
On the Complexity of Parallel Hardness
Amplification for One-Way Functions

Chi-Jen Lu

Institute of Information Science, Academia Sinica, Taipei, Taiwan
cjlu@iis.sinica.edu.tw

Abstract. We prove complexity lower bounds for the tasks of hardness
amplification of one-way functions and construction of pseudo-random
generators from one-way functions, which are realized non-adaptively in
black-box ways.
First, we consider the task of converting a one-way function f : {0, 1}n →
{0, 1}m into a harder one-way function f̄ : {0, 1}n̄ → {0, 1}m̄, with
n̄, m̄ ≤ poly(n), in a black-box way. The hardness is measured as the
fraction of inputs any polynomial-size circuit must fail to invert. We
show that to use a constant-depth circuit to amplify hardness beyond
a polynomial factor, its size must exceed 2poly(n), and to amplify hard-

ness beyond a 2o(n) factor, its size must exceed 22o(n)
. Moreover, for a

constant-depth circuit to amplify hardness beyond an n1+o(1) factor in

a security preserving way (with n̄ = O(n)), it size must exceed 2no(1)
.

Next, we show that if a constant-depth polynomial-size circuit can am-
plify hardness beyond a polynomial factor in a weakly black-box way,
then it must basically embed a hard function in itself. In fact, one can de-
rive from such an amplification procedure a highly parallel one-way func-
tion, which is computable by an NC0 circuit (constant-depth polynomial-
size circuit with bounded fan-in gates).
Finally, we consider the task of constructing a pseudo-random generator
G : {0, 1}n̄ → {0, 1}m̄ from a strongly one-way function f : {0, 1}n →
{0, 1}m in a black-box way. We show that any such a construction realized

by a constant-depth 2no(1)
-size circuit can only have a sublinear stretch

(with m̄− n̄ = o(n̄)).

1 Introduction

One of the most fundamental notions in cryptography is that of one-way func-
tions. Informally speaking, a one-way function is a function which is easy to
compute but hard to invert. The adversaries we consider here are polynomial-
size circuits, which are non-uniform versions of polynomial-time algorithms. We
measure the hardness of a one-way function as the fraction of n-bit inputs on
which such adversaries must fail to invert. A one-way function with hardness
larger than 1− 1/poly(n) is called a strongly one-way function, which is known
to be sufficient for building a large number of cryptographical primitives. Can we
further weaken the hardness assumption? Can we start from a one-way function

which is only hard to invert in a worst-case sense (with hardness 2−n)? This has
been a long-standing open problem in cryptography.

It is known that one can start from a weakly one-way function, a one-way
function with hardness at least 1/poly(n). The transformation from a weakly
one-way function to a strongly one-way function was first discovered by Yao [21],
using the so-called direct product approach. The direct product approach has the
advantage of being extremely simple and highly parallel. However, the drawback
is that it blows up the input length and thus degrades the security (the hardness
of the new function is now measured against much smaller circuits). Ideally, one
would like to have a security preserving hardness amplification, in which the
new function’s input length is only increased by a constant factor. Goldreich et
al. [7] gave the first security preserving hardness amplification which transforms
any weakly one-way permutation to a strongly one-way permutation of the same
input length. Their approach is based on taking random walks on expander
graphs and is much more involved than the direct product approach. Moreover,
the transformation requires a higher complexity and seems sequential in nature.
Therefore, even if the initial function can be evaluated efficiently in parallel, it is
not clear if the resulting function will be so. This raises the following question:
can a security preserving hardness amplification be carried out in parallel or in
a low complexity class?

Another fundamental primitive in cryptography is pseudo-random genera-
tor, which stretches a short random seed into a longer random-looking string.
A celebrated result due to H̊astad et al. shows that a pseudo-random generator
can be constructed from any strongly one-way function [9]. A crucial parame-
ter of a pseudo-random generator G : {0, 1}r → {0, 1}r+s is its stretch s. In
several cryptographical applications, we need the stretch to be at least linear.
The pseudo-random generator construction in [9] only has a sublinear stretch.
In particular, the hard-core function approach can only extract O(log n) pseudo-
random bits from a one-way function. Given a pseudo-random generator of sub-
linear stretch, one can increase the stretch to linear, but the known construction
appears inherently sequential. In [20], Viola asked the question: can the construc-
tion of pseudo-random generators with linear stretch from one-way functions be
realized efficiently in parallel?

In fact, a more general question is: can cryptographic constructions (or re-
ductions) be realized in a low complexity class? Very little is known for the
questions we raised above. For the task of hardness amplifications and pseudo-
random generator constructions, there has been no success in realizing them in a
low complexity class. Could they be impossible tasks? We would like to say so by
showing that they basically all require a high complexity. However, it is not clear
what this means. For example, suppose there indeed exists a strongly one-way
function computed by a low-complexity procedure, then it gives a trivial hard-
ness amplification procedure of low complexity: just ignore the initial weakly
one-way function and compute the strongly one-way function from scratch.

Black-Box Constructions. One important paradigm of cryptographic construc-
tions is the so-called black-box constructions [12], in which one cryptographic

primitive is used as a black box to construct another cryptographic primitive.
Call a hardness amplification for one-way functions a black-box one if the fol-
lowing two conditions hold. First, the initial function f is given as a black-box
to construct the new function f̄ . That is, there is an oracle algorithm Amp such
that f̄ = Ampf , so f̄ only uses f as an oracle and does not depend on the
internal structure of f . Second, the hardness of the new function f̄ is proved
in a black-box way. That is, there is an oracle Turing machine Dec, such that
given any A breaking the hardness of f̄ , Dec using A as an oracle can break
the hardness of f . Again, Dec only uses A as an oracle and does not depend
on the internal structure of A. We assume that the procedure Dec makes only
a polynomial number of queries to the oracle, and we will study the complexity
needed to realize the procedure Amp. In fact, all previous hardness amplification
results (and almost all cryptographic reductions) were done in such a black-box
way, so it is important to understand its limitation.

A hardness amplification is called a weakly black-box one if only the first
condition above is required while the second is dropped, namely, without requir-
ing the hardness of the new one-way function to be guaranteed in a black-box
way. Note that it seems difficult to obtain negative results for weakly black-box
constructions, because one could always build the function f̄ from scratch if it
exists (without relying on the function f). Therefore, showing that this is indeed
the case is usually the best one could expect.

Similarly, one can also define the notion of black-box construction of pseudo-
random generators from one-way functions.

Previous Lower Bound Results. Lin, Trevisan, and Wee [14] provided complexity
lower bounds for black-box hardness amplification of one-way functions. They
showed that to amplify a δ-hard function to an (1− ε)-hard function in a black-
box way, the procedure Amp must make q = Ω((1/δ) log(1/ε)) queries to the
oracle, and the resulting new function must have an input length longer than that
of the initial function by Ω(log(1/ε)) − O(log q) bits. They also showed that if
there exists a weakly black-box transformation from a δ-hard permutation to an
(1− ε)-hard permutation beating this lower bound, then one-way permutations
exist unconditionally.

Viola [20] provided a complexity lower bound for black-box construction of
pseudo-random generators from strongly one-way functions. He introduced the
notion of parallel black-box construction, in which the procedure Amp works
in the following way. Given an input x̄ ∈ {0, 1}n̄, Amp first generates non-
adaptive queries x1, . . . , xt ∈ {0, 1}n and an AC0 (constant-depth polynomial-
size) circuit A, then accesses the oracle f at these t places to obtain the values
y1 = f(x1), . . . , yt = f(xt), and finally computes the value A(y1, . . . , yt) as its
output. He then showed that if the procedure Amp is realized in this way, then
the resulting pseudo-random generator can only have a sublinear stretch.

