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Abstract. A (k; n)-robust combiner for a primitive F takes as input n candidate implemen-
tations of F and constructs an implementation of F , which is secure assuming that at least
k of the input candidates are secure. Such constructions provide robustness against insecure
implementations and wrong assumptions underlying the candidate schemes. In a recent work
Harnik et al. (Eurocrypt 2005) have proposed a (2; 3)-robust combiner for oblivious transfer
(OT), and have shown that (1; 2)-robust OT-combiners of a certain type are impossible.

In this paper we propose new, generalized notions of combiners for two-party primitives,
which capture the fact that in many two-party protocols the security of one of the parties
is unconditional, or is based on an assumption independent of the assumption underlying
the security of the other party. This fine-grained approach results in OT-combiners strictly

stronger than the constructions known before. In particular, we propose an OT-combiner
which guarantees secure OT even when only one candidate is secure for both parties, and
every remaining candidate is flawed for one of the parties. Furthermore, we present an efficient
uniform OT-combiner, i.e., a single combiner which is secure simultaneously for a wide range
of candidates’ failures. Finally, our definition allows for a very simple impossibility result,
which shows that the proposed OT-combiners achieve optimal robustness.
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1 Introduction

Many cryptographic schemes are based on unproven assumptions about the difficulty of
some computational problems. While there exist assumptions whose validity is supported
by decades of research (e.g., factoring or discrete logarithm), many new assumptions offer-
ing new possibilities are being proposed in literature, and it is unclear how to decide which
assumptions are trustworthy. Therefore, given multiple implementations of some crypto-
graphic primitive, each based on different assumptions, it is often difficult to decide which
implementation is the most secure one.

Robust combiners offer a method for coping with such difficulties: they take as input
multiple candidate schemes based on various assumptions, and construct a scheme whose
security is guaranteed if at least some candidates are secure. That is, the resulting scheme
is secure as long as sufficiently many of the assumptions underlying the input candidates
are valid. This provides tolerance against wrong assumptions since even a breakthrough
algorithm for breaking one (or some) of the assumptions does not necessarily make the
combined scheme insecure.



Actually, the concept of robust combiners is not new, and many constructions of this
type have been used in various cryptographic schemes to improve the security guarantees,
e.g., cascading of block ciphers. However, a rigorous study of robust combiners was initiated
only recently [Her05,HKN+05]. More formally, a (k;n)-robust F-combiner is a construction
which takes as input n implementations of a primitive F , and yields an implementation of
F which is guaranteed to be secure as long as at least k input implementations are secure.
Robust combiners for some primitives, like one-way functions or pseudorandom generators,
are rather simple, while for others, e.g., for oblivious transfer (OT), the construction of
combiners seems considerably harder. In particular, Harnik et al. [HKN+05] show that
there exists no “transparent black-box” (1; 2)-robust OT-combiner. In the same paper
they propose also a very simple and efficient (2; 3)-robust OT-combiner.

Contributions. We propose stronger and more general definitions of robust combiners for
two-party primitives, which enable a more fine-grained approach to the design of combiners.
In particular, the new definitions capture scenarios where in the candidate implementations
the security of Alice is based on an assumption different from the assumption underlying
Bob’s security, or where the security of one party is unconditional. This finer distinction
can then be exploited in constructions of combiners.

For this new definition we propose OT-combiners yielding secure OT when the total
number of candidates’ failures on either side is strictly smaller than the number of candi-
dates. In particular, we propose an OT-combiner which guarantees secure OT even when
only one candidate is secure for both parties, and every remaining candidate is insecure
for one of the parties. Moreover, we propose also an efficient uniform OT-combiner, i.e.,
a single combiner which is secure simultaneously for a wide range of candidates’ failures.

We show also that the proposed combiners are optimal in terms of achieved robust-
ness. Specifically, we prove the impossibility of black-box OT-combiners achieving better
robustness, and also we show that any (possibly even non-black-box) OT-combiner achiev-
ing better robustness would in fact implement OT from scratch. This is in contrast to
the impossibility proof from [HKN+05] where only the existence of transparent black-box
combiners was excluded. However, our impossibility results are not directly comparable
with the previous one: on one hand our results are stronger, since they are not limited to
the transparent black-box combiners, but on the other hand they are weaker, since they
exclude a primitive which is stronger then the one considered in [HKN+05] (cf. Section 3).

