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Abstract. We study the limitations of steganography when the sender
is not using any properties of the underlying channel beyond its entropy
and the ability to sample from it. On the negative side, we show that the
number of samples the sender must obtain from the channel is exponen-
tial in the rate of the stegosystem. On the positive side, we present the
first secret-key stegosystem that essentially matches this lower bound
regardless of the entropy of the underlying channel. Furthermore, for
high-entropy channels, we present the first secret-key stegosystem that
matches this lower bound statelessly (i.e., without requiring synchronized
state between sender and receiver).

1 Introduction

Steganography’s goal is to conceal the presence of a secret message within an
innocuous-looking communication. In other words, steganography consists of
hiding a secret hiddentexrt message within a public covertext to obtain a stegotert
in such a way that any observer (except, of course, the intended recipient) is
unable to distinguish between a covertext with a hiddentext and one without.

The first rigorous complexity-theoretic formulation of secret-key steganogra-
phy was provided by Hopper, Langford and von Ahn [HLvA02]. In this formu-
lation, steganographic secrecy of a stegosystem is defined as the inability of a
polynomial-time adversary to distinguish between observed distributions of un-
altered covertexts and stegotexts. (This is in contrast with many previous works,
which tended to be information-theoretic in perspective; see, e.g., [Cac98] and
other references in [HLvA02,Cac98].)

The model of [HLvA02], which we adopt with slight changes, assumes that
the two communicating parties have some underlying channel C of covertext doc-
uments that the adversary expects to see. They also share a secret key (public-
key steganography is addressed in [vAH04,BC04]). The sender is allowed to draw
documents from C; the game for the sender is to alter C imperceptibly for the
adversary, while transmitting a meaningful hiddentext message to the recipient.
Conversely, the game for the (passive) adversary is to distinguish the distribution
of transmitted messages from C.



1.1 Desirable Characteristics of a Stegosystem

Black-Box. In order to obtain a stegosystem of broad applicability, one would
like to make as few assumptions as possible about the understanding of the un-
derlying channel. Indeed, as Hopper et al. [HLvA02] point out, the channel (such
as human email traffic or images of various scenes) may well be very complex
and not easily described. For example, if the parties are using photographs of
city scenes as covertexts, it is reasonable to assume that the sender can obtain
such photographs, but unreasonable to expect the sender and the recipient to
know a polynomial-time algorithm that can construct such photographs from
uniformly distributed random strings. In this work, we therefore concentrate on
the study of black-box steganography. Namely, the sender and the recipient need
not know anything about the underlying channel distribution (beyond a lower
bound on its min-entropy). The sender’s only access to the channel is via an
oracle that draws a random sample from the channel distribution. The recipient
need not access the channel at all.

Efficient and Secure. Stegosystems have several performance characteristics.
First, of course, it is desirable that the encoding algorithm of sender and the
decoding algorithm of the receiver be efficient. A particularly important charac-
teristic of the efficiency of the sender is the number of samples that the sender is
required to draw from C. In fact, in all proposed black-box stegosystems, sender
computation is proportional to the number of samples drawn, with actual com-
putation per sample being quite minimal. Because most real-life channels are
quite complex, the drawing of the samples is likely to dominate the running
time of an actual implementation.

Another important performance measure is the transmission rate of the
stegosystem, which is the number of hiddentext bits transmitted per single ste-
gotext document sent (a document is the value returned by a single request to
the channel sampling oracle—e.g., a photograph). Transmission rate is tied to
reliability, which is the probability of successful decoding of an encoded message
(correspondingly, unreliability is one minus reliability). The goal is to construct
stegosystems that are reliable and transmit at a high rate (it is, of course, easier
to transmit at a high rate if reliability is low and the recipient will not understand
much of what is transmitted).

Finally, even a most efficient stegosystem is useless if not secure. Quantita-
tively, insecurity is defined as the adversary’s advantage in distinguishing stego-
text from C (and security as one minus insecurity). Naturally, we are interested
in stegosystems with insecurity as close to 0 as possible.

The efficiency and security of a stegosystem, even if it is black-box, may
depend on the channel distribution. In particular, we will be interested in the
dependence on the channel min-entropy h. Ideally, a stegosystem would work
well even for low-min-entropy channels.

Stateless. It is desirable to construct stateless stegosystems, so that the sender
and the recipient need not maintain synchronized state in order to communicate



long messages. Indeed, the need for synchrony may present a particular problem
in steganography in case messages between sender and recipient are dropped or
arrive out of order. Unlike in counter-mode symmetric encryption, where the
counter value can be sent along with the ciphertext in the clear, here this is not
possible: the counter itself would also have to be steganographically encoded to
avoid detection, which brings us back to the original problem of steganographi-
cally encoding multibit messages.

1.2 Owur Contributions

We study the optimal efficiency achievable by black-box steganography, and
present secret-key stegosystems that are nearly optimal. Specifically, we demon-
strate the following results:

— A lower bound, which states that a secure and reliable black-box stegosystem
with rate of w bits per document sent requires the encoder to take at least
c2" samples from the channel per w bits sent, for some constant c. The
value of ¢ depends on security and reliability, and tends to 1/(2¢) as security
and reliability approach 1. This lower bound applies to secret-key as well as
public-key stegosystems.

