
Equivocal Blind Signatures and Adaptive
UC-Security

Aggelos Kiayias? and Hong-Sheng Zhou?

Computer Science and Engineering
University of Connecticut

Storrs, CT, USA
{aggelos,hszhou}@cse.uconn.edu

Abstract. We study the design of adaptively secure blind signatures
in the universal composability (UC) setting. First, we introduce a new
property for blind signature schemes that is suitable for arguing security
against adaptive adversaries: an equivocal blind signature is a blind signa-
ture where there exists a simulator that has the power of making signing
transcripts correspond to any message signature pair. Second, we present
a general construction methodology for building adaptively secure blind
signatures: the starting point is a 2-move “equivocal lite blind signa-
ture”, a lightweight 2-party signature protocol that we formalize and
implement both generically as well as concretely; formalizing