Finally, since our definition is stronger than the previous definition, all constructions
satisfy also the latter, and as a corollary we obtain also tight bounds for the previous
definition.

Related work. As mentioned above, there are numerous implicit uses and constructions
of combiners in the literature (e.g., [AB81,EG85,MM93,DK05,HL05]), but a more rigorous
study of robust combiners was initiated only recently, by Herzberg [Her05] and by Harnik
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et al. [HKN+05], who formalized the notion of combiners, and have shown constructions of
combiners for various primitives. Moreover, Harnik et al. [HKN+05] have shown also that
not all primitives are easy to combine, by proving that there is no transparent black-box
(1; 2)-robust OT-combiner. Boneh and Boyen [BB06] studied the efficiency of combiners
for collision resistant hash functions. In [MP06] robust combiners for private informa-
tion retrieval were proposed, and also cross-primitive combiners have been studied. Such
combiners can be viewed as generalized reductions between primitives, and their study,
in addition to be of practical value, offers insights into relations between cryptographic
primitives.

The problem of strengthening imperfect oblivious transfer, which is closely related to
OT-combiners (see below), was first considered by [CK88], and has been studied in many
subsequent works (e.g.,[BCW03,Cac98,DFSS06]). In particular Damg̊ard, Kilian and Sal-
vail [DKS99] defined the notion of weak oblivious transfer (WOT) and provided algorithms
for strengthening it. The use of techniques for strengthening WOT in the construction of
combiners has been suggested by Harnik et al. [HKN+05] as an alternative way of obtaining
a (2; 3)-robust OT-combiner.

Organization. In the next section we review the primitives used in the rest of the paper,
and present generalized definitions of robust combiners for two-party primitives. Then
in Section 3 we propose combiners for oblivious transfer tolerating an insecure minority,
and prove that they achieve optimal robustness. In Section 4 we exploit the symmetry of
oblivious transfer to obtain uniform OT-combiners with optimal robustness. Finally, in
Section 5 we conclude and discuss some open problems.

2 Preliminaries and Definitions

2.1 Primitives.

We review shortly the primitives relevant in this work. For more formal definitions we refer
to the literature. The parties participating in the protocols and the adversary are assumed
to be probabilistic polynomial time Turing machines, (PPTMs).

Oblivious transfer1 (OT) is a protocol between a sender holding two bits b0 and b1, and
a receiver holding a choice-bit c. The protocol allows the receiver to get bit bc so that the
sender does not learn any information about receiver’s choice c, and the receiver does not
learn any information about bit b1−c.

1 The version of oblivious transfer described here and used in this paper is more precisely denoted as
1-out-of-2 bit-OT [EGL85]. There are several other versions of OT, e.g., Rabin’s OT, 1-out-of-n bit-OT,
or 1-out-of-n string-OT, but all are known to be equivalent [Rab81,Cré87,CK88].
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Weak oblivious transfer ((p, q)-WOT) is an oblivious transfer with relaxed privacy guaran-
tees for the participants [DKS99]: with probability at most p a cheating sender will learn
which bit the receiver chose to receive, and with probability q a cheating receiver will learn
both of the sender’s input bits.

Secret sharing [Bla79,Sha79] allows a party to distribute a secret among a group of parties,
by providing each party with a share, such that only authorized subsets of parties can
collectively reconstruct the secret from their shares. We say that a sharing among n parties
is a `-out-of-n secret sharing, if any ` correct shares are sufficient to reconstruct the secret,
but any subset of less than ` shares gives no information about the secret. A simple method
for `-out-of-n secret sharing was proposed by Shamir [Sha79]: a party P having a secret
value s ∈ Fq where q > n, picks a random polynomial f(x) over Fq, such that f(0) = s and
the degree of f(x) is (at most) `− 1. A share for party Pi is then computed as si := f(zi),
where z1, . . . , zn are fixed, publicly known, distinct non-zero values from Fq. Since the
degree of f(x) is at most `− 1, any ` shares are sufficient to reconstruct f(x) and compute
s = f(0) (via Lagrange interpolation). On the other hand, any ` − 1 or fewer shares give
no information about s, since they can be consistently completed to yield a sharing of any
arbitrary s ∈ F [q], and the number of possible completions is the same for every s.