— A stateful black-box secret-key stegosystem STF that transmits w bits per
document sent, takes 2% samples per w bits, has unreliability of 27"+% per
document, and negligible insecurity, which is independent of the channel. (A
very similar construction was independently discovered by Hopper [Hop04,
Construction 6.10].)

— A stateless black-box secret-key stegosystem STL that transmits w bits per
document sent, takes 2% samples per w bits, has unreliability 2_9(2h), and
insecurity negligibly close to 1227"+2% for Jw bits sent.

Note that for both stegosystems, the rate vs. number of samples tradeoff is very
close to the lower bound—in fact, for channels with sufficient entropy, the opti-
mal rate allowed by the lower bound and the achieved rate differ by log, 2e < 2.5
bits (and some of that seems due to slack in the bound). Thus, our bound is quite
tight, and our stegosystems quite efficient. The proof of the lowerbound involves
a surprising application of the huge random objects of [GGNO03], specifically of
the truthful implementation of a boolean function with interval-sum queries. The
lowerbound demonstrates that significant improvements in stegosystem perfor-
mance must come from assumptions about the channel.

The stateless stegosystem STL can be used whenever the underlying channel
distribution has sufficient min-entropy h for the insecurity to be acceptably low.
It is extremely simple, requiring just evaluations of a pseudorandom function for
encoding and decoding, and very reliable.

If the underlying channel does not have sufficient min-entropy, then the state-
ful stegosystem STF can be used, because its insecurity is independent of the
channel. While it requires shared synchronized state between sender and re-
ceiver, the state information is only a counter of the number of documents sent



so far. If min-entropy of the channel is so low that the error probability of 2~+®

is too high for the application, reliability of this stegosystem can be improved
through the use of error-correcting codes over the 2"¥-ary alphabet (applied to
the hiddentext before stegoencoding), because failure to decode correctly is in-
dependent for each w-bit block. Error-correcting codes can increase reliability
to be negligibly close to 1 at the expense of reducing the asymptotic rate from
w to w — (h + 2)27"*%, Finally, of course, the min-entropy of any channel can
be improved from h to nh by viewing n consecutive samples as a single draw
from the channel; if h is extremely small to begin with, this will be more efficient
than using error-correcting codes (this improvement requires both parties to be
synchronized modulo 7, which is not a problem in the stateful case).

This stateful stegosystem STF also admits a few variants. First, the loga-
rithmic amount of shared state can be eliminated at the expense of adding a
linear amount of private state to the sender and reducing reliability slightly (as
further described in 4.1), thus removing the need for synchronization between
the sender and the recipient. Second, under additional assumptions about the
channel (e.g., if each document includes time sent, or has a sequence number),
STF can be made completely stateless. The remarks of this paragraph and the
previous one can be equally applied to [Hop04, Construction 6.10].

1.3 Related Work

The bibliography on the subject of steganography is extensive; we do not review
it all here, but rather recommend references in [HLvA02].

Constructions. In addition to introducing the complexity-theoretic model for
steganography, [HLvA02] proposed two constructions of black-box! secret-key
stegosystems, called Construction 1 and Construction 2.

Construction 1 is stateful and, like our stateful construction STF, boasts
negligible insecurity regardless of the channel. However, it can transmit only 1
bit per document, and its reliability is limited by 1/2 + 1/4(1 — 2=") per docu-
ment sent, which means that, regardless of the channel, each hiddentext bit has
probability at least 1/4 of arriving incorrectly (thus, to achieve high reliability,
error-correcting codes with expansion factor of at least 1/(1 — Ho(1/4)) = 5
are needed). In contrast, STF has reliability that is exponentially (in the min-
entropy) close to 1, and thus works well for any channel with sufficient entropy.
Furthermore, it can transmit at rate w for any w < h, provided the encoder has
sufficient time for the 2" samples required. It can be seen as a generalization of
Construction 1.

Construction 2 of [HLvAOQ2] is stateless. Like the security of our stateless con-
struction STL, its security depends on the min-entropy of the underlying channel.
While no exact analysis is provided in [HLvA02], the insecurity of Construction

! Construction 2, which, strictly speaking, is not presented as a black-box construction
in [HLvAO02], can be made black-box through the use of extractors (such as universal
hash functions) in place of unbiased functions, as shown in [vAHO04].



2 seems to be roughly v12(-"+%)/2 (due to the fact that the adversary sees [
samples either from C or from a known distribution with bias roughly 2(~"+w)/2
caused by a public extractor; see Appendix A), which is higher than the inse-
curity of STL (unless ! and w are so high that A < 3w + 3log!, in which case
both constructions are essentially insecure, because insecurity is higher than the
inverse of the encoder’s running time [2%). Reliability of Construction 2, while
not analyzed in [HLvAO02], seems close to the reliability of STL. The rate of Con-
struction 2 is lower (if other parameters are kept the same), due to the need for
randomized encryption of the hiddentext, which necessarily expands the number
of bits sent.

