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Abstract. Privacy amplification is the art of shrinking a partially secret
string Z to a highly secret key S. We show that, even if an adversary
holds quantum information about the initial string Z, the key S obtained
by two-universal hashing is secure, according to a universally composable
security definition. Additionally, we give an asymptotically optimal lower
bound on the length of the extractable key S in terms of the adversary’s
(quantum) knowledge about Z. Our result has applications in quantum
cryptography. In particular, it implies that many of the known quantum
key distribution protocols are universally composable.

1 Introduction

1.1 Privacy Amplification

Consider two parties having access to a common string Z about which an ad-
versary might have some partial information. Privacy amplification, introduced
by Bennett, Brassard, and Robert [10], is the art of transforming this partially
secure string Z into a highly secret key S by public discussion. A good technique
is to compute S as the output of a publicly chosen two-universal hash function1

F applied to Z. Indeed, it has been shown [10, 21, 9] that, if the adversary holds
purely classical information W about Z, this method yields a secure key S and,
additionally, is asymptotically optimal with respect to the length of S. For in-
stance, if both the initial string Z and the adversary’s knowledge W consist of
many independent and identically distributed parts, the number of extractable
key bits roughly equals the conditional Shannon entropy H(Z|W ).

The analysis of privacy amplification can be extended to a situation where
the adversary holds quantum instead of only classical information about Z. This
generalizes the classical setting in a non-trivial way. In particular, the adver-
sary might store her quantum information until she learns the hash function
F (which is publicly chosen) and then perform a measurement depending on
F . This might allow her to obtain more information about the function output
(i.e., the resulting key S) than if she had measured her state at the beginning
(independently of F ).

1 See Section 2.1 for a definition of two-universal functions.



1.2 Universal Composability

Cryptographic primitives (such as a secret key or an authentic communication
channel) are often used as components within a larger system (e.g., a system for
secure message transmission usually makes use of a secret key for encryption). It
is thus natural to require that the security of these components is not compro-
mised when they are used in any (arbitrarily complex) scheme. This requirement
is captured by the notion of universal composability. Roughly speaking, a crypto-
graphic primitive is said to provide universally composable security if it is secure
in any arbitrary context. For instance, the universally composable security of a
secret key S guarantees that any bit of S remains secret even if some other part
of S is given to an adversary.

In the past few years, composable security has attracted a lot of interest
and led to important new definitions and proofs (see, e.g., the framework of
Canetti [11] or Pfitzmann and Waidner [27]). Recently, Ben-Or and Mayers [5,
6] and Unruh [30] have generalized the notion of universal composability to the
quantum world. Universally composable security definitions are usually based on
the idea of characterizing the security of a cryptographic scheme by its distance
to an ideal system which (by definition) is perfectly secure. For instance, a secret
key S is said to be secure if it is close to an independent and almost uniformly
distributed string U . This implies that any cryptosystem which is proven secure
when using a perfect key U remains secure when U is replaced by the (real)
key S.

Unfortunately, most of the existing security definitions in quantum cryptog-
raphy do not provide universal composability. For instance, the security of the
key S generated by a quantum key distribution (QKD) scheme is usually defined
by the requirement that the mutual information between S and the classical out-
come W obtained from an arbitrary measurement of the adversary’s quantum
system be small (for a formal definition, see, e.g., [26] or [18]). This, however,
does not necessarily imply composability. Indeed, an adversary might wait with
the measurement of her quantum state until she learns some of the bits of S,
which possibly allows her to obtain information about the remaining bits (cf.
Section 3).

1.3 Contributions

We address the problem of privacy amplification in a setting where an adversary
holds quantum information. We show that, by two-universal hashing, one can
obtain a key S which is secure according to a universally composable security
definition. This means that, in any context, S is virtually as secure as a perfect
key, i.e., a uniformly distributed string U which is completely independent of
the adversary’s knowledge. This has implications in quantum cryptography. In
particular, since the security of many of the known QKD protocols such as
BB84 [8] or B92 [7] can be proven based on the security of privacy amplification
(cf. [13] and [22], or [23]), it follows immediately from our results that these
protocols provide universal composability (cf. Section 4.5).



Our main technical result (Section 4) is an easily computable lower bound on
the length of the extractable key S in terms of (smooth) Rényi entropy (see Sec-
tion 2.4 for a definition of smooth Rényi entropy). The bound is asymptotically
tight if the initial information Z as well as the adversary’s (quantum) knowledge
consist of n independent pieces, for n approaching infinity (Section 4.4).

1.4 Related Work

The problem of privacy amplification against quantum adversaries has first been
studied for the case where the adversary can only store a certain limited number
of qubits. Based on a result on communication complexity [1], Ben-Or [2] argued
that it is possible to extract at least one secret bit from a uniformly distributed
string Z, if Z is sufficiently longer than the size of the adversary’s storage de-
vice. In [22], it is shown that two-universal hashing allows for the extraction of a
secure key S whose length roughly equals the difference between the entropy of
the original string Z and the number of qubits stored by the adversary. The se-
curity definition used in [22] does, however, not provide universal composability.
Simultaneously, Devetak and Winter [15] gave a full analysis of privacy amplifi-
cation for the special case where the initial string Z as well as the adversary’s
information consist of many independent pieces. Interestingly, their result can
be reproduced from our general bound (Section 4.4).