Bit Commitment (BC) is a two-phase protocol between a sender, holding an input bit
b, and a receiver, who has no input. In the commit phase the sender commits to bit b
without revealing it, by sending to the receiver a commitment to b, i.e., an “encrypted”
representation e of b. Later, in the decommit phase, the sender gives to the receiver a
decommitment string d, allowing the receiver to “open” e and obtain b. In addition to
correctness, a bit commitment scheme must satisfy two properties: hiding, i.e., the receiver
does not learn the bit b before the decommit phase, and binding, i.e., the sender cannot come
up with decommitment strings d, d′ which lead to opening the commitment as different
bits.

2.2 Robust combiners.

In this section we recall definitions of robust combiners, and present some generalizations,
which allow for a more fine-grained approach to the design of combiners. These general-
izations are motivated by the fact, that in many implementations of cryptographic primi-
tives various security properties are based on different, often independent, computational
assumptions, or even hold unconditionally, and cannot be broken. Thus when designing
combiners, whose main goal is to protect against wrong assumptions, it can be worthwhile
to consider these security guarantees explicitly, as it can potentially lead to more efficient
practical constructions (cf. [HKN+05,MP06]). Moreover, the proposed generalizations lead
to combiners which are strictly stronger than the constructions known before, and also
allow for easier impossibility proofs.
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Definition 1 ((k;n)-robust F-combiner [HKN+05]). Let F be a cryptographic primi-
tive. A (k;n)-robust F -combiner is a PPTM which gets n candidate schemes implementing
F as inputs and implements F while satisfying the following two properties:

1. If at least k candidates securely implement F , then the combiner securely implements F .

2. The running time of the combiner is polynomial in the security parameter κ, in n, and
in the lengths of the inputs to F .2

If the primitive for which one wishes to construct a combiner is a two-party primitive
between Alice and Bob (like for example OT or bit commitment), we can make a finer
characterization of the security required from the candidates. That is, we can distinguish
cases when in the candidate implementations the security of Alice is based on an assump-
tion different from the assumption underlying Bob’s security, or when the security of one
party is unconditional. For such candidates breaking one assumption does not necessarily
imply a total loss of security (for both parties) and this property can be exploited for the
construction of combiners.

Definition 2 ((α, β;n)-robust F-combiner). Let F be a cryptographic primitive for two
parties Alice and Bob. A (α, β;n)-robust F -combiner is a PPTM which gets n candidate
schemes implementing F as inputs and implements F while satisfying the following two
properties:

1. If at least α candidates implement F securely for Alice, and at least β candidates im-
plement F securely for Bob, then the combiner securely implements F .

2. The running time of the combiner is polynomial in the security parameter κ, in n, and
in the lengths of the inputs to F .

Note that a (k;n)-robust combiner is a special case of a (k, k;n)-robust combiner, but
they are not equivalent. For example, a (2, 2; 3)-robust combiner tolerates input candidates
C1,C2,C3, where one C1 is secure for Alice only, C2 is secure for Bob only, and C3 is
secure for both parties, while a (2; 3)-robust combiner can fail for such candidates. In other
words, the notion of a (k, k;n)-robust combiner (and hence of a (α, β;n)-robust combiner),
is strictly stronger then that of a (k;n)-robust combiner, and it provides better security
guarantees.

Another difference between (k;n)- and (α, β;n)-robust combiners is that for the new
definition it is possible to have “non-uniform” constructions with explicit dependence on α
and β. This motivates an even stronger notion of uniform combiners. For example, even if
there exists a (α, β;n)-robust combiner for every α, β ≥ 0 satisfying α + β ≥ δ, where δ is
some threshold, it might be the case that the combiner makes explicit use of the values α
and β, and thus works differently for every particular pair values (α, β). In such a scenario
more desirable would be a uniform construction, i.e., a single combiner that is secure under

2 Here an implicit assumption is made, that the candidates themselves run in polynomial time.
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the sole assumption that α + β ≥ δ. In particular, a uniform combiner does not obtain the
values of α and β as parameters.