It is important to note that the novelty of STL is not the construction itself,
but rather its analysis. Specifically, its stateful variant appeared as Construc-
tion 1 in the Extended Abstract of [HLvA02], but the analysis of the Extended
Abstract was later found to be flawed by [KMRO02]. Thus, the full version of
[HLvAO02] included a different Construction 1. We simply revive this old con-
struction, make it stateless, generalize it to w bits per document, and, most
importantly, provide a new analysis for it.

In addition to the two constructions of [HLvA02] described above, and inde-
pendently of our work, Hopper in [Hop04] proposed two more constructions: Con-
structions 6.10 (“MultiBlock”) and 3.15 (“NoState”). As already mentioned,
MultiBlock is essentially the same as our STF. NoState is an interesting varia-
tion of Construction 1 of [HLvA02], that addresses the problem of maintaining
shared state at the expense of lowering the rate even further.

Bounds on the Rate and Efficiency. Hopper in [Hop04, Section 6.2] establishes
a bound on the rate vs. efficiency tradeoff. Though quantitatively similar to
ours (in fact, tighter by the constant of 2e), this bound applies only to a re-
stricted class of black-box stegosystems: essentially, stegosystems that encode
and decode one block at a time and sample a fixed number of documents per
block. The bound presented in this paper applies to any black-box stegosys-
tem, as long as it works for a certain reasonable class of channels, and thus
can be seen as a generalization of the bound of [Hop04]. Our proof techniques
are quite different than those of [Hop04], and we hope they may be of indepen-
dent interest. We refer the reader to Section 3.3 for an elaboration. Finally it
should be noted that non-black-box stegosystems can be much more efficient—
see [HLvA02,vAH04,Le03,LKO03].

2 Definitions

2.1 Steganography

The definitions here are essentially those of [HLvA02]. We modify them in three
ways. First, we view the channel as producing documents (symbols in some,
possibly very large, alphabet) rather than bits. This simplifies notation and
makes min-entropy of the channel more explicit. Second, we consider stegosystem
reliability as a parameter rather than a fixed value. Third, we make the length



of the adversary’s description (and the adversary’s dependence on the channel)
more explicit in the definition.

The Channel. Let X be an alphabet; we call the elements of X documents.
A channel C is a map that takes a history H € X* as input and produces a
probability distribution Dy € Y. A history H = s153...5, is legal if each sub-
sequent symbol is obtainable given the previous omes, i.e., Prp, ., . | [s;] > 0.
Min-entropy of a distribution D is defined as Ho (D) = minge p{— log, Prp[s]}.
Min-entropy of C is the miny Hoo (D7), where the minimum is taken over legal
histories H.

Our stegosystems will make use of a channel sampling oracle M, which, on
input H, outputs a symbol s according to Dy.

Definition 1. A black-box secret-key stegosystem is a pair of probabilistic poly-
nomial time algorithms S = (SE, SD) such that, for a security parameter s,

1. SE has access to a channel sampling oracle M for a channel C and takes
as input a randomly chosen key K € {0,1}", a string m € {0,1}* (called
the hiddentext), and the channel history H. It returns a string of symbols
$182...8 € X* (called the stegotext)

2. SD takes as input a key K € {0,1}", a stegotext $182...5 € X* and a
channel history H, and returns a hiddentext m € {0,1}*.

We further assume that the length | of the stegotext output by SE depends only
on the length of hiddentext m but not on its contents.

Stegosystem Reliability. The reliability of a stegosystem S with security param-
eter k for a channel C and messages of length [ is defined as

Relg(,)c; = i Pr [SD(K,SEM(K,m,H),H) = .
els(n).c.t meg}}ﬁw{m{o{l}m[ ( (K, m,H),H) = m]}
Unreliability (as a parallel to insecurity) is defined as UnRelg()c; = 1 —
Rels(,{)@’l.

The Adversary. We consider only passive adversaries who mount a chosen hid-
dentext attack on S (stronger adversarial models for steganography have also
been considered, see e.g. [HLvA02,vAH04,BC04]). The goal of such an adver-
sary is to distinguish whether it is seeing encodings of the hiddentext it supplied
to the encoder, or simply random draws from the channel. To this end, define
an oracle O(-,H) that produces random draws from the channel starting with
history H as follows: on input m € {0,1}*, O computes the length [ of the ste-
gotext that SEM (K, m) would have output, and outputs s1$3...s; where each
s; is drawn according to Dios,sy...5; -

Definition 2. W2 is a (t,d, q,l) passive adversary for stegosystem S if

“war-

2 The adversary in the context of steganography is sometimes referred to as the
den.” The idea of the adversary as a warden and the use of W to designate it is a

consequence of original problem formulation in [Sim83].



1. W runs in expected time t (including the running time needed by the ste-
goencoder to answer its queries) and has description of length d (in some
canonical language).

2. W has access to C via the sampling oracle M(-).

3. W can make an expected number of q queries of combined length [ bits to an
oracle which is either SEM (K, -,-) or O(-,-).