Ben-Or, Horodecki, Leung, Mayers, and Oppenheim [3, 4] were the first to
address the problem of universal composability in the context of QKD. Our
security definition (cf. Definition 3 in Section 3) is essentially equivalent to the
definitions proposed in [3, 4], which are based on the framework developed in [6].
More precisely, if S is ε-secure according to our definition, it satisfies the security
definition of [3] for some parameter ε′ depending on ε. It is thus an immediate
consequence of the results in [3] that our security definition provides universal
composability with respect to the framework of [6].

2 Preliminaries

2.1 Random Functions and Two-Universal Functions

A random function F from X to Y is a random variable taking values from
the set of functions with domain X and range Y. F is called a two-universal
(random) function if Prf←PF

[f(x) = f(x′)] ≤ 1
|Y| , for any distinct x, x′ ∈ X .2 In

particular, F is two-universal if, for any distinct x, x′ ∈ X , the random variables
F (x) and F (x′) are independent and uniformly distributed. For instance, the
random function distributed uniformly over the set of all functions from X to Y
is two-universal. Examples of two-universal functions requiring less randomness
can, e.g., be found in [12] and [31].

2 In the literature, two-universality is usually defined for families F of functions: A
family F is called two-universal if the random function F with uniform distribution
over F is two-universal.



2.2 Density Operators and Random States

LetH be a Hilbert space. We denote by P(H) the set of non-negative (hermitian)
operators ρ on H with tr(ρ) ≤ 1, and call its elements density operators. We
say that ρ ∈ P(H) is normalized if tr(ρ) = 1. A normalized density operator
ρ ∈ P(H) is called pure if it has rank 1, i.e., ρ = P|φ〉 for some vector |φ〉 ∈ H
(where P|φ〉 denotes the projector along |φ〉).

We will be concerned with settings involving both classical and quantum
information. More precisely, we will consider a situation where the state ρx ∈
P(H) of a quantum system depends on the value x of a classical random variable
X with range X . Note that ρX is then itself a random variable with range P(H).
In the following, we call such a random variable with range P(H) a random state
on H, and denote it by a bold symbol ρ. We say that the random state ρ is
normalized if tr(ρ) ≡ 1.

It is often convenient to represent classical information as a state of a quan-
tum system. Let X be a set and let H be a Hilbert space with orthonormal
basis {|x〉}x∈X . The state representation of x ∈ X , denoted {x}, is defined as
the projector along |x〉, i.e., {x} := P|x〉. In particular, for a random variable X
on X , {X} is a random state on H.

Consider a quantum system described by a random state ρ on H, i.e., if
the random variable ρ takes the value ρ, then the system is in state ρ. For an
observer which is ignorant of the value of the random variable ρ, the system is
described by the density operator [ρ] defined as the expectation value of ρ,

[ρ] := E
ρ←Pρ

[ρ] =
∑

ρ∈P(H)

Pρ(ρ)ρ ,

where Pρ is the probability distribution of ρ. More generally, for any event E ,
we define

[ρ|E ] := E
ρ←Pρ|E

[ρ] .

Let X be a random variable and let ρ be a random state. The random state
{X} ⊗ ρ then describes a system consisting of both a state representation of X
and a quantum subsystem which is in state ρx := [ρ|X = x] whenever X takes
the value x. The density operator [{X} ⊗ ρ] of the overall system is thus given
by

[{X} ⊗ ρ] = E
x←PX

[

P|x〉 ⊗ ρx
]

=
∑

x∈X

PX(x)P|x〉 ⊗ ρx . (1)

In particular, [{X} ⊗ ρ] = [{X}]⊗ [ρ] if and only if X is independent of ρ.

2.3 Distance Measures and Non-Uniformity

The variational distance between two probability distributions P and Q over the
same range X is defined by

δ(P,Q) :=
1

2

∑

x∈X

∣

∣P (x)−Q(x)
∣

∣ .



The variational distance between P and Q can be interpreted as the probability
that two random experiments described by P and Q, respectively, are different.
This is formalized by the following lemma.

Lemma 1. Let P and Q be two probability distributions. Then there exists a
joint probability distribution PXX′ such that PX = P , PX′ = Q, and

Pr
(x,x′)←PXX′

[x 6= x′] = δ(P,Q) .

The trace distance between two density operators ρ and σ on the same Hilbert
space H is defined as

δ(ρ, σ) :=
1

2
tr
(

|ρ− σ|
)

.

The trace distance is a metric on the set of density operators P(H). We say that
ρ is ε-close to σ if δ(ρ, σ) ≤ ε, and denote by Bε(ρ) the set of density operators
which are ε-close to ρ, i.e., Bε(ρ) = {σ ∈ P(H) : δ(ρ, σ) ≤ ε}.