Definition 3 ({δ;n}-robust uniform F-combiner). Let F be a two-party primitive. We
say that an F-combiner is a {δ;n}-robust uniform F -combiner if it is a (α, β;n)-robust
F-combiner, simultaneously for all α and β satisfying α + β ≥ δ.

Note that the parameter δ is a bound on the sum of the number of candidates secure
for Alice and the number of candidates secure for Bob, hence given n candidates δ is
from the range 0 . . . 2n. As an example consider a {4; 3}-robust uniform combiner. Such a
combiner is a (regular) (2; 3)-robust combiner, but at the same time it is also a (3, 1; 3)-
robust combiner, i.e., it tolerates input candidates C1,C2,C3, where one Ci is secure for
both parties, and the remaining two candidates are secure for Alice only. It is not hard
to see that not every (k;n)-robust combiner is automatically also a {δ;n}-robust uniform
combiner with δ = 2k. In particular, the (2; 3)-robust OT-combiner from [HKN+05] breaks
on inputs of the type described above for (3, 1; 3)-robust combiner.

For completeness, we recall three more definitions from [HKN+05]. Note that these
definitions extend naturally to the generalized combiners from Definitions 2 and 3.

Definition 4 (Black-box combiner [HKN+05]). A (1; 2)-robust combiner is called a
black-box combiner if the following two conditions hold:

Black-Box Implementation: The combiner is an oracle PPTM given access to the can-
didates via oracle calls to their implementation function.

Black-Box Proof: For every candidate there exists an oracle PPTM RA (with access
to A) such that if adversary A breaks the combiner, then RA breaks the candidate.3

Definition 5 (Transparent black-box combiner [HKN+05]). A transparent black-
box combiner is a black-box combiner for an interactive primitive where every call to a
candidate’s next message function is followed by this message being sent to the other party.

Definition 6 (Third-party black-box combiner [HKN+05]). A third-party black-
box combiner is a black-box combiner where the input candidates behave like trusted third
parties. The candidates give no transcript to the players but rather take their inputs and
return outputs.

Since the primary goal of robust combiners is to protect against wrong assumptions, in
our constructions we require that the candidates input to a combiner provide the desired
functionality and the underlying assumptions can affect only the security properties (e.g.
secrecy). This approach is justified by the fact that in cryptographic schemes the security is
usually based on some assumptions, while the functionality properties are straightforward
and hold unconditionally. Moreover, in some cases a possible way of dealing with unknown

3 For (k; n)-robust combiners there are at least n − k + 1 candidates that can be broken in this manner.
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implementations of primitives is to test them for the desired functionality, hence, even if
the candidate input primitives are given as black-boxes, one can test them before applying
a combiner (cf. Section 3.1 in [HKN+05]).

3 OT-Combiner with Secure Majority

The impossibility result for transparent black-box (1; 2)-robust OT-combiners [HKN+05]
implies directly the impossibility of transparent black-box (n; 2n)-robust OT-combiners,
as from their existence would follow the existence of transparent black-box (1; 2)-robust
OT-combiners. Similarly, it implies also the impossibility of transparent black-box (α, β;n)-
robust combiners for α+β ≤ n. However, since (k, k;n)-robust combiners are stronger than
(k;n)-robust combiners, we can show very simple impossibility results, which essentially
exclude (α, β;n)-robust OT-combiners of any type4, that would work for α + β ≤ n: in
Lemma 1 we prove that there are no black-box OT-combiners with such robustness, and
in Lemma 2 we show that constructing an OT-combiner of any type (for α + β ≤ n) is at
least as hard as constructing an OT protocol without any assumptions.

As mentioned previously, these results are not directly comparable with the impossi-
bility result from [HKN+05]: on one hand our results are stronger, since they go beyond
transparent black-box combiners, but on the other hand they are weaker, since they exclude
a primitive which is stronger then the one considered in [HKN+05].

Lemma 1. There does not exist a black-box (α, β;n)-robust OT-combiner for α + β ≤ n.

Proof. Assume that such a combiner exists, for some values α, β, and n such that α+β ≤ n.
Let OT1 be the trivial instance of OT where the sender sends both values to the receiver,
and let OT2 be the trivial instance where the receiver sends his choice bit to the sender, who
sends the receiver the value of his choice. Observe that OT1 is information-theoretically
secure for the receiver, and OT2 is information-theoretically secure for the sender.