In a different setting, Lu, Tsai, and Wu [15] considered the hardness of com-
puting Boolean functions instead of inverting one-way functions. They provided
complexity lower bounds for procedures which amplify this kind of hardness.

Our Results. We adopt Viola’s model [20] and consider hardness amplifications
and pseudo-random generator constructions realized in a parallel (non-adaptive)
way. Our first result shows that any black-box hardness amplification realized
by a low-complexity procedure can not increase the hardness substantially. More
precisely, consider any black-box hardness amplification which maps any ε-hard
function f : {0, 1}n → {0, 1}m to an ε̄-hard function f̄ : {0, 1}n̄ → {0, 1}m̄ with
n̄, m̄ ≤ poly(n). We show that a constant-depth circuit of 2poly(n) size cannot
amplify the hardness to any ε̄ > ε · poly(n), and a constant-depth circuit of
22o(n)

size cannot amplify the hardness to any ε̄ > ε · 2o(n). This implies that
a procedure in polynomial hierarchy (PH) cannot amplify hardness beyond a
polynomial factor, and an alternating Turing machine with constant alternations
and 2o(n) time (ATIME(O(1), 2o(n))) cannot amplify hardness beyond a 2o(n)

factor. As a result, a procedure in PH cannot transform a one-way function with
hardness lower than 1/poly(n) into a one-way function with constant hardness
(let alone a strongly one-way function), and a procedure in ATIME(O(1), 2o(n))
cannot transform a one-way function with worst-case hardness into a weakly
one-way function (let alone a strongly one-way function). Note that not only do
we rule out the possibility of using a polynomial-time procedure for doing such
hardness amplifications (as is usually hoped for in cryptography), we show that
even a procedure in a high complexity class, such as PH (or ATIME(O(1), 2o(n))),
can not do the job. This just demonstrates how difficult the task is. Moreover,
we show that to have n̄ = O(n), a constant-depth circuit of 2no(1)

size cannot
amplify the hardness to any ε̄ > ε · n1+o(1). This explains why the security
preserving hardness amplification procedures of [7, 4] are sequential while the
parallel hardness amplification procedure by direct product [21] blows up the
input length: they are all done in a black-box way.

Our second result shows that if a parallel weakly black-box hardness ampli-
fication can increase the hardness substantially, then it must basically embed a
one-way function in itself. More precisely, consider any weakly black-box hard-
ness amplification which maps any ε-hard function f : {0, 1}n → {0, 1}m to an
ε̄-hard function f̄ : {0, 1}n̄ → {0, 1}m̄. We show that if an AC0 circuit can amplify
the hardness to ε̄ >

√
ε ·poly(n), then one can derive from it a one-way function

computable in NC1 with hardness roughly ε̄. From [2], this implies the existence
of a one-way function computable in NC0. This is interesting in the following
sense. Consider one-way functions which are computed in polynomial time or
even in a higher complexity class. It is possible for a low-complexity procedure,
say in AC0, to amplify hardness for such functions, for example using the direct
product approach [21]. However, if it amplifies hardness beyond a polynomial
factor, we can derive from such an amplification procedure a one-way function
which is computable in NC0, an extremely low complexity class.

Our third result extends Viola’s lower bound for black-box constructions
of pseudo-random generators [20]. We show that any black-box construction
of pseudo-random generators from strongly one-way functions realized by a
constant-depth circuit can only have a sublinear stretch unless the circuit size is
exponential. This improves the super-polynomial lower bound of Viola [20].

Our Techniques. We follow the approach of Viola [20], which relies on the fact
that applying random restrictions on the input of AC0 circuits are likely to make
their output bits biased since such circuits are insensitive to noise on their input
[13, 3]. A similar idea was also used in [15]. However, since our setting is different,
we have different problems to solve.

Assume that an AC0 circuit can amplify hardness beyond a certain bound
(the idea can be generalized to a larger class of circuits). It is known that a
random function f is likely to be one-way. As shown in [20], it is still likely to be
so even with a random restriction ρ applied to its output bits, as long as ρ gives
each output bit the symbol ? (leave the bit free) at a rate above some threshold.
On the other hand, AC0 circuits are likely to become biased after applying a
random restriction on its input. As the rate of ? decreases, the effect a random f
on Ampf�ρ(x̄) becomes smaller, for any input x̄. If the rate of ? is small enough,
the functions Ampf�ρ ’s for most f become close to each other (agreeing with
each other on most inputs). As a result, they are close to some fixed function
(depending on ρ) which can then be used as an oracle to invert f�ρ. This would
lead to a contradiction, and we could conclude that such hardness amplification
cannot be realized by AC0 circuits.

However, there is an obstacle in front us. In order to guarantee that the
functions Ampf�ρ ’s for most f are close to each other, we need the random
restriction to give ? in a very low rate. Had we applied a conventional random
restriction, say from [5, 8] (as was done in [20]), we would end up having too
few free bits left in f(x) for almost every x, and consequently f�ρ would not be
one-way for most f . To overcome this problem, we would like the ?’s to appear
in a somewhat clustered fashion: for any x, either f(x) has no ? at all, or it has
a sufficient number of ?’s. This motivates us to consider a new kind of random
restriction (described in Section 3), and we show that it also makes the output
bits of AC0 circuits highly biased.

This new kind of random restriction also helps us improve the result of Viola.
In [20], a super-polynomial size lower bound was shown for black-box construc-
tions of pseudo-random generators from one-way functions. What prevents the
argument there from getting a better bound is exactly the same obstacle we just
discussed above. Namely, to guarantee f�ρ being one-way using a conventional
random restriction, the rate of ? cannot be too low, which fails to make the
output bits of larger circuits biased enough. With the help of our new random
restriction, we are able to overcome this problem and obtain an exponential
lower bound.

Another technical contribution of ours is in the derivation of one-way func-
tions from weakly black-box hardness amplification procedures. In the different
setting of Boolean functions, if a function f : {0, 1}n → {0, 1} agrees on most
inputs with a hard-to-compute function f ′ : {0, 1}n → {0, 1} (any adversary
fails to compute f ′ correctly on a large portion of inputs), then f itself must
also be hard enough, which can be proved in a black-box way. However, this does
not seem to be the case for one-way functions. That is, even though a function
f : {0, 1}n → {0, 1}m is close to a hard-to-invert function f ′ : {0, 1}n → {0, 1}m,

it is not clear if f itself must also be hard to invert. In fact, this cannot be proved
in a black-box way (more in Section 5). The technique in [14] faces the same
problem, and the result there is only on weakly hardness amplification which
produces one-way permutations, since the injective condition makes the problem
disappear. As we consider a more restricted type of hardness amplification, that
realizable in parallel, we are able overcome this difficulty and obtain results for
weakly hardness amplification which produces general one-way functions.

2 Preliminaries

For any n ∈ N, let [n] denote the set {1, 2, . . . , n} and let Un denote the uniform
distribution over the set {0, 1}n. When sampling from a finite set, the default
distribution we use is the uniform one. For a string x ∈ Σn, let xi, for i ∈ [n],
denote the entry in the i’th dimension of x, and let xI , for I ⊆ [n], denote the
substring of x which is the projection of x onto those dimensions in I.