The trace distance is subadditive with respect to the tensor product, i.e., for
any ρ, σ ∈ P(H) and ρ′, σ′ ∈ P(H′),

δ(ρ⊗ ρ′, σ ⊗ σ′) ≤ δ(ρ, σ) + δ(ρ′, σ′) , (2)

with equality if ρ′ = σ′ is normalized,

δ(ρ⊗ ρ′, σ ⊗ ρ′) = δ(ρ, σ) . (3)

Moreover, δ(·, ·) cannot increase when the same quantum operation E is applied
to both arguments, i.e.,

δ(E(ρ), E(σ)) ≤ δ(ρ, σ) . (4)

The variational distance can be seen as a (classical) special case of the trace
distance. Let X and Y be random variables. Then the variational distance be-
tween the probability distributions of X and Y equals the trace distance between
the state representations [{X}] and [{Y }], i.e.,

δ(PX , PY ) = δ
(

[{X}], [{Y }]
)

.

In particular, it follows directly from (4) that the trace distance between two
normalized density operators ρ and σ is an upper bound for the variational
distance between the probability distributions PX and PY of the outcomes when
applying the same measurement to ρ and σ, respectively, i.e.,

δ(PX , PY ) ≤ δ(ρ, σ) . (5)

The trace distance between two density operators involving a state represen-
tation of the same classical random variable X can be written as the expectation
of the trace distance between the density operators conditioned on X.



Lemma 2. Let X be a random variable and let ρ and σ be random states. Then

δ
(

[{X} ⊗ ρ], [{X} ⊗ σ]
)

= E
x←PX

[

δ(ρx, σx)
]

where ρx := [ρ|X = x] and σx := [σ|X = x].

Proof. Using (1) and the orthogonality of the vectors |x〉, we can write

δ
(

[{X} ⊗ ρ], [{X} ⊗ σ]
)

=
1

2
tr
(∣

∣

∣
E

x←PX

[

P|x〉 ⊗ (ρx − σx)
]

∣

∣

∣

)

=
1

2
tr
(

E
x←PX

[

∣

∣P|x〉 ⊗ (ρx − σx)
∣

∣

])

.

The assertion then follows from the linearity of the trace and the fact that
tr(|P|x〉 ⊗ (ρx − σx)|) = tr(|ρx − σx|). ut

In Section 3, we will see that a natural measure for characterizing the se-
crecy of a key is its trace distance to a uniform distribution. This motivates the
following definition.

Definition 1. Let X be a random variable with range X and let ρ be a random
state. The non-uniformity of X given ρ is defined by

d(X|ρ) := δ
(

[{X} ⊗ ρ], [{U}]⊗ [ρ]
)

where U is a random variable uniformly distributed on X .

Note that d(X|ρ) = 0 if and only if X is uniformly distributed and indepen-
dent of ρ.

2.4 (Smooth) Rényi Entropy

Let ρ ∈ P(H) be a density operator and let α ∈ [0,∞]. The Rényi entropy of
order α of ρ is defined by3

Sα(ρ) :=
1

1− α
log
(

tr(ρα)
)

with the convention Sα(ρ) := limβ→α Sβ(ρ) for α ∈ {0, 1,∞}.4 In particular,
for α = 0, S0(ρ) = log

(

rank(ρ)
)

and, for α = ∞, S∞(ρ) = − log
(

λmax(ρ)
)

where λmax(ρ) denotes the maximum eigenvalue of ρ. Note that, for a classical
random variable X, the Rényi entropy Sα([{X}]) of the state representation of
X corresponds to the (classical) Rényi entropy Hα(X) of X [29].

The notion of ε-smooth Rényi entropy Hε
α has been introduced in [28] for

the classical case, and can be seen as a generalization of (conventional) Rényi

3 All logarithms in this paper are binary.
4 Note that, for this definition, the density operator ρ must not necessarily be nor-
malized.



entropy Hα (see Appendix C for a definition). Smooth Rényi entropy is useful
for characterizing basic properties of random variables such as the amount of ex-
tractable randomness or the minimum encoding length. Moreover, it has natural
properties similar to Shannon entropy.

Definition 2 below generalizes classical smooth Rényi entropy Hε
α to density

operators. This quantum version of smooth Rényi entropy will be useful to state
our main results.

Definition 2. Let ρ ∈ P(H) and let ε ≥ 0. The ε-smooth Rényi entropy of
order α of ρ is defined by5

Sεα(ρ) :=
1

1− α
log

(

inf
σ∈Bε/2(ρ)

(

tr(σα)
)

)

,

for α ∈ (0, 1) ∪ (1,∞), and Sεα(ρ) := limβ→α S
ε
β(ρ), for α ∈ {0,∞}.

The classical definition of smooth Rényi entropy can be seen as a special case
of Definition 2. In particular, the smooth Rényi entropy Hε

α(X) of a classical
random variable X is equal to the smooth Rényi entropy Sεα([{X}]) of the state
representation of X. On the other hand, the smooth Rényi entropy of a density
operator ρ can be expressed in terms of the classical smooth Rényi entropy of
its eigenvalues. Formally,

Sεα(ρ) = Hε
α(P ) , (6)

where P is the (not necessarily normalized) probability distribution defined by
the eigenvalues λ1, . . . , λd of ρ, i.e., P (i) = λi, for i ∈ {1, . . . , d}.

It is important to note that equation (6) provides an efficient method for
computing the smooth Rényi entropy Sεα(ρ) of a given density operator ρ. In
particular, since the smooth Rényi entropy Hε

α(P ) of a classical probability dis-
tribution P can be calculated in a simple way (see Appendix C), it is also easy
to compute Sεα(ρ) if the eigenvalues of ρ are known.

