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Abstract. Universally composable (UC) multi-party computation has
been studied in two settings. When a majority of parties are honest, UC
multi-party computation is possible without any assumptions. Without
a majority of honest parties, UC multi-party computation is impossible
in the plain model, but feasibility results have been obtained in vari-
ous augmented models. The most popular such model posits a common
reference string (CRS) available to parties executing the protocol.

In either of the above settings, some assumption regarding the protocol
execution is made: i.e., that many parties are honest in the first case,
or that a legitimately-chosen string is available in the second. If this
assumption is incorrect then all security is lost.

A natural question is whether it is possible to design protocols secure
if either one of these assumptions holds, i.e., a protocol which is secure
if either at most s players are dishonest or if up to t > s players are
dishonest but the CRS is chosen in the prescribed manner. We show
that such protocols exist if and only if s + t < n.

1 Introduction

Protocols proven to satisfy the definition of universal composability [5] offer
strong and desirable security guarantees. Informally speaking, such protocols
remain secure even when executed concurrently with arbitrary other protocols
running in some larger network, and can be used as sub-routines of larger pro-
tocols in a modular fashion.

Universally composable (UC) multi-party computation of arbitrary function-
alities has been investigated in two settings. When a majority of the parties
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running a protocol are assumed to be honest, UC computation of arbitrary func-
tionalities is possible without any cryptographic assumptions. (This is claimed
in [5], building on [3, 17].) This result holds in the so-called “plain model” which
assumes only pairwise private and authenticated channels between each pair of
parties. (A broadcast channel or a PKI are not needed [10], since fairness and
output delivery are not guaranteed in the UC framework.)

In contrast, when the honest players cannot be assumed to be in the majority,
it is known that UC computation of general functions is not possible in the
plain model regardless of any cryptographic assumptions made. Canetti and
Fischlin [7] showed the impossibility of two-party protocols for commitment and
zero knowledge, and Canetti, Kushilevitz, and Lindell [8] ruled out UC two-party
computation of a wide class of functionalities.

To circumvent these far-reaching impossibility results, researchers have in-
vestigated various augmented models in which UC computation without honest
majority might be realizable [5, 7, 9, 1, 12, 6, 15]. The most widely-used of these
augmented models is the one originally suggested by Canetti and Fischlin [7], in
which a common reference string (CRS) is assumed to be available to all parties
running a given execution of a protocol. (The use of a common reference string
in cryptographic protocols has a long history that can be traced back to [4].)
Canetti and Fischlin show that UC commitments and zero knowledge are possi-
ble in the two-party setting when a CRS is available, and later work of Canetti
et al. [9] shows that (under suitable cryptographic assumptions) a CRS suffices
for UC multi-party computation of arbitrary functionalities.

In summary, there are two types of what we might term “assumptions about
the world” under which UC multi-party computation is known to be possible:

– When a strict minority of players are dishonest.
– When an arbitrary number of players may be dishonest, but a trusted CRS

(or some other setup assumption) is available.

Our contribution. Known protocols designed under one of the assumptions
listed above are completely insecure in case the assumption turns out to be
false. For example, the BGW protocol [3] — which is secure when a majority
of the parties are honest — is completely insecure in case half or more of the
parties are dishonest. Similarly, the CLOS protocol [9] — which is secure for
an arbitrary number of corrupted parties when a trusted CRS is available —
is completely insecure in the presence of even a single corrupted party if the
protocol is run using a CRS σ that is taken from the wrong distribution or, even
worse, adversarially generated. Given this state of affairs, a natural question is
whether it is possible to design a single protocol Π that uses a common reference
string σ and simultaneously guarantees the following:

– Regardless of how σ is generated (and, in particular, even if σ is generated
adversarially), Π is secure as long as at most s parties are corrupted.

– If σ is generated “honestly” (i.e., by a trusted third party according to the
specification), then Π is secure as long as at most t parties are corrupted.



In this case, we will call the protocol Π an “(s, t)-secure protocol”. It follows from
[7, 8] that (s, t)-security for general functionalities is only potentially achievable
if s < n/2, where n is the total number of parties running the protocol. A priori,
we might hope to achieve the “best possible” result that (⌊(n − 1)/2⌋, n − 1)-
secure protocols exist for arbitrary functionalities.