4. W outputs a bit indicating whether it was interacting with SE or with O.

Stegosystem Security. The advantage Adv®® (here SS stands for “Stegano-

graphic Secrecy) of W against S with security parameter k for a channel C
is defined as

Adv, (W) = K&f{)él}m[WJVI,SEM(K,A,-) — 1] = P MO — ]
For a given (t,d, q,1), the insecurity of a stegosystem S with respect to channel
C is defined as
Insecz%n),c (ta da q, l) - max {Advg'%n),c(w)} s
(t,d,q,l) adversary w
and security Sec as 1 — InSec.

Note that the adversary’s algorithm can depend on the channel C, subject to
the restriction on the algorithm’s total length d. In other words, the adversary
can possess some description of the channel in addition to the black-box access
provided by the channel oracle. This is a meaningful strengthening of the ad-
versary: indeed, it seems imprudent to assume that the adversary’s knowledge
of the channel is limited to whatever is obtainable by black-box queries (for in-
stance, the adversary has some idea of a reasonable email message or photograph
should look like). It does not contradict our focus on black-box steganography:
it is prudent for the honest parties to avoid relying on particular properties of
the channel, while it is perfectly sensible for the adversary, in trying to break
the stegosystem, to take advantage of whatever information about the channel
is available.

2.2 Pseudorandom Functions

We use pseudorandom functions [GGMS86] as a tool. Because the adversary in
our setting has access to the channel, any cryptographic tool used must be
secure even given the information provided by the channel. Thus, our underlying
assumption is the existence of pseudorandom functions that are secure given the
channel oracle, which is equivalent [HILL99] to the existence of one-way functions
that are secure given the channel oracle. Thus is the minimal assumption needed
for steganography [HLvA02].

Let F = {Ficed }scede{0,1}+ e a family of functions, all with the same domain
and range. For a probabilistic adversary A, and channel C with sampling oracle
M, the PRF-advantage of A over F is defined as

Advg?g,c(A) _ Seedf{ro 1}7L[AM,Fsccd(') =1]— Pgr[AM’g(') =1],



where ¢ is a random function with the same domain and range. For a given
(t,d,q), the insecurity of a pseudorandom function family F with respect to
channel C is defined as

InSec?—P({nF)Ac (t,d,q,1) = max {Adv%.—s(n) (A},
' (t,d,q,1) adversary A ’

where the maximum is taken over all adversaries that run in expected time ¢,
whose description size is at most d, and that make an expected number of ¢
queries to their oracles.

3 The Lower Bound

Recall that we define the rate of a stegosystem as the average number of hid-
dentext bits per document sent (this should not be confused with the average
number of hiddentext bits per bit sent; note also that this is the sender’s rate,
not the rate of information actually decoded by the recipient, which is lower due
to unreliability). We set out to prove that a reliable stegosystem with black-box
access to the channel with rate w, must make roughly 2% queries to the channel
to send a message of length lw. Intuitively, this should be true because each
document carries w bits of information on average, but since the encoder knows
nothing about the channel, it must keep on sampling until it gets the encoding
of those w bits, which amounts to 2% samples on average.

In particular, it suffices for the purposes of this lower bound to consider a
restricted class of channels: the distribution of the sample depends only on the
length of the history (not on its contents). We will write D1, D, ..., D;, ..., instead
of D4y, where i is the length of the history H. Furthermore, it will suffice for us to
consider only distributions D; that are uniform on a subset of X'. We will identify
the distribution with the subset (as is often done for uniform distributions).

Let |D;| = H = 2" and |¥| = S. Because the encoder receives the min-
entropy h of the channel as input, if H = S, then encoder knows the channel
completely (it’s simply uniform on X'), and our lower bounds do not hold, because
no sampling from the channel is necessary. Thus, we require that h be smaller
than log, S. Let R=1/(1 — H/S).

Our proof proceeds in two parts. First, we consider a stegoencoder SE that
does not output anything that it did not receive as a response from the channel-
sampling oracle. To be reliable, such an encoder has to make many queries, as
shown in Lemma 1. Second, we show that to be secure, a black-box SE cannot
output anything it did not receive from the channel-sampling oracle.

The second half of the proof is somewhat complicated by the fact that we
want to assume security only against bounded adversaries: namely, ones whose
description size and running time are polynomial in the description size and run-
ning time of the encoder (in particular, polynomial in log S rather than ). This
requires us to come up with pseudorandom subsets D; of X that have concise
descriptions and high min-entropy, and whose membership is impossible for the



stegoencoder to predict. In order to do that, we utilize techniques from the truth-
ful implementation of a boolean function with interval-sum queries of [GGNO03]
(truthfulness is important because min-entropy has to be high unconditionally).