The following lemma is a direct generalization of the corresponding statement
for classical smooth Rényi entropy (see Lemma 15 in Appendix C) saying that
the smooth Rényi entropy Hε

α(Z
n) of a random variable Zn consisting of many

independent and identically distributed pieces asymptotically equals its Shannon
entropy H(Zn).

Lemma 3. Let ρ be a normalized density operator. Then, for any α ∈ [0,∞],

lim
ε→0

lim
n→∞

1

n
Sεα(ρ

⊗n) = S(ρ) ,

where S(ρ) denotes the von Neumann entropy of ρ.

5 Recall that Bε/2(ρ) denotes the set of non-negative operators σ ∈ P(H) such that
δ(σ, ρ) ≤ ε

2
, i.e., tr(|σ − ρ|) ≤ ε.



3 Secret Keys and Composability

A very intuitive way of defining the security of a real cryptographic protocol
is to compare it with an ideal functionality. The ideal functionality of a secret
key S is simply an independent and uniformly distributed random variable U (in
particular, U is fully independent of the adversary’s information). This motivates
the following definition.

Definition 3. Let S be a random variable, let ρ be a random state, and let
ε ≥ 0. S is said to be ε-secure with respect to ρ if d(S|ρ) ≤ ε.

Consider a situation where S is used as a secret key and where the adversary’s
information is given by a random state ρ. If S is ε-secure with respect to ρ then it
is guaranteed that this situation is ε-close—with respect to the trace distance—
to an ideal setting where S is replaced by a perfect key U which is uniformly
distributed and independent of ρ. Since the trace distance does not increase when
appending an additional quantum system (cf. (2) or (3)) or when applying any
arbitrary quantum operation (cf. (4)), this also holds for any further evolution
of the system. In particular, it follows from (5) and Lemma 1 that the real and
the ideal setting can be considered to be identical with probability at least 1−ε.

Note that our security definition can be seen as a natural generalization
of classical security definitions based on the variational distance (which is the
classical analogue of the trace distance). Indeed, if the adversary’s knowledge is
purely classical, Definition 3 is equivalent to a security definition as it is, e.g.,
used in [17].

The security of a key S according to Definition 3 implies that S is also secure
according to many of the widely used security definitions in quantum cryptog-
raphy. One of the most popular security requirements for a key S with respect
to an adversary holding information ρ is that S be almost independent of the
classical outcomeW resulting from any arbitrary measurement of ρ.6 Obviously,
if a key S is ε-secure with respect to ρ (according to our definition), the prob-
ability distribution PSW is ε-close (with respect to the variational distance) to
a product distribution. Note, however, that the converse is not true: Even if S
and W are almost independent for any measurement of ρ, the quantum state ρ
might still strongly depend on S.

Indeed, security definitions which are formulated in terms of the adversary’s
measurement results W do not necessarily provide universal composability: If it
is only known that a key S is almost independent of the classical outcome W
obtained from measuring the quantum state ρ—for any measurement strategy
chosen independently of S—, one cannot necessarily use S in any arbitrary
cryptosystem, e.g., as a one-time pad. Consider for instance a cryptographic
application where S consists of two parts S1 and S2, and where S is used in such
a way that an adversary learns S1. Hence, the adversary can let the measurement
of her quantum system depend on the specific value of S1. This might provide

6 See, e.g., [26], and the references therein.



her with more information about S2 than if she had chosen her measurement
independently of S1.

7

4 Main Result

4.1 Theorem and Proof

Consider a situation where an adversary holds quantum information ρ about a
classical string Z. Additionally, let S be a key of length s computed by applying
a (publicly chosen) two-universal function F to Z, that is, S := F (Z). Theorem 1
below states that, if the length s is chosen to be sufficiently smaller than s̄ :=
S2([{Z} ⊗ ρ]) − S0([ρ]), then the key S is ε-secure with respect to ρ (for ε
decreasing exponentially fast in the difference s̄ − s). In other words, a two-
universal function F can be used to turn a partially secure string Z into a highly
secure key S of length roughly s̄. In Section 4.3, we will discuss this application
in more detail.

Theorem 1. Let Z be a random variable with range Z, let ρ be a random state,
and let F be a two-universal function from Z to S = {0, 1}s which is independent
of Z and ρ. Then

d(F (Z)|{F} ⊗ ρ) ≤ 1

2
2−

1
2 (S2([{Z}⊗ρ])−S0([ρ])−s) .

Let us state some technical lemmas to be used for the proof of Theorem 1.

Lemma 4. Let Z be a random variable with range Z, let ρ be a random state,
and let F be a random function on Z which is independent of Z and ρ. Then

d(F (Z)|{F} ⊗ ρ) = E
f←PF

[d(f(Z)|ρ)] .

Proof. Let U be a random variable uniformly distributed on the range of F and
independent of F and ρ. Then

d(F (Z)|{F} ⊗ ρ) = δ ([{F (Z)} ⊗ ρ⊗ {F}], [{U} ⊗ ρ⊗ {F}]) .