Consider calling the combiner with input consisting of β instances of OT1 and n−β ≥ α
instances of OT2, and let OT denote the resulting OT protocol. By assumption, OT is secure
for both parties. Since it is impossible to construct an OT protocol information-theoretically
secure for both the sender and the receiver, there exists an adversary A (possibly inefficient),
which breaks the protocol OT. By the definition of a black-box combiner, it follows that
given oracle access to A one can break 2n − α − β + 1 > n “sides” of the candidates.
However, since one side of each candidate is information-theoretically secure, we can break
at most n sides. A contradiction. ut

Lemma 2. Any (α, β;n)-robust OT-combiner for α + β ≤ n implies the existence of OT.

Proof. Assume that such a combiner exists, for some values α, β, and n such that α+β ≤ n.
Let OT1 and OT2 be trivial instances of OT, as in the proof of Lemma 1. Calling the

4 I.e., not only transparent black-box combiners.
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combiner using β instances of OT1 and n−β ≥ α instances of OT2 as input yields a secure
OT protocol without any assumption. ut

We will now show that the bound of Lemmas 1 and 2 is tight, by presenting constructions
of (α, β;n)-robust OT-combiners for any α, β, and n, if α + β > n. First we describe a
combiner, which is very simple but not fully satisfactory, as it is not efficient.5

Lemma 3. For every α ≥ 0, β ≥ 0 and α + β > n there exists an inefficient third-party
black-box (α, β;n)-robust OT-combiner.

Proof. The combiner is a straightforward generalization of the (2; 3)-robust OT-combiner
from [HKN+05], which is based on two “special-purpose” combiners, combiner R for pro-
tecting the receiver, and combiner S for protecting the sender.6

The (α, β;n)-robust combiner works in two phases: in the first phase subsets of the
candidates of size α are combined using the combiner R, resulting in n′ =

(

n
α

)

OT schemes.
Each of resulting instance is secure for the receiver and at least one is secure for both
parties. In the second phase the n′ OTs are combined using the combiner S to yield a final
scheme protecting both the sender and the receiver. ut

The combiner presented in the above proof is perfect in the sense that it does not introduce
any additional error. However, it is inefficient in n, since the value of n′, i.e., the number
of OTs resulting from the first phase, would be superpolynomial in n. Lemma 5 presents
a combiner that is not perfect, but efficient in n and other parameters, as required in
Definition 1. In the construction we use a third-party combiner for bit commitment, which
is an adaptation of a secret-sharing-based BC-combiner, due to Herzberg [Her05], to our
generalized definition. As this may be of independent interest, we describe it separately.

Lemma 4. For every n ≥ 2 and for every α, β > 0 satisfying α + β > n there exists a
third-party black-box (α, β;n)-robust BC-combiner.

Proof. We describe a string commitment that lets a sender commit to a value s ∈ {0, 1}m,
for an arbitrary m such that 2m > n, using n candidate implementations of bit-commitment
from which at least α are hiding and at least β are binding.

The sender computes7 an `-out-of-n Shamir’s secret sharing of s over F2m , for ` :=
n − α + 1, resulting in shares s1, . . . , sn. Then the sender uses the n instances of bit-
commitment to commit to the share si bit-by-bit, for each i ∈ [n]. In the opening phase the
sender opens the commitments to all the shares, and the receiver reconstructs the secret s.

To see that this commitment is hiding, notice that at least α shares are guaranteed
to be hidden from the receiver, since at least α candidate bit-commitments are hiding.

5 Due to its inefficiency, this is strictly speaking not a robust combiner (cf. Def. 1). In a slight abuse of
terminology, we call it an inefficient combiner.

6 For completeness, we recall these special-purpose combiners in the appendix.
7 In this computation we view bit-strings from {0, 1}m as elements of

�
2m .
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Therefore before the opening phase the receiver sees at most n − α < ` shares, which give
no information about the secret. On the other hand, since at least β candidates of the
bit-commitments are binding, the sender is indeed committed to at least β shares. Since
α + β > n, i.e., β > n − α, the sharing polynomial, which has degree at most n − α, is
uniquely determined by these β shares, and so the commitment to s is also binding. ut

Lemma 5. For every n ≥ 2 and for every α, β > 0 satisfying α + β > n there exists a
third-party black-box (α, β;n)-robust OT-combiner.

