (ℓ− k)Advmddh
Dℓ,k,G,B(λ) +

1
q−1 .

For any adversary A, there exists an algorithm B s.t. Time(B) ≈ Time(A)+
n · poly(λ), and Advn-mddh

Uℓ,k,G,A(λ) ≤ Advmddh
Uℓ,k,G,B(λ) +

1
q−1 .

Lemma 2 (Dℓ,k-MDDH⇒ Uk-MDDH⇔ Uℓ,k-MDDH [15, 16]). Let ℓ, k ∈
N and ℓ > k. For any adversary A, there exists an algorithm B s.t. Time(B) ≈
Time(A), and Advmddh

Uk,G,B(λ) ≤ Advmddh
Dℓ,k,G,A(λ).

For any adversary A, there exists an algorithm B (and vice versa) s.t. Time(B)
≈ Time(A), and Advmddh

Uk,G,A(λ) = Advmddh
Uℓ,k,G,B(λ).

10

3 Fine-grained Verifier NIZK: Definition and Security

In this section, we give the formal definition of Fine-grained Verifier NIZK (FV-
NIZK), and propose a set of useful security properties for it.

Let L = {Lρ} be a collection of NP-languages indexed by parameter ρ.
Each language Lρ is determined by a binary relation Rρ, such that an instance
c belongs to Lρ iff there exists a witness w s.t. Rρ(c, w) = 1. We consider Lρ with
a trapdoor tdρ, which can be used to decide the membership of Lρ efficiently.

Definition 4 (Tag-Based FV-NIZK). A tag-based Fine-grained Verifier quasi-
adaptive Non-Interactive Zero-Knowledge (FV-NIZK) argument consists of seven
PPT algorithms, namely Π = (Par,Gen,Prove,MVer,Sim,Delegate,FVer).

– pp ← Par(1λ,Lρ). Initialization algorithm takes the security parameter λ
and a language Lρ as inputs, and outputs a public parameter pp, which
defines the tag space T and the delegation space D.

– (crs, td,msk) ← Gen(pp). Generation algorithm takes pp as input, and out-
puts a common reference string crs, a trapdoor td, and a master secret key
msk. Without loss of generality, we assume crs contains pp, and it serves
as an implicit input of MVer, Sim, Delegate, and FVer.

– π ← Prove(crs, c, w, τ). Proof algorithm takes crs, an instance c ∈ Lρ along
with a witness w, and a tag τ ∈ T as inputs, and outputs a proof π.

– 0/1 ← MVer(msk, c, τ, π). Master verification algorithm takes msk, an in-
stance c, a tag τ ∈ T and a proof π as inputs, and outputs a decision bit.

– π ← Sim(td, c, τ). Simulation algorithm takes td, an instance c and a tag
τ ∈ T as inputs, and outputs a simulated proof π.

– skd ← Delegate(msk, d). Delegation algorithm takes msk and a delegation
d ∈ D as inputs, and outputs a delegated secret key skd.

– 0/1 ← FVer(skd, c, τ, π). Fine-grained verification algorithm takes skd, an
instance c, a tag τ ∈ T and a proof π as inputs, and outputs a decision bit.

If the tag space T is the empty set ∅ or contains only one element (e.g., {0}),
we call Π an FV-NIZK argument.

We require Π to have completeness and (perfect) zero-knowledge.

Completeness. For all pp← Par(1λ,Lρ), (crs, td,msk)← Gen(pp), (c, w) s.t.
Rρ(c, w) = 1, τ ∈ T and π ← Prove(crs, c, w, τ), it holds that

(1) MVer(msk, c, τ, π) = 1, and

(2) FVer(skd, c, τ, π) = 1 for all skd ← Delegate(msk, d) of all d ∈ D.

Perfect Zero-Knowledge. For all pp← Par(1λ,Lρ), (crs, td,msk)← Gen(pp),
(c, w) s.t. Rρ(c, w) = 1 and τ ∈ T , the following two distributions are identical:

Prove(crs, c, w, τ) ≡ Sim(td, c, τ).

11

Note that the first five algorithms (Par,Gen,Prove,MVer,Sim) of FV-NIZK
basically constitute a DV-NIZK scheme as defined in [16]. Moreover, the two
additional algorithms (Delegate,FVer) provide the fine-grained verification abil-
ity, by allowing different users owning different secret keys skd (d ∈ D) to verify
proofs in different ways by invoking FVer(skd, ·, ·, ·).

Now, we define a statistical property called verification equivalence for FV-
NIZK. Intuitively, it requires that all proofs passing the master verification al-
gorithm MVer using msk also pass the fine-grained verification algorithm FVer
using any secret key skd of any d, and (with high probability) vice versa.

Definition 5 (Verification Equivalence). Let δ, ϵ > 0. A tag-based FV-NIZK
Π has (δ, ϵ)-verification equivalence, if the following two properties hold.

1. MVer =⇒ FVer: For all pp ← Par(1λ,Lρ), (crs, td,msk) ← Gen(pp), in-
stances c, proofs π and tags τ ∈ T , if MVer(msk, c, τ, π) = 1 holds, then
FVer(skd, c, τ, π) = 1 holds for all skd ← Delegate(msk, d) of all d ∈ D.

2. MVer
w.h.p.⇐= FVer: For any (even unbounded) adversary A, it holds that

Advver-equΠ,A,δ (λ) := Pr[Expver-equΠ,A,δ (λ)⇒ 1] ≤ ϵ,

where the experiment Expver-equΠ,A,δ (λ) is defined in Fig. 1.

Expver-equΠ,A,δ (λ):

pp← Par(1λ,Lρ), (crs, td,msk)← Gen(pp)
Qsim := ∅, Qsk := ∅
(c∗, τ∗, π∗, d∗)← ASim(·,·),Delegate(·)(pp, crs)
skd∗ ← Delegate(msk, d∗)

If H̃∞(skd∗ |crs,Qsim,Qsk, d
∗)>δ

∧ FVer(skd∗ , c
∗, τ∗, π∗) = 1

∧ MVer(msk, c∗, τ∗, π∗)= 0: output 1
Otherwise: output 0

Sim(c, τ):

π ← Sim(td, c, τ)
Qsim := Qsim ∪ {(c, τ, π)}
Return π

Delegate(d):

skd ← Delegate(msk, d)
Qsk := Qsk ∪ {(d, skd)}
Return skd

Fig. 1. The verification equivalence experiment Expver-equΠ,A,δ (λ) for tag-based FV-

NIZK. In the condition “H̃∞(skd∗ |crs,Qsim,Qsk, d
∗)”, skd∗ means the distribution

Delegate(msk, d∗; r) with uniformly chosen randomness r, rather than a fixed value.

Remark 1 (On the formalization of “MVer
w.h.p.⇐= FVer”). We stress that we do

not require MVer and FVer perform identically on all inputs. In other words,
there might exist (c, τ, π) such that FVer(skd, c, τ, π) = 1 for some skd but
MVer(msk, c, τ, π) = 0. Similarly, for different d1, d2, FVer using skd1 and FVer
using skd2 might perform differently on some inputs, i.e., there might exist
(c, τ, π) such that FVer(skd1

, c, τ, π) = 1 but FVer(skd2
, c, τ, π) = 0.