Now, applying Lemma 2 to the random states {F (Z)} ⊗ ρ and {U} ⊗ ρ gives
the desired result since

[{F (Z)} ⊗ ρ|F = f ] = [{f(Z)} ⊗ ρ]
[{U} ⊗ ρ|F = f ] = [{U}]⊗ [ρ] ,

which holds because F is independent of Z, ρ, and U . ut
7 The effect of side information on the maximum classical correlation that can be
obtained by measurements has been studied in different contexts [16, 19]. A simple
example which demonstrates that classical information is indeed helpful for choosing
a “good” measurement is as follows: Let S1 and S2 be random bits and let ρ be the
state of a two-dimensional quantum system obtained by encoding the bit S2 using
either the rectilinear basis (if S1 = 0) or the diagonal basis (if S1 = 1). Clearly, if
S1 is known, S2 can easily be determined by applying the appropriate measurement
to ρ. On the other hand, the probability of correctly guessing S2 from the outcome
of any measurement chosen independently of S1 is bounded away from 1.



The following lemmas can most easily be formalized in terms of the square
of the Hilbert-Schmidt distance. For two density operators ρ and σ, let

∆(ρ, σ) := tr
(

(ρ− σ)2
)

.

Moreover, for a random variable X and a random state ρ, we define

D(X|ρ) := ∆([{X} ⊗ ρ], [{U}]⊗ [ρ])

where U is a random variable uniformly distributed on X .

Lemma 5. Let ρ and σ be two density operators on H. Then

δ(ρ, σ) ≤ 1

2

√

rank(ρ− σ) ·∆(ρ, σ) .

Proof. The assertion follows directly from Lemma 11 (cf. Appendix A) and the
definition of the distance measures δ(·, ·) and ∆(·, ·). ut

Lemma 6. Let X be a random variable with range X and let ρ be a random
state. Then

d(X|ρ) ≤ 1

2
2

H0(X)+S0([ρ])
2

√

D(X|ρ) .

Proof. Note that the rank of [{X}⊗ρ]−[{U}]⊗[ρ] is bounded by 2H0(X)+S0([ρ]).
The assertion thus follows as an immediate consequence of the definitions and
Lemma 5. ut

Lemma 7. Let X be a random variable with range X and let ρ be a random
state. Then

D(X|ρ) = tr

(

(

∑

x∈X

PX(x)2ρ2x

)

− 1

|X | [ρ]
2

)

where ρx := [ρ|X = x], for any x ∈ X .

Proof. From (1) and the fact that tr(P|x〉P|x′〉) = δx,x′ (where δx,x′ is the Kro-
necker delta which equals 1 if x = x′ and 0 otherwise), we find

D(X|ρ) = tr

(

(

∑

x∈X

PX(x)P|x〉 ⊗ ρx −
1

|X |
∑

x∈X

P|x〉 ⊗ [ρ]

)2
)

= tr

(

∑

x∈X

(

PX(x)ρx −
1

|X | [ρ]
)2
)

= tr

(

∑

x∈X

PX(x)2ρ2x −
2

|X | [ρ]
∑

x∈X

PX(x)ρx +
1

|X | [ρ]
2

)

.

Inserting the identity

[ρ] =
∑

x∈X

PX(x)ρx

concludes the proof. ut



Lemma 8. Let Z be a random variable, let ρ be a random state, and let F be
a two-universal function on Z chosen independently of Z and ρ. Then

E
f←PF

[

D(f(Z)|ρ)
]

≤ 2−S2([{Z}⊗ρ]) .

Proof. Let us define ρz := [ρ|Z = z] for every z ∈ Z and let S be the range of
F . With Lemma 7, we obtain

E
f←PF

[

D(f(Z)|ρ)
]

= tr

(

E
f←PF

[

∑

s∈S

Pf(Z)(s)
2[ρ|f(Z) = s]2

]

)

− 1

|S| tr([ρ]
2) ,

(7)

where we have used the linearity of the trace. Note that

Pf(Z)(s) · [ρ|f(Z) = s] =
∑

z∈f−1({s})

PZ(z)ρz .

Using this identity and rearranging the summation order, we get
∑

s∈S

Pf(Z)(s)
2[ρ|f(Z) = s]2 =

∑

z,z′∈Z

PZ(z)PZ(z
′)ρzρz′δf(z),f(z′) .

Taking the expectation value over the random choice of F then gives

E
f←PF

[

∑

s∈S

Pf(Z)(s)
2[ρ|f(Z) = s]2

]

=
∑

z,z′∈Z

PZ(z)PZ(z
′)ρzρz′ Pr

f←PF

[f(z) = f(z′)] .

Similarly, we obtain

[ρ]2 =
∑

z,z′∈Z

PZ(z)PZ(z
′)ρzρz′ .

Inserting this into (7), we get

E
f←PF

[D(f(Z)|ρ)] =
∑

z,z′∈Z

PZ(z)PZ(z
′)

(

Pr
f←PF

[f(z) = f(z′)]− 1

|S|

)

tr(ρzρz′) .

