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Abstract. We initiate a study of Maurer’s bounded storage model (JoC,
1992) in presence of transmission errors and perhaps other types of er-
rors that cause different parties to have inconsistent views of the public

random source. Such errors seem inevitable in any implementation of the
model. All previous schemes and protocols in the model assume a per-
fectly consistent view of the public source from all parties, and do not
function correctly in presence of errors, while the private-key encryption
scheme of Aumann, Ding and Rabin (IEEE IT, 2002) can be extended
to tolerate only a O(1/ log (1/ε)) fraction of errors, where ε is an upper
bound on the advantage of an adversary.
In this paper, we provide a general paradigm for constructing secure and
error-resilient private-key cryptosystems in the bounded storage model
that tolerate a constant fraction of errors, and attain the near optimal
parameters achieved by Vadhan’s construction (JoC, 2004) in the error-
less case. In particular, we show that any local fuzzy extractor yields a
secure and error-resilient cryptosystem in the model, in analogy to the
result of Lu (JoC, 2004) that any local strong extractor yields a secure
cryptosystem in the errorless case, and construct efficient local fuzzy
extractors by extending Vadhan’s sample-then-extract paradigm. The
main ingredients of our constructions are averaging samplers (Bellare
and Rompel, FOCS ’94), randomness extractors (Nisan and Zuckerman,
JCSS, 1996), error correcting codes, and fuzzy extractors (Dodis, Reyzin
and Smith, EUROCRYPT ’04).

1 Introduction

The bounded storage model, introduced by Maurer [Mau92], has seen increas-
ing activities recently. In contrast to the standard complexity-based model for
cryptography, this model imposes a bound on the storage space of an adversary
rather than its running time. The model does not rely on complexity assump-
tions, and achieves information-theoretic security by employing a public source
emitting random strings whose length exceeds the known space bound of the
adversary. The security is guaranteed against a computationally unbounded ad-
versary who stores almost all information about a public random string, while a
legitimate user is only required to store a small number of public random bits. In
a practical implementation, a good candidate for the public source is a system
of high-speed satellites broadcasting random bits at a very high rate.



The bounded storage model has enjoyed success in private-key cryptography
[Mau92,CM97b,AR99,ADR02,DR02,DM04b,Lu04,Vad04]. In particular, an im-
portant property known as everlasting security was observed in [ADR02,DR02],
namely the private key can be reused exponentially many times under active at-
tacks, and security is preserved even if after the execution of the protocol, the key
is revealed to the adversary and the adversary becomes unbounded in both time
and space. Subsequent works [DM04b,Lu04,Vad04] succeeded in constructing
highly efficient (in terms of key length and storage requirement) cryptosystems
in the model that attain everlasting security, culminating in the near optimal
construction of Vadhan [Vad04]. Significant progress has also been made in obliv-
ious transfer [CCM98,Din01,DHRS04] and key agreement [CM97b,DM04a] in
the bounded storage model. More recently, it was shown that a primitive known
as non-interactive timestamping, which is impossible in standard complexity-
based cryptography, can be constructed in the bounded storage model [MST04].

All the above-mentioned works are based an ideal assumption that all the
parties have a perfectly consistent view of the public random source. It seems,
however, that in any implementation of the bounded storage model, transmis-
sion errors and perhaps other types of errors that cause different parties to have
inconsistent views of the public source, are inevitable. The previous schemes and
protocols do not function correctly in presence of such errors. Error-correcting
the source might at the first glance appear as a natural solution, however this
approach has several disadvantages, and in certain circumstances is infeasible,
insufficient, or even impossible: (1) Error-correcting an entire string from the
source is infeasible due to its huge size. (2) Encoding the source blockwise does
not withstand worst-case adversarial errors that cause too many bits from a same
block to be corrupted or erased. Worst-case adversarial errors may at first seem
very unnatural. However, considering such errors is necessary, for instance in a
setting where a system of several sources is employed, and the adversary com-
promises a fraction of the sources. (3) The practicality of the bounded storage
model is based on the assumption that communications technology allows trans-
mission of data at a rate higher than the storage rate of the adversary. Encoding
the source by an error correcting code may significantly slow down the speed of
transmission, thereby giving the adversary an advantage in storing information.
(4) Error-correcting the source is impossible in implementations which use, for
instance, existing natural sources of randomness that cannot be modified. Thus,
the ability to cope with errors in the model itself, without an error-corrected
source, is natural and fundamental for the bounded storage model.

It was noted by Rabin [Rab02] that the cryptosystem of [ADR02] (the ADR
scheme for shorthand), which uses a long private key, can in fact be extended
to tolerate a O(1/ log (1/ε)) fraction of errors, where ε is an upper bound on
the advantage of an adversary. Throughout the paper, the error is measured by
the maximum relative Hamming distance between the original public source and
the source as perceived by a party. The ADR scheme extracts a one-time pad
from the source where each bit of the one-time pad is the parity of O(log (1/ε))
bits of the source at random positions. Thus, if the error in accessing the source



is O(1/ log (1/ε)), then with high probability the fraction of corrupted bits in
the one-time pad is a constant, and therefore correct decryption can be achieved
by error-correcting the message using an asymptotically good error correcting
code. It is also easy to see that O(1/ log (1/ε)) is an upper bound on the fraction
of errors that can be tolerated by the extended ADR scheme. We note that
by a slightly more careful analysis, it can be shown that a similar result also
holds for the schemes of Lu [Lu04], which can be viewed as being obtained by
derandomizing the ADR scheme.

In this paper, we provide a general paradigm for constructing secure and
error-resilient private-key cryptosystems in the bounded storage model that tol-
erate a constant fraction of worst-case errors, and simultaneously attain the near
optimal parameters achieved by Vadhan’s construction [Vad04] in the errorless
case. In particular, we show that any local fuzzy extractor yields a secure and
error-resilient cryptosystem in the bounded storage model, in analogy to the re-
sults of Lu [Lu04] that any local strong extractor yields a secure cryptosystem in
the errorless case, and construct efficient local fuzzy extractors by extending Vad-
han’s sample-then-extract paradigm [Vad04]. Further, for ensuring correct func-
tionality in presence of errors, our cryptosystems only incur a communication
overhead that can be made as small as any constant fraction. The main ingredi-
ents of our constructions are averaging samplers [BR94] and randomness extrac-
tors [NZ96], two powerful tools from the theory of pseudorandomness that are
now standard in bounded-storage cryptography (c.f., [Lu04,Vad04,DHRS04]),
as well as error correcting codes, and a new primitive known as fuzzy extractors
recently introduced by Dodis, Reyzin and Smith [DRS04].

Averaging samplers, introduced by Bellare and Rompel [BR94], are proce-
dures that approximate the average of a [0, 1]-function by taking the average
of the function evaluated at sampled points determined by a short random
seed. Randomness extractors, introduced by Nisan and Zuckerman [NZ96], are
functions that extract near perfect randomness from imperfect random sources
using a short random seed. An extractor is strong if its output remains near
uniform even if the seed is given. See the excellent surveys and tutorials of
[NT99,Sha02,Vad02,Gol97] and references therein for constructions, connections,
and applications of extractors and samplers.