Here, we show tight positive and negative answers to the above question.
First, we show that for any s + t < n (and s < n/2) there exists an (s, t)-secure
protocol realizing any functionality. We complement this by showing that this
is, unfortunately, the best possible: if s + t = n then there is a large class of
functionalities (inherited, in some sense, from [8]) for which no (s, t)-secure pro-
tocol exists. We prove security under adaptive corruptions for our positive result,
while our negative result holds even for the case of non-adaptive corruptions.

For n odd, the extremes of our positive result (i.e., s = t = ⌊(n − 1)/2⌋,
or s = 0, t = n − 1) correspond to, respectively, a protocol secure for honest
majority (but relying on cryptographic assumptions) or one secure against an
arbitrary number of malicious parties but requiring a CRS. (For n even we obtain
a protocol that tolerates s = ⌊(n− 1)/2⌋ corruptions regardless of how the CRS
is constructed, and t = s + 1 corruptions if the CRS is honestly-generated.) Our
results also exhibit new protocols in between these extremes. Choice of which
protocol to use reflects a tradeoff between the level of confidence in the CRS and
the number of corruptions that can be tolerated: e.g., choosing s = 0 represents
full confidence in the CRS, while setting s = t = ⌊(n − 1)/2⌋ means that there
is effectively no confidence in the CRS at all.

Related work. Another suggestion for circumventing the impossibility results
of [7, 8] has been to use a definition of security where the ideal-model simulator
is allowed to run in super-polynomial time [16, 2]. This relaxation is sufficient to
bypass the known impossibility results and leads to constructions of protocols
for any functionality without setup assumptions. While these constructions seem
to supply adequate security for certain applications, they require stronger (sub-
exponential time) complexity assumptions and can be problematic when used as
sub-routines within larger protocols.

Some other recent work has also considered the construction of protocols
having “two tiers” of security. Barak, Canetti, Nielsen, and Pass [1] show a
protocol relying on a key-registration authority: if the key-registration authority
acts honestly the protocol is universally composable, while if this assumption is
violated the protocol still remains secure in the stand-alone sense. Ishai et al. [13]
and Katz [14], in the stand-alone setting, studied the question of whether there
exist protocols that are “fully-secure” (i.e., guaranteeing privacy, correctness,
and fairness) in the presence of a dishonest minority, yet still “secure-with-abort”
otherwise. While the motivation in all these cases is similar, the problems are
different and, in particular, a solution to our problem does not follow from (or
rely on) any of these prior results.

Groth and Ostrovsky [11] recently introduced the multi-CRS model for uni-
versally composable multi-party computation. In this model, roughly speaking,
the parties have access to a set of k common reference strings, some k′ of which



are “good” (i.e., guaranteed to have been chosen honestly). The remaining k−k′

strings are “bad”, and can be chosen in an arbitrary manner. (Of course, it is
not known which strings are “good” and which are “bad”.) Groth and Ostro-
vsky explore conditions on k, k′ under which UC multi-party computation is still
possible. Although in both their case and our own the question boils down to
what security guarantees can be achieved in the presence of a “bad” CRS, our
end results are very different. In the work of Groth and Ostrovsky the number
of corruptions to be tolerated is fixed and there are assumed to be some minimal
number k′ of “good” strings among the k available ones. In our work, in contrast,
it is possible that no “good” CRS is available at all; even in this case, though,
we would still like to ensure security against some (necessarily) smaller set of
corrupted parties. On the other hand, we do rely on the Groth-Ostrovsky result
as a building block for our positive result.

2 Preliminaries

2.1 Review of the UC Framework

We give a brief overview of the UC framework, referring the reader to [5] for
further details. The UC framework allows for defining the security properties
of cryptographic tasks so that security is maintained under general composition
with an unbounded number of instances of arbitrary protocols running con-
currently. In the UC framework, the security requirements of a given task are
captured by specifying an ideal functionality run by a “trusted party” that ob-
tains the inputs of the participants and provides them with the desired outputs.
Informally, then, a protocol securely carries out a given task if running the proto-
col in the presence of a real-world adversary amounts to “emulating” the desired
ideal functionality.