As we assumed that F is two-universal, all summands with z 6= z ′ are not larger
than zero and we are left with

E
f←PF

[D(f(Z)|ρ)] ≤
∑

z∈Z

PZ(z)
2tr(ρ2z) = tr

(

[{Z} ⊗ ρ]2
)

from which the assertion follows by the definition of the Rényi entropy S2. ut
Proof (Theorem 1). Using Lemma 4 and Lemma 6, we get

d(F (Z)|{F} ⊗ ρ) = E
f←PF

[d(f(Z)|ρ)]

≤ 1

2
2

s+S0([ρ])
2 E

f←PF

[
√

D(f(Z)|ρ)]

≤ 1

2
2

s+S0([ρ])
2

√

E
f←PF

[D(f(Z)|ρ)] ,



where the last inequality follows from Jensen’s inequality and the convexity of
the square root. Applying Lemma 8 concludes the proof. ut

4.2 A Bound in Terms of Smooth Rényi Entropy

The goal of this section is to reformulate Theorem 1 in terms of smooth Rényi en-
tropy (cf. Corollary 1 below). Since, e.g., S0([ρ]) is generally larger than Sε0([ρ]),
this gives a better bound on the length of the extractable key. Indeed, for the
situation where Z and ρ are obtained from many repetitions of the same ran-
dom experiment, the bound in terms of smooth Rényi entropy is asymptotically
optimal (cf. Section 4.4), which is not true if conventional Rényi entropy is used
instead.

The following derivation is based on the idea that, for any normalized density
operator ρ with smooth Rényi entropy Sεα(ρ), there exists a (not necessarily
normalized) density operator ρ′ which is ε-close to ρ such that the (conventional)
Rényi entropy of ρ′, Sα(ρ

′), is equal to Sεα(ρ).
8

Lemma 9. Let X be a random variable and let ρ be a normalized random state.
Then, for any ε ≥ 0, there exists a random variable X ′ and a random state ρ′

with δ([{X ′} ⊗ ρ′], [{X} ⊗ ρ]) ≤ 2
√
ε such that, for any α > 1,

Sα([{X ′} ⊗ ρ′])− S0([ρ
′]) ≥ Sεα([{X} ⊗ ρ])− Sε0([ρ]) .

Proof. Let P be the projector onto the minimum subspace which corresponds
to eigenvalues of [ρ] with total weight (at least) 1− ε, i.e.,

tr(P [ρ]P †) ≥ 1− ε . (8)

It is easy to verify that log
(

rank(P )
)

= Sε0([ρ]). Similarly, there exists a random
variable X ′ and a random state σ with tr([σ]) ≤ tr([ρ]) = 1 such that

Sα([{X ′} ⊗ σ]) = Sεα([{X} ⊗ ρ])

and
δ([{X ′} ⊗ σ], [{X} ⊗ ρ]) ≤ ε

2
. (9)

Let ρ′ be the random state defined by ρ′ := PσP †. Then,

S0([ρ
′]) ≤ log

(

rank(P )
)

= Sε0([ρ])

and by Lemma 14 (see Appendix B), since [{X ′} ⊗ ρ′] is the projection of
[{X ′} ⊗ σ] (with respect to the projection operation (id⊗ P )),

Sα([{X ′} ⊗ ρ′]) ≥ Sα([{X ′} ⊗ σ]) = Sεα([{X} ⊗ ρ]) .

It thus remains to be shown that

δ([{X ′} ⊗ ρ′], [{X} ⊗ ρ]) ≤ 2
√
ε . (10)

8 Note that Sα(ρ
′) is also defined for density operators ρ′ with tr(ρ′) < 1.



Since the trace distance cannot increase when applying the projection P (cf. (4)),
we obtain from (9)

tr
(∣

∣P [σ]P † − P [ρ]P †
∣

∣

)

= 2δ(P [σ]P †, P [ρ]P †) ≤ 2δ([σ], [ρ]) ≤ ε .

Hence, with (8),

tr([ρ′]) = tr([PσP †]) ≥ tr([PρP †])− tr
(
∣

∣P [ρ]P † − P [σ]P †
∣

∣

)

≥ 1− 2ε

and thus, from Lemma 12 (cf. Appendix A),

δ([{X ′}⊗ρ′], [{X ′}⊗σ]) ≤
√

tr([σ])(tr([σ])− tr([ρ′])) ≤
√

1− tr([ρ′]) ≤
√
2ε .

Using once again (9) and applying the triangle inequality for the trace distance
implies (10) and thus concludes the proof. ut

Using Lemma 9, the following corollary of Theorem 1 follows directly from
the triangle inequality for the trace distance.

Corollary 1. Let Z be a random variable with range Z, let ρ be a normalized
random state, let F be a two-universal function from Z to S = {0, 1}s which is
independent of Z and ρ, and let ε ≥ 0. Then

d(F (Z)|{F} ⊗ ρ) ≤ 1

2
2−

1
2 (S

ε
2([{Z}⊗ρ])−S

ε
0([ρ])−s) + 4

√
ε .

Note that the smooth Rényi entropies occurring in the bound of Corollary 1
can easily be computed from the eigenvalues of the density operators [{Z} ⊗ ρ] =
∑

z PZ(z)P|z〉⊗ρz and [ρ] =
∑

z PZ(z)ρz, where ρz = [ρ|Z = z] (cf. Section 2.4).