We will consider functions computed by Boolean circuits of AND/OR/NOT
gates. Let NCi denote the class of functions computed by circuits of depth
O(logi n) and size poly(n) with bounded fan-in gates. Let AC(d, s) denote the
class of functions computed by circuits of depth d and size s with unbounded fan-
in gates. Let AC0(s) denote the class AC(O(1), s), and note that AC0(poly(n))
corresponds to the standard complexity class AC0. Let ATIME(d, t) denote the
class of functions computed by alternating Turing machines in time t with d
alternations. The class ATIME(O(1),poly(n)) corresponds to the polynomial-
time hierarchy PH. More information about complexity classes can be found in
standard textbooks, such as [18].

Next, we will introduce the notion of one-way functions and pseudo-random
generators. Informally speaking, a function is called a one-way function if it is
easy to compute but hard to invert. For a many-to-one function f , we say that
an algorithm M inverts f(x) if M(f(x)) is in the preimage of f(x), namely,
f(M(f(x))) = f(x). When we mention a function f : {0, 1}n → {0, 1}m, we
usually mean a sequence of functions (f : {0, 1}n → {0, 1}m(n))n∈N, and when
we make a statement about f , we usually mean that it holds for any sufficiently
large n ∈ N.

Definition 1. A function f : {0, 1}n → {0, 1}m is (n, m, ε)-hard, or ε-hard for
short, if for any polynomial-size circuit M , Prx∈Un

[
Mf fails to invert f(x)

]
≥

ε. A function f : {0, 1}n → {0, 1}m is an (n, m, ε)-OWF, or ε-OWF for short,
if it can be computed in polynomial time but is ε-hard to invert.

A pseudo-random generator is a function which stretches a short random
seed into a longer random-looking string.

Definition 2. A function M : {0, 1}m → {0, 1} ε-distinguishes a function g :
{0, 1}n → {0, 1}m if |Prx∈Un

[M(g(x)) = 1] − Pry∈Um
[M(y) = 1]| > ε. A

function g : {0, 1}n → {0, 1}m, with n < m, is an (n, m, ε)-PRG, or ε-PRG for
short, if it can be computed in polynomial time, but no polynomial-size circuit
can ε-distinguish g.

2.1 Black-Box Constructions

Next, we introduce the notion of black-box hardness amplification.

Definition 3. A black-box hardness amplification from (n, m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions consists of two oracle algorithms Amp and Dec sat-
isfying the following two conditions. First, for any f : {0, 1}n → {0, 1}m, Ampf

is a function from {0, 1}n̄ to {0, 1}m̄. Second, Dec makes at most poly(n) or-
acle queries, and for any f : {0, 1}n → {0, 1}m and M̄ : {0, 1}m̄ → {0, 1}n̄,
if Prx̄∈Un̄ [M̄ inverts Ampf (x̄)] > 1 − ε̄,1 then Prx∈Un [DecM̄,f inverts f(x)] >
1− ε.

Here the transformation of the initial function f into a harder function is
done in a black-box way, as the harder function Ampf only uses f as an oracle.
Furthermore, the hardness of Ampf is also guaranteed in a black-box way, in
the sense that any algorithm M̄ breaking the hardness condition of Ampf can
be used as an oracle for Dec to break the hardness condition of f . We call Amp
the encoding procedure and Dec the decoding procedure.

A weaker notion is the following weakly black-box hardness amplification, in
which only the encoding is required to be done in a black-box way.

Definition 4. A weakly black-box hardness amplification from (n, m, ε)-hard
functions to (n̄, m̄, ε̄)-hard functions consists of an oracle algorithm Amp such
that Ampf is (n̄, m̄, ε̄)-hard given any (n, m, ε)-hard function f .

Following [20], we consider the notion of parallel black-box hardness amplifi-
cation. In [20], only the case with d = O(1) and s ≤ poly(n) was considered, but
here we allow arbitrary d and s. This makes our impossibility results stronger,
since we rule out a larger class of hardness amplification procedures.

Definition 5. We say that a black-box hardness amplification is realized by
AC(d, s) if the following additional condition holds. Given any x̄ ∈ {0, 1}n̄, Amp
first produces an AC(d, s) circuit A and makes t ≤ poly(s) non-adaptive queries
x1, . . . , xt ∈ {0, 1}n to the oracle to obtain answers y1, . . . , yt ∈ {0, 1}m, and
then computes its output as A(y1, . . . , yt).

Note that x1, . . . , xt and A only depend on x̄ and are independent of the
oracle f . For the black-box case, no complexity constraint is placed on the part
of generating the queries and the circuit, which again makes our impossibility
results stronger. For the weakly black-box case, we need this part to be computed
by an AC(d, s) circuit too, since we want to derive from the procedure Amp an
efficiently computable one-way function. Similarly, one can define the notion of
black-box construction of pseudo-random generators from hard functions, which
is omitted here and can be found in [20].

1 Here we consider the case that M̄ does not query Ampf . This makes such hardness
amplification easier to find and our impossibility results stronger.

2.2 Limited Independence

A sequence of random variables is called k-wise independent if any k of them are
independent. It is well known that such a space can be sampled in a randomness-
efficient way.

Fact 1 Any k-wise independent random variables X1, . . . , XN ∈ V can be gen-
erated in polynomial time using a seed of length O(k(log N + log |V |)).

A sequence of variables is called (k, δ)-wise independent if any k of them
together has a statistical distance at most δ to the uniform distribution. We need
efficient constructions of such a space from [16, 1]. From this, we can obtain the
following, whose proof is omitted due to the space constraint.

Lemma 1. Suppose b ≥ t2/ε3. Then there exists a family H̄ of hash functions
from {0, 1}n to [b] which can be sampled using a seed of length r0 = O(log n +
log b + log(1/ε)) and satisfies the following two properties.

1. For any distinct x1, . . . , xt ∈ {0, 1}n, the probability over h ∈ H̄ that h(xi) =
h(xj) for some i 6= j is at most o(ε).

2. For any S ⊆ [b] of size 3εb, the probability over h ∈ H̄ that h(x) ∈ S for less
than 2ε fraction of x is at most o(ε).

2.3 Fourier Analysis

As in [20], we will apply Fourier analysis on Boolean functions. For N ∈ N
and I ⊆ [N], define the function χI : {−1, 1}n → {−1, 1} as χI(x) =

∏
i∈I xi

for any x ∈ {−1, 1}N . For any C : {−1, 1}N → {−1, 1} and any I ⊆ [N], let
ˆC(I) = Ex∈{−1,1}N [C(x) · χI(x)]. Here are some useful facts.

Fact 2 For any C : {−1, 1}N → {−1, 1} and for any x ∈ {−1, 1}N , C(x) =∑
I Ĉ(I) · χI(x).

Lemma 2. [19] For any C : {−1, 1}N → {−1, 1} ∈ AC(d, s),
∑

I Ĉ(I)2(1 −
2δ)|I| ≥ 1−O(δ logd−1 s).

3 Random Restriction

We will need the notion of random restriction [5, 8]. A restriction ρ on m variables
is an element of {0, 1, ?}m, or seen as a function ρ : [m] → {0, 1, ?}. A variable
is fixed by ρ if it receives a value in {0, 1} while a variable remains free if it
receives the symbol ?. For a string y ∈ {0, 1}m and a restriction ρ ∈ {0, 1, ?}m,
let y�ρ ∈ {0, 1}m be the restriction of y with respect to ρ: for i ∈ [m], the i’th
bit of y�ρ is yi if ρi = ? and is ρi if ρi ∈ {0, 1}. For a string z ∈ {0, 1, ?}m, let
#?(z) denote the number of i’s such that zi = ?.