12

In fact, what our “MVer
w.h.p.⇐= FVer” property tries to characterize is that for

any (unbounded) adversary A who does not get enough information about skd∗

(and thusmsk), it is hard to find a (c∗, τ∗, π∗) that makesMVer and FVer perform

differently. This also explains the condition “H̃∞(skd∗ |crs,Qsim,Qsk, d
∗) > δ”

in Fig. 1 for A to win. Otherwise, if the min-entropy of skd∗ is lower than
some threshold (say δ), A can guess skd∗ correctly with a noticeable probabil-
ity. Meanwhile, it can obtain skd for some d ̸= d∗ by querying Delegate(d).
With the knowledge of skd∗ and skd, it is feasible for A to find (c∗, τ∗, π∗) such
that FVer(skd∗ , c∗, τ∗, π∗) = 1 but FVer(skd, c

∗, τ∗, π∗) = 0 (e.g., via brute-force
search). According to the first property “MVer =⇒ FVer”, FVer(skd, c

∗, τ∗, π∗) =
0 implies MVer(msk, c∗, τ∗, π∗) = 0, and consequently A wins in Expver-equΠ,A,δ (λ).

To prevent such trivial attacks, we require H̃∞(skd∗ |crs,Qsim,Qsk, d
∗) > δ.

Remark 2 (On the parameter δ). Jumping ahead, both our FV-NIZK construc-
tions in Sect. 4 has (δ, ϵ)-verification equivalence with δ = 0. It seems that the
only way to achieve verification equivalence is if the parameter δ is either exactly
0 (as in our case) or large, but nothing in between.

Next, we adapt the unbounded simulation soundness (USS) of NIZK to our
FV-NIZK. Recall that USS for NIZK and DV-NIZK ensures that a PPT ad-
versary cannot generate a valid proof for a fresh and false statement c /∈ Lρ,
even if it can obtain multiple simulated proofs for instances not necessarily in
Lρ [30, 16]. For FV-NIZK, we also allow the adversary to obtain many secret
keys skd with d of its choices. Moreover, we consider a strong USS by giving the
adversary multiple chances to win, following [16].

Definition 6 (Strong USS). A tag-based FV-NIZK Π has strong USS, if for
any PPT adversary A, it holds that

AdvussΠ,A(λ) := Pr[ExpussΠ,A(λ)⇒ 1] ≤ negl(λ),

where the experiment ExpussΠ,A(λ) is defined in Fig. 2.

Remark 3 (On the formalization of strong USS). Note that in the strong USS
experiment in Fig. 2, Sim(c, τ) returns ⊥ directly if τ was queried to Sim(·, ·)
before, following the definition of strong USS for DV-NIZK in [16]. Similar to
[16], such a requirement is not an obstacle in many applications. For example, as
we will see, in all our applications in Sect. 5, τ is a hash of some random values.
Thus τ is different with overwhelming probability each time Sim(·, ·) is invoked
when the security of applications is reduced to the strong USS.

Moreover, we note that in the strong USS defined in [16], Ver(·, τ, ·) also
returns ⊥ if τ was queried to Sim(·, τ) before, while ours does not have such a
requirement. This relaxation seems reasonable when considering the security of
NIZK, and it helps us to construct other cryptographic algorithms in a more
straightforward way (e.g., constructing CCA-secure PKE without resorting to
one-time signatures or authenticated encryption, as shown in Subsect. 5.2).

13

ExpussΠ,A(λ):

pp← Par(1λ,Lρ), (crs, td,msk)← Gen(pp)
Qsim := ∅, Qsk := ∅
win := 0 // A flag indicating whether A wins

⊥ ← ASim(·,·),Delegate(·),Ver(·,·,·)(pp, crs)

Output win

Delegate(d):

skd ← Delegate(msk, d)
Qsk := Qsk ∪ {(d, skd)}
Return skd

Sim(c, τ):

If (·, τ, ·) ∈ Qsim: return ⊥
π ← Sim(td, c, τ)
Qsim := Qsim ∪ {(c, τ, π)}
Return π

Ver(c, τ, π):

If (c, τ, π) ∈ Qsim: return ⊥
If MVer(msk, c, τ, π) = 1 ∧ c /∈ Lρ :

win := 1
Return MVer(msk, c, τ, π)

Fig. 2. The strong USS experiment ExpussΠ,A(λ) for tag-based FV-NIZK.

Finally, we define proof pseudorandomness for FV-NIZK, which stipulates
the pseudorandomness of proofs for PPT adversaries that are not given any
secret key but allowed to access the verification oracle. Jumping ahead, this
property serves as the core technical tool for the ciphertext pseudorandomness
(thus anonymity) of our fine-grained verifiable PKE in Subsect. 5.2.

Definition 7 (Proof Pseudorandomness). A tag-based FV-NIZK Π has
proof pseudorandomness, if for any PPT adversary A, it holds that

AdvppΠ,A(λ) := |Pr[Exp
pp
Π,A,0(λ)⇒ 1]− Pr[ExpppΠ,A,1(λ)⇒ 1]| ≤ negl(λ),

where the experiments ExpppΠ,A,β(λ) (β ∈ {0, 1}) are defined in Fig. 3.

ExpppΠ,A,β(λ): // β ∈ {0, 1}
pp← Par(1λ,Lρ), (crs, td,msk)← Gen(pp)
Qc := ∅, Qsim := ∅
β′ ← ASam(·),Sim(·,·),Ver(·,·,·)(pp, crs)
Output β′

Ver(c, τ, π):

If (c, τ, π) ∈ Qsim: return ⊥
Return MVer(msk, c, τ, π)

Sam(·):
If β = 0: c

$←−Lρ

If β = 1: c
$←−X

Qc := Qc ∪ {c}
Return c

Sim(c, τ):

If c /∈ Qc: return ⊥
If (·, τ, ·) ∈ Qsim: return ⊥
If β = 0: π ← Sim(td, c, τ)

If β = 1: π
$←−P

Qc := Qc\{c}
Qsim := Qsim ∪ {(c, τ, π)}
Return π

Fig. 3. The proof pseudorandomness experiments ExpppΠ,A,β(λ) for tag-based FV-NIZK,
where X denotes the instance space, and P denotes the proof space of Π.

Remark 4 (On the formalization of proof pseudorandomness). In fact, the proof
pseudorandomness asks the pseudorandomness of proofs for instances uniformly
sampled from the language Lρ. Moreover, the adversary A in Fig. 3 has access
to two oracles, Sam(·) and Sim(·, ·), to obtain instances and simulated proofs,

14

respectively. In particular, the oracle Sim(c, τ) returns proofs only for instances c
output by Sam(·), but τ can be determined by A. Indeed, in certain applications
of tag-based NIZK, the tag τ may depend on the instance c. For example, in
our application in PKE (cf. Subsect. 5.2), τ is a hash of c. Our formalization
captures such dependency between c and τ .

Remark 5 (Extension to the multi-user setting). We can naturally extend the
definitions of strong USS and proof pseudorandomness (i.e., Def. 6 and Def. 7)
to the multi-user setting, and define strong µ-USS and µ-proof pseudorandom-
ness in the setting of µ ∈ N users. The formal definitions can be found in the
full version. More precisely, all µ users share the same pp and each user i ∈ [µ]

invokes Gen(pp) independently to get its own (crs(i), td(i),msk(i)). Accordingly,
the adversary A has access to Sim(i, ·, ·),Delegate(i, ·),Ver(i, ·, ·, ·) which ad-
ditionally take a user index i ∈ [µ] as input and prepare the responses using

(crs(i), td(i),msk(i)).
Jumping ahead, both the two schemes in Sect. 4 have almost tight strong

USS (and the first one also have almost tight proof pseudorandomness) in the
multi-user setting.

4 FV-NIZK for Linear Subspace Languages

In this section, we propose two tightly secure FV-NIZK schemes for linear sub-
space languages, based on the MDDH assumption. The first scheme is pairing-
free and the second one relies on pairings.

Let G = (G, g, q) be a cyclic group G of order q with generator g. Let A ∈
Zn1×n2
q with n1 > n2. The linear subspace language is L[A] := Span([A]) :=
{[c] | ∃s ∈ Zn2

q s.t. c = As} with A the trapdoor of L[A].