Recently extractors and averaging samplers have proven fundamental in
bounded-storage cryptography. Lu [Lu04] showed that any strong extractor yields
a secure private-key cryptosystem in the bounded storage model, however due
to the huge size of the source, the extractor is required to be locally computable,
or simply local, namely the output of the extractor depends on only a few bits of
the source. In [Vad04], Vadhan gave a general sample-then-extract paradigm for
constructing local extractors from any averaging sampler and randomness ex-
tractor: first sample a small number of bits from the source using an averaging
sampler, then apply an extractor to the sampled bits. By using strong extractors
and samplers with near optimal parameters, the construction of [Vad04] yields
near optimal local strong extractors.



Fuzzy extractors were introduced by Dodis, Reyzin and Smith [DRS04] re-
cently, motivated by the problem of using biometrics for cryptography. The basic
underlying ideas and techniques for constructing such objects have however al-
ready been used in the rich literature on information reconciliation and privacy
amplification (c.f. [BBR88,BS93,BBCM95,CM97a]). The work of [DRS04] and
this work can be seen as revisiting these ideas, using modern terminologies and
techniques from the pseudorandomness literature. Informally speaking, a fuzzy

extractor is a function which on input x
R
← X where X is an imperfect random

source, extracts a near uniform string Y together with a “fingerprint” P using
a random seed K,1 such that: (1) Y is near uniform even when given (K,P ),
and (2) there is a recovery algorithm that recovers Y from P , K, and any x′

“sufficiently close” to x. Fuzzy extractors that allow recovery from a constant
fraction of errors can be constructed using strong extractors and asymptotically
good error correcting codes. ([DRS04]. See also Section 4.4 of this paper.)

1.1 An Overview of Our Constructions

We show that any fuzzy extractor yields a secure and error-resilient cryptosystem
in the bounded storage model, and construct efficient local fuzzy extractors by
extending Vadhan’s sample-then-extract paradigm. Here the term local means
that both extraction and recovery depend on a small number of bits from the
input source, and further the positions of the bits read for both extraction and
recovery are completely determined by the seed K and do not depend on the
source X. Thus the positions of the bits read can be preprocessed using K by
a sampling algorithm. Therefore we assume that both the extraction algorithm
and the recovery algorithm proceed in two phases. In the first phase, both read
bits from the source whose positions are determined by the seed. In the second
phase, the actual extraction and recovery take place, on the bits read in the first
phase along with other inputs. As the local extraction and recovery procedures
do not access the entire source, we allow a small recovery error.

Construction of Local Fuzzy Extractors. A local fuzzy extractor LFE can be
constructed from any given averaging sampler Samp and fuzzy extractor FE
with recovery algorithm Rec, as follows. A seed for the resulting LFE is of form
(K1,K2), where K1 is a random seed for Samp, and K2 is a random seed for
FE. For local fuzzy extraction from X, one samples W = XSamp(K1) from X,
then computes and outputs (Y, P ) = FE(W,K2). For local recovery of Y using
P , (K1,K2), and a string X ′ that is sufficiently close to X in Hamming distance,
one samples W ′ = X ′Samp(K1)

from X ′, and recovers Y = Rec(W ′,K2, P ). The

security (or randomness) property of LFE follows from the fact that for almost
all seeds K1 of Samp, the sampler Samp essentially preserves the entropy rate
of the source X (see [NZ96,Vad04]), and the security property of FE that output

1 Our definition of a fuzzy extractor differs slightly from the original definition in
[DRS04] in that our fuzzy extractor explicitly uses a random seed, whereas that of
[DRS04] does not make the seed explicit yet makes it part of the fingerprint.



Y is near uniform even when K2 and P are given. The local recovery property of
LFE follows from the recovery property of FE, and the fact that for almost all
seeds K1 of Samp, the sampled substrings XSamp(K1) and X ′Samp(K1)

essentially

preserve the relative Hamming distance between X and X ′, i.e. the fraction of
positions at which X and X ′ differ. Details of our construction and analysis
will be give in Section 4.3. In Sections 4.4, 4.5 and 4.6, we show that by proper
choice of the underlying building blocks, our general paradigm yields a local
fuzzy extractor that attains the near optimal seed length and sample complexity
of Vadhan’s strong local extractor, and produces a very short fingerprint needed
for recovery from errors.

Private-Key Encryption from a Local Fuzzy Extractor. Given a local fuzzy ex-
tractor LFE together with a recovery algorithm REC that allows recovery from
a constant fraction of errors, as well as a sampling procedure Samp (see the dis-
cussion at the beginning of Section 1.1), a basic one-time private-key encryption
scheme in the bounded storage model that tolerates a constant fraction of errors
can be constructed as follows: The sender Alice and the receiver Bob share a
private-key K which is a random seed for LFE. While the public random string
X is transmitted, Alice computes (Y, P ) = LFE(XA,K), and Bob samples
WB = XB

Samp(K) from XB required for the recovery of Y , where XA and XB

are the views of X as perceived by Alice and Bob respectively. To encrypt a mes-
sage M , Alice computes C = M ⊕ Y , and sends (C,P ) to Bob. Upon receiving
(C,P ), Bob decrypts by first recovering the one-time pad Y = REC(WB ,K, P ),
then computing M = C ⊕ Y .
Correct decryption (with high probability) of the resulting basic scheme fol-

lows directly from the recovery property of a local fuzzy extractor, and its secu-
rity, in the case that the key K is used just once to encrypt one message, follows
immediately from the security property of a local fuzzy extractor. However, an
important question is whether the key can be used many times as in the errorless
case, under the attack of an active space-bounded adversary who at each time
step is also given the one-time pads and fingerprints from the past.2 Recall that
in the errorless case, the very general results of [Lu04] and [Vad04] show that
any strong local extractor yields a cryptosystem in which the key is reusable and
everlasting security is attained. In contrast, a moment’s thought shows that one
cannot hope to have such an analogous general result for an arbitrary local fuzzy
extractor in the case of errors! Consider for instance the following (contrived)
counter-example. Let LFE be a local fuzzy extractor constructed by the sample-
then-extract paradigm described above, which takes as input a source X and a

key K = (KS ,KE), and outputs (Y, P ) = LFE(X,K)
∆
= FE(XSamp(KS),KE),

where Samp and FE are the given sampler and fuzzy extractor. Let REC be its
recovery algorithm. Now let L̂FE be obtained by modifying LFE as follows: on
input (X,K), L̂FE computes (Y, P ) = LFE(X,K), but outputs (Y, P ′) where

P ′ = P ◦ KS is the concatenation of P and KS . Let R̂EC be the same as

2 The fingerprints are sent in the clear and are thus public to anyone, while the past
one-time pads can be obtained by a chosen plaintext or chosen ciphertext attack.



REC, except that R̂EC uses only |P | bits of the fingerprint P ′. It is not hard

to see that the resulting L̂FE is a local fuzzy extractor with recovery algorithm

R̂EC: As LFE is a local fuzzy extractor, by definition Y is near uniform even
when given (K,P ), and thus is also near uniform when given (K,P ◦KS).