4.3 Privacy Amplification Against Quantum Adversaries

We now apply the results of the previous section to show that privacy amplifi-
cation by two-universal hashing is secure (with respect to the universally com-
posable security definition of Section 3) against an adversary holding quantum
information. Consider two distant parties which are connected by an authentic,
but otherwise fully insecure classical communication channel. Additionally, they
have access to a common random string Z about which an adversary has some
partial information represented by the state ρ of a quantum system. The two
legitimate parties can apply the following simple privacy amplification protocol
to obtain a secure key S of length s. Let F be a two-universal random func-
tion from the range of Z to {0, 1}s. First, one of the parties randomly chooses
an instance of F and announces his choice to the other party using the public
communication channel. Then, both parties compute S = F (Z).

Note that, during the execution of this protocol, the adversary might learn
F . The final key S must thus be secure with respect to both {F} and ρ. It is an
immediate consequence of Corollary 1 that, for any ε ≥ 0, the key S generated by
the described privacy amplification protocol is ε-secure with respect to ρ⊗ {F}
if its length s is not larger than

sε = S ε̄2([{Z} ⊗ ρ])− S ε̄0([ρ])− 2 log(1/ε) , (11)

where ε̄ = (ε/8)2.



4.4 Asymptotic Optimality

We now show that the bound (11) is asymptotically optimal, i.e., that the right
hand side of (11) is (in an asymptotic sense) also an upper bound for the number
of key bits that can be extracted by any protocol. Consider a setting where both
the initial information Z(n) as well as the adversary’s state ρ(n) consist of n
independent pieces, for n ∈ N. Formally, let Z(n) = (Z1, . . . , Zn) and ρ(n) =
ρ1⊗· · ·⊗ρn where the pairs (Zi,ρi) are independent and identically distributed.
Let s(n) be the length of the key S(n) that can be extracted from Z(n) by an
optimal privacy amplification protocol. Using Lemma 3, we conclude from (11)
that

s(n) ≥ H(Z(n)|ρ(n)) + o(n) (12)

where, for any Z and ρ, H(Z|ρ) is defined in terms the von Neumann en-
tropy S(·) by

H(Z|ρ) := S([{Z} ⊗ ρ])− S([ρ]) .

To derive an upper bound for s(n), consider an arbitrary privacy ampli-
fication protocol for generating a key S(n) from Z(n). Let C(n) be the whole
communication exchanged over the public channel during the execution of the
protocol, and let fC(n) be the function depending on C(n) which describes how
the final key S(n) is computed from Z(n), that is, S(n) = fC(n)(Z(n)).

It is a direct consequence of Definition 3 that the von Neumann entropy of
an ε-secure key S(n) virtually cannot be smaller than its length s(n), i.e.,

s(n) ≤ H(fC(n)(Z(n))|ρ(n) ⊗ {C(n)}) + o(n) . (13)

Using some well-known properties of the von Neumann entropy, it is easy to see
that the quantity H(Z|ρ) can only decrease when applying any function f to its
first argument or when introducing an additional random variable in the second
argument. We thus have

H(fC(n)(Z(n))|ρ(n) ⊗ {C(n)}) ≤ H(Z(n)|ρ(n) ⊗ {C(n)}) ≤ H(Z(n)|ρ(n)) . (14)

Hence, combining (12), (13), and (14), we obtain an expression for the maximum
number s(n) of extractable key bits,

s(n) = H(Z(n)|ρ(n)) + o(n) .

In particular, the maximum rate R := limn→∞
s(n)
n at which secret key bits can

be generated—from independent realizations of Z about which the adversary
has information given by ρ—is

R = S([{Z} ⊗ ρ])− S([ρ]) = H(Z|ρ) . (15)

This exactly corresponds to the expression for the secret key rate obtained by
Devetak and Winter [15].



In the purely classical case, i.e., if the adversary’s information is given by a
classical random variable W , expression (15) reduces to

R = H(ZW )−H(W ) = H(Z|W ) ,

which is a well known result of Csiszár and Körner [14] (see also [24]).9

4.5 Applications to QKD

Theorem 1 has interesting implications for quantum key distribution (QKD).
Recently, a generic protocol for QKD has been presented and proven secure
against general attacks [13] (see also [23]). Moreover, it has been shown that
many of the known protocols, such as BB84 or B92, are special instances of
this generic protocol, i.e., their security directly follows from the security of the
generic QKD protocol. Since the result in [13] is based on the security of privacy
amplification, the strong type of security implied by Theorem 1 immediately
carries over to this generic QKD protocol. In particular, the secret keys generated
by the BB84 and the B92 protocol satisfy Definition 3 and thus provide universal
composability.
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A Some Useful Identities

Lemma 10 (Schur’s inequality). Let A be a linear operator on a d-dimensional
Hilbert space H and let λ1, . . . , λd be its eigenvalues. Then

d
∑

i=1

|λi|2 ≤ tr(AA†) ,

with equality if and only if A is normal (i.e., AA† = A†A).

Proof. See, e.g., [20].

9 In the setting of [14], the two parties are connected by a channel which leaks partial
information to an adversary. As shown in [24], the result of [14] also applies if the two
parties are connected by a completely public channel, but start with some common
information Z about which an adversary has partial knowledge W .



Lemma 11. Let A be a normal operator with rank r. Then

tr|A| ≤
√
r
√

tr(AA†) .

Proof. Let λ1, . . . , λr be the r nonzero eigenvalues of A. Since the square root is
concave, we can apply Jensen’s inequality leading to

tr|A| =
r
∑

i=1

|λi| =
r
∑

i=1

√

|λi|2 ≤
√
r

√

√

√

√

r
∑

i=1

|λi|2 .