4.1 The First Construction without Pairings

Let m, k, n1, n2 ∈ N and D3k,k be a matrix distribution. Let H : {0, 1}∗ → Zq be
a family of collision resistant hash functions. Our first construction of tag-based
FV-NIZK Π is shown in Fig. 4, where the tag space is T = {0, 1}λ and the
delegation space is D = Zm

q . Note that this construction is pairing-free.

Completeness and perfect zero-knowledge follow directly from the fact that

u = (K0 + θK1)As+ K̂τBr = (K0 + θK1)c+ K̂τt // completeness (1)

= (K0 + θK1)c+ K̂τBr, // perfect zero-knowledge

which implies d⊤Mu = d⊤M(K0 + θK1)c+ d⊤MK̂τt. // completeness (2)

Next, we show the verification equivalence of Π.

Theorem 1 (Verification Equivalence). The tag-based FV-NIZK scheme
Π in Fig. 4 has (0, 1/q)-verification equivalence.

15

Par(1λ, [A] ∈ Gn1×n2):

B← D3k,k; H
$←−H

Return pp := ([A], [B], H)

Gen(pp):

K0,K1
$←−Z(m+1)×n1

q ; M
$←−Zm×(m+1)

q

For ℓ ∈ [λ], b ∈ {0, 1}: K̂ℓ,b
$←−Z(m+1)×3k

q

crs := ([K0A], [K1A], {[K̂ℓ,bB]}ℓ,b)
td := (K0,K1)

msk := (K0,K1, {K̂ℓ,b}ℓ,b,M)
Return (crs, td,msk)

Prove(crs, [c], s, τ): // c = As

r
$←−Zk

q ; [t] := [B]r

θ := H([c], τ, [t]); K̂τ :=
∑λ

ℓ=1 K̂ℓ,τℓ

[u] := [(K0 + θK1)A]s+ [K̂τB]r ∈ Gm+1

Return π := ([t], [u])

MVer(msk, [c], τ, π = ([t], [u])):

θ := H([c], τ, [t]); K̂τ :=
∑λ

ℓ=1 K̂ℓ,τℓ

If [u] = (K0 + θK1)[c] + K̂τ [t]: return 1
Otherwise: return 0

Sim(td, [c], τ):

r
$←−Zk

q ; [t] := [B]r

θ := H([c], τ, [t]); K̂τ :=
∑λ

ℓ=1 K̂ℓ,τℓ

[u] := (K0 + θK1)[c] + [K̂τB]r ∈ Gm+1

Return π := ([t], [u])

Delegate(msk,d ∈ Zm
q):

Return skd := (d⊤M,d⊤MK0,d
⊤MK1, {d⊤MK̂ℓ,b}ℓ,b)

FVer(skd, [c], τ, π = ([t], [u])):

θ := H([c], τ, [t]); K̂τ :=
∑λ

ℓ=1 K̂ℓ,τℓ

If d⊤M[u] = d⊤M(K0 + θK1)[c] + d⊤MK̂τ [t]: return 1
Otherwise: return 0

Fig. 4. The pairing-free construction of tag-based FV-NIZK Π.

Proof. The first property (MVer =⇒ FVer) is straightforward, since [u] = (K0+

θK1)[c] + K̂τ [t] directly implies d⊤M[u] = d⊤M(K0 + θK1)[c] + d⊤MK̂τ [t].

To show the second property (MVer
w.h.p.⇐= FVer), we consider an (unbounded)

adversary A that finally outputs ([c∗], τ∗, π∗ = ([t∗], [u∗]),d∗) in the experiment
Expver-equΠ,A,0 (λ) (cf. Fig. 1). Let D denote the matrix consisting of all vectors d
that A queried Delegate(·). We analyze A’s advantage as follows.

Note that the algorithm Delegate is deterministic and linear in d. That is, if
d∗ ∈ Span(D), then skd∗ is totally determined by Qsk = {(d, skd)} and d∗, and

hence has no entropy left at all. Therefore, for A to win, H̃∞(skd∗ |crs,Qsim,Qsk,
d∗) > 0 holds, and we must have d∗ /∈ Span(D). Moreover, since the algorithm
Sim does not involve M at all, A obtains nothing about M from Sim(·, ·). Thus,
d∗ /∈ Span(D) implies that d∗⊤M is uniformly random over Z1×(m+1)

q from A’s
view. And consequently, the event FVer(skd∗ , [c∗], τ∗, π∗) = 1 ∧ MVer(msk, [c∗],
τ∗, π∗) = 0, i.e.,

d∗⊤M
(
u∗ − (K0 + θ∗K1)c

∗ − K̂τ∗t∗
)

︸ ︷︷ ︸
̸=0

= 0,

occurs with probability at most 1/q. This shows Advver-equΠ,A,0 (λ) ≤ 1/q. □

Now we show that Π has almost tight strong USS and almost tight proof
pseudorandomness via the following two theorems.

Theorem 2 (Almost Tight Strong USS). If the D3k,k-MDDH assumption
holds in G and H is a family of collision resistant hash functions, then the tag-

16

based FV-NIZK scheme Π in Fig. 4 has strong USS. More precisely, for any
adversary A against the strong USS security of Π, there exist algorithms B1,B2
s.t. max(Time(B1), T ime(B2)) ≈ Time(A)+(Qsim+Qver+Qdel) ·poly(λ), and

AdvussΠ,A(λ) ≤ AdvcrH,B1
(λ) + (8λk + 2k) · Advmddh

D3k,k,G,B2
(λ) + (2λ+2)Qver+4λ+1

q−1 ,

where Qsim, Qver, Qdel denote the numbers of queries to Sim,Ver,Delegate,
respectively.

Theorem 3 (Almost Tight Proof Pseudorandomness). Let n1 ≥ 2n2.
If the Dn1,n2

-MDDH assumption and the D3k,k-MDDH assumption hold in G,
and H is a family of collision resistant hash functions, then the tag-based FV-
NIZK scheme Π in Fig. 4 has proof pseudorandomness. More precisely, for any
adversary A against the proof pseudorandomness of Π, there exist algorithms
B1,B2,B3 s.t. max(Time(B1), T ime(B2) Time(B3)) ≈ Time(A)+(Qsim+Qver)·
poly(λ), and

AdvppΠ,A(λ) ≤(n1 − n2 + 2)Advmddh
Dn1,n2

,G,B1
(λ) + (16λk + 6k)Advmddh

D3k,k,G,B2
(λ)

+ 2AdvcrH,B3
(λ) + (4λ+4)Qver+8λ+6

q−1 ,

where Qsim and Qver denote the numbers of queries to Sim and Ver, respec-
tively.

We prove Theorem 2 and Theorem 3 in our full version due to space limita-
tions. See Sect. 1 for a high-level proof sketch.

Remark 6 (On the almost tightness of strong USS and proof pseudorandomness).

The terms (2λ+2)Qver+4λ+1
q−1 and (4λ+4)Qver+8λ+6

q−1 in Theorem 2 and Theorem 3
do not affect the tightness of the reductions since they are statistically small.
Moreover, n1, n2, k are parameters of the MDDH assumptions and are constants
(e.g., n1 = 2, n2 = 1, k = 1). Consequently, the strong USS and proof pseudo-
randomness have security loss factors O(λ), and thus are almost tight.