Proof. First assume that the sender and the receiver have a common random string r at
their disposal. Later we describe how this additional assumption can be dropped.

Using r, the combiner works as follows: it simulates (p, q)-WOT with p + q ≤ 1 − 1/n
by picking each time an input OT-candidate uniformly at random. This is possible, since
we are having n candidates, α of which are secure for the sender and β are secure for the
receiver, with α + β ≥ n + 1. By picking one candidate at random we obtain a probability
p ≤ (n− β)/n that the sender learns the receiver’s choice, and a probability q ≤ (n−α)/n
that the receiver learns both bits input by the sender, hence p+q ≤ ((n−α)+(n−β))/n =
(2n − α − β)/n ≤ 1 − 1/n, as required. Given such a (p, q)-WOT, use the (efficient)
amplification algorithm of Damg̊ard et al. [DKS99] to obtain a secure OT.

To complete the argument, we have to show how the sender and the receiver can gener-
ate a common random string r. It is well-known that OT implies bit-commitment [Cré87],
and bit-commitment implies coin-toss [Blu82].8 Therefore, we can convert our n candi-
date implementation of OT into n candidate implementations of bit-commitment, and
then use the bit-commitment-combiner of Lemma 4 to obtain a secure implementation of
bit-commitment, provided that α + β > n. This implementation can then be used to im-
plement coin-toss, i.e., the parties can generate a common random string r using the input
candidates only, without additional assumptions. Finally, it is easy to verify that all the
described protocols use the candidates in a third-party black-box manner, and that the
combiner is efficient. ut

From Lemmas 1 and 5, we get immediately the following theorem about (α, β;n)-robust
OT-combiner.

Theorem 1. There exists a black-box (α, β;n)-robust OT-combiner if and only if α+β > n
holds. The construction is third-party black-box and efficient.

Furthermore, the impossibility result of [HKN+05] together with Lemma 5 yield the fol-
lowing corollary about (k;n)-robust OT-combiner.

Corollary 1. There exists a transparent black-box (k;n)-robust OT-combiner if and only
if 2k > n. The construction is third-party black-box and efficient.

8 For completeness, we describe both protocols in the appendix.
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4 OT-Combiners based on the symmetry of OT

A closer look at the combiners from the proofs of Lemmas 3 and 5 shows that these are
“non-uniform” combiners (cf. Sect. 2.2). Namely, the proofs show that for given α, β > 0
with α+β > n there exists a (α, β;n)-robust combiner, i.e., the actions of the combiner are
different for different values α, β. (For Lemma 3 it is explicit in the construction, and for
Lemma 5 it is due to the fact that the amplification algorithm from [DKS99] makes explicit
use of parameters p, q.) More desireable would be an uniform construction, which would
have a switched order of quantifiers, i.e., we would like a single combiner that is secure for
every α, β > 0 with α + β > n, and would therefore be strictly stronger than any of the
special combiners. In this section we show how to construct such a combiner by exploiting
the symmetry of OT, i.e., the fact that given OT with sender Alice and receiver Bob, we
can perfectly logically reverse it to obtain OT with receiver Alice and sender Bob. That
OT can be reversed has first been discovered independently in [CS91,OVY93]. A simpler
and more efficient protocol has been proposed in [WW06].

Our construction is based on a simple trick, which is somehow non-standard, yet plau-
sible in most scenarios: we require that the parties can swap their roles when executing
candidate protocols, i.e., any input candidate OTi can be executed in such a way that the
sender (of the main OT-protocol) plays the role of the receiver in OTi, and the receiver
plays the role of the sender in OTi. Moreover, we require that we have at our disposal
multiple copies of each candidate implementation (in particular, our protocols use the can-
didates both in the original setting as well in the swapped configuration). For example, if
the input candidates are given as software packages, these requirements are not a problem,
as it means only calling different functions, but if a candidate is given as a pair of physical
devices implementing the primitive, the swapping operation can be problematic, as it may
require a real physical swap of the corresponding devices. However, it is difficult to come
up with a primitive that cannot be swapped or duplicated in principle. Such a primitive
would need to make use of some kind of a physical phenomenon, only available to one of
the parties, but not to the other.