3 The

security property of L̂FE follows. The recovery property, i.e. the correctness of

R̂EC is obvious. However, if L̂FE is employed in the above construction of a
private-key encryption scheme, then from a fingerprint P ′ from a past time pe-
riod the adversary gets KS , the part of the key used for sampling. If the same
key K = (KS ,KE) is reused, then from this point on, just as the sender and
receiver the adversary need only store a small number of bits from the source as
specified by KS , and when he obtains KE later he can simply decrypt just as the
receiver. In general, the fingerprint P and the seed K are dependent. The defi-
nition of a local fuzzy extractor only guarantees that its first output Y is nearly
uniform and independent of (K,P ). The dependence between K and P renders
a generic local fuzzy extractor non-reusable in this context, as the fingerprint P ,
sent in the clear, could give information about the seed K.

Note that the above counter-example only shows that a generic local fuzzy
extractor does not yield a stateless cryptosystem with a reusable key, and does
not answer the question whether the sample-then-extract paradigm, with a gen-
eral averaging sampler and (non-local) fuzzy extractor, results in such a system.
We believe that the answer to the latter question is also negative, for the follow-
ing reason. First, it can be seen that if the sampled substring W = XSamp(KS)

were given, then an adversary who stores sufficient information about the source
X and has the capability to introduce sufficient errors to X, could obtain sub-
stantial information about the seed KS from W and his state. The fingerprint P
is a function of W and thus gives partial information about W , which together
with the adversary’s state, may give adequate information about KS .

However, we do note that a stateless encryption scheme under the sample-
then-extract paradigm with a reusable key would result from a stronger type of
fuzzy extractors, called entropically secure fuzzy extractors recently introduced
by Dodis and Smith (see [Smi04]), which would result in a local fuzzy extractor
where (K,Y ) is essentially uniformly random even conditioned on the fingerprint
P . Yet, the current constructions of entropically secure fuzzy extractors are not
randomness-efficient enough to yield a desired value for key length.

Is there still any hope of using a generic local fuzzy extractor to construct
a full-fledged error-resilient encryption scheme, where many messages can be
encrypted? The answer is yes, if encryption and decryption are allowed to main-
tain a state. We circumvent the difficulty described above by refreshing the key,
instead of reusing it, as follows. Let LFE be an arbitrary local fuzzy extractor,
and let Alice and Bob share an initial key K1. At each time t, we use the given
local fuzzy extractor to extract a few more bits that will be used as the key for
time t+1. That is, at time t, Alice computes ((Y A

t ,KA
t+1), Pt) = LFE(X

A,KA
t ),

where KA
t is Alice’s key for time t, Y A

t is Alice’s one-time pad for encrypting a

3 More generally, for any function f , Y is near uniform even when given (K, f(P, K)).



(single) message at time t, and KA
t+1 is the new key Alice uses for time t+1. The

fingerprint Pt is used by Bob to recover (Y
B
t ,KB

t+1), where Y B
t and KB

t+1 are
respectively Bob’s one-time pad for decrypting a ciphertext at time t, and Bob’s
new key for time t+ 1. Ideally we would like to have (Y A

t ,KA
t+1) = (Y

B
t ,KB

t+1),
although a small recovery error is inevitable. Intuitively, the resulting encryp-
tion scheme is secure as the new key KA

t+1 is a part of the first output of LFE,
which by definition is near uniform given (KA

t , Pt). Had there been no error from
the source, security would have followed from known results [Vad04,Lu04]. The
presence of error however does complicate the matter quite substantially, and a
careful analysis of security and error-resilience is necessary.
Thus unlike the previous schemes in which the same key is reused, this scheme

updates the key at each time step in a forward-secure manner (c.f. [And97]),
and is therefore stateful. Such state-dependence may be viewed as a drawback
in some cases. However, in communication settings where communication de-
vices do maintain much state information (e.g. session IDs and counters), such a
stateful encryption scheme is reasonable. On the other hand, it remains an inter-
esting problem to construct a stateless error-resilient scheme matching the near
optimal parameters achieved by the stateful construction. However, the general
negative result described above suggests that resolving this issue may require re-
sorting to and analyzing particular constructions of the building blocks, such as
the underlying error correcting code. One promising approach is to derandomize
the construction of entropically secure fuzzy extractors in [Smi04].
In Section 3 we carefully define the bounded storage model with errors, and

give a definition of security and error-resilience. In Section 4.2 (Theorem 1), we
will show that under the general forward-secure paradigm described above, any
local fuzzy extractor yields a secure encryption scheme that achieves desired
security and error correction properties simultaneously. More precisely, both the
adversary’s advantage and the probability of a single recovery error in the first
T time periods, grow only linearly with T , essentially the best one can hope.

2 Preliminaries

We use the following standard notations in this paper. For a random variable X,

the notation x
R
← X denotes that x is chosen according to X. For a set S, x

R
← S

denotes that x is chosen uniformly from S. For an integer n, we denote by Un

a uniformly distributed random variable on the set {0, 1}
n
, and denote by [n]

the set {1, . . . , n}. For a string x ∈ {0, 1}
n
and a subset S = {i1, . . . , il} ⊆ [n],

xS
∆
= xi1 . . . xil , where xi is the i-th bit of x. We denote by Supp(X) the support

of a random variable X.
For two strings x and y of the same length, we use ∆(x, y) to denote their

Hamming distance, i.e. the number of bit positions at which x and y differ.
We say that a function (e.g. an extractor, a sampler, or an error correcting

code) is explicit if it can be computed by a polynomial-time algorithm.
In the remainder of this section, we give definitions of weak random sources

and statistical distance.



Definition 1 ([CG88,Zuc96]). For a random variable X on a finite set Ω,
the min-entropy of X is defined by: H∞(X) = minx∈Ω log(1/Pr[X = x]). We
say that X is a k-source if H∞(X) ≥ k. We say that a random variable X over
{0, 1}

n
has entropy rate α if X is an αn-source.

Definition 2. For random variables X and Y taking values in Ω, their sta-

tistical distance is defined as SD(X,Y )
∆
= maxA⊆Ω |Pr [X ∈ A]− Pr [Y ∈ A]| =

1
2

∑
x∈Ω |Pr[X = x]−Pr[Y = x]|. We say X and Y are ε-close if SD(X,Y ) ≤ ε.

3 The Model and Definition of Security

In this section we take a closer look at the bounded storage model with errors,
and define security in the model. In the presentation we use many terminologies
and notations from [Vad04].

The Public Random Source. The bounded storage model (BSM) employs a pub-
lic source of random strings, each of length exceeding the storage bound of the
adversary. Throughout the paper, we use N to denote the length of a public
random string. The public source is thus modeled as a sequence of random vari-
ables X1, X2, . . . , Xt, . . ., each distributed over {0, 1}

N
. We denote by βN the

storage bound, where β < 1 is constant fraction, and call β the storage rate of
the adversary.
The original work of Maurer [Mau92], as well as some early works (c.f.,

[AR99,ADR02,DR02]) assume that the public source is perfectly random, that
is, each Xt is uniformly distributed and independent of the others. It was noted
in [Lu04,Vad04] that each Xt need not be uniform, and it is sufficient (and nec-
essary) that each Xt has entropy rate α > β. Moreover, it was pointed out in
[Vad04] that the Xt’s need not be independent, and it is sufficient (and neces-
sary) that the sequence of random variables X1, X2, . . . , Xt, . . . form a reverse
block source, which is the Chor-Goldreich [CG88] notion of a block source but
backwards in time. Namely, in a reverse block source, each Xt has sufficient min-
entropy conditioned on the future, whereas in a standard block source of [CG88]
each Xt has sufficient min-entropy conditioned on the past. For the model with
errors considered in this paper, we slightly strengthen the requirement on the
public source by postulating that it be blockwise both forward and backward,
i.e. it be both a standard block source and a reverse block source. The reason
for imposing this forward blockwise structure in addition to its reverse counter-
part is that the fingerprints P1, . . . , Pt−1 required for recovery from errors in the
past time periods are exposed and depend on the X1, . . . , Xt−1. Therefore it is
necessary that Xt has sufficient min-entropy conditioned on P1, . . . , Pt−1. This
would certainly be satisfied if the source is (forward) blockwise, that is Xt has
sufficient min-entropy conditioned on X1, . . . , Xt−1.