4.2 The Second Construction with Pairings

Let m, k, n1, n2 ∈ N and D2k,k be a matrix distribution. Let H : {0, 1}∗ → Zq

be a family of collision resistant hash functions. Similar to [4], we use a NIZK
proof Πor = (Πor.Gen, Πor.TGen, Πor.Prove, Πor.Sim, Πor.Ver) for OR-language
L ∨[B0],[B1]

:= Span([B0]) ∪ Span([B1]) := {[t] | ∃r ∈ Zk
q s.t. t = B0r ∨ t = B1r}

as a building block, where B0,B1 ∈ Z2k×k
q . We refer our full version for the

syntax of NIZK proofs and a concrete MDDH-based scheme of Πor proposed in
[18, 29]. Our second construction of tag-based FV-NIZK Π is shown in Fig. 5,
where the tag space is T = {0, 1}∗ and the delegation space is D = Zm

q . Note
that compared to the QA-NIZK scheme proposed in [4], our FV-NIZK scheme
uses less pairing operations, since only Πor.Ver involves pairings.

17

Par(1λ, [A] ∈ Gn1×n2):

B0,B1 ← D2k,k; H
$←−H

crsor ← Πor.Gen(1
λ, [B0], [B1])

Return pp := ([A], [B0], crsor, H)

Gen(pp):

K0,K1
$←−Z(m+1)×n1

q

K̂
$←−Z(m+1)×2k

q ; M
$←−Zm×(m+1)

q

crs := ([K0A], [K1A], [K̂B0])
td := (K0,K1)

msk := (K0,K1, K̂,M)
Return (crs, td,msk)

Prove(crs, [c], s, τ): // c = As

r
$←−Zk

q ; [t] := [B0]r
πor ← Πor.Prove(crsor, [t], r)
θ := H([c], τ, [t], πor)

[u] := [(K0 + θK1)A]s+ [K̂B0]r ∈ Gm+1

Return π := ([t], [u], πor)

MVer(msk, [c], τ, π = ([t], [u], πor)):

If Πor.Ver(crsor, [t], πor) = 0: return 0
θ := H([c], τ, [t], πor)

If [u] = (K0 + θK1)[c] + K̂[t]: return 1
Otherwise: return 0

Sim(td, [c], τ):

r
$←−Zk

q ; [t] := [B0]r
πor ← Πor.Prove(crsor, [t], r)
θ := H([c], τ, [t], πor)

[u] := (K0 + θK1)[c] + [K̂B0]r ∈ Gm+1

Return π := ([t], [u], πor)

Delegate(msk,d ∈ Zm
q):

Return skd := (d⊤M,d⊤MK0,d
⊤MK1,d

⊤MK̂)

FVer(skd, [c], τ, π = ([t], [u], πor)):

If Πor.Ver(crsor, [t], πor) = 0: return 0
θ := H([c], τ, [t], πor)

If d⊤M[u] = d⊤M(K0 + θK1)[c] + d⊤MK̂[t]: return 1
Otherwise: return 0

Fig. 5. The pairing-based construction of tag-based FV-NIZK Π, where Πor =
(Πor.Gen, Πor.TGen, Πor.Prove, Πor.Sim, Πor.Ver) is a NIZK proof for OR-language
L ∨

[B0],[B1]
.

Completeness and perfect zero-knowledge follow directly from the fact that

u = (K0 + θK1)As+ K̂B0r = (K0 + θK1)c+ K̂t // completeness (1)

= (K0 + θK1)c+ K̂B0r, // perfect zero-knowledge

which implies d⊤Mu = d⊤M(K0 + θK1)c+ d⊤MK̂t. // completeness (2)

Next, we show the verification equivalence and almost tight strong USS of
Π.

Theorem 4 (Verification Equivalence). The tag-based FV-NIZK scheme
Π in Fig. 5 has (0, 1/q)-verification equivalence.

The proof is very similar to that of Theorem 1 and we show it in the full
version.

Theorem 5 (Almost Tight Strong USS). If the D2k,k-MDDH assump-
tion holds in G, H is a family of collision resistant hash functions, and Πor

is a NIZK proof for L ∨[B0],[B1]
with completeness, perfect soundness and zero-

knowledge, then the tag-based FV-NIZK scheme Π in Fig. 5 has strong USS.
More precisely, for any adversary A against the strong USS security of Π,

18

there exist algorithms B1,B2,B3 s.t. max(Time(B1), T ime(B2), T ime(B3)) ≈
Time(A) + (Qsim +Qver +Qdel) · poly(λ), and

AdvussΠ,A(λ) ≤Adv
cr
H,B1

(λ) + (2n+ 2) · AdvzkΠor,B2
(λ)

+ (4kn+ 2k) · Advmddh
D2k,k,G,B3

(λ) + (n+1)(QsimQver+4)
q−1 .

where Qsim, Qver, Qdel denote the numbers of queries to Sim,Ver,Delegate,
respectively, and n := ⌈logQsim⌉.

The proof is provided in the full version due to space limitations.

Remark 7 (On the almost tightness of strong USS). Similar to Remark 6, the

term (n+1)(QsimQver+4)
q−1 in Theorem 5 does not affect the tightness of the reduc-

tion since it is statistically small. Moreover, k is the parameter of the MDDH
assumption (e.g., k = 1 corresponds to the standard DDH assumption). Conse-
quently, the strong USS has security loss factor O(n) = O(⌈logQsim⌉), which is
O(log λ) for PPT adversaries due to Qsim = poly(λ), and thus is almost tight.

Remark 8. We note that our tag-based FV-NIZK scheme Π in Fig. 5 does not
achieve proof pseudorandomness, since its proof π contains a proof πor of the
underlying NIZK scheme Πor which supports public verification, so that anyone
who obtains crsor from pp can check the validity of πor.

5 Applications of FV-NIZK

In this section, we illustrate the usefulness of tag-based FV-NIZK by showing
two applications, including CCA-secure IPFE in Subsect. 5.1 and CCA-secure
fine-grained verifiable PKE (FV-PKE) in Subsect. 5.2.

By instantiating with the almost tightly secure FV-NIZK schemes constructed
in Sect. 4, we immediately obtain IPFE and FV-PKE schemes that achieve
almost tight mCCA (multi-challenge CCA) security. Moreover, the resulting
schemes are either pairing-free (when using the FV-NIZK scheme in Subsect. 4.1),
or use less pairing operations than existing works (when using the FV-NIZK
scheme in Subsect. 4.2).

5.1 Almost Tightly mCCA-Secure IPFE Schemes

In [26], Liu et al. proposed the first almost tightly mCCA secure IPFE scheme,
based on a tightly mCPA secure scheme [31] and an almost tightly secure QA-
NIZK argument for linear subspace languages [4]. However, the QA-NIZK argu-
ment in [4] involves pairings, so does Liu et al.’s IPFE.

To reduce the number of pairing operations or even get rid of pairings, we
replace the QA-NIZK with our tag-based FV-NIZK for linear subspace languages
in the IPFE construction. When the tag-based FV-NIZK is instantiated with
the construction in Subsect. 4.1, we obtain the first pairing-free IPFE scheme
with almost tight mCCA security. When it is instantiated with the construction

19

in Subsect. 4.2, we obtain a pairing-based IPFE scheme that uses less pairing
operations than [26].

Formally, we present the syntax of IPFE and its mCCA security in the full
version and describe our IPFE construction as follows. Let m, k,X, Y ∈ N, and
letDk be a matrix distribution. LetΠ = (Π.Par, Π.Gen, Π.Prove, Π.MVer, Π.Sim,
Π.Delegate, Π.FVer) be a tag-based FV-NIZK for linear subspace language L[A]

with tag space T and delegation space D = Zm
q . Let H : {0, 1}∗ → T be a

family of collision resistant hash functions. Our IPFE construction IPFEmcca =
(Par,Setup,Enc,KeyGen,Dec) is described in Fig. 6, where the message space is
[−X,X]m ⊆ Zm

q and the inner product function is defined by y ∈ [−Y, Y]m ⊆
Zm
q . Similar to [31, 26], we require mXY to be a polynomial in λ.