3.1 Lower Bound When Only Query Results Are Output

We consider the following channel: if Dq, Ds,... are subsets of X, we write
D = Dy x Dy X ... to denote the channel that, on history length ¢, outputs an
uniformly random element of D;; if |D;| = |Dy| = ... = 2" then we say that

D is a flat h-channel. Normally, one would think of the channel sampling oracle
for D as making a fresh random choice from D; when queried on history length
1. Instead, we will think of the oracle as having made all its choices in advance.
Imagine that the oracle already took “enough” samples:

S1,15 S1,25-++5S1,55- -~ from Dl;
82,15 §2,25-+-5,52, 5, - from DQ,
ey

Sily Si,25 - 3Si 5y from Di

We will denote the string containing all these samples by S, and refer to it as
a draw-sequence from the channel. We will give our stegoencoder access to an
oracle (also denoted by S) that, each time it’s queried with ¢, returns the next
symbol from the sequence s; 1, 8;2,..., Sij,.... Choosing S € X** at random and
giving the stegoencoder access to it is equivalent to giving the encoder access to
the usual channel-sampling oracle M for our channel D.

Assume SES(K,m,H) =t = tity...t;, where t; € X. Note that ¢; is an
element of the sequence s;1,5;2,...,5;,.... If t; is the j-th element of this
sequence, then it took j queries to produce it. We will denote by weight of
t with respect to S, the number of queries it took to produce t: W(t,S) =
Ei?:l min{j | s;,; = y;}. In the next lemma, we prove (by looking at the decoder)
that for any S, most messages have high weight.

Lemma 1. Let F' : X* — {0,1}* be an arbitrary (possibly unbounded) deter-
ministic stegodecoder that takes a sequence t € X and outputs a message m of
length lw bits.

Then the probability that a random lw-bit message has an encoding of weight
significantly less than (1/e)I2%, is small. More precisely, for any S € X** and
any N € N:

() _ (Ney'
Prcioayw][(3t € ZH(F(t)=m A W(t,8) < N)] < 2+w < (m_w) .
Proof. Simple combinatorics show that the number of different sequences ¢ that
have weight less than N (and hence the number of messages that have encodings
of weight less than N) is at most (le ): indeed, it is simply the number of positive
integer solutions to x1 + ...+ x; < N, which is the number of ways to put [ bars



among N — [ stars (the number of stars to the right of the i-th bar corresponds
to x; — 1), or, equivalently, the number of ways choose [ positions out of N. The

total number of messages is 2/, The last inequality follows from (7) < (#)l

Observe that taking the probability over a random lw-bit message, as we
do above, is meaningful. Indeed, if the distribution of messages encoded is not
uniform, then compression could reduce their size and thus improve the efficiency
of the stegosystem, rendering our bound pointless. Our lower bound applies
when the designer of the stegosystem assumes that the messages are distributed
uniformly. (For any other distribution, data compression should be applied before
stegoencoding.)

3.2 Secure Stegosystems Almost Always Output Query Answers

The next step is to prove that the encoder of a secure black-box stegosystem
must output only what it gets from the oracle, with high probability. Assume D
is a flat h-channel chosen uniformly at random. Then it is easy to demonstrate
that, if the encoder outputs in position ¢ a symbol s; € X that it did not
receive as a response to a query to D;, the chances that s; is in the support of
D; are H/S. Tt can then be shown that, if the stegoencoder has insecurity e,
then it cannot output something it did not receive as response to a query with
probability higher than ¢/(1 — H/S).

The problem with the above argument is the following: it assumes that the
adversary can test whether s; the support of D;. This is not possible if we assume
D; is completely random and the adversary’s description is small compared to
S = |X¥|. However, it does serve as a useful warm-up, and leads to the following
theorem when combined with the results of the previous section.

Theorem 1. Let (SE, SD) be a black-box stegosystem with insecurily € against
an adversary who has an oracle for testing membership in the support of C,
unreliability p and rate w for an alphabet X of size S. Then there exists a channel
with min-entropy h = logy H such that the probability that the encoder makes at
most N queries to send a random message of length lw, is upper bounded by

Ne\'
<12w> +P+€R,

and the expected number of queries per stegotext symbol is therefore at least
2% (1
— |z —p—€R
= (5-r-n)

Proof. See the full version [DIRR04]. O

where R=1/(1 - H/S).



3.3 Lower Bound for Computationally Bounded Parties

We now want to establish the same lower bound without making such a strong
assumption about the security of the stegosystem. Namely, we do not want to
assume that the insecurity e is low unless the adversary’s description size and
running time are small (“small,” when made rigorous, will mean some fixed poly-
nomials in the description size and running time, respectively, of the stegoen-
coder, and a security parameter for a function that is pseudorandom against
the stegoencoder). Recall that our definitions allow the adversary to depend on
the channel; thus, our goal is to construct channels that have short descrip-
tions for the adversary but look like random flat h-channels to the black-box
stegoencoder. In other words, we wish to replace a random flat h-channel with
a pseudorandom one.