The notion of emulation in the UC framework is considerably stronger than
that considered in previous models. As usual, the real-world model includes the
parties running the protocol and an adversary A who controls their communica-
tion and potentially corrupts parties, while the ideal-world includes a simulator
S who interacts with an ideal functionality F and dummy players who simply
send input to/receive output from F . In the UC framework, there is also an
additional entity called the environment Z. This environment generates the in-
puts to all parties, observes all their outputs, and interacts with the adversary in
an arbitrary way throughout the computation. A protocol Π is said to securely
realize an ideal functionality F if for any real-world adversary A that interacts
with Z and real players running Π , there exists an ideal-world simulator S that
interacts with Z, the ideal functionality F , and the “dummy” players communi-
cating with F , such that no poly-time environment Z can distinguish whether it
is interacting with A (in the real world) or S (in the ideal world). Z thus serves
as an “interactive distinguisher” between a real-world execution of the proto-
col Π and an ideal execution of functionality F . A key point is that Z cannot
be re-wound by S; in other words, S must provide a so-called “straight-line”
simulation.



The following universal composition theorem is proven in [5]. Consider a pro-
tocol Π that operates in the F -hybrid model, where parties can communicate as
usual and in addition have ideal access to an unbounded number of copies of the
functionality F . Let ρ be a protocol that securely realizes F as sketched above,
and let Πρ be identical to Π with the exception that the interaction with each
copy of F is replaced with an interaction with a separate instance of ρ. Then
Π and Πρ have essentially the same input/output behavior. In particular, if Π
securely realizes some functionality G in the F -hybrid model then Πρ securely
realizes G in the standard model (i.e., without access to any functionality).

2.2 Definitions Specific to Our Setting

We would like to model a single protocol Π that uses a CRS σ, where σ either
comes from a trusted functionality FCRS (defined as in [7] and all subsequent
work on UC computation in the CRS model) or is chosen in an arbitrary manner
by the environment Z. A technical detail is that parties running Π can trivially
“tell” where σ comes from depending on which incoming communication tape
σ is written on (since an ideal functionality would write inputs to a different
tape than Z would). Because this does not correspond to what we are attempt-
ing to model in the real world, we need to effectively “rule out” protocols that
utilize this additional knowledge. The simplest way to do this is to define a “mali-
cious CRS” functionality FmCRS that we now informally describe. Functionality
FmCRS takes input σ from the adversary A and then, when activated by any
party Pi, sends σ to that party. The overall effect of this is that A (and hence
Z) can set the CRS to any value of its choice; however, it is forced to provide
the same value to all parties running protocol Π . When the parties interact with
FCRS , this (intuitively) means that the CRS is “good”; when they interact with
FmCRS the CRS is “bad”. We refer to this setting, where parties interact with
either FCRS or FmCRS but do not know which, as the mixed CRS model. We
can now define an (s, t)-secure protocol.

Definition 1. We say a protocol Π (s, t)-securely realizes a functionality F in the

mixed CRS model if

(a) Π securely realizes F in the FmCRS-hybrid model when at most s parties are
corrupted.

(b) Π securely realizes F in the FCRS-hybrid model when at most t parties are
corrupted.

We stress that Π itself does not “know” in which of the two hybrid models it is
being run. S, however, may have this information hard-wired in. More concretely:
although Π is a fixed protocol, two different ideal-world adversaries S, S′ may
be used in proving each part of the definition above.

3 Positive Result for s + t < n

We begin by showing our positive result: if s+ t < n and s < n/2 (where n is the
total number of parties running the protocol), then essentially any functionality



F can be (s, t)-securely realized in the mixed CRS model. This is subject to two
minor technical conditions [9] we discuss briefly now.

Non-trivial protocols. The ideal process does not require the ideal-process
adversary to deliver the messages that are sent between the ideal functionality
and the parties. A corollary of the above fact is that a protocol that “hangs”
(i.e., never sends any messages and never generates output) securely realizes any
ideal functionality. However, such a protocol is uninteresting. Following [9], we
therefore let a non-trivial protocol be one for which all parties generate output if
the real-life adversary delivers all messages and all parties are honest.

Well-formed functionalities. A well-formed functionality is oblivious of the
corruptions of parties, runs in polynomial time, and reveals the internal random-
ness used by the functionality to the ideal-process adversary in case all parties
are corrupted [9]. This class contains all functionalities we can hope to securely
realize from a non-trivial protocol in the presence of adaptive corruptions, as
discussed in [9].