The correctness of IPFEmcca follows from the completeness of Π and the fact
that for x ∈ [−X,X]m and y ∈ [−Y, Y]m, it holds

d = y⊤(WAs+ x)− y⊤W(As) = y⊤x ∈ [−mXY,mXY].

Par(1λ):

Ã← Dk; A := Ikm ⊗ Ã

p̂p← Π.Par(1λ, [A]) , H
$←−H

Return pp := ([Ã], p̂p, H)

Setup(1m, pp):

W
$←−Zm×k(k+1)m

q

(crs, td, m̂sk)← Π.Gen(Π.pp)

Return mpk := ([WA], crs), msk := (W, m̂sk)

KeyGen(msk,y ∈ [−Y, Y]m):

ŝky ← Π.Delegate(m̂sk,y)

Return sky := (y,y⊤W, ŝky)

Enc(mpk,x ∈ [−X,X]m):

s
$←−Zk2m

q ; [c] := [A]s ∈ Gk(k+1)m

[v] := [WA]s+ [x] ∈ Zm
q

τ := H(mpk, [c], [v])

π ← Π.Prove(crs, [c], s, τ)

Return ct := ([c], [v], π)

Dec(sky, ct):

Parse ct = ([c], [v], π)
τ := H(mpk, [c], [v])

If Π.FVer(ŝky, [c], τ, π) = 1 :

[d] := y⊤[v]− y⊤W[c]
Return d ∈ [−mXY,mXY]

Otherwise: return ⊥

Fig. 6. Construction of IPFEmcca from tag-based FV-NIZK Π. For the ease of reading,
we emphasize different parts with [26] in gray boxes .

Theorem 6 (Almost Tight mCCA Security of IPFEmcca). If the Dk-
MDDH assumption holds in G, H is a family of collision resistant hash functions,
and Π is a tag-based FV-NIZK with (0, ϵ)-verification equivalence and strong
USS, then IPFEmcca shown in Fig. 6 is mCCA-secure. Concretely, for any PPT
adversary A, there exist PPT algorithms B1,B2,B3 s.t. max(Time(B1), T ime(B2),
T ime(B3)) ≈ Time(A) + (Qenc +Qsk +Qdec) · poly(λ,m) with poly(λ,m) inde-
pendent of A, and

Advmcca
IPFEmcca,A(λ) ≤ 2AdvcrH,B1

(λ) + 4Advmddh
Dk,G,B2

(λ) + 2AdvussΠ,B3
(λ) + 2Qdec · ϵ+ 2

q−1 ,

20

where Qenc, Qsk and Qdec denote the total numbers of encryption, key generation
and decryption queries, respectively.

The proof is shown in the full version due to space limitations.

5.2 Almost Tightly mCCA-Secure FV-PKE Schemes

In this subsection, we formalize the new primitive called Fine-grained Verifiable
PKE (FV-PKE), and define verification soundness, mCCA security, and cipher-
text pseudorandomness for it. Then we show how to construct FV-PKE based
on our tag-based FV-NIZK. By instantiating with the almost tightly secure FV-
NIZK scheme proposed in Subsect. 4.1, we obtain the first FV-PKE scheme with
almost tight mCCA security and ciphertext pseudorandomness.

We first present the syntax of FV-PKE.

Definition 8 (FV-PKE). A Fine-grained Verifiable Public-Key Encryption
(FV-PKE) scheme consists of six PPT algorithms, namely FPKE = (Par,Gen,Enc,
Dec,Delegate,Ver).

– pp ← Par(1λ): Initialization algorithm takes the security parameter λ as
input and outputs a public parameter pp, which defines the message space
M and the delegation space D.

– (pk, sk)← Gen(pp): Generation algorithm takes pp as inputs, and outputs a
public key pk and a secret key sk. We assume pk contains pp, and it serves
as an implicit input of Enc,Dec,Delegate, and Ver.

– ct← Enc(pk,M): Encryption algorithm takes pk and a message M ∈M as
inputs, and outputs a ciphertext ct.

– M ′/⊥ ← Dec(sk, ct): Decryption algorithm takes sk and a ciphertext ct as
inputs, and outputs a message M ′ ∈M or a special failure symbol ⊥.

– skd ← Delegate(sk, d): Delegation algorithm takes sk and a delegation d ∈ D
as inputs, and outputs a delegated secret key skd.

– 0/1 ← Ver(skd, ct): Verification algorithm takes skd and ct as inputs, and
outputs a bit indicating whether ct is a valid ciphertext or not.

We require FPKE to have decryption correctness and verification correctness.

Decryption Correctness. For all pp, (pk, sk)← Gen(pp), M ∈ M and ct←
Enc(pk,M), it holds that Dec(sk, ct) = M .

Verification Correctness. For all pp, (pk, sk)← Gen(pp), M ∈M and ct←
Enc(pk,M), it holds Ver(skd, ct) = 1 for all skd ← Delegate(sk, d) of all d ∈ D.

Note that the first four algorithms (Par,Gen,Enc,Dec) of FV-PKE basically
constitute a standard PKE scheme. Moreover, the two additional algorithms
(Delegate,Ver) provide the fine-grained ability for verifying ciphertext validity.

Next, we define a statistical property called verification soundness for FV-
PKE. Loosely speaking, it essentially requires that for any ciphertext ct and any
skd, Ver(skd, ct) outputs 1 if and only if ct is a valid ciphertext, i.e., Dec(sk, ct)
succeeds, except for a negligible probability.

21

Definition 9 (Verification Soundness of FV-PKE). Let δ, ϵ > 0. An FV-
PKE scheme FPKE has (δ, ϵ)-verification soundness, if for any (even unbounded)
adversary A, it holds that

Advver-sndFPKE,A,δ(λ) := Pr[Expver-sndFPKE,A,δ(λ)⇒ 1] ≤ ϵ,

where the experiment Expver-sndFPKE,A,δ(λ) is defined in Fig. 7.

Expver-snd
Π,A,δ (λ):

pp← Par(1λ), (pk, sk)← Gen(pp), Qsk := ∅
(ct∗, d∗)← ADelegate(·)(pp, pk)
skd∗ ← Delegate(sk, d∗)

If H̃∞(skd∗ |pk,Qsk, d
∗) > δ

∧
(

(Ver(skd∗ , ct
∗) = 1 ∧ Dec(sk, ct∗) = ⊥)

∨ (Ver(skd∗ , ct
∗) = 0 ∧ Dec(sk, ct∗) ̸= ⊥)

)
: output 1

Otherwise: output 0

Delegate(d):

skd ← Delegate(sk, d)
Qsk := Qsk ∪ {(d, skd)}
Return skd

Fig. 7. The verification soundness experiment Expver-snd
FPKE,A,δ(λ) for FV-PKE.

Remark 9 (On the formalization of verification soundness). We stress that we do
not require Ver can always correctly decide whether a ciphertext is valid or not.
That is, there might exist a ciphertext ct and a pair (d, skd) s.t., Dec(sk, ct) = ⊥
but Ver(skd, ct) = 1, or Dec(sk, ct) ̸= ⊥ but Ver(skd, ct) = 0. Nevertheless, veri-
fication soundness of FV-PKE ensures that even for an (unbounded) adversary
A, if it does not get enough information about skd∗ (and thus sk), it is hard
for A to find a ct∗ that makes Dec(sk, ·) and Ver(skd∗ , ·) perform inconsistently.

Similar to Remark 1, we require “H̃∞(skd∗ |pk,Qsk, d
∗) > δ” in Fig. 7 to prevent

trivial attacks, since for those who get skd∗ , it might be easy for them to produce
such a ct∗.