As in [20], we will consider applying a random restriction to a function f :
{0, 1}n → {0, 1}m in the following sense. Take a restriction ρ ∈ {0, 1, ?}2nm, seen

as a function ρ : {0, 1}n → {0, 1, ?}m, let f�ρ be the function from {0, 1}n to
{0, 1}m such that for x ∈ {0, 1}n, f�ρ(x) = f(x)�ρ(x), the result of applying the
restriction ρ(x) ∈ {0, 1, ?}m on f(x) ∈ {0, 1}m.

Let Rm
δ denote the random restriction (distribution over restrictions) on m

variables such that each variable independently receives the symbol ? with prob-
ability δ, the value 1 with probability (1−δ)/2, and the value 0 with probability
(1− δ)/2. For our purpose later, we will need a new kind of random restriction.

Definition 6. Let R1,m
α,β be the random restriction on m variables defined as

R1,m
α,β = α ·Rm

β +(1−α) ·Rm
0 . That is, R1,m

α,β distributes as Rm
β with probability α

and as Rm
0 = Um with probability 1− α. Let Rt,m

α,β be the random restriction on
tm variables, defined as Rt,m

α,β = (R1,m
α,β)t, namely, t independent copies of R1,m

α,β .

It is known that AC0 circuits are insensitive to noise and (standard kind of)
random restrictions are likely to make their output values highly biased [13, 3,
20]. We show that this is still true with respect to our new kind of random
restrictions.

Lemma 3. For any C : {0, 1}tm → {0, 1} ∈ AC(d, s), the probability over ρ ∈
Rt,m

α,β and y, y′ ∈ Utm that C(y�ρ) 6= C(y′�ρ) is at most O(αβ logd−1 s).

Proof. We would like to apply Fourier analysis on C, so for now let us use {−1, 1}
for the binary values {0, 1}. Partition the tm input positions evenly into t parts
B1, . . . , Bt of size m, with Bi = {(i− 1)m + 1, . . . , im}.

We know that Prρ;y,y′ [C(y�ρ) 6= C(y′�ρ)] = 1
2 (1− Eρ;y,y′ [C(y�ρ) · C(y′�ρ)]).

From Fact 2, Eρ;y,y′ [C(y�ρ) · C(y′�ρ)] is equal to

E
ρ;y,y′

 ∑
I⊆[tm]

Ĉ(I)χI(y�ρ)

 ·

 ∑
J⊆[tm]

Ĉ(J)χJ(y′�ρ)


=

∑
I,J⊆[tm]

Ĉ(I) · Ĉ(J) · E
ρ;y,y′

[
χI(y�ρ) · χJ(y′�ρ)

]
.

To bound the expectation Eρ;y,y′
[
χI(y�ρ) · χJ(y′�ρ)

]
, consider two cases.

Case 1: I 6= J . There must exist some block Bi such that Bi ∩ I 6= Bi ∩ J .
Observe that Eρ;y,y′ [χI(y�ρ) · χJ(y′�ρ)] is qual to

E
ρ;y,y′

[
(χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ))(χI\Bi(y�ρ) · χJ\Bi(y′�ρ))

]
= E

ρ;y,y′

[
χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ)

]
E

ρ;y,y′

[
χI\Bi(y�ρ) · χJ\Bi(y′�ρ)

]
,

where the second equality is because χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ) and χI\Bi(y�ρ) ·
χJ\Bi(y′�ρ) are distributed independently. Note that

E
ρ;y,y′

[
χI∩Bi(y�ρ) · χJ∩Bi(y′�ρ)

]
= E

ρi;yi,y′i

[
χI∩Bi(yi�ρi

) · χJ∩Bi(y′i�ρi
)
]
,

with ρi ∈ R1,m
α,β = (1− α) · Rm

0 + α · Rm
β and yi, y

′
i ∈ Um, so the expectation is

(1− α) · E
ρi∈Rm

0 ;yi,y′i

[
χI∩Bi(yi�ρi

) · χJ∩Bi(y′i�ρi
)
]

+ α · E
ρi∈Rm

β ;yi,y′i

[
χI∩Bi(yi�ρ) · χJ∩Bi(y′i�ρi

)
]
,

which is 0 + 0 = 0. This implies that Eρ;y,y′ [χI(y�ρ) · χJ(y′�ρ)] = 0 when I 6= J .

Case 2: I = J . Partition I into t parts I1, . . . , It where Ii = I ∩Bi. Then,

E
ρ;y,y′

[
χI(y�ρ) · χI(y′�ρ)

]
= E

ρ;y,y′

∏
i∈[t]

χIi(yi�ρi) · χIi(y′i�ρi)


=

∏
i∈[t]

E
ρi;yi,y′i

[
χIi(yi�ρi

) · χIi(y′i�ρi
)
]

=
∏
i∈[t]

(
(1− α) · 1 + α · (1− β)|Ii|

)
≥

∏
i∈[t]

(1− αβ)|Ii|

= (1− αβ)|I|,

where the inequality follows from Jensen’s inequality.2

Combining the two cases, we have Eρ;y,y′ [C(y�ρ) · C(y′�ρ)] equal to∑
I

Ĉ(I)2 · E
ρ;y,y′

[
χI(y�ρ) · χI(y′�ρ)

]
≥

∑
I

Ĉ(I)2 · (1− αβ)|I|,

which equals to 1−O(αβ logd−1 s) by Lemma 2. Then,

Pr
ρ;y,y′

[C(y�ρ) 6= C(y′�ρ)] =
1
2

(
1− E

ρ;y,y′
[C(y�ρ) · C(y′�ρ)]

)
= O(αβ logd−1 s).

ut

Note that a random restriction from R1,m
α,β can be sampled using a seed of

length `1 + m`2 consisting of m + 1 parts. The first part of the seed has length
`1 = O(log(1/α)) and is used to determine whether the restriction Rm

β or Rm
0 is

applied. The remaining m parts of the seed, each of length `2 = O(log(1/β)), are
used to generate the m symbols in {0, 1, ?}. For simplicity, we use a longer seed
of length ` = (m+1)`0 and let each part have the same length `0 = max(`1, `2).

Furthermore, there is an AC0(poly(`)) circuit W which given such a random
seed of length ` produces the random restriction R1,m

α,β . Thus, a random restric-
tion from Rb,m

α,β can be sampled using a seed of length b` and produced by an
AC0(poly(b`)) circuit W b, the concatenation of b independent copies of W .
2 Consider the function f(x) = (1− βx)k, which is convex for x in the interval [0, 1].

Then (1−α)·1+α·(1−β)k = (1−α)·f(0)+α·f(1) ≥ f((1−α)·0+α·1) = (1−αβ)k.

4 Black-Box Hardness Amplification

In this section, we study black-box hardness amplification from (n, m, ε)-hard
functions to (n̄, m̄, ε̄)-hard functions. We will show that no such hardness ampli-
fication realized by AC0(2poly(n)) can amplify the hardness to any ε̄ > ε ·poly(n)
while keeping the function’s output or input length to poly(n). Our main tech-
nical result is the following.

Theorem 1. No black-box hardness amplification from (n, m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions can be realized by AC(d, s) with ε ≤ ε̄ · γ, for any
γ ≤ o(m/(m̄ logd+1 s)) and any s ≥ poly(n).