We can now formally state the result of this section:

Theorem 1 Fix s, t, n with s+ t < n and s < n/2. Assume that enhanced trap-
door permutations, augmented non-committing encryption schemes, and dense
cryptosystems exist. Then for every well-formed n-party functionality F , there
exists a non-trivial protocol Π which (s, t)-securely realizes F against adaptive
adversaries in the mixed CRS model.

The cryptographic assumptions of the theorem are inherited directly from [9],
and we refer the reader there for formal definitions of each of these. Weaker
assumptions suffice to achieve security against static corruptions; see [9].

To prove the above theorem, we rely on the results of Groth and Ostrovsky
regarding the multi-CRS model [11]. Informally, they show the following result:
Assume parties P1, . . . , Pn having access to k ≥ 1 strings σ1, . . . , σk. As long
as k′ > k/2 of these strings are honestly generated according to some specified
distribution D (and assuming the same cryptographic assumptions of the the-
orem stated above), then for every well-formed functionality F there exists a
non-trivial protocol Π securely realizing F . We stress that the remaining k − k′

strings can be generated arbitrarily (i.e., adversarially), even possibly depending
on the k′ honestly-generated strings.

Building on the above result, we now describe our construction. We assume
there are n parties P1, . . . , Pn who wish to run a protocol to realize a (well-
formed) functionality F . Construct a protocol Π as follows:

1. All parties begin with the same string σ∗ provided as input. (Recall the par-
ties do not know whether this is a “good” CRS or a “bad” CRS.) P1, . . . , Pn

first “amplify” the given string σ∗ to m CRSs σ∗1 , . . . , σ∗m, where m is a pa-
rameter which is defined later on. The requirements here are simply that if
σ∗ is “good”, then each of σ∗1 , . . . , σ∗m should be “good” also. (If σ∗ is “bad”
then we impose no requirements on σ∗1 , . . . , σ∗m.)



The above can be accomplished by using the CLOS protocol [9] as follows.
Define an ideal functionality Fm new CRS which generates m new CRSs from
the appropriate distribution D (where D refers to the the distribution used
in the Groth-Ostrovsky result mentioned above) and outputs these to all
parties. We use the CLOS protocol to realize the functionality Fm new CRS .
When running the CLOS protocol, use the given string σ∗ as the CRS.

Note that when σ∗ was produced by FCRS , security of the CLOS protocol
guarantees that the m resulting CRSs are all chosen appropriately. On the
other hand, there are no guarantees in case σ∗ was produced by FmCRS , but
recall that we do not require anything in that case anyway.

2. Following the above, each party Pi chooses a string σi according to distri-
bution D (where, again, D is the distribution used in the Groth-Ostrovsky
result mentioned above), and broadcasts σi to all other parties.3

3. Each party receives σ1, . . . , σn, and sets σ∗m+i = σi for i = 1 to n.
4. All parties now have n + m strings σ∗1 , . . . , σ∗n+m. These strings are used to

run the Groth-Ostrovsky protocol for F .

We claim that for any s, t satisfying the conditions of Theorem 1, it is pos-
sible to set m so as to obtain a protocol Π that (s, t)-securely realizes F . The
conditions we need to satisfy are as follows:

– When Π is run in the FCRS-hybrid model, σ∗ is a “good” CRS and so
the strings σ∗1 , . . . , σ∗m are also “good”. The n − t honest parties contribute
another n− t “good” strings in step 2, above, for a total of m+n− t “good”
strings in the set of strings σ∗1 , . . . , σ∗n+m. At most t of the strings in this set
(namely, those contributed by the t malicious parties) can be “bad”. For the
Groth-Ostrovsky result to apply, we need m + n − t > t or

m > 2t − n. (1)

– When Π is run in the FmCRS-hybrid model, σ∗ is adversarially-chosen and
so we must assume that the strings σ∗1 , . . . , σ∗m are also “bad”. In step 2, the
malicious parties contribute another s “bad” strings (for a total of m + s
“bad” strings), while the n−s honest parties contribute n−s “good” strings.
For the Groth-Ostrovsky result to apply, we now need n − s > m + s or

m < n − 2s. (2)

Since m, t, n are all integers, Equations (1) and (2) imply

2t − n ≤ n − 2s − 2

or s+ t ≤ n−1. When this condition holds, the equations can be simultaneously
satisfied by setting m = n − 2s − 1, which gives a positive solution if s < n/2.

The security of the above construction follows from the security of the Groth-
Ostrovsky protocol [11] (the details are omitted).