Definition 3. Let (Xt) = (X1, X2, . . .) be a sequence of random variables each
distributed over {0, 1}

n
. For each t ∈ N, denote X\t = (X1, . . . , Xt−1, Xt+1, Xt+2, . . .).

We say that (Xt) is a two-way block source of entropy rate α if for every t ∈ N,



and every x = (x1, . . . , xt−1, xt+1, xt+2, . . .) ∈ Supp(X\t), the random variable
Xt|X\t=x is an αn-source.

Intuitively, this means that Xt has αn bits of information that can not be pre-
dicted from the past and will be forgotten in the future. In the special case of
α = 1, X1, X2, . . . are uniform and independent.

BSM Randomness Extraction. An essential ingredient is a bounded storage model
randomness extraction scheme,4 or simply a BSM extraction scheme. In the er-
rorless case, such an extraction scheme is a function of the form EXT : {0, 1}

N
×

{0, 1}
d
→ {0, 1}

m
. In a private-key setting, such an extraction scheme is typically

used as follows. A seed or a key K
R
← {0, 1}

d
is chosen, and shared between two

parties. At time t, the parties extract a common string Yt = EXT(Xt,K), while
the adversary A updates and stores his state St = A(St−1, Y1, . . . , Yt−1, Xt),
where |St| = βN . The scheme EXT is secure if for every adversary A with stor-
age rate β, Yt is statistically close to uniform even when given the key K, all the
previous Y1, . . . , Yt−1, the adversary’s state St, and the future public random
strings Xt+1, Xt+2, . . ..
In order to be used as a BSM primitive, the extraction scheme needs to be

locally computable, that is EXT(X,K) depends only on a few bits of X whose
positions are completely determined by K. As in the discussion on local fuzzy
extractors in Section 1.1, here we also assume that a sampling procedure Samp
precomputes positions Samp(K), the bits W = XSamp(K) are read when X is
transmitted, and the extraction algorithm EXT actually takes W and K as
input, and computes EXT(W,K).

Incorporating Errors. We now incorporate errors into the model, and consider
the case where two parties Alice and Bob have inconsistent views of the source
as a result of errors. We consider error-resilient BSM randomness extraction
with forward security, as motivated in Section 1.1 of the Introduction. Such an
extraction scheme is a pair of algorithms (EXT,REC), where EXT : {0, 1}

N
×

{0, 1}
d
→ {0, 1}

m+d
×{0, 1}

`
is a local extraction function, and REC : {0, 1}

N
×

{0, 1}
d
×{0, 1}

`
→ {0, 1}

m+d
is a local recovery algorithm. The second output of

EXT is a fingerprint that enables recovery of its first output, and the last d bits
from the first output of EXT will be used as the key for the next time period.

Alice and Bob initially share a common random key K1
R
← {0, 1}

d
for EXT. Let

KA
1 = KB

1 = K1.
We model errors by having an unbounded adversary who at time t for each

t ∈ N, on input xt
R
← Xt, computes xA

t and xB
t such that ∆(xt, x

A
t ) ≤ δN and

∆(xt, x
B
t ) ≤ δN , where δ < 1 is a constant fraction, and sends xA

t and xB
t to

Alice and Bob respectively. We call δ the error rate.

4 In [Vad04], such a scheme is called a BSM pseudorandom generator. We choose to
call it a BSM randomness extraction scheme, because of the usual computational
connotations of “pseudorandom generators”.



On input the corrupted string xA
t and her key KA

t for time t, Alice computes
((Y A

t ,KA
t+1), Pt) = EXT(x

A
t ,KA

t ), where Y
A
t is Alice’s extracted “one-time pad”

for time t, KA
t+1 is Alice’s key for time t + 1, and Pt is a fingerprint needed by

Bob to recover (Y A
t ,KA

t+1). Meanwhile, on input xB
t , Bob reads the substring

w of xB
t at positions in Samp(xB

t ,KB
t ) needed to recover (Y

A
t ,KA

t+1), where
Samp is the sampling procedure. Upon receiving Pt from Alice, Bob recovers
(Y B

t ,KB
t+1) = REC(w,KB

t , Pt). Ideally we would like to have (Y
B
t ,KB

t+1) =
(Y A

t ,KA
t+1), although we allow a small recovery error which is inevitable.

As in [Vad04], we use St ∈ {0, 1}
βN
to denote the state of the adversary at

time t. For a sequence Z1, Z2, . . ., we use the shorthand Z[a,b] = (Za, Za+1, . . . , Zb),
and Z[a,∞) = (Za, Za+1, . . .). At time t, we allow the adversary access to the
current corrupted strings xA

t , xB
t , all previous one-time pads Y

A
[1,t−1], Y

B
[1,t−1] and

keys KA
[1,t−1],K

B
[1,t−1] of both Alice and Bob, as well as P[1,t−1]. With this infor-

mation the adversary computes

St = A(Y
A
[1,t−1], Y

B
[1,t−1],K

A
[1,t−1],K

B
[1,t−1], P[1,t−1], St−1, x

A
t , xB

t ),

with |St| = βN .
We now define the security and error correction properties of an error-resilient

BSM randomness extraction scheme. In doing so, we use a real-vs-ideal paradigm
as [Vad04] does.
The real experiment is a real execution of a protocol. For T ∈ N, the output

of our real experiment is (Y A
[1,T ], Y

B
[1,T ],K

A
[1,T+1],K

B
[1,T+1], P[1,T ], ST , X[T+1,∞)),

with each component defined above. The ideal experiment is a simulated execu-
tion of the protocol in an ideal setting that guarantees security.
In our ideal experiment, for each t ∈ [T ], we choose a uniform one-time

pad Yt
R
← {0, 1}

m
, and set Y A

t = Y B
t = Yt. Similarly, for each t ∈ [T + 1],

we choose a uniform key Kt
R
← {0, 1}

d
, and set KA

t = KB
t = Kt. Thus, in

the output of the ideal experiment, each of Y[1,T ] and Y[1,T+1] is uniformly and
independently chosen, and further each Yt and Kt are replicated twice to simulate
Y A
t , Y B

t and KA
t ,KB

t respectively, as if there is no recovery error. Hence proving
security amounts to proving that the outputs of the real and ideal experiments
are indistinguishable.
We now precisely define the real and ideal experiments. For both experiments,

letX1, X2, . . . be the public random source, letK1
R
← {0, 1}

d
be the initial shared

key, let KA
1 = KB

1 = K1, S0 = 0
βN , and let A be the adversary’s algorithm.