We note that the channel is pseudorandom only in the sense that it has a short
description, so as to allow the adversary to be computationally bounded. The
min-entropy guarantee, however, can not be replaced with a “pseudo-guarantee”:
else the encoder is being lied to, and our lower bound is no longer meaningful.
Thus, a simpleminded approach, such as using a pseudorandom predicate with
bias H/S applied to each symbol and history length to determine whether the
symbol is in the support of the channel, will not work here: because .S is constant,
eventually (for some history length) the channel will have lower than guaranteed
min-entropy (moreover, we do not wish to assume that S is large in order to
demonstrate that this is unlikely to happen; our lower bound should work for any
alphabet). Rather, we need the pseudorandom implementation of the channel to
be truthful® in the sense of [GGNO03], and so rely on the techniques developed
therein.

The result is the following theorem.

Theorem 2. There exist polynomials p, q and constants c1, co with the following
property. Let S(k) be a black-box stegosystem with description size 6, insecurity
InSec%?H)ﬂ(t, d, q,1), unreliability p, rate w and running time T for an alphabet
Y of size S. Assume there exists a pseudorandom function family F(n) with
insecurity InSecE—f({f) (t,d,q). Then there exists a channel C with min-entropy
h = logy H such that the probability that the encoder makes at most N queries
to send a random message of length lw, is upper bounded by

Ne!
( mf) +p+ RInSec$(,,) ¢(q(7),n + c1, 1, lw)+
(R+1) (InSec]P:I?TB (p(7),0 + ¢, p(7)) + 2_”) ,

and the expected number of queries per stegotext symbol is therefore at least

2v (1
- (5 —p— RInSecg%H),C(q(T),n + 1, 1,lw)> —

3 In this case, truthfulness implies that for each history length, the support of the
channel has exactly H elements.



211)
—(R+1) (InSec;?,f) (p(7),6 + ¢, p(7)) + 2—%)) ,

where R=1/(1—H/S).
Proof. See the full version [DIRR04]. O

Discussion. The proof of Theorem 2 relies fundamentally on Theorem 1. In other
words, to prove a lower bound in the computationally bounded setting, we use
the corresponding lower bound in the information-theoretic setting. To do so, we
replace an object of an exponentially large size (the channel) with one that can
be succinctly described. This replacement substitutes some information-theoretic
properties with their computational counterparts. However, for a lower bound
to remain “honest” (i.e., not restricted to uninteresting channels), some global
properties must remain information-theoretic. This is where the truthfulness of
huge random objects of [GGN03] comes to the rescue. We hope that other in-
teresting impossibility results can be proved in a similar fashion, by adapting an
information-theoretic result using the paradigm of [GGNO03]. We think truthful-
ness of the objects will be important in such adaptations for the same reason it
was important here.

Note that the gap in the capabilities of the adversary and encoder/decoder
is different in the two settings: in the information-theoretic case the adversary is
given unrestricted computational power, while in the computationally bounded
case it is assumed to run in polynomial time, but is given the secret channel
seed. However, in the information-theoretic case we may remove the gap alto-
gether, by providing both the adversary and the encoder/decoder with a channel
membership oracle, and still obtain a lower bound analogous* to that of The-
orem 2. We see no such opportunity to remove the gap in the computationally
bounded case (e.g., equipping the encoder/decoder with the channel seed seems
to break our proof). Removing this asymmetry in the computationally bounded
case seems challenging and worth pursuing.

4 The Stateful Construction STF

The construction STF relies on a pseudorandom function family F. In addition
to the security parameter x (the length of the PRF key K), it depends on the
rate parameter w. Because it is stateful, both encoder and decoder take a counter
ctr as input.

Our encoder is similar to the rejection-sampler-based encoder of [HLvAO02]
generalized to w bits: it simply samples elements from the channel until the
pseudorandom function evaluated on the element produces the w-bit symbol
being encoded. The crucial difference of our construction is the following: to

4 A lower bound on the number of samples per document sent, becomes trivially zero
if the encoder is given as much time as it pleases, in addition to the membership
oracle of the flat channel. Yet it should not be difficult to prove that it must then
run for O(2") steps per document sent.



avoid introducing bias into the channel, if the same element is sampled twice, the
encoder simply flips a random coin to decide whether to output that element with
probability 2. Hopper in [Hop04, Construction 6.10] independently proposes a
similar construction, except instead of flipping a fresh random coin, the encoder
evaluates the pseudorandom function on a new counter value (there is a separate
counter associated to each sampled document, indicating how many times the
document has been sampled), thus conserving randomness.

Observe that, assuming F is truly random rather than pseudorandom, each
sample from the channel has probability 2=% of being output, independent of
anything else, because each time fresh randomness is being used. Of course, this
introduces unreliability, which is related to the probability of drawing the same
element from Dy twice.

Procedure STF.SE(K,w,m,H, ctr): Procedure STF.SD(K, w, s, ctr):
Let m =my ...my, where |m;| = w Let s =sy...s;, where s; € X
fori« 1tol: fori=1tol

j—0;f«—0; ctr «— ctr+1 ctr — ctr+1

repeat : m,; «— Fi(ctr,s;)
J—J+1 output m = mimeo---my
Si,j M(H)

if 37/ < j s.t. Sij = Si,j’
let cer {0,1}"
if c=m; then f « 1
else if F(ctr,s; ;) =m;
then f «— 1
until f =1
s« si5; H «— Hl||s;
output s = 5182...5;

Theorem 3. The stegosystem STF has insecurity InSecgrSFF(mu) (t,d,l,lw) =
InSec;P({KF) (t+ O0(1),d + O(1),12¥). For each i, the probability that s; is de-
coded incorrectly is 2_h+w+InSec]P_-%f) (2¥,0(1),2"), and unreliability is at most
127" 4 InSeck (1) (2,0(1),2")).