We use the swapping of the roles in OT — which can be viewed as a “physical” reversal
— together with a logical reversal of OT [CS91,OVY93,WW06] to obtain an OT in the orig-
inal direction (from the original sender to the original receiver), but with swapped security
properties. More precisely, let swap be this two-step process, i.e., physical swap followed by
logical reversal, and consider an implementation OT and its swapped-and-reversed version,
OT∗ = swap(OT). If OT is a correct OT-protocol, then so is OT∗. Moreover, if in OT the
security of the sender is based on assumption A, and the security of the receiver is based
on assumption B, then in OT∗ we have the opposite situation: the security of the sender
is based on assumption B, and the security of the receiver is based on assumption A. In
particular, if OT is an implementation unconditionally secure for the sender, then OT∗ is
an implementation unconditionally secure for the receiver.
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Sender’s input: two bits b0, b1

Receivers’s input: choice bit c
Input OT protocols: OT1, OT2

Note: Auxiliary combiners R and S [CK88,HKN+05] are described in the appendix.

1. Parties apply swap to obtain OT∗

1= swap(OT1) and OT∗

2= swap(OT2).

2. Parties define OT′ = R(OT1,OT2) and OT′′ = R(OT∗

1,OT∗

2).

3. Parties invoke S(OT′,OT′′)(b0, b1; c).

Fig. 1: A {3; 2}-robust uniform OT-combiner.

As a first application of this swapping trick we show a {3; 2}-robust uniform OT-
combiner, i.e., a combiner which is simultaneously (α, β; 2)-robust for any α, β satisfying
α+β ≥ 3. Recall that if it is known in advance that the security of one party is guaranteed
(e.g. α = 2), then the corresponding combiner is very simple [HKN+05]. However, the
combiner for the case α = 2 is quite different from the combiner for the case β = 2, hence
these simple combiners are not uniform.

The idea behind our uniform combiner is to use both, the two candidate OT1, OT2, and
their swapped counterparts OT∗

1 = swap(OT1) and OT∗

2 = swap(OT2). Since α + β ≥ 3,
at least two of OT1, OT2, OT∗

1, OT∗

2 are secure for both parties, at most one is insecure
for the sender, and at most one is insecure for the receiver. This is sufficient to implement
a secure OT. The construction makes use of the two “special-purpose” OT-combiners we
have used previously in the proof of Lemma 3, i.e., combiner S for protecting the sender,
and combiner R for protecting the receiver (cf. Appendix). Figure 1 presents the entire
construction in more detail, and the following theorem summarizes its properties.

Theorem 2. There exists a third-party black-box {3; 2}-robust uniform OT-combiner using
the swap-operation.

Proof. (sketch) Consider the protocol in Figure 1. Let OT denote the resulting OT pro-
tocol. OT has to satisfy correctness, privacy for the sender, and privacy for the receiver.
Correctness is trivially given due to the correctness of the candidates OT1, OT2, the sym-
metric schemes OT∗

1, OT∗

2, and the combiners R and S. Given the symmetry of OT, if
the privacy of one party is compromised for one candidate, then the privacy of the other
party is compromised for the corresponding swapped candidate. Combining OT1, OT2, re-
spectively OT∗

1, OT∗

2, with R ensures that the receiver’s privacy is protected in both OT′

and OT′′, and the sender’s privacy in at least one of them. Hence S(OT′,OT′′) protects
the sender from a possible security break of one of the input canditates. Finally, is easy to
verify that this is a third-party black-box combiner. ut
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The next lemma gives a general construction to obtain a uniform combiner from a
non-uniform one. This construction makes use of the swap-operation, and can be used for
combiners of any symmetric two-party primitive.

Lemma 6. If there exists a (k, k; 2n)-robust OT-combiner, then there exists a {k;n}-robust
uniform OT-combiner using the swap-operation.

Proof. (sketch) The (k, n)-robust uniform OT-combiner works as follows: given n candidate
instances of OT, satisfying α + β ≥ k, we duplicate all instances, and apply the swap-
operation to the duplicates. In this way we obtain 2n candidate instances, where at least k
of them are secure for the sender, and at least k are secure for the receiver. Now we can apply
the (k, k; 2n)-robust OT-combiner to these 2n instances, and get a secure implementation
of OT. ut

Lemma 6 together with Theorem 1 give us the following theorem.