Real Experiment:

– For t = 1, . . . , T : On xt
R
← Xt:

Let (xA
t , xB

t ) = A(xt, Y
A
[1,t−1], Y

B
[1,t−1],K

A
[1,t−1],K

B
[1,t−1], P[1,t−1], St−1), where

∆(xA
t , xt) ≤ δN and ∆(xB

t , xt) ≤ δN . In this step we allow A to be un-
bounded in both time and space.
Let ((Y A

t ,KA
t+1), Pt) = EXT(x

A
t ,KA

t ), and (Y
B
t ,KB

t+1) = REC(x
B
t ,KB

t , Pt).

Let St = A(x
A
t , xB

t , Y A
[1,t−1], Y

B
[1,t−1],K

A
[1,t−1],K

B
[1,t−1], P[1,t−1], St−1) ∈ {0, 1}

βN
.

– Output Zreal
T = (Y A

[1,T ], Y
B
[1,T ],K

A
[1,T+1],K

B
[1,T+1], P[1,T ], ST , X[T+1,∞)).



Ideal Experiment:

– For t = 1, . . . , T : On xt
R
← Xt:

Let (xA
t , xB

t ) = A(xt, Y[1,t−1], Y[1,t−1],K[1,t−1],K[1,t−1], P[1,t−1], St−1), where
∆(xA

t , xt) ≤ δN and ∆(xB
t , xt) ≤ δN .

Let ((Ỹt, K̃t+1), Pt) = EXT(X
A
t ,Kt).

Choose uniformly and independently Yt
R
← {0, 1}

m
and Kt+1

R
← {0, 1}

d
.

Let St = A(x
A
t , xB

t , Y[1,t−1], Y[1,t−1],K[1,t−1],K[1,t−1], P[1,t−1], St−1) ∈ {0, 1}
βN
.

– Output Z ideal
T = (Y[1,T ], Y[1,T ],K[1,T+1],K[1,T+1], P[1,T ], ST , X[T+1,∞)).

Notation: From now on, we denote by XA
t and XB

t the induced sources at time
t as perceived by Alice and Bob after errors are introduced to Xt.

Definition 4. A BSM randomness extraction scheme (EXT,REC) is ε-secure
for storage rate β, entropy rate α, and error rate δ if for every two-way block
source (Xt) of entropy rate α, every adversary A with storage rate β, every
means to introduce a δ-fraction of errors to the source (Xt), and every T ∈ N,
SD(Zreal

T , Z ideal
T ) ≤ T · ε, where Zreal

T and Z ideal
T are the outputs of the Real and

Ideal Experiments respectively.

We say that (EXT,REC) is t-local if for every key K ∈ {0, 1}
d
, both the extrac-

tion scheme EXT(x,K) and its recovery algorithm REC(x′,K, P ) depend on
only t-bits of x and x′ respectively, whose positions are completely determined
by the key K.

We refer readers to the remarks after Definition 3.2 of [Vad04] for a discussion
on the definition of everlasting security in the errorless model, which apply to
the model with errors as well. Below are some more remarks that are important.

Remarks:

– A reader may notice that we have not explicitly defined the error cor-
rection property of a BSM randomness extraction scheme. However, by a
careful inspection, it is not hard to see that the security property as de-
fined in Definition 4 implies error correction. That is, if (EXT,REC) is
ε-secure, then for every two-way block source (Xt) of entropy rate α, for
error rate δ, and every T ∈ N, the probability of a single recovery er-
ror in the first T time periods in the Real Experiment, is at most Tε.
More precisely, with probability at least 1 − Tε (over the source (Xt) and

the initial common key K1
R
← {0, 1}

d
), we have that for each t ∈ [T ],

(Y A
t ,KA

t+1) = (Y B
t ,KB

t+1), where ((Y
A
t ,KA

t+1), Pt) = EXT(XA
t ,KA

t ), and
(Y B

t ,KB
t+1) = REC(X

B
t ,KB

t , Pt). This is because in the output Z
ideal
T of the

Ideal Experiment, each Yt and Kt are replicated twice. Thus if the probabil-
ity of a recovery error in the first T time periods in the Real Experiment
is greater than Tε, then the distinguisher that simply compares the corre-
sponding components of the two inputs, and outputs 1 if and only if they are
the same, distinguishes between Zreal

T and Z ideal
T with an advantage greater

than Tε, contradicting the ε-security of (EXT,REC).



– From Definition 4, it is clear that the output Yt of an error-resilient BSM
extraction scheme can be used in place of a truly random string at time t
for general cryptographic purposes. In particular, using each Yt as a one-
time pad for time t, such an extraction scheme yields an error-resilient BSM
private-key encryption scheme secure against chosen plaintext attacks and
chosen ciphertext attacks (c.f. [NY90]), with a small decryption error.

4 Local Fuzzy Extractors and BSM Extraction

In this section, we construct local fuzzy extractors and error-resilient BSM ran-
domness extraction schemes.

4.1 Local Fuzzy Extractors

First we define fuzzy extractors, which were recently introduced by Dodis, Reyzin
and Smith [DRS04]. We slightly modify the original definition in [DRS04] to suit
our application.

Definition 5 ([DRS04] - modified). A (k, ε, δ, γ)-fuzzy extractor is a pair

FE = (EXT,REC) of algorithms, where EXT : {0, 1}
n
× {0, 1}

d
→ {0, 1}

m
×

{0, 1}
`
is an extraction algorithm and REC : {0, 1}

n
×{0, 1}

d
×{0, 1}

`
→ {0, 1}

m

is a recovery algorithm satisfying

– (Security) For every k-source X, (K,Y, P ) is ε-close to (K,Um, P ), where

(Y, P ) = EXT(X,K), K
R
← {0, 1}

d
is a uniformly chosen seed independent

of X, and Um is independent of K and P .
– (Recovery) For every x, x′ ∈ {0, 1}

n
with ∆(x, x′) ≤ δn, Pr[REC(x′,K, P ) =

Y ] ≥ 1 − γ, where (Y, P ) = EXT(x,K), and the probability is taken over

K
R
← {0, 1}

d
.

A fuzzy extractor FE = (EXT,REC) is t-local if for every seed r ∈ {0, 1}
d
, both

the extraction algorithm EXT(x, r) and the recovery algorithm REC(x′, r, p)
depend on only t-bits of x and x′ respectively, whose positions are completely
determined by the seed r.

4.2 Error-Resilient BSM Extraction from Local Fuzzy Extractors

The following main theorem of this paper states that any t-local fuzzy extractor
yields a t-local error-resilient BSM randomness extraction scheme.

Theorem 1. For every t ∈ N, if LFE = (EXT,REC) is a t-local (k, ε, 2δ, γ)-

fuzzy extractor for γ < 1/2 and k = (α− β −H(δ))N − log (1/ε), where H(δ)
∆
=

−δ log δ − (1 − δ) log (1− δ) is the binary entropy function, and EXT is of the

form EXT : {0, 1}
N
× {0, 1}

d
→ {0, 1}

m+d
× {0, 1}

`
, then LFE is a t-local

4(ε+ γ)-secure BSM randomness extraction scheme for storage rate β, entropy
rate α, and error rate δ.