3 The “broadcast” used here is the UC broadcast protocol from [10] (which achieves a
weaker definition than “standard” broadcast, but suffices for constructing protocols
in the UC framework).



4 Impossibility Result for s + t ≥ n

In this section, we state and prove our main impossibility result which shows
that the results of the previous section are tight.

Theorem 2 Let n, t, s be such that s + t ≥ n. Then there exists a well-formed
deterministic functionality for which no non-trivial n-party protocol exists that
(s, t)-securely realizes F in the mixed CRS model.

We in fact show that the above theorem holds for a large class of function-
alities. That is, there exists a large class of functionalities for which no such
non-trivial protocol exists.

The proof of Theorem 2 relies on ideas from the impossibility result of
Canetti, Kushilevitz, and Lindell [8] that applies to 2-party protocols in the
plain model. Since ours is inherently a multi-party scenario, our proof proceeds
in two stages. In the first stage of our proof, we transform any n-party protocol
Π that securely computes a function f in the mixed CRS model, into a two-party
protocol Σ in the mixed CRS model that computes a related function g (derived
from f). Protocol Σ guarantees security in the FCRS-hybrid model when either
party is corrupted, and security in the FmCRS-hybrid model when the second
party is corrupted. In the second stage of our proof, we show that one of the
parties running Σ can run a successful split simulator strategy [8] against the
other. As in [8], the existence of a split simulator strategy means that the class
of functionalities that can be securely realized by the two-party protocol Σ is
severely restricted. This also restricts the class of functionalities f which can be
realized using the original n-party protocol.

We now give the details. Let x‖y denote the concatenation of x and y. We
first define the t-division of a function f .

Definition 2. Let f = (f1, . . . , fn) be a function taking n inputs x1, . . . , xn

and returning n (possibly different) outputs. Define the two-input/two-output
function g = (g1, g2), the t-division of f via:

g1

(
I1

︷ ︸︸ ︷

(x1‖ · · · ‖xt),

I2
︷ ︸︸ ︷

(xt+1‖ · · · ‖xn)
)

= f1(x1, . . . , xn)‖ · · · ‖ft(x1, . . . , xn)

g2

(

(x1‖ · · · ‖xt), (xt+1‖ · · · ‖xn)
)

= ft+1(x1, . . . , xn)‖ · · · ‖fn(x1, . . . , xn).

Lemma 1. Let n, t, s be such that s + t = n and s < n/2. Say Π is an (s, t)-
secure protocol by which parties P1, . . . , Pn holding inputs x1, . . . , xn can evaluate
a function f(x1, . . . , xn). Then there exists a two-party protocol Σ by which par-
ties p1, p2 holding inputs I1 = x1‖ . . . ‖xt and I2 = xt+1‖ . . . ‖xn can evaluate
the t-division function g(I1, I2). Furthermore, Σ is secure when either parties is
corrupted in the FCRS-hybrid model, and secure against a dishonest p2 in the
FmCRS-hybrid model.



Proof. We construct the protocol Σ using the protocol Π . The basic idea is as
follows. The parties p1 and p2 break their input I1, I2 into several parts and start
emulating n parties running the protocol Π to compute f on those inputs. Some
of these parties in Π are controlled and emulated by p1 and others by p2. Finally
when Π finishes, p1 and p2 get several outputs fi meant for parties controlled
by them. Using these outputs, p1 and p2 then individually reconstruct their final
output g1 and g2. More details follow.

The parties p1, p2 hold inputs I1 = x1‖ . . . ‖xt and I2 = xt+1‖ . . . ‖xn and
wish to compute the function g. Party p1 internally starts emulating parties
P1, . . . , Pt on inputs x1, . . . , xt, respectively, to compute the function f . Similarly,
p2 starts emulating parties Pt+1, . . . , Pn on inputs xt+1, . . . , xn. Whenever Π
requires party Pi to send a message M to party Pj , this is handled in the natural
way: If i, j ≤ t (resp., i, j > t), then p1 (resp., p2) internally delivers M from
Pi to Pj . If i ≤ t and j > t, then p1 sends the message (i, j, M) to p2 who then
internally delivers M to Pj as if it were received from Pi. The case i > t and
j ≤ t is handled similarly. After Π finishes, P1, . . . , Pt halt outputting f1, . . . , ft