Since any ATIME(d, t) computation with an oracle can be simulated by an
AC(O(d), 2O(dt)) circuit with oracle answers given as part of its input, we have
the following. In particular, with m̄ ≤ poly(m), no such hardness amplifica-
tion can be realized in PH for any ε̄ ≥ ε · nω(1), and nor can it be realized in
ATIME(O(1), 2o(n)) for any ε̄ ≥ ε · 2Ω(n).

Corollary 1. No black-box hardness amplification from (n, m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions can be realized in ATIME(d, t) with ε ≤ ε̄ ·m/(m̄ · tcd)
for some constant c.

Theorem 1 states that a low-complexity procedure cannot amplify the hard-
ness substantially without blowing up the output length. Next, we show that one
cannot avoid blowing up the input length either. In particular, no AC0(2no(1)

)
circuit can amplify hardness beyond an n1+o(1) factor in a security preserving
way (with n̄ = O(n)).

Theorem 2. No black-box hardness amplification from (n, m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions can be realized by AC(d, s) with ε ≤ ε̄ · γ, for any γ ≤
o(n/(n̄ log2d+1 s)) when s ≥ 2Ω(n1/(d−1)), or for any γ ≤ o(n/(n̄n(2d+1)/(d−1)))
when s ≤ 2O(n1/(d−1)).

4.1 Proof of Theorem 1

Assume that such a hardness amplification exists, with Amp realized by AC(d, s)
and ε = o(ε̄ ·m/(m̄ logd+1 s)). We will show that this leads to a contradiction.
The idea is the following. First, we show that for a random function f and a
suitable random restriction ρ, the resulting function f�ρ is likely to be one-way.
The key is to show that for a sufficient number of x, ρ leaves enough bits in f(x)
free. Next, we show that such a random restriction is likely to kill off the effect
of a random function f on Ampf�ρ so that the functions Ampf�ρ ’s for most f ’s
are close to each other. The key is to show that an AC(d, s) circuit is likely to
become highly biased after such a random restriction. This yields a way to invert
Ampf�ρ well for most f ’s, which can then be used as an oracle to invert f�ρ, and
we have a contradiction. To make sure that both conditions above hold, we need
the random restriction to give ?’s at a very small rate but in a clustered way:

f(x) receives no ? at all for most x, but gets an enough number of ?’s for the
rest. This motivates us to consider the new random restriction Rb,m

α,β introduced
in Section 3.

As in [20], we would like to make sure that a restriction does not give away
too much information about the input, so that the function f�ρ is one-way even
given ρ. Therefore we will hash the input from the space {0, 1}n down to a
smaller space [b] before applying the restriction from Rb,m

α,β . Here we choose the
following parameters:

α = 2ε, β = (log2 s)/m, and b = t2/ε3.

Let H denote the set of functions from {0, 1}n to [b]. Then define our random
restriction R as the uniform distribution over the set of restrictions σ ◦ h :
{0, 1}n → {0, 1, ?}m, with h ∈ H and σ ∈ Rb,m

α,β . Let F denote the set of
functions from {0, 1}n to {0, 1}m.

Definition 7. We call a restriction ρ : {0, 1}n → {0, 1, ?}m good if both of the
following two conditions hold:

1. Prx∈Un [#?(ρ(x)) ≥ βm/2] ≥ (2/3)α.
2. Prx̄∈Un̄;f,f ′∈F [Ampf�ρ(x̄) 6= Ampf ′�ρ(x̄)] = o(ε̄).

Note that if we use a traditional random restriction (of [5, 8]) as in [20], it is
unlikely to have both conditions hold at the same time, because the second con-
dition requires a low rate of ? (lower than ε̄/(m̄ logd−1 s)) which makes the first
condition unlikely to hold. On the other hand, using our new random restriction,
we can have both conditions hold with high probability.

Lemma 4. Prρ∈R[ρ is not good] = o(1).

Due to the space limitation, we defer the proof to the journal version and
only sketch the idea here. To show that the first condition fails with a small
probability, note that about α fraction of x’s are turned “on” in the sense
that it receives the restriction from Rm

β and should have #?(ρ(x)) about βm,
so large deviation from this has a small probability. To show that the sec-
ond condition fails with a small probability, note that for any x̄ ∈ {0, 1}n̄,
most ρ ∈ R can kill off the effect of a random function f so that the value
Ampf�ρ(x̄) is the same for most f ∈ F , which is guaranteed by Lemma 3, with
αβ = O((ε log2 s)/m) = o(ε̄/(m̄ logd−1 s)).

Next, we show that for a good ρ, the function f�ρ is ε-hard for most f ∈ F .
In fact, as will be needed later, we prove hardness against slightly stronger algo-
rithms: algorithms which can depend on ρ and have arbitrarily high complexity
but make only a polynomial number of queries to f�ρ.

Lemma 5. For any good ρ, for any Mρ making at most poly(n) oracle queries,
Prx∈Un,f∈F [Mf�ρ

ρ inverts f�ρ(x)] ≤ 1− ε.

Due to space limitation, we defer the proof to the journal version. The argument
is somewhat standard, which can be modified, say, from [20, 6].

This implies that for any good ρ, the function Āρ, defined by Āρ(x̄) =
max argz Prf∈F [Ampf�ρ(x̄) = z], is close to Ampf�ρ for most f , because

Pr
x̄,f

[
Āρ(x̄) 6= Ampf�ρ(x̄)

]
≤ Pr

x̄,f,f ′

[
Ampf�ρ(x̄) 6= Ampf ′�ρ(x̄)

]
= o(ε̄).

This then provides us a way to invert the function Ampf�ρ .

Lemma 6. For any good ρ, there exists a function M̄ρ : {0, 1}m̄ → {0, 1}n̄ such
that Prx̄∈Un̄,f∈F [M̄ρ inverts Ampf�ρ(x̄)] ≥ 1− o(ε̄).

Proof. Fix any good ρ, and let M̄ρ be the function which on input ȳ outputs a
random element in the set Ā−1

ρ (ȳ). Then Prx̄,f [M̄ρ fails to invert Ampf�ρ(x̄)] is

Pr
x̄,f

[
Ampf�ρ(M̄ρ(Ampf�ρ(x̄))) 6= Ampf�ρ(x̄)

]
≤ Pr

x̄,f

[
Ampf�ρ(M̄ρ(Āρ(x̄))) 6= Āρ(x̄)

]
+ Pr

x̄,f

[
Āρ(x̄) 6= Ampf�ρ(x̄)

]
<

∑
ȳ

Pr̄
x

[
Āρ(x̄) = ȳ

]
· Pr

x̄,f

[
Ampf�ρ(M̄ρ(ȳ))) 6= ȳ | Āρ(x̄) = ȳ

]
+ o(ε̄)

=
∑

ȳ

Pr̄
x

[
Āρ(x̄) = ȳ

]
· Pr

x̄,x̄′,f

[
Ampf�ρ(x̄′) 6= ȳ | Āρ(x̄) = Āρ(x̄′) = ȳ

]
+ o(ε̄)

=
∑

ȳ

Pr̄
x

[
Āρ(x̄) = ȳ

]
· Pr

x̄′,f

[
Ampf�ρ(x̄′) 6= Āρ(x̄′) | Āρ(x̄′) = ȳ

]
+ o(ε̄)

= Pr
x̄,f

[
Āρ(x̄) 6= Ampf�ρ(x̄)

]
+ o(ε̄)

= o(ε̄).

ut

From Lemma 6 and Definition 3, for any good ρ, a Markov’s inequality
implies that for most f ∈ F , the function M

f�ρ
ρ = DecM̄ρ,f�ρ can achieve

Prx[Mf�ρ
ρ inverts f�ρ(x)] > 1−ε. This contradicts Lemma 5 since Dec makes at

most a polynomial number of queries to the oracle. Therefore, no such hardness
amplification is possible, which proves Theorem 1.