Proof. (Sketch) Let LFE = (EXT,REC) be a (k, ε, 2δ, γ)-fuzzy extractor where
k = (α − β − H(δ))N − log (1/ε), γ < 1/2, and EXT is of the form EXT :

{0, 1}
N
× {0, 1}

d
→ {0, 1}

m+d
× {0, 1}

`
. We prove the theorem by induction on

T . The proof builds on the framework developed in [Vad04,Lu04].
As in [Vad04], we use superscripts to distinguish between random variables in

the Real Experiment and the Ideal Experiment, e.g. Kreal
t vs. K ideal

t . We prove
by induction on T that for every T , the random variable

Zreal
T = (Y A

[1,T ], Y
B
[1,T ],K

A
[1,T+1],K

B
[1,T+1], P

real
[1,T ], S

real
T , X[T+1,∞))

is T · 4(ε+ γ)-close to

Z ideal
T = (Y ideal

[1,T ] , Y
ideal
[1,T ] ,K

ideal
[1,T+1],K

ideal
[1,T+1], P

ideal
[1,T ] , S

ideal
T , X[T+1,∞)),

where Zreal
T and Z ideal

T are the output of the Real Experiment and the Ideal
Experiment respectively.

Recall that for each t, Y ideal
t ≡ U

(t)
m and K ideal

t ≡ U
(t)
d , where U

(t)
m (resp.

U
(t)
d ) is an independent copy of Ud (resp. Um). Note again that each Y ideal

t and
K ideal

t are replicated twice in Z ideal
T .

As the induction hypothesis, suppose that Zreal
T−1 and Z ideal

T−1 are (T − 1) ·

4(ε + γ)-close. It follows from the definition of the Real Experiment that Z real
T

is obtained from Zreal
T−1 by applying the function fT that:

– Computes
(XA

T , XB
T ) = A(XT , Y

A
[1,T−1], Y

B
[1,T−1],K

A
[1,T−1],K

B
[1,T−1], P

real
[1,T−1], S

real
T−1),

where ∆(XA
T , XT ) ≤ δN and ∆(XB

T , XT ) ≤ δN .
– Computes ((Y A

T ,KA
T+1), P

real
T ) = EXT(XA

T ,KA
T ),

and (Y B
T ,KB

T+1) = REC(X
B
T ,KB

T , P real
T ).

– Updates state
Sreal
T = A(XA

T , XB
T , Y A

[1,T−1], Y
B
[1,T−1],K

A
[1,T−1],K

B
[1,T−1], P

real
[1,T−1], S

real
T−1) ∈ {0, 1}

βN
.

– Removes XT .
– Outputs Zreal

T = (Y A
[1,T ], Y

B
[1,T ],K

A
[1,T+1],K

B
[1,T+1], P

real
[1,T ], S

real
T , X[T+1,∞)).

Applying the same function fT to Z
ideal
T−1 , we get the random variable fT (Z

ideal
T−1 )

as follows:

– Let (XA
T , XB

T ) = A(XT , Y
ideal
[1,T−1], Y

ideal
[1,T−1],K

ideal
[1,T−1],K

ideal
[1,T−1], P

ideal
[1,T−1], S

ideal
T−1 ),

where ∆(XA
T , XT ) ≤ δN and ∆(XB

T , XT ) ≤ δN .
– Let ((Ỹ A

T , K̃A
T+1), P

ideal
T ) = EXT(XA

T ,K ideal
T ),

and (Ỹ B
T , K̃B

T+1) = REC(X
B
T ,K ideal

T , P ideal
T ).

– Update state Sideal
T =

A(XA
T , XB

T , Y ideal
[1,T−1], Y

ideal
[1,T−1],K

ideal
[1,T−1],K

ideal
[1,T−1], P

ideal
[1,T−1], S

ideal
T−1 ) ∈ {0, 1}

βN
.

– Remove XT .
– Output f(Z ideal

T−1 ) =

(Y ideal
[1,T−1], Ỹ

A
T , Y ideal

[1,T−1], Ỹ
B
T ,K ideal

[1,T ] , K̃
A
T+1,K

ideal
[1,T ] , K̃

B
T+1, P

ideal
[1,T ] , S

ideal
T , X[T+1,∞)).



Therefore the only places where f(Z ideal
T−1 ) and Z ideal

T differ are Y ideal
T vs. Ỹ A

T ,

Y ideal
T vs. Ỹ B

T , K
ideal
T+1 vs. K̃

A
T+1, and K ideal

T+1 vs. K̃
B
T+1.

Since Zreal
T = fT (Z

real
T−1), and SD(Z

real
T−1, Z

ideal
T−1 ) ≤ (T − 1) · 4(ε+ γ), by basic

properties of statistical distance, we have

SD(Zreal
T , Z ideal

T ) = SD(fT (Z
real
T−1), Z

ideal
T )

≤ SD(fT (Z
real
T−1), fT (Z

ideal
T−1 )) + SD(fT (Z

ideal
T−1 ), Z

ideal
T )

≤ SD(Zreal
T−1, Z

ideal
T−1 ) + SD(fT (Z

ideal
T−1 ), Z

ideal
T )

≤ (T − 1) · 4(ε+ γ) + SD(fT (Z
ideal
T−1 ), Z

ideal
T ).

Thus to prove that SD(Zreal
T , Z ideal

T ) ≤ T · 4(ε + γ), it suffices to show that
SD(fT (Z

ideal
T−1 ), Z

ideal
T ) ≤ 4(ε+ γ).

Let
Z ′T

∆
= fT (Z

ideal
T−1 )\(Ỹ

B
T , K̃B

T+1),

that is, obtained from fT (Z
ideal
T−1 ) by removing Ỹ B

T and K̃B
T+1. Let

Z ′′T
∆
= (Y ideal

[1,T ] , Y
ideal
[1,T−1],K

ideal
[1,T+1],K

ideal
[1,T ] , P

ideal
[1,T ] , S

ideal
T , X[T+1,∞])

be obtained from Z ideal
T by the same procedure, that is, by removing the second

Y ideal
T and the second K ideal

T+1 from Z ideal
T . Thus, Z ′T and Z ′′T are respectively

fT (Z
ideal
T−1 ) and Z ideal

T without simulating Bob’s recovery of (Y B
T ,KB

T+1), and the

only places where Z ′T and Z ′′T differ are Y ideal
T vs. Ỹ A

T , and K ideal
T+1 vs. K̃

A
T+1.

The next basic fact, which follows from simple counting, states that if a
source X has “sufficient” entropy, and if a source X ′ is obtained from X by
changing at most a δ fraction of bits in each x← X, then as long as δ is not too
large, X ′ still has sufficient entropy.

Proposition 1. Let δ and α satisfy 0 ≤ δ < 1/2 and H(δ) < α ≤ 1, where H(·)

is the binary entropy function. If X is an αN -source taking values in {0, 1}
N
,

and source X ′ is obtained from X by changing at most δN bits of each x← X,
then X ′ is a (α−H(δ))N -source.

By Proposition 1 and the two-way block structure of (Xt), we have

Corollary 1. For each t, the random variable XA
t , conditioned on all other Xt′

for t′ 6= t, has entropy rate at least α−H(δ).

The following technical claims follow by manipulating statistical distance and
weak random sources.

Claim 1 SD(Z ′T , Z
′′
T ) ≤ 2ε.