and hence p1 obtains g1 = f1‖ . . . ‖ft. Similarly, p2 obtains g2 = ft+1‖ . . . ‖fn.
As for the security claims regarding Σ, recall that Π is t-secure in the FCRS-

hybrid model. This means that Π securely computes f in the presence of any
coalition of up to t corrupted parties. This in particular means that Π remains
secure if all of P1, . . . , Pt are corrupted. Thus, Σ remains secure against a dis-
honest p1 (who controls P1, . . . , Pt) in the FCRS-hybrid model. Also since s ≤ t
(because s < n/2), protocol Π is secure even if Pt+1, . . . , Pn are corrupted and
hence Σ is secure against a dishonest p2 in the FCRS-hybrid model. Furthermore,
Π is s-secure in the FmCRS-hybrid model. This means that Π remains secure
even if Pt+1, . . . , Pn are corrupted. Hence Σ is secure against a dishonest p2 (but
not necessarily against a dishonest p1) in the FmCRS-hybrid model.

We now show that a malicious p2 can run a successful split simulator strat-
egy [8] against an honest p1 in protocol Σ when run in the FmCRS-hybrid model.
This shows that even if p1 remains honest, there is a large class of functionalities
that cannot be securely realized by Σ.4 Using the previous lemma, this in turn
shows the existence of a class of functionalities which cannot be (s, t)-securely
realized by Π (when t + s ≥ n).

Showing the existence of a successful split simulator strategy for p2 amounts
to reproving the main technical lemma of [8] in our setting. We start by recalling
a few definitions and notations from [9, 8]. Part of our proof is taken almost
verbatim from [8].

Notation. Let g : D1 × D2 → {0, 1}∗ × {0, 1}∗ be a deterministic, polynomial-
time computable function, where D1, D2 ⊆ {0, 1}∗ are arbitrary (possibly in-
finite) domains of inputs. Function g is denoted by g = (g1, g2) where g1 and

4 In [8], it was shown that either party p1 or p2 could run a split simulator strategy
against the other. In our case, we only show that p2 can do so against p1. Hence,
the class of functionalities which we prove are impossible to realize is smaller than
that in [8].



g2 denote the outputs of p1 and p2, respectively. The following definition corre-
sponds to [8, Def. 3.1].

Definition 3. Let Σ be a protocol securely computing g. Let Dκ ⊆ D2 be a
polynomial-size subset of inputs (i.e., |Dκ| = poly(κ), where κ is a security
parameter). Then a corrupted party p2 is said to run a split adversarial strategy

if it consists of machines pa
2 and pb

2 such that:

1. On input (1κ, Dκ, I2), with I2 ∈ Dκ, party p2 internally gives machine pb
2

the input (1κ, Dκ, I2).
2. An execution between (an honest) p1 running Σ and p2 = (pa

2 , p
b
2) works as

follows:
(a) pa

2 interacts with p1 according to some specified strategy.
(b) At some stage of the execution pa

2 hands pb
2 a value I ′1.

(c) When pb
2 receives I ′1 from pa

2, it computes J ′1 = g1(I
′

1, I
′

2) for some
I ′2 ∈ Dκ of its choice.

(d) pb
2 hands pa

2 the value J ′1, and pa
2 continues interacting with p1.

We define a successful strategy as in [8, Def. 3.2].

Definition 4. Let Σ, g, κ be as in Definition 3. Let Z be an environment who
hands input I1 to p1 and a pair (Dκ, I2) to p2 where Dκ ⊆ D2, |Dκ| = poly(κ),
and I2 is chosen uniformly in Dκ. Then a split adversarial strategy for p2 is said
to be successful if for every Z as above and every input z to Z, the following
conditions hold in a real execution of p2 with Z and honest p1:

1. The value I ′1 output by pa
2 in step 2b of Definition 3 is such that for every

I2 ∈ Dκ, it holds that g2(I
′

1, I2) = g2(I1, I2).
2. The honest party p1 outputs g1(I1, I

′

2), where I ′2 is the value chosen by pb
2 in

step 2c of Definition 3.

We now prove a lemma akin to [8, Lem. 3.3].

Lemma 2. Let Σ be a non-trivial, two-party protocol computing g, which is
secure in the FCRS-hybrid model when either party is corrupted, and secure in
the FmCRS-hybrid model when p2 is corrupted. Then there exists a machine
pa
2 such that for every machine pb

2 of the form described in Definition 3, the
split adversarial strategy p2 = (pa

2 , p
b
2) is successful in the FmCRS-hybrid model,

except with negligible probability.