4.2 Proof of Theorem 2

Let H̄ denote the family of hash functions from {0, 1}m to {0, 1}3n derived from
a (2, 2−3n)-wise independent space. We will use the construction of [1], based on
finite fields of characteristic two, with each function in the family specified by
O(n) bits. Then using ideas from [11, 10], given the specification of a function
h ∈ H̄ and an input x ∈ {0, 1}n, one can compute h(x) by an AC(d, 2O(n1/(d−1)))
circuit.

The key to the theorem is the following, which says that one can transform a
hard function f : {0, 1}n → {0, 1}m with any m ≤ poly(n) into a hard function
f ′ : {0, 1}n′ → {0, 1}m′

with n′,m′ = O(n).

Lemma 7. A black-box hardness amplification from (n, m, ε)-hard functions to
(n̄, m̄, ε̄)-hard functions can be realized in AC(d, 2O(n1/(d−1))) with ε̄ = ε−2−n+1,
n̄ = O(n), and m̄ = O(n).

Proof. Given any ε-hard function f : {0, 1}n → {0, 1}m, define the function
f ′ = Ampf : {0, 1}n′ → {0, 1}m′

as

f ′(x, h) = (h(f(x)), h),

with x ∈ {0, 1}n and h ∈ H̄. Thus, n′ = n + O(n) = O(n) and m′ = 3n +
O(n) = O(n). From the discussion at the beginning, Amp can be realized in
AC(d, 2O(n1/(d−1))).

Next, we prove the hardness of f ′ in a black-box way. Suppose M ′ is a
function which inverts f ′ with probability more than 1− (ε− 2−n+1). Consider
the function M = DecM ′

, which on input y ∈ {0, 1}m generates a random
h ∈ H̄, calls M ′(h(y), h), and outputs the first component from the answer. We
will show that M inverts f with probability more than 1− ε. Let Mh denote the
function M with the random choice h. Call h ∈ H̄ colliding if there exist x, x′

with f(x) 6= f(x′) and h(f(x)) = h(f(x′)). Then, Prx∈Un
[M inverts f(x)] is

Pr
x∈Un,h∈H̄

[f(Mh(f(x))) = f(x)]

≥ Pr
x∈Un,h∈H̄

[h(f(Mh(f(x)))) = h(f(x)) ∧ h is not colliding]

≥ Pr
x∈Un,h∈H̄

[f ′(M(f ′(x, h))) = f ′(x, h)]− Pr
h∈H̄

[h is colliding]

> 1− (ε− 2−n+1)− 22n(2−3n + 2−3n)
= 1− ε.

This proves the lemma. ut

Consider any black-box hardness amplification from (n, m, ε)-hard functions
to (n̄, m̄, ε̄)-hard functions realized by AC(d, s), with ε ≤ ε̄ · γ. Assume we
have s ≥ 2Ω(n1/(d−1)) and γ ≤ o(n/(n̄ log2d+1 s)). Then by combining this with
Lemma 7, we get a black-box hardness amplification from (n, m, ε)-hard func-
tions to (n̄′, m̄′, ε̄′)-hard functions realized by AC(2d, s′), with m̄′ = O(n̄), s′ =
O(s), and ε ≤ ε̄′ ·γ′, for γ′ ≤ o(m/(m̄′ log2d+1 s′)), which contradicts Theorem 1.
Therefore, no such hardness amplification can exist. Next, assume we have s ≤
2O(n1/(d−1)) and γ ≤ o(n/(n̄·n(2d+1)/(d−1)). Combining this with Lemma 7, we get
a black-box hardness amplification from (n, m, ε)-hard functions to (n̄′, m̄′, ε̄′)-
hard functions realized by AC(2d, s′), with m̄′ = O(n̄), s′ ≤ 2O(n1/(d−1)), and
ε ≤ ε̄′ · γ′, for γ′ ≤ o(m/(m̄′n(2d+1)/(d−1)) = o(m/(m̄′ log2d+1 s′)), which con-
tradicts Theorem 1. Thus, no such hardness amplification can exist either. This
completes the proof of Theorem 2.

5 Weakly Black-Box Hardness Amplification

In this section, we consider weakly black-box hardness amplifications from
(n, m, ε)-hard functions to (n̄, m̄, ε̄)-hard functions. Suppose such an amplifi-
cation procedure, consisting of both the query-generation part and the answer-
combination part, can be computed in AC0. We will show that if it can amplify
the hardness beyond a polynomial factor, then one can derive from it a highly-
parallel one-way function. To simplify the presentation, we do not attempt to
derive the strongest possible result here.

Theorem 3. Suppose a weakly black-box hardness amplification from (n, m, ε)-
hard functions to (n̄, m̄,

√
ε̄)-hard functions can be computed in AC0 with ε ≤ ε̄·γ,

for γ < m/(m̄ · poly(log n)) and ε̄ ≥ 1/poly(n). Then one can obtain from it a
(1− o(1))

√
ε̄-OWF computable in NC0.

We will give the proof of Theorem 3 in Section 5.2. It will rely on a deran-
domized version of the random restriction R used in the previous section, which
is discussed next.

5.1 Pseudo-Random Restriction

Set the parameters α = 2ε, β = (log2 s)/m, b = t2/ε3 as in the previous section,
and suppose ε < ε̄ ·m/(m̄ · poly(log n)). Now we describe our choice of pseudo-
random restriction ρ̄ : {0, 1}n → {0, 1, ?}m. Again, we will first hash {0, 1}n

down to a smaller space [b]. Following [20], we would like to replace the random
hash function by a pseudo-random one, but a more careful choice is needed.
Here we use the family H̄ of hash functions in Lemma 1. Then we would like to
replace the random restriction Rb,m

α,β by a pseudo-random one, such that it is still
good with high probability. For this, we need the following two constructions.
(Recall from Section 3 that a random restriction from Rb,m

α,β can be generated
by a circuit W b ∈ AC0 : {0, 1}b` → ({0, 1, ?}m)b using a random seed of length
b` = b(m + 1)`0.)

– Let Ind : {0, 1}r1 → {0, 1}b` be the generator defined as follows, with
r1 = poly(log n). First, use the input as the seed for the generator in Fact 1
to produce b random variables over {0, 1}O(`0+log m) that are pairwise inde-
pendent. Next, take each variable as the seed for the generator in Fact 1 to
generate m + 1 new random variables over {0, 1}`0 that are 3-wise indepen-
dent. The output of Ind is the concatenation of these b(m + 1) new random
variables over {0, 1}`0 .

– Let Nis : {0, 1}r2 → {0, 1}b` be Nisan’s o(ε̄)-PRG for AC0 circuits [17], with
r2 = poly(log n).

Our pseudo-random restriction R̄ is the uniform distribution over the set of
restrictions ρ̄h,z1,z2 , with (h, z1, z2) ∈ {0, 1}r0 × {0, 1}r1 × {0, 1}r2 , defined as

ρ̄h,z1,z2(x) = W b (Ind(z1)⊕Nis(z2))h(x) .

Recall the definition of a good restriction from the previous section. The
following says that such a pseudo-random restriction is still likely to be good.

Lemma 8. Prρ̄∈R̄[ρ̄ is not good] = o(1).