The proof of Claim 1 is similar to the reasoning in the proof of Lemma 3.3 of
[Vad04]. Claim 1 follows from Corollary 1, the definition of the Ideal Experiment,
the security property of a local fuzzy extractor, and basic properties of statistical
distance and weak random sources.

Let ST denote the event that (Ỹ
A
T , K̃A

T+1) = (Ỹ
B
T , K̃B

T+1), i.e. the event of
correct recovery at time T in the Ideal Experiment.



Claim 2 Pr [ST ] ≥ 1− γ.

Claim 2 follows from the definition of the Ideal Experiment, and the recovery
property of a local fuzzy extractor. The next claim follows from Claims 1 and 2,
as well as basic properties of statistical distance.

Claim 3 SD(fT (Z
ideal
T−1 )|ST

, Z ideal
T |ST

) < 4ε+ 2γ.

Therefore by Claims 2 and 3, and basic properties of statistical distance,

SD(fT (Z
ideal
T−1 ), Z

ideal
T ) < 4ε+ 2γ + γ = 4ε+ 3γ < 4 · (ε+ γ),

and the theorem follows.

4.3 Construction of Local Fuzzy Extractors

In this section we construct a local fuzzy extractor from any given averaging
sampler and fuzzy extractor.

Averaging Samplers. Averaging samplers are procedures that approximate the
average of a [0, 1]-function by taking the average of the function evaluated at
sampled points determined by a random seed. We adopt the following variant of
definition in [Vad04] that makes the dependence on µ explicit.

Definition 6 ([BR94,Vad04]). A function Samp : {0, 1}
r
→ [n]t is a (µ, θ, γ)-

averaging sampler if for every function f : [n] → [0, 1] with average value µ =
1
n
·
∑n

i=1 f(i) ≥ µ,

Pr
(i1,...,it)←Samp(Ur)


1
t
·

t∑

j=1

f(ij) < µ− θ


 ≤ γ. (1)

Samp has distinct samples if for every x ∈ {0, 1}
r
, Samp(x) produces t distinct

samples.

The following result, analogous to Theorem 6.3 of [Vad04], states that com-
bining an averaging sampler and a fuzzy extractor scheme yields a local fuzzy
extractor.

Theorem 2. Let α, τ, δ, θ > 0 be constants satisfying relations τ < α/3 and
θ = τ/ log (1/τ) < 1 − δ. Let Samp : {0, 1}

r
→ [n]t be a (µ, θ, γ)-averaging

sampler with distinct samples with µ = min {(α− 2τ)/ log (1/τ), 1− δ}, and let
FE = (Ext,Rec) be a ((α − 3τ)t, ε, δ + θ, γ ′)-fuzzy extractor, where Ext is of

the form Ext : {0, 1}
t
× {0, 1}

d
→ {0, 1}

m
× {0, 1}

`
. Define EXT : {0, 1}

n
×

{0, 1}
r+d
→ {0, 1}

m
× {0, 1}

`
as

EXT(x, (k1, k2))
∆
= Ext(xSamp(k1), k2),

and define REC : {0, 1}
n
× {0, 1}

r+d
× {0, 1}

`
→ {0, 1}

m
as

REC(x′, (k1, k2), p)
∆
= Rec(x′Samp(k1)

, k2, p).

Then (EXT,REC) is a t-local (αn, ε+2 · (γ+2−Ω(τn)), δ, γ+γ′)-fuzzy extractor.



4.4 Construction of the Underlying Fuzzy Extractor

In this section, we describe a construction of (non-local) fuzzy extractors from
any given strong extractor and linear error correcting code with an efficient
syndrome decoding algorithm. The underlying ideas in the construction have
already been used in information reconciliation and privacy amplification (c.f.
[BBR88,BS93,BBCM95,CM97a]). This construction also appears in [DRS04].

Randomness Extractor. Randomness extractors are functions that extract near
perfect randomness from imperfect random sources using a short random seed.
An extractor is strong if its output remains near uniform even if the seed is given.

Definition 7 ([NZ96]). A function Ext : {0, 1}
n
× {0, 1}

d
→ {0, 1}

m
is a

strong (k, ε)-extractor if for every k-source X, (Ud,Ext(X,Ud)) is ε-close to
(Ud, Um).

Syndrome Decoding. We quickly review syndrome decoding of a linear error
correcting code. Background and details on error correcting codes can be found
in standard texts (e.g. [vL99]). Let C : {0, 1}

k
→ {0, 1}

n
be a linear code over

F2 with minimum distance at least 2d+1. Let H be the (n−k)×n parity check

matrix of C. For x ∈ {0, 1}
n
, the syndrome of x is defined as SynC(x)

∆
= Hx. It

is clear that for any codeword y ∈ C and any e ∈ {0, 1}
n
, SynC(y⊕e) = SynC(e),

as H(y ⊕ e) = Hy ⊕ He = He. It is not hard to see that for any e ∈ {0, 1}
n

with wt(e) ≤ d, for every r ∈ {0, 1}
n
such that SynC(r) = SynC(e), we have

wt(r) > d ≥ wt(e). Hence for any e ∈ {0, 1}
n
with wt(e) ≤ d, e is the unique

(minimum-weight) vector whose syndrome is SynC(e) and whose weight is at
most d. A syndrome decoder for C that decodes up to d errors is an algorithm
D that for every error pattern e ∈ {0, 1}

n
with wt(e) ≤ d, on input SynC(e),

outputs D(SynC(e)) = e. It is well known that any decoder for a linear code can
be converted to a syndrome decoder.
As an important application, syndrome decoding yields a communication

efficient protocol for recovering a string x held by a remote party, using a string
y that is sufficiently close to x in Hamming distance. Suppose Alice holds x ∈
{0, 1}

n
, Bob holds y ∈ {0, 1}

n
, and ∆(x, y) ≤ d. Let C : {0, 1}

k
→ {0, 1}

n
be

a linear code over F2 with minimum distance at least 2d + 1, and an efficient
syndrome decoding algorithm D that decodes up to d errors. In order for Bob
to recover x,

1. Alice sends SynC(x) to Bob.
2. Bob computes s = SynC(x) ⊕ SynC(y) = SynC(x ⊕ y). Since ∆(x, y) ≤ d,
wt(x⊕ y) ≤ d.

3. Bob then decodes x⊕ y = D(s), and recovers x = x⊕ y ⊕ y.

Thus Alice sends only |SynC(x)| = n− k bits, as opposed to n bits, to Bob. The
correctness of the protocol follows from the correctness of the syndrome decoder
D: For any x, y ∈ {0, 1}

n
such that ∆(x, y) ≤ d, wt(x⊕ y) = ∆(x, y) ≤ d. Thus

D(SynC(x⊕ y)) = x⊕ y, and correct recovery follows.
We use Rep(D, p, y) to denote Bob’s algorithm in Steps 2 and 3 above, i.e.

on input s and y, Rep(D, p, y) computes s = p⊕SynC(y), and outputs D(s)⊕y.



Syndrome-Based Fuzzy Extractor. This communication efficient recovery pro-
tocol above suggests the following fuzzy extractor construction. We adopt an
unconventional terminology and say that a code C : {0, 1}

ρn
→ {0, 1}

n
of rate

ρ is a (n, ρ, δ)-code if it has minimum distance at least 2δn+ 1.