Proof. Insecurity bound is apparent from the fact that if F were truly random,
then the system would be perfectly secure, because its output is distributed
identically to C (simply because the encoder samples from the channel, and in-
dependently at random decides which sample to output, because the random
function is never applied more than once to the same input). Hence, any adver-
sary for the stegosystem would distinguish F from random.

The reliability bound per symbol can be demonstrated as follows. Assuming
F is random, the probability that s; = s; ; is (1 —27%)7=127%_If that happens,
the probability that 35’ < j such that s; ; = s; j+ is at most (j —1)27". Summing



up and using standard formulas for geometric series, we get

i(j —n2h(1—27w) e =
j=1
= 2—h—w§: ( 1—27v)’ (i (1—-27v) )) < w—h,
k=0

j=1

O

Note that errors are independent for each symbol, and hence error-correcting
codes over alphabet of size 2% can be used to increase reliability: one simply en-
codes m before feeding it to SE. Observe that, for a truly random F, if an error
occurs in position 7, the symbol decoded is uniformly distributed among all ele-
ments of {0,1}* — {m;}. Therefore, the stegosystem creates a 2-ary symmetric
channel with error probability 2¢~"(1 — 27%) = 27"(2¥ — 1) (this comes from
more careful summation in the above proof). Its capacity is w — H[1 — 27" (2% —
1),27", 27" ... 27" (where H is Shannon entropy of a distribution) [MCEOQ, p-
58]. This is equal to w+(2*—1)27 " log 27" +(1—-27"(2¥~1)) log(1—-27"(2¥ -1)).
Assuming error probability 27"(2% — 1) < 1/2 and using log(1 — z) > —2x for
0 <z < 1/2, we get that the capacity of the channel created by the encoder is
at least w +27"(2%¥ —1)(—=h —2) > w — (h +2)27"+*_ Thus, as | grows, we can
achieve rates close to w — (h+2)2~"*% with near perfect security and reliability
(independent of h).

4.1 Stateless Variants of STF

Our stegosystem STF is stateful because we need F' to take ctr as input, to
make sure we never apply the pseudorandom function more than once to the
same input. This will happen automatically, without the need for ctr, if the
channel C has the following property: for any histories H and H’ such that H is
the prefix of H’, the supports of Dy and Dy do not intersect. For instance, when
documents have monotonically increasing sequence numbers or timestamps, no
shared state is needed.

To remove the need for shared state for all channels, we can do the following.
We remove ctr as an input to F', and instead provide STF.SE with the set @ of
all values received so far as answers from M. We replace the line “if 35" < j s.t.
8 = 8; ;" with “if s; ; € Q" and add the line “Q + QU{s; ;}” before the end
of the inner loop. Now shared state is no longer needed for security, because we
again get fresh coins on each draw from the channel, even if it collides with a draw
made for a previous hiddentext symbol. However, reliability suffers, because the
larger [ is, the more likely a collision will happen. A careful analysis, omitted
here, shows that unreliability is [227"+% (plus the insecurity of the PRF).

Unfortunately, this variant requires the encoder to store the set @ of all the
symbols ever sampled from C. Thus, while it removes shared state, it requires



a lot of private state. This storage can be reduced somewhat by use of Bloom
filters [Blo70] at the expense of introducing potential false collisions and thus
further decreasing reliability. An analysis utilizing the bounds of [BM02] (omit-
ted here) shows that using a Bloom filter with (h —w —log!)/In2 bits per entry
will increase unreliability by only a factor of 2, while potentially reducing stor-
age significantly (because the symbols of X require at least h bits to store, and
possibly more if the Dy, is sparse).

5 The Stateless Construction STL

The stateless construction STL is simply STF without the counter and collision
detection (and is a generalization to rate w of the construction that appeared in
the extended abstract of [HLvA02]). Again, we emphasize that the novelty is not
in the construction but in the analysis. The construction requires a reliability
parameter k, to make sure that expected running time of the encoder does not
become infinite due a low-probability event of infinite running time.

Procedure STL.SE(K,w, k,m,H): Procedure STL.SD(K,w, s):
Let m = my ... my, where |m;| = w Let s = sy ...s;, where s; € X
for i+ 1tol: fori=1tol

j<0 m; < Fi(s;)

repeat : output m = mymsg - --my
Je—Jj+1
sij — M(H)

until Fg(s; ;) =m; or j =k
8; « 8i5; H «— Hl||s;
output s = $182...9

Theorem 4. The stegosystem STL has insecurity
InseCS’SI‘L(n,w,k),C (t7 d7 l7 lw) €
O(27 M2 4 [e7*/2") 4 InSec (1) (t + O(1),d + O(1),12").
More precisely,

InSecsTy, (s wp).c(t: dy 1 lw) < 27" (11 + 1)2% — 1(1 + 3)2" + 21)

k
1

+InSecl () (t + 1,d+ O(1),12").