Due to the space limitation, we defer the proof to the journal version. The
idea is similar to that of Lemma 4. Now we use the generators Ind and Nis,
respectively, to guarantee that the two conditions of being good also fail with a
small probability.

5.2 Proof of Theorem 3

Suppose there exists such a weakly black-box hardness amplification with ε <
ε̄ ·m/(m̄ · poly(log n)) and ε̄ ≥ 1/poly(n). We will show how to obtain from it a
hard function. The idea is the following. From Section 4, we know that for most
ρ and f the function Ampf�ρ is hard (to invert), but we do not know which ρ and
f give a hard function. Our first step is to replace the random restriction ρ by a
pseudo-random one ρ̄ so that the function Ampf�ρ̄ is still likely to be hard. Then
we show that by replacing the random function f by a pseudo-random one f̄ ,
the resulting function Ampf̄�ρ̄ is likely to be close to Ampf�ρ̄ . However, having
Ampf̄�ρ̄ close to a hard function Ampf�ρ̄ does not seem sufficient to guarantee
that Ampf̄�ρ̄ is hard. The problem is that on input Ampf̄�ρ̄(x̄) = Ampf�ρ̄(x̄),
an inverter might output x̄′ such that Ampf̄�ρ̄(x̄) = Ampf̄�ρ̄(x̄′) 6= Ampf�ρ̄(x̄′).
Thus, one might succeed in inverting Ampf̄�ρ̄ but not Ampf�ρ̄ for many such x̄’s.
We will come up with a carefully designed function that avoids this problem.

First, similar to Lemma 5, we have the following. We omit the proof here
due to space limitation.

Lemma 9. For any good ρ̄ ∈ R̄, Prf [Ampf�ρ̄ is not
√

ε̄-hard] = o(ε̄).

Next, we want to replace the random function by the following pseudo-
random one. Let F̄ be the class of functions f̄h,z3 , with h ∈ H̄ and z3 ∈ {0, 1}r3 ,
defined as

f̄h,z3(x) = Nis′(z3)h(x),

where Nis′ : {0, 1}r3 → ({0, 1}m)b is Nisan’s o(ε̄)-PRG for AC0, with r3 =
poly(log n). One can show that it has a similar effect as the random one in the
sense that for any x̄ ∈ {0, 1}n̄, ρ̄ ∈ R̄, and ȳ ∈ {0, 1}m̄,∣∣∣∣ Pr

f∈F

[
Ampf�ρ̄(x̄) = ȳ

]
− Pr

f̄∈F̄

[
Ampf̄�ρ̄(x̄) = ȳ

]∣∣∣∣ = o(ε̄). (1)

This is because Nis′ can fool such a test.
For any good ρ̄ ∈ R̄, we know by definition that there is a large subset

B ⊆ {0, 1}n̄ of inputs such that for each input in B, the output of Amp is the
same for most f ∈ F , and by (1), for most f̄ ∈ F̄ . We would like our function
to output this corresponding value for each input in B, and to output a value

different from all these values for inputs not in B. We use f̄p = (f̄1, . . . , f̄p) ∈ F̄p,
with p = nc for some large enough constant c, to locate one such set of inputs.
Let Majρ̄,f̄p(x̄) be the majority value in {Ampf̄1�ρ̄(x̄), . . . ,Ampf̄p�ρ̄(x̄)}. Let

Bρ̄,f̄p =
{

x̄ ∈ {0, 1}n̄ : Pr
i∈[p]

[
Ampf̄i�ρ̄(x̄) 6= Majρ̄,f̄p(x̄)

]
<
√

ε̄

}
.

Now for ρ̄ ∈ R̄, f̄p ∈ F̄p, and ȳ ∈ {0, 1}m̄, define the function Āρ̄,f̄p,ȳ : {0, 1}n̄ →
{0, 1}m̄ as

Āρ̄,f̄p,ȳ(x̄) =
{

Majρ̄,f̄p(x̄) if x̄ ∈ Bρ̄,f̄p ,
ȳ otherwise.

Call (ρ̄, f̄p, ȳ) ∈ R̄ × F̄p × {0, 1}m̄ nice if ρ̄ is good and the following three
conditions all hold:

(a) |Bρ̄,f̄p | ≥ (1− o(
√

ε̄))2n̄.

(b) For any x̄ ∈ Bρ̄,f̄p , Prf∈F

[
Āρ̄,f̄p,ȳ(x̄) 6= Ampf�ρ̄(x̄)

]
= o(ε̄).

(c) For any x̄ /∈ Bρ̄,f̄p and x̄′ ∈ Bρ̄,f̄p , Āρ̄,f̄p,ȳ(x̄) 6= Āρ̄,f̄p,ȳ(x̄′).

The following lemma says that a randomly chosen (ρ̄, f̄p, ȳ) is likely to be nice.
Due to the space limitation, we omit the proof here.

Lemma 10. Prρ̄∈R̄,f̄p∈F̄p,ȳ∈Um̄
[(ρ̄, f̄p, ȳ) is not nice] = o(1).

The following shows that a nice (ρ̄, f̄p, ȳ) gives a hard function.

Lemma 11. For any nice (ρ̄, f̄p, ȳ), the function Āρ̄,f̄p,y is (1− o(1))
√

ε̄-hard.

Proof. Fix any nice (ρ̄, f̄p, ȳ). Consider any polynomial-size circuit M̄ which
tries to invert Āρ̄,f̄p,y. For notational convenience, let us write Â for Āρ̄,f̄p,ȳ,
Af for Ampf�ρ̄ , and B for Bρ̄,f̄p . Suppose we sample x̄ uniformly from {0, 1}n̄

and f uniformly from F . Let E be the event that M̄ inverts Â(x̄). Clearly, E
is the union of the two events E1 : (M̄ inverts Â(x̄)) ∧ (Â(x̄′) = Af (x̄′)) and
E2 : (M̄ inverts Â(x̄)) ∧ (Â(x̄′) 6= Af (x̄′)), where x̄′ = M̄(Â(x̄))).

First, note that the event E1 is contained in the union of the two events
E1,1 : Â(x̄) 6= Af (x̄) and E1,2 : M̄ inverts Af (x̄). From items (a) and (b), we
have Prx̄,f [E1,1] ≤ Prx̄ [x̄ /∈ B] +Prx̄,f [Â(x̄) 6= Af (x̄) | x̄ ∈ B] = o(

√
ε̄). Then by

Lemma 9, Prx̄,f [E1,2] is at most

Pr
f

[
Af is not

√
ε̄-hard

]
+Pr

x̄,f

[
M̄ inverts Af (x̄) | Af is

√
ε̄-hard

]
≤ o(ε̄)+1−

√
ε̄.

Next, note that the event E2 is contained in the union of the two events
E2,1 : x̄ /∈ B and E2,2 : (x̄ ∈ B) ∧ (M̄ inverts Â(x̄)) ∧ (Â(x̄′) 6= Af (x̄′)). From
item (a), Prx̄[E2,1] = o(

√
ε̄). Observe that the event E2,2 implies that (x̄′ ∈

B) ∧ (Â(x̄′) 6= Af (x̄′)), so by item (b), Prx̄,f [E2,2] = o(ε̄).
Combining these bounds together, we get Prx̄,f [E] ≤ 1−

√
ε̄ + o(

√
ε̄), which

proves the lemma.
ut

Finally, define the function Ā : {0, 1}n̄ × R̄× F̄p × {0, 1}m̄ → {0, 1}m̄ × R̄×
F̄p × {0, 1}m̄ as

Ā(x̄, ρ̄, f̄p, ȳ) = (Āρ̄,f̄p,ȳ(x̄), ρ̄, f̄p, ȳ).