Proof. The proof in our setting is very similar to the proof of the main technical
lemma in [8]. Here we only sketch a proof, highlighting the main differences. We
refer the reader to [8] for complete details.

In the proof of [8], they first consider the real-world execution where party p1

is controlled by the environment Z through a dummy adversary AD who simply
forwards messages received from the environment to party p2 and vice versa.
Parties p1 and p2 have inputs I1 and I2, respectively, and execute Σ; we assume
that Σ securely computes g. Thus, there exists a simulator S that interacts with



the ideal process and such that Z cannot distinguish an execution of a real-world
process from an execution of the ideal process. Notice that in the ideal world,
S must send an input I ′1 to the ideal functionality computing g, and receives an
output J ′1 from this functionality such that I ′1 and J ′1 are functionally equivalent
to I1 and g1(I1, I

′

2) respectively. (Here, I ′2 is chosen by p2.) This implies that if
Z simply runs the code of an honest p1, the ideal-world simulator S is able to
extract the inputs of the honest player p1 and also force its output to be J ′1.

In our setting, in the FCRS-hybrid model (i.e., if the string σ is an honestly-
generated CRS), protocol Σ is secure regardless of which party is corrupted.
This means that there exists a simulator S who generates a CRS σ and is then
able to extract the input of the honest player p1.

Now consider the case of the FmCRS-hybrid model, i.e., when Σ is run with
an adversarially-generated string σ. In this case, a malicious p2 can just run S
to generate a CRS and interact with p1. At a high level, the machine pa

2 just
consists of running S with the honest p1. Machine pa

2 forwards every message
that it receives from p1 to S as if it came from Z. Similarly, every message that
S sends to Z is forwarded by pa

2 to p1 in the real execution. When S outputs a
value I ′1 that it intends to send to the ideal functionality computing g, then pa

2

gives this value to pb
2. Later, when pb

2 gives a value J ′1 to pa
2 , then pa

2 gives it to
S as if it came from the ideal functionality computing g. Hence, a malicious p2

is able to use the simulator S to do whatever the simulator S was doing in the
FCRS-hybrid model. This in particular means that p2 is able to extract the input
of the honest p1 and run a successful split simulator strategy. This completes
our proof sketch.

Completing the proof of Theorem 2. As shown by [8], the existence of
a successful split simulator strategy for p2 against an honest p1 rules out the
realization of several interesting well-formed functionalities. This, in turn, rules
out several n-input functionalities f whose secure computation implies secure
computation of g by Lemma 1. We give a concrete example in what follows.

We consider single-input functions which are not efficiently invertible [8]. The
definition of an efficiently-invertible function is given as in [8]:

Definition 5. A polynomial-time function g : D → {0, 1}∗ is efficiently invertible

if there exists a ppt machine M such that for every distribution D̂ = {D̂κ} over
D that is sampleable by a non-uniform, ppt Turing machine, the following is
negligible:

Pr
x←D̂κ

[
M(1κ, g(x)) 6∈ g−1(g(x))

]
.

Let t, s, n be such that t + s = n and s < n/2. We consider the following
functionality F : Let parties P1, . . . , Pt hold inputs x1, . . . , xt, while Pt+1, . . . , Pn

have no inputs. The output of P1, . . . , Pt is ⊥ while the output of Pt+1, . . . , Pn

is f(x1‖ · · · ‖xt) for an function f which is not efficiently invertible.
If there exists an n-party protocol Π that (s, t)-securely realizes F , then there

exists a 2-party protocol Σ computing the function g(I1,⊥) = (⊥, f(I1)), which
is secure against corruption of either party in the FCRS-hybrid model and secure



against corruption of the second party in the FmCRS-hybrid model. Lemma 2,
however, implies that p2 can run a successful split simulator strategy and extract
an input I ′1 such that g(I1,⊥) = g(I ′1,⊥), or equivalently f(I1) = f(I ′1). Since
all the information computable by p2 during an execution of Σ should follow
from its output f(I1) alone, it follows that I ′1 is computable given f(I1). This
contradicts the assumption that f is not efficiently invertible.

Hence, we conclude that there does not exist such a protocol Π to evaluate
the functionality F . This impossibility result can be extended to include a large
class of functionalities as in [8].
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