Theorem 3. For any n ≥ 2 and δ > n, there exists a third-party black-box {δ;n}-robust
uniform OT-combiner using the swap-operation.

Although the presented uniform OT-combiner works with all OT protocols proposed
in the literature, it naturally raises the question whether the role-swapping technique can
be dropped. Sommer [Som06] has recently pointed out that for transparent black-box OT-
combiners the use of the candidates in the swapped direction is in fact necessary. More
precisely, he observed that the impossibility proof of Harnik et al. [HKN+05] can be adapted
to exclude transparent black-box {3; 2}-robust uniform OT-combiners using the candidates
in the prescribed direction only.

5 Conclusions and open problems

We proposed stronger definitions of robust combiners for two-party protocols, which yield
robuster, more general combiners for oblivious transfer. The observation that a partially
broken candidate implementation can still provide security for one of the parties leads to
OT-combiners strictly stronger than the constructions known previously. Furthermore, we
have shown that for symmetric two-party primitives even stronger combiners are possible
if the parties can swap their roles in the candidate protocols.

As we mentioned above, there is currently a trade-off between the perfect security and
the efficiency of a combiner: we do not know whether there exists an efficient (in the
number of candidates) perfect uniform OT-combiner. Moreover, it would be interesting to
find other settings, in which the introduced swapping-trick could be useful.
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Appendix

For completeness, we recall some constructions used in the proposed combiners. First we de-
scribe the “special-purpose” combiners R and S from [CK88,HKN+05]. Combiner R takes
n OT candidates, and guarantees security of the receiver if at least one of the candidates
is secure for the receiver:

R(OT1, . . . ,OTn)(b0, b1; c):

1. The sender picks random bits r0
1, r

0
2 , . . . , r

0
n, such that b0 = r0

1 ⊕ r0
2 ⊕ · · · ⊕ r0

n,
and sets r1

i := r0
i ⊕ b0 ⊕ b1, for every i = 1 . . . n.

2. The receiver picks random bits c1, c2, . . . , cn such that c = c1 ⊕ c2 ⊕ · · · ⊕ cn.

3. For every i = 1 . . . n parties run OTi(r
0
i , r

1
i ; ci).

From i-th execution the receiver obtains output rci

i .

4. The receiver outputs bc computed as the XOR of his outputs from all executions,
i.e.

bc = rc1
1

⊕ rc2
2

⊕ · · · ⊕ rcn

n .

Combiner S takes n OT candidtates, and guarantees security of the sender if at least one
of the candidates is secure for the sender:

S(OT1, . . . ,OTn)(b0, b1; c):

1. The sender picks random bits r0
1, r

0
2 , . . . , r

0
n, and r1

1, r
1
2, . . . , r

1
n, such that

b0 = r0
1 ⊕ r0

2 ⊕ · · · ⊕ r0
n and b1 = r1

1 ⊕ r1
2 ⊕ · · · ⊕ r1

n .

2. For every i = 1 . . . n parties run OTi(r
0
i , r

1
i ; c).

From i-th execution the receiver obtains output rc
i .

3. The receiver outputs bc computed as the XOR of his outputs from all executions,
i.e.

bc = rc
1 ⊕ rc

2 ⊕ · · · ⊕ rc
n .

The following protocol generates a random bit-string using bit-commitment. Let m > 0.

Coin-toss:

1. The sender picks a random s′ ∈ {0, 1}m and commits to it.

2. The receiver picks a random s′′ ∈ {0, 1}m and sends it to the sender.

3. The sender opens the commitment to s′, and both parties output s = s′ ⊕ s′′.
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The following protocol implements bit-commitment using OT. Let κ > 0 be a security
parameter.

Commit(v):
1. The sender picks random r ∈ {0, 1}κ, and the receiver a c ∈ {0, 1}κ.
2. The sender inputs x0 = ri and x1 = ri ⊕ v and the receiver ci to the i-th instance

of OT.
3. The receiver obtains yi from the i-th instance of OT.

Open:
1. The sender sends v and r to the receiver.
2. The receiver verifies whether for all i we have yi = ri ⊕ civ.

15