Note that the input length of Ā is at most poly(n), since each ρ̄ ∈ R̄ can be
specified by poly(log n) bits and each f̄p ∈ F̄p can be specified by poly(n) bits.

Lemma 12. The function Ā is (1− o(1))ε̄-hard.

Proof. Consider any polynomial-size circuit M̄ which attempts to invert Ā. Then
Prx̄,ρ̄,f̄p,ȳ[M fails to invert Ā(x̄, ρ̄, f̄p, ȳ)] is at least

Pr
ρ̄,f̄p,ȳ

[
(ρ̄, f̄p, ȳ) nice

]
· Pr

x̄,ρ̄,f̄p,ȳ

[
M fails to invert Ā(x̄, ρ̄, f̄p, ȳ) | (ρ̄, f̄p, ȳ) nice

]
,

which by Lemma 10 & 11 is at least (1− o(1)) · (1− o(1))ε̄ = (1− o(1))ε̄.
ut

Since Nisan’s PRG, the generator Ind, and functions in H̄ all can be com-
puted in NC1, the function Ā can be computed in NC1 too. From [2], this yields
a OWF in NC0, which proves the theorem.

6 Black-Box Construction of PRG from OWF

In this section, we study the complexity-quality tradeoff for black-box construc-
tions of pseudo-random generators from strongly one-way functions. Our result
is the following.

Theorem 4. No black-box construction of (n̄, m̄, 1/5)-PRGs from (n, m, 1 −
n− log n)-hard functions can be realized by AC(d, s) with m̄ > n̄(1+(logd+5 s)/m)
and s ≤ 2mo(1/d)

. In particular, with d = O(1), such construction of PRG can
only have a sublinear stretch unless s ≥ 2mΩ(1)

.

Proof. Assume for the sake of contradiction that such a black-box construction
realized by AC(d, s) exists with m̄ ≥ n̄(1 + (logd+5 s)/m) and s ≤ 2mo(1/d)

.
We will show that this leads to a contradiction. The idea is similar to that in
Section 4. First, we will show that for a random restriction ρ and a random
function f , the function f�ρ is weakly hard, and the function derived from it
using direct product is strongly hard. On the other hand, suppose we have such
a PRG construction. Then we will show that a random restriction can reduce the
effect of a random function, and consequently there exists a distinguisher which
breaks the PRG. This can then be used to invert the strongly-hard function well,
and we reach a contradiction.

Let Prg be the encoding procedure and Dec the decoding procedure. Let
k = c0 logd+3 s for a large enough constant c0, let n′ = n/k and m′ = m/k.
Note that n′,m′ ≥ poly(n) since s ≤ 2no(1/d)

and k ≤ no(1). Now we replace the
parameters n and m in the previous sections by n′ and m′, and consider sampling

function f : {0, 1}n′ → {0, 1}m′
and restriction ρ : {0, 1}n′ → {0, 1, ?}m′

. Set the
parameters:

α = 1/ logd+1 s, β = (log2 s)/m′, and b = t2m′.

Similar to Lemma 5, one can show that the function f�ρ is Ω(α)-hard
with high probability (using an almost identical proof). If f�ρ is Ω(α)-
hard, the function fk

ρ : {0, 1}kn′ → {0, 1}km′
defined as fk

ρ (x1, . . . , xk) =
(f�ρ(x1), . . . , f�ρ(xk)) is (1 − n− log n)-hard, according to [21]. Thus we have
the following.

Lemma 13. For most ρ ∈ R, for any oracle algorithm Mρ making at most

poly(n) oracle queries, for most f ∈ F , Prx∈Un
[M

fk
ρ

ρ inverts fk
ρ (x)] ≤ n− log n.

For x, x′ ∈ {0, 1}n, let 4(x, x′) = |{i ∈ [n] : xi 6= x′i}|/n, their relative Ham-
ming distance. Then as in Section 4, one can show that the random restriction
can reduce the effect of the random function on Prg.

Lemma 14. For most ρ ∈ R, there exists a function Ḡρ : {0, 1}n̄ → {0, 1}m̄

such that for most f ∈ F , Ex̄[4(Ḡρ(x̄),Prgfk
ρ (x̄)] = µ for some µ = O(1/m′).

Form such a function Ḡρ, one can construct a distinguisher D̄ρ : {0, 1}m̄ →
{0, 1} for Prgfk

ρ , defined by D̄ρ(ȳ) = 1 if and only if there exists some ȳ′ in the
image of Ḡρ such that 4(ȳ, ȳ′) ≤ 5µ. The we have the following, whose proof is
omitted due to space limitation.

Lemma 15. For most ρ ∈ R, there exists a distinguisher D̄ρ : {0, 1}m̄ → {0, 1}
such that for most f ∈ F , D̄ρ can 1/5-distinguish Prgfk

ρ .

According to the lemma, for most ρ ∈ R and f ∈ F , the function Mρ =

DecD̄ρ achieves Prx[M
fk

ρ
ρ inverts fk

ρ (x)] > n− log n. This contradicts Lemma 13,
since Dec makes at most a polynomial number of queries to the oracle. Thus
we have the theorem. ut

References

1. Noga Alon, László Babai, Johan H̊astad, and Rene Peralta. Some constructions of
alomost k-wise independent random variables. Random Structures and Algorithms,
3(3), pages 289–304, 1992.

2. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 166–175, 2004.

3. Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Information
Processing Letters, 63(5), pages 257–261, 1997.

4. Giovanni Di Crescenzo and Russell Impagliazzo. Security-preserving hardness-
amplification for any regular one-way function. In Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages 169–178, 1999.

5. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1), pages 13–27,
1984.

6. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, pages 305–313, 2000.

7. Oded Goldreich, Russell Impagliazzo, Leonid A. Levin, Ramarathnam Venkatesan,
and David Zuckerman. Security preserving amplification of hardness. In Proceed-
ings of the 31st Annual IEEE Symposium on Foundations of Computer Science,
pages 318–326, 1990.

8. Johan H̊astad. Computational limitations for small depth circuits. PhD thesis, MIT
Press, 1986.

9. Johan H̊astad, Russel Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM Journal on Computing, 28(4),
pages 1364–1396, 1999.

10. Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in
finite fields of characteristic two. Electronic Colloquium on Computational Com-
plexity, TR05-087, 2005.

11. William Hesse, Eric Allender, and David A. M. Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65(4), pages 695–716, 2002.

12. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, pages 44–61, 1989.

13. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier
transform, and learnability. Journal of the ACM, 40(3), pages 607–620, 1993.

14. Henry Lin, Luca Trevisan, and Hoeteck Wee. On hardness amplification of one-
way functions. In Proceedings of the 2nd Theory of Cryptography Conference, pages
34–49, 2005.

15. Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. On the complexity of hardness am-
plification. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, pages 170–182, 2005.

16. Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions
and applications. SIAM Journal on Computing, 22(4), pages 838–856, 1993.

17. Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1),
pages 63–70, 1991.

18. Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
19. Emanuele Viola. The complexity of constructing pseudorandom generators from

hard functions. Computational Complexity, 13(3-4), pages 147–188, 2005.
20. Emanuele Viola. On constructing parallel pseudorandom generators from one-way

functions. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, pages 183–197, 2005

21. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In Proceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer Science,
pages 80–91, 1982.