Proof. The proof of Theorem 4 consists of a hybrid argument. The first step
in the hybrid argument is replace the stegoencoder SE with SFE;, which is the
same as SE except that it uses a truly random G instead of pseudorandom F,
which accounts for the term InSecE—l()‘,g (t+ 0O(1),d + O(1),12*). Then, rather
than consider directly the statistical difference between C and the output of



SE; on an lw-bit message, we bound it via a series of steps involving related
stegoencoders (these are not encoders in the sense defined in Section 2, as they
do not have corresponding decoders; they are simply related procedures that
help in the proof).

We now describe these encoders SE5, SE3, and SE4. SE5 is the same as
SEq, except that it maintains a set @ of all answers received from M so far.
After receiving an answer s; ; <« M(H), it checks if s;; € Q; if so, it aborts
and outputs “Fail”; else, it adds s; ; to Q. It also aborts and outputs “Fail” if j
ever reaches k during an execution of the inner loop. SE3 is the same as SEs,
except that instead of thinking of random function G as being fixed before hand,
it creates G “on the fly” by repeatedly flipping coins to decide the w-bit value
assigned to s; ;. Since, like SE, it aborts whenever a collision between strings of
covertexts occurs, the function will remain consistent. Finally, SE, is the same
as SE3, except that it never aborts with failure.

In a sequence of lemmas, we bound the statistical difference between the
outputs of SE| and SE5; show that it is the same as the statistical difference
between the outputs of SE3 and SFE4; and show that the outputs of SE; and
SE3 are distributed identically. Finally, observe that SE4 does nothing more
than sample from the channel and then randomly and obliviously to the sample
keep or discard it. Hence, its output is distributed identically to the channel.
The details of the proof are contained in the full version [DIRRO04]. O

Theorem 5. The stegosystem STL has unreliability

UnRelSty, (n,u).00 <
l (2“’ exp [—Zh_2w_1] + exp [—2_w_1k]) + InSec;I({KF) (t,d,12),

where t and d are the expected running time and description size, respectively,
of the stegoencoder and the stegodecoder combined.

Proof. As usual, we consider unreliability if the encoder is using a truly random
G; then, for a pseudorandom F', the encoder and decoder will act as a distin-
guisher for F' (because whether something was encoded correctly can be easily
tested by the decoder), which accounts for the InSec” " term.

Now, fix channel history H and w-bit message m, and consider the probability
that G(Dy) is so skewed that the weight of G=1(m) in Dy is less 2~ for some
constant ¢ < 1 (note that the expected weight is 27%). Let X' = {s1 ... s, } be the
alphabet, and let Prp,,[s;] = p;. Define random variable X; as X; = 0 if G(s;) =
m and X; = p; otherwise. Then the weight of G~*(m) equals 1 —>""" | X;. Note
that the expected value of > | X; = 1 — 27, Using Hoeffding’s inequality
(Theorem 2 of [Hoe63]), we obtain

n

Pr[l— ) X; <cR] <exp l—2(1 — )27/ ipfl

i=1

< exp l2<1 e ] Zp]



=exp [-2(1 - 0)22h_2w] ,

where the second to last step follows from p; < 27" and the last step follows
from Y, p; = 1. If we now set ¢ = 1/2 and take the union bound over all
message m € {0,1}", we get 2 exp [—2" 72w 1]

Assuming G(Dy) is not so skewed, the probability of failure is

(1—c27")F <exp [—c27"k] .

The result follows from the union bound over . O
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A On Using Public e-Biased Functions

Many stegosystems [HLvA02,vAH04,BC04] (particularly public-key ones) use
the following approach: they encrypt the plaintext using encryption that is in-
distinguishable from random, and then use rejection sampling with a public
function f : X — {0,1}" to stegoencode the plaintext.

For security, f should have small bias on Dy ie., for every ¢ € {0,1}%,
Prsepy[s € f71(c)] should be close to 27%. It is commonly suggested that a
universal hash function with a published seed (e.g., as part of the public key) be
used for f.

Assume the stegosystem has to work with a memoryless channel C, i.e., one
for which the distribution D is the same regardless of history. Let E be the
distribution induced on X' by the following process: choose a random ¢ € {0, 1}
and then keep choosing s € D until f(s) = c. Note that the statistical difference
between D and F is exactly the bias € of f. We are interested in the statistical
difference between D' and E'.

For a universal hash function f that maps a distribution of min-entropy h
to {0,1}", the bias is roughly & = 2(-"*+®)/2_ As shown in [Rey04], if I < 1/e
(which is reasonable to assume here), statistical difference between D! and E! is
roughly at least V/le.

Hence, the approach based on public hash functions results in statistical
insecurity of about v/12(~h+w)/2,