Remark 10 (On the motivation for defining FV-PKE with the delegation space
D). The main motivation for defining FV-PKE with the delegation d is to pro-
vide the flexibility of verification, which can be used to make the verification
result closer to the validity of ciphertexts, as explained below. Let us go back
to the motivating example described in the introduction, where a manager asks
an assistant to filter out invalid ciphertexts. By using FV-PKE, the manager
can give a delegated key skd to the assistant, and the property of verification
soundness guarantees that verification using skd can correctly decide the validity
for ciphertexts generated by the outsider (i.e., anyone other than the manager
and the assistant). However, since the assistant has skd, it does not exclude the
possibility that the assistant itself produces ill-formed ciphertexts which are in-
valid but pass the verification, or are valid but do not pass the verification. We
refer to this as an “insider” attack.

22

Thanks to the fact that FV-PKE supports delegation d, such “insider” at-
tacks can be easily prevented: the manager can ask several assistants, give them
different delegated keys (skd1

, skd2
, ...), and regard a ciphertext valid only if it

passes all the verifications. As long as not all the assistants collude, it is hard
for them to produce ill-formed ciphertexts which are invalid but pass all the
verifications, or are valid but do not pass all the verifications. Of course, the
manager can also set a threshold, and regard a ciphertext valid if the number of
verifications that it passes is above the threshold, in order to tolerate inadver-
tent errors. This reflects the flexibility of verification. Stepping back, even if an
“insider” attack occurs, the manager can identify which assistant produced the
ill-formed ciphertexts, by tracing the delegation d from skd.

Then we formalize the mCCA security for FV-PKE. Compared to the CCA
security for standard PKE, we also allow the adversary to obtain delegated keys
skd with d of its choices.

Definition 10 (mCCA Security of FV-PKE). An FV-PKE scheme FPKE
is indistinguishable under chosen ciphertext attacks in the multi-challenge setting
(mCCA), if for any PPT adversary A, it holds that

Advmcca
FPKE,A(λ) :=

∣∣Pr[Expmcca
FPKE,A,0(λ)⇒ 1]− Pr[Expmcca

FPKE,A,1(λ)⇒ 1]
∣∣ ≤ negl(λ),

where the experiments Expmcca
FPKE,A,β(λ) (β ∈ {0, 1}) are defined in Fig. 8.

Expmcca
FPKE,A,β(λ): // β ∈ {0, 1}

pp← Par(1λ), (pk, sk)← Gen(pp)
Qenc := ∅; Qsk := ∅
β′ ← AEnc(·,·),Dec(·),Delegate(·)(pp, pk)
Output β′

Delegate(d):

skd ← Delegate(sk, d)
Qsk := Qsk ∪ {(d, skd)}
Return skd

Enc(M0,M1):

ct← Enc(pk,Mβ)
Qenc := Qenc ∪ {ct}
Return ct

Dec(ct):

If ct ∈ Qenc: return ⊥
Return Dec(sk, ct)

Fig. 8. The IND-mCCA security experiments Expmcca
FPKE,A,β(λ) for FV-PKE.

Finally, we define ciphertext pseudorandomness for FV-PKE, which requires
the pseudorandomness of ciphertexts for PPT adversaries that are not given
any secret key but allowed to access the decryption oracle. This clearly implies
anonymity.

Definition 11 (Ciphertext Pseudorandomness of FV-PKE). An FV-PKE
scheme FPKE has ciphertext pseudorandomness in the multi-challenge setting,
if for any PPT adversary A, it holds that

AdvcpFPKE,A(λ) := |Pr[Exp
cp
FPKE,A,0(λ)⇒ 1]− Pr[ExpcpFPKE,A,1(λ)⇒ 1]| ≤ negl(λ),

23

ExpcpFPKE,A,β(λ): // β ∈ {0, 1}
pp← Par(1λ), (pk, sk)← Gen(pp), Qenc := ∅
β′ ← AEnc(·),Dec(·)(pp, pk)
Output β′

Dec(ct):

If ct ∈ Qenc: return ⊥
Return Dec(sk, ct)

Enc(M):

If β = 0: ct← Enc(pk,M)

If β = 1: ct
$←−CT

Qenc := Qenc ∪ {ct}
Return ct

Fig. 9. The ciphertext pseudorandomness experiments ExpcpFPKE,A,β(λ) for FV-PKE,
where CT denotes the ciphertext space.

where the experiments ExpcpFPKE,A,β(λ) (β ∈ {0, 1}) are defined in Fig. 9.

Construction of FV-PKE. Now we describe our FV-PKE construction as fol-
lows. LetΠ = (Π.Par, Π.Gen, Π.Prove, Π.MVer, Π.Sim, Π.Delegate, Π.FVer) be a
tag-based FV-NIZK for linear subspace language L[A] with tag space T and del-
egation space D. Let H : {0, 1}∗ → T be a family of collision resistant hash func-
tions. Our FV-PKE construction FPKEmcca = (Par,Gen,Enc,Dec,Delegate,Ver)
is described in Fig. 10, where the message space is G and the delegation space
is D.

The decryption correctness follows from the completeness (1) of Π and the
fact that

[v]−w⊤[c] = ([w⊤A]s+M)−w⊤[As] = M,

and the verification correctness follows from the completeness (2) of Π.

Theorem 7 (Verification Soundness of FPKEmcca). If Π is a tag-based
FV-NIZK with (δ, ϵ)-verification equivalence, then FPKE shown in Fig. 10 has
(δ, ϵ)-verification soundness.

Proof. The proof is straightforward. Since Π has (δ, ϵ)-verification equivalence,
the algorithms Π.MVer and Π.FVer perform identically, except with probability
at most ϵ. Consequently, it is hard for an (even unbounded) adversary to find
(ct∗, d∗) that passes the verification algorithm Ver of FPKE (i.e., passing Π.FVer)
but fails the decryption of ct∗ (i.e., not passing Π.MVer), or fails to pass Ver (i.e.,
not passing Π.FVer) but decrypts successfully (i.e., passing Π.MVer). □

Now we show that FPKEmcca has almost tight mCCA security and almost
tight ciphertext pseudorandomness via the following two theorems.

Theorem 8 (Almost Tight mCCA Security of FPKEmcca). If the D2k,k-
MDDH assumption holds in G, H is a family of collision resistant hash functions,
and Π is a tag-based FV-NIZK with strong USS, then FPKEmcca shown in Fig. 10
is mCCA-secure. Concretely, for any PPT adversary A, there exist PPT algo-
rithms B1,B3,B3 s.t. max(Time(B1), T ime(B2), T ime(B3)) ≈ Time(A) + (Qenc

+Qsk +Qdec) · poly(λ) with poly(λ) independent of A, and

Advmcca
FPKEmcca,A(λ) ≤2Adv

cr
H,B1

(λ) + (2k + 4)Advmddh
D2k,k,G,B2

(λ) + 2AdvussΠ,B3
(λ) + 6

q−1 ,

24

Par(1λ):

A← D2k,k; H
$←−H

p̂p← Π.Par(1λ, [A])

Return pp := ([A], p̂p, H)

Gen(pp):

w← Z2k
q

(crs, td, m̂sk)← Π.Gen(p̂p)

Return pk := ([w⊤A], crs), sk := (w, m̂sk)

Enc(pk,M ∈ G):

s
$←−Zk

q ; [c] := [A]s ∈ G2k

[v] := [w⊤A]s+M ∈ G
τ := H(pk, [c], [v])

π ← Π.Prove(crs, [c], s, τ)

Return ct := ([c], [v], π)

Dec(sk, ct = ([c], [v], π)):

τ := H(pk, [c], [v])

If Π.MVer(m̂sk, [c], τ, π) = 1 :

Return M ′ := [v]−w⊤[c]
Otherwise: return ⊥

Delegate(sk, d):

skd ← Π.Delegate(m̂sk, d)

Return skd

Ver(skd, ct = ([c], [v], π)):

τ := H(pk, [c], [v])

Return Π.FVer(skd, [c], τ, π)

Fig. 10. Construction of FPKEmcca from tag-based FV-NIZKΠ. For the ease of reading,
we emphasize the parts related to Π in gray boxes .

where Qenc, Qsk and Qdec denote the total numbers of encryption, delegation
and decryption queries, respectively.