Lemma 1. Let C : {0, 1}
ρn
→ {0, 1}

n
be a linear (n, ρ, δ)-code with an efficient

syndrome decoder D that decodes up to δn errors. Let Ext : {0, 1}
n
× {0, 1}

d
→

{0, 1}
m
be a strong (k′, ε)-extractor, where k′ = k− (1− ρ)n− log (1/ε′). Define

EXT : {0, 1}
n
× {0, 1}

d
→ {0, 1}

m
× {0, 1}

(1−ρ)n
as

EXT(x,K)
∆
= (Ext(x,K),SynC(x)),

and define

REC(x′,K, p)
∆
= Ext(Rep(D, p, x′),K),

where Rep(., ., .) is defined above. Then FE = (EXT,REC) is a (k, ε + ε′, δ, 0)-
fuzzy extractor.

4.5 Choice of Ingredients

Averaging Sampler. We use the averaging sampler of Vadhan [Vad04] that is
near optimal in both randomness and sample complexity for constant µ and θ.

Theorem 3 ([Vad04]). For every n ∈ N, 1 > µ > θ > 0, γ > 0, there is an
explicit (µ, θ, γ)-averaging sampler Samp : {0, 1}

r
→ [n]t that uses

– t distinct samples for any t ∈
[
O( 1

θ2 · log
1
γ
), n

]
;

– r = log n
t
+ log 1

γ
· poly( 1

θ
) random bits.

Strong Extractor. We use the near optimal extractor of Zuckerman [Zuc97] for
constant entropy rate.

Theorem 4 ([Zuc97]). For every constant α, ν > 0, for every n, and every ε >
exp

(
−n/2O(log∗ n)

)
, there is an explicit strong (αn, ε)-extractor Ext : {0, 1}

n
×

{0, 1}
d
→ {0, 1}

m
with d = O(log n+ log 1

ε
) and m = (1− ν) · αn.

Linear Code. We need an asymptotically good linear code with rate close to 1
and with an efficient syndrome decoder. Explicit constructions of such codes are
well known. In particular, it has been shown in [CRVW02] that the expander
codes of Sipser and Spielman [SS96], using a lossless expander of [CRVW02],
achieve a constant rate ρ that is arbitrarily close to 1, and a constant δ < 1.

Lemma 2 ([SS96,CRVW02]). For every constant ρ < 1 and every n ∈ N,
there is an explicit linear (n, ρ, δ(ρ))-code C : {0, 1}

ρn
→ {0, 1}

n
, where δ = δ(ρ)

is a constant (depending on ρ). Further, C has a linear time syndrome decoder
that decodes up to δn errors.



4.6 Putting Pieces Together.

In this section, we put all pieces together to yield our final local fuzzy extractor
and BSM randomness extraction scheme. First as a corollary of Lemmas 1 and
2, and Theorem 4, we have our final (non-local) fuzzy extractor.

Lemma 3. For every constant 1 ≥ α, γ, ν > 0, there is a constant δ > 0 such
that for every sufficiently large n ∈ N, and every ε > exp

(
−n/2O(log∗ n)

)
, there

is an explicit (αn, ε, δ, 0)-fuzzy extractor (EXT,REC), where EXT is of the form

EXT : {0, 1}
n
× {0, 1}

d
→ {0, 1}

m
× {0, 1}

`
, with

– d = O(log n+ log (1/ε)),

– m = (1− ν)αn, and

– ` ≤ γm.

Next, plugging into Theorem 2 the averaging sampler of Theorem 3 and the
fuzzy extractor of Lemma 3, we have our final local fuzzy extractor.

Theorem 5. For every constant 1 ≥ α, γ, ν > 0, there is a constant δ such that
for every sufficiently large N ∈ N, ε > exp

(
−m/2O(log∗ m)

)
, and m ≤ (1−ν)αN ,

there is an explicit t-local (αN, ε, δ, ε)-fuzzy extractor FE = (EXT,REC), where

EXT is of the form EXT : {0, 1}
N
× {0, 1}

d
→ {0, 1}

m
× {0, 1}

`
, with

– seed length d = logN +O(logm+ log (1/ε)),

– sample size t = (1 + ν)m/α, and

– fingerprint length ` ≤ γm.

Theorem 5 is the “fuzzy” analogue of Theorem 8.5 of [Vad04]. The seed length
and sample complexity (i.e. the value of t) of our local fuzzy extractor match
those of Vadhan’s (non-fuzzy) local extractor [Vad04], and thus are optimal up
to constant factors.

Finally as a corollary of Theorem 1 and Theorem 5, we have

Theorem 6. For every constant α > 0, β < α, γ > 0, and ν > 0, there
is a constant δ such that for every sufficiently large N ∈ N, sufficiently large
m ≤ (1− ν)(α− β −H(δ))N , and ε > exp

(
−m/2O(log∗ m)

)
, there is an explicit

ε-secure t-local BSM randomness extraction scheme (EXT,REC) for storage rate

β, entropy rate α, and error rate δ, where EXT is of the form EXT : {0, 1}
N
×

{0, 1}
d
→ {0, 1}

m+d
× {0, 1}

`
, with

– key length d = logN +O(logm+ log (1/ε)),

– sample size t = (1 + ν)m/α′, where α′ = α− β −H(δ), and

– fingerprint length ` ≤ γm.



5 Conclusion

We initiate a study of the bounded storage with errors from the public random
source that cause parties to have inconsistent view of the source. We provide a
general paradigm for constructing error-resilient BSM cryptosystems based on
averaging samplers and fuzzy extractors. By proper choice and construction of
the underlying building blocks, our general paradigm yields BSM cryptosystems
that tolerate a constant fraction of errors, attain near optimal key length and
sample complexity (i.e. the number of bits read from the source), and incur
a very small communication overhead. It is interesting to study whether the
communication overhead can be further reduced.

The recovery property of our local fuzzy extractor can be further improved
by taking advantage of the shared randomness between the extraction and the
recovery algorithms. By the method of [Lan04], a local fuzzy extractor can be
based on any explicit and list decodable (as opposed to uniquely decodable)
asymptotically good linear code with rate arbitrarily close to 1, while the seed
length increases by only O(log t + log 1/γ) bits, where t is the number of bits
read from the source, and γ is the recovery error.

Our general paradigm also yields efficient error-resilient message authentica-
tion codes (MAC) in the bounded storage model. By combining the BSM extrac-
tion scheme of Theorem 6 and an efficient information-theoretically secure MAC
(c.f. that of Krawczyk [Kra95]), we obtain an efficient error-resilient BSM MAC
that is secure against chosen message attacks [GMR89]. Our paradigm can also
be used to construct efficient error-resilient protocols for other cryptographic
primitives, such as oblivious transfer and key agreement in the bounded storage
model. We leave details to the full version.

Our cryptosystems are stateful. That is, our cryptosystems do not reuse the
key, but instead update the key in a forward-secure manner. It is an interesting
open problem to construct a stateless error-resilient BSM cryptosystem with a
reusable key that matches the near optimal parameters achieved by the stateful
construction. One promising approach is to derandomize the construction of
entropically secure fuzzy extractors in [Smi04].

Another interesting open problem is to construct efficient local fuzzy extrac-
tors for other natural metrics, such as editing distance, where the sample-then-
extract paradigm fails.
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