The assertion then follows from Schur’s inequality (Lemma 10). ut

Lemma 12. Let ρ ∈ P(H) and let P be a projection on H, i.e., P ◦ P = P .
Then, for ρ′ := PρP †,

δ(ρ, ρ′) ≤
√

tr(ρ)(tr(ρ)− tr(ρ′)) .

Proof. We first show that the assertion holds for normalized pure states ρ = P|φ〉.
Since P is a projection, there exist a, b ∈ R with a2+ b2 = 1 and two orthogonal
vectors |α〉, |β〉 with P |α〉 = |α〉 and P |β〉 = 0 such that |φ〉 = a|α〉 + b|β〉. In
particular, ρ′ = a2P|α〉. It then follows by a straightforward calculation that

δ(ρ, ρ′) = δ(Pa|α〉+b|β〉, a
2P|α〉) ≤ b =

√

1− tr(ρ′) .

To prove the assertion for general density operators ρ ∈ P(H), let

ρ =
∑

i∈I

piρi

where, for any i ∈ I, pi ≥ 0 and ρi is a normalized pure state. In particular,
∑

i∈I pi = tr(ρ). By linearity, we have

ρ′ =
∑

i∈I

piρ
′
i ,

where ρ′i := PρiP
†. Hence, using the convexity of the trace distance,

δ(ρ, ρ′) ≤
∑

i∈I

piδ(ρi, ρ
′
i) ≤

∑

i∈I

pi

√

1− tr(ρ′i) .

The assertion then follows from Jensen’s inequality. ut

B Rényi Entropy and Quantum Operations

The following lemma states that the Rényi entropy of a density operator ρ can
only increase when applying a quantum operation E on ρ.



Lemma 13. Let E : ρ 7→
∑

iEiρE
†
i be a doubly stochastic quantum operation on

H, i.e., Ei are linear operators on H satisfying
∑

iE
†
iEi = id and

∑

iEiE
†
i = id.

Then, for any ρ ∈ P(H) and α ∈ [0,∞],

Sα(E(ρ)) ≥ Sα(ρ) .

Proof. See, e.g., [25] (Theorem 5.1 together with Theorem 4.2, applied to the
function Sα).

Lemma 13 can be used to show that, for α > 1, the Rényi entropy of a density
operator ρ can only increase when applying a projector P to ρ.

Lemma 14. Let ρ ∈ P(H) and let P be a projection on H, i.e., P ◦ P = P .
Then, for α > 1,

Sα(PρP
†) ≥ Sα(ρ) .

Proof. Consider the quantum operation E defined by

E : ρ 7−→ PρP † + (id− P )ρ(id− P )† .

It is easy to verify that E is doubly stochastic. Hence, from Lemma 13,

Sα(ρ
′ + ρ′′) ≥ Sα(ρ) ,

where ρ′ := PρP † and ρ′′ := (id−P )ρ(id−P )†. The assertion then follows from
the fact that, because ρ′ and ρ′′ are orthogonal,

tr
(

(ρ′ + ρ′′)α
)

≥ tr
(

(ρ′)α) ,

and the definition of Sα.

C Smooth Rényi Entropy of Classical Distributions

Smooth Rényi entropy has been introduced in [28] as a generalization of Rényi
entropy. For any set Z, let P̄(Z) be the set of non-negative functions P on Z
such that

∑

z∈Z P (z) ≤ 1, i.e., P̄(Z) contains all (not necessarily normalized)
probability distributions on Z. For any P ∈ P̄(Z), let Bε(P ) be the set of
functions Q ∈ P̄(Z) such that δ(P,Q) := 1

2

∑

z |P (z)−Q(z)| ≤ ε.

Definition 4. Let P ∈ P̄(Z) and let ε ≥ 0. The ε-smooth Rényi entropy Hε
α(P )

of order α of P is defined by

Hε
α(P ) :=

1

1− α
log

(

inf
Q∈Bε/2(P )

(

∑

z∈Z

Q(z)α
)

)

,

for α ∈ (0, 1) ∪ (1,∞), and Hε
α(P ) := limβ→αH

ε
β(P ), for α ∈ {0,∞}.

For a random variable Z with probability distribution PZ , we also write
Hε
α(Z) instead of Hε

α(PZ).



It turns out that, for α < 1, the logarithm on the right hand side of this
definition takes its minimum for the function Q ∈ Bε/2(P ) which is obtained
from P by setting the smallest probabilities to zero. Similarly, for α > 1, the
minimum is taken for the function Q obtained by cutting the largest probabilities
of P . The smooth Rényi entropy Hε

α(P ) can thus easily be computed from the
probabilities P (z), for z ∈ Z.

Smooth Rényi entropy has many natural properties which are similar to the
properties of Shannon entropy. In particular, the smooth Rényi entropy of many
independent and uniformly distributed random variables is close to the Shannon
entropy.

Lemma 15. Let Z1, . . . , Zn be independent random variables distributed accord-
ing to PZ . Then, for any α 6= 1,

lim
ε→0

lim
n→∞

1

n
Hε
α(Z1 · · ·Zn) = H(Z) .

For a discussion of further properties and applications of smooth Rényi en-
tropy, see [28].
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