Proof. We prove the theorem via a series of games Gβ
0 , ...,G

β
5 (β ∈ {0, 1}), where

the first two games Gβ
0 are the mCCA experiments Expmcca

FPKE,A,β(λ) (cf. Fig. 8),

and G0
5, G

1
5 are identical.

Game Gβ
0 . They are just the original experiments Expmcca

FPKE,A,β(λ), except that we

use secret key w to do the encryption. Due to the equation [w⊤A]s = w⊤[As] =
w⊤[c], we have that

Pr[Expmcca
FPKE,A,β(λ)⇒ 1] = Pr[Gβ

0 ⇒ 1], for β ∈ {0, 1}.

Game Gβ
1 . In this two games, whenever there is an encryption or decryption

query with tag τ ′ that collides with some τ used in encryption before, the ex-
periment returns ⊥ and aborts. By the collision resistance of H, we have

|Pr[Gβ
0 ⇒ 1]− Pr[Gβ

1 ⇒ 1]| ≤ AdvcrH,B1
(λ), for β ∈ {0, 1}.

Game Gβ
2 . In this two games, Enc(M0,M1) generates proofs π viaΠ.Sim(td, ·, ·).

Gβ
1 and Gβ

2 are the same due to the perfect zero-knowledge of Π, and we have

Pr[Gβ
1 ⇒ 1] = Pr[Gβ

2 ⇒ 1], for β ∈ {0, 1}.

Game Gβ
3 . In this two games, we sample A0

$←−Z2k×k
q in the beginning of the

experiment. Meanwhile, Enc(M0,M1) computes [c] := [A0]s, instead of [c] :=

25

[A]s for s
$←−Zk

q . By the D2k,k-MDDH assumption and Lemma 1, we have

|Pr[Gβ
2 ⇒ 1]− Pr[Gβ

3 ⇒ 1]| ≤ (k + 1)Advmddh
D2k,k,G,B3

+ 2
q−1 , for β ∈ {0, 1}.

Game Gβ
4 . In this two games, the decryption oracle Dec([c∗], [v∗], π∗) returns

⊥ directly if ([c∗], [v∗], π∗) /∈ Qenc and [c∗] /∈ L[A].
Define by bad the event that there exists a query Dec([c∗], [v∗], π∗), such

that ([c∗], [v∗], π∗) /∈ Qenc, [c∗] /∈ L[A], and there is no hash collision, but

Π.MVer(m̂sk, [c∗], τ∗, π∗) = 1, where τ∗ := H(pk, [c∗], [v∗]). Obviously, Gβ
3 and

Gβ
4 are identical unless bad happens. Thanks to the strong USS of Π, we have

the following lemma.

Lemma 3. For β ∈ {0, 1}, |Pr[Gβ
3 ⇒ 1]−Pr[Gβ

4 ⇒ 1]| ≤ Pr[bad] ≤ AdvussΠ,B4
(λ).

Game Gβ
5 . In this two games, Enc(M0,M1) uniformly samples [c]

$←−G2k and

[v]
$←−G, instead of computing [c] := [A0]s for s

$←−Zk
q and [v] := w⊤[c] +Mβ .

Lemma 4. For β ∈ {0, 1}, |Pr[Gβ
4 ⇒ 1]− Pr[Gβ

5 ⇒ 1]| ≤ Advmddh
Uk,G,B5

+ 1
q−1 .

Proof. First we argue that in Gβ
4 , w still contains some entropy which is not

leaked via pk and Dec(·, ·, ·). Then we show that the left entropy helps us change

[c] from [c] := [A0]s to [c]
$←−G2k, and change [v] from [v] := w⊤[c] + Mβ to

[v]
$←−G, based on the Qsim-fold U2k+1,k-MDDH assumption.

To see this, we redefine w⊤ as w⊤ := w′⊤ + z⊤A⊥, where w′
$←−Z2k

q , z
$←−Zk

q ,

and A⊥
$←−Zk×2k

q s.t. A⊥A = 0. We argue that the information of z is totally
hidden to A.

– pk hides the information of z, due to

w⊤A = (w′⊤ + z⊤A⊥)A = w′⊤A.

– Delegate(·) hides the information of z, since it does not involve w at all.
– Dec([c∗], [v∗], π∗) hides the information of z. Thanks to the new rejection

rule added in G4, we have [c
∗] ∈ L[A] as otherwise Dec([c∗], [v∗], π∗) returns

⊥ immediately. Therefore, A⊥[c∗] = [0], and

w⊤[c∗] = (w′⊤ + z⊤A⊥)[c∗] = w′⊤[c∗].

With overwhelming probability we have A⊥A0 ̸= 0. That is, z⊤A⊥A0 is
a random value over Z1×k

q from A’s view. According to the Qsim-fold U2k+1,k-
MDDH assumption (equivalently the Uk-MDDH assumption due to Lemma 1
and Lemma 2), we know the following two distributions are computationally
indistinguishable:

{[A0sj], [z
⊤A⊥A0sj]}j∈[Qsim]

c
≈ {[c′j], [v′j]}j∈[Qsim],

26

where sj
$←−Zk

q , c
′
j

$←−Z2k
q , v′j

$←−Zq for 1 ≤ j ≤ Qsim.

Recall that in Gβ
4 , Enc(M0,M1) computes [c], [v] as [c] := [A0]s and [v] :=

w⊤[c] + Mβ = w′⊤[c] + Mβ + z⊤A⊥[A0s], which are indistinguishable from

[c]
$←−G2k and [v]

$←−G according to the formula above. Then by Lemma 1, Lemma
4 holds as a result.

Obviously G0
5 and G1

5 are identical. At last, thanks to Lemma 2, Theorem 8
follows by taking all things together. □

Theorem 9 (Almost Tight Ciphertext Pseudorandomness of FPKEmcca).
If the D2k,k-MDDH assumption holds in G, H is a family of collision resis-
tant hash functions, and Π is a tag-based FV-NIZK with strong USS and proof
pseudorandomness, then FPKEmcca shown in Fig. 10 has ciphertext pseudoran-
domness. Concretely, for any PPT adversary A, there exist PPT algorithms
B1, ...,B4 s.t. max(Time(B1), ..., T ime(B4)) ≈ Time(A)+(Qenc+Qdec) ·poly(λ)
with poly(λ) independent of A, and

AdvcpFPKEmcca,A(λ) ≤2Adv
cr
H,B1

(λ) + (2k + 2)Advmddh
D2k,k,G,B2

(λ) + 2AdvussΠ,B3
(λ)

+ AdvppΠ,B4
(λ) + 4

q−1 ,

where Qenc and Qdec denote the total numbers of encryption and decryption
queries, respectively.

Proof. Theorem 9 is proved via a series of games G0, ...,G8, where G0 is the
ciphertext pseudorandomness experiment ExpcpFPKE,A,0(λ) (cf. Fig. 9), and G8 is

indistinguishable with ExpcpFPKE,A,1(λ).
Due to the page limitation, we safely omit the descriptions of games G0, ...,G5,

since they are similar with those in the proof of Theorem 8.

Game G6. In this game, we eliminate the additional check [c∗] ∈ Span([A]).
Similar to the change from G3 to G4, due to the strong USS of Π, we have that

|Pr[G5 ⇒ 1]− Pr[G6 ⇒ 1]| ≤ AdvussΠ,B6
(λ).

Game G7. In this game, Enc(M) computes [c] := [A]s for s
$←−Zk

q , instead of

[c]
$←−G2k. By the D2k,k-MDDH assumption and Lemma 1, we have

|Pr[G6 ⇒ 1]− Pr[G7 ⇒ 1]| ≤ kAdvmddh
D2k,k,G,B7

+ 1
q−1 .

Game G8. In this game, Enc(M) uniformly samples [c]
$←−G2k and π

$←−P instead

of [c] := [A]s for s
$←−Zk

q and π ← Π.Sim(td, [c], τ), where P denotes the proof
space of Π.

Lemma 5. |Pr[G7 ⇒ 1]− Pr[G8 ⇒ 1]| ≤ AdvppΠ,B8
(λ).

27

// B8 has access to ExpppΠ,B8,β
(λ)

// for β ∈ {0, 1}

B8(1
λ):

A
$←−D2k,k; (p̂p, crs)← ExpppΠ,B8,β

(λ)

H
$←−H; pp := ([A], p̂p, H)

w
$←−Z2k

q ; pk := ([w⊤A], crs)
Qenc := ∅; Qτ := ∅
β′ ← AEnc(·),Dec(·)(pp, pk)
Output β′

Enc(M):

[c]← ExpppΠ,B8,β
(λ).Sam(·)

[v]
$←−G; τ := H(pk, [c], [v])

If (·, ·, τ) ∈ Qτ : return ⊥
π ← ExpppΠ,B8,β

(λ).Sim([c], τ)

ct := ([c], [v], π); Qenc := Qenc ∪ {ct}
Qτ := Qτ ∪ {([c], [v], τ)}
Return ct

Dec(ct∗ = ([c∗], [v∗], π∗)):

If ct∗ ∈ Qenc: return ⊥
τ∗ := H(pk, [c∗], [v∗])
If ∃([c], [v], τ∗) ∈ Qτ ∧ ([c], [v]) ̸= ([c∗], [v∗]):

return ⊥
b← ExpppΠ,B8,β

(λ).Ver([c∗], τ∗, π∗)

If b = 1: return [v∗]−w⊤[c∗]
Otherwise: return ⊥

Fig. 11. B8’s reduction for the proof of Lemma 5.

Proof. We construct a reduction algorithm B8 to distinguish ExpppΠ,B8,0
(λ) from

ExpppΠ,B8,1
(λ) for the proof pseudorandomness security of Π (cf. Fig. 3), as shown

in Fig. 11. Recall that B8 has access to three oracles Sam, Sim, and Ver in
ExpppΠ,B8,β

(λ).

Obviously, if B8 has access to ExpppΠ,B8,0
(λ), then it simulates G7 for A; and

if B8 has access to ExpppΠ,B8,1
(λ), then it simulates G8 for A. Lemma 5 holds as

a result.

From G8 to ExpppFPKE,A,1(λ), we eliminate the additional check of hash colli-
sions in Enc(M) and Dec(ct∗). With the same analysis we have

|Pr[G8 ⇒ 1]− Pr[ExpcpFPKE,A,1(λ)⇒ 1]| ≤ AdvcrH,B′
8
(λ).

Finally, taking Lemma 2 and all things together, Theorem 9 follows. □

Remark 11 (Extension to the multi-user setting). For better readability, we
prove the almost tight mCCA security and ciphertext pseudorandomness of
FPKEmcca in the single-user setting in Theorem 8 and Theorem 9. Now we show
how to extend the proof techniques to the multi-user setting. More precisely,
the public parameter pp = ([A], p̂p, H) is shared among all users, and each

user i ∈ [µ] samples its own master secret key (w(i), m̂sk
(i)
). In all computa-

tional steps in the proof, we modify all samples of [c] simultaneously, based
on the random self-reducibility of the MDDH assumption. Moreover, the un-
derlying FV-NIZK scheme Π is required to have almost tight strong USS and

28

proof pseudorandomness in the multi-user setting, which is satisfied by the first
construction in Subsect. 4.1.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments and suggestions. Shengli Liu and Xiangyu Liu were par-
tially supported by National Natural Science Foundation of China (NSFC No.
61925207), Guangdong Major Project of Basic and Applied Basic Research
(2019B030302008), and the National Key R&D Program of China under Grant
2022YFB2701500. Shuai Han was partially supported by National Natural Sci-
ence Foundation of China (Grant No. 62002223), Shanghai Sailing Program
(20YF1421100), Young Elite Scientists Sponsorship Program by China Asso-
ciation for Science and Technology (YESS20200185), and Ant Group through
CCF-Ant Research Fund (CCF-AFSG RF20220224). Dawu Gu is partially sup-
ported by the National Key Research and Development Project (Grant No.
2020YFA0712302).

References

[1] Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: PKC 2015. vol. 9020, pp. 733–751 (2015)

[2] Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Better security for functional
encryption for inner product evaluations. IACR Cryptol. ePrint Arch. 2016, 11
(2016)

[3] Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: Tight security and optimal tag size. In: PKC 2013. vol. 7778, pp.
312–331 (2013)

[4] Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: ASIACRYPT 2019. vol. 11923, pp. 669–699
(2019)

[5] Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: ASIACRYPT 2018. pp. 627–
656 (2018)

[6] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: CRYPTO 2016. pp. 333–362 (2016)

[7] Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In: CRYPTO 1989.
vol. 435, pp. 194–211 (1989)

[8] Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from
chameleon hash functions. In: PKC 2015. pp. 256–279 (2015)

[9] Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: CRYPTO 2014. pp. 408–425 (2014)

[10] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and chal-
lenges. In: TCC 2011. vol. 6597, pp. 253–273 (2011)

[11] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
CRYPTO 2013. vol. 8043, pp. 435–460 (2013)

[12] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: EUROCRYPT 2002. vol. 2332, pp.
45–64 (2002)

29

[13] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

[14] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC 1991. pp. 542–552 (1991)

[15] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for diffie-hellman assumptions. In: CRYPTO 2013. vol. 8043, pp. 129–147 (2013)

[16] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly cca-secure encryption without
pairings. In: EUROCRYPT 2016. vol. 9665, pp. 1–27 (2016)

[17] Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-desmedt meets tight security. In:
CRYPTO 2017. vol. 10403, pp. 133–160 (2017)

[18] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

[19] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
CRYPTO 2021. vol. 12828, pp. 670–700 (2021)

[20] Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient cca-security from quasi-
adaptive hash proof system. In: CRYPTO 2019. vol. 11693, pp. 417–447 (2019)

[21] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. Des.
Codes Cryptogr. 80(1), 29–61 (2016)

[22] Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: ASIACRYPT 2018. vol. 11273, pp. 190–220 (2018)

[23] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
ASIACRYPT 2013. vol. 8269, pp. 1–20 (2013)

[24] Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: ASIACRYPT 2014. pp.
1–21 (2014)

[25] Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: ASI-
ACRYPT 2015. vol. 9452, pp. 681–707 (2015)

[26] Liu, X., Liu, S., Han, S., Gu, D.: Tightly CCA-secure inner product functional
encryption scheme. Theor. Comput. Sci. 898, 1–19 (2022)

[27] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC 1990. pp. 427–437 (1990)

[28] O’Neill, A.: Definitional issues in functional encryption. IACR Cryptol. ePrint
Arch. 2010, 556 (2010)

[29] Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: TCC
2015. vol. 9015, pp. 247–276 (2015)

[30] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999. pp. 543–553 (1999)

[31] Tomida, J.: Tightly secure inner product functional encryption: Multi-input and
function-hiding constructions. In: ASIACRYPT 2019. pp. 459–488 (2019)

30

	Fine-grained Verifier NIZK and Its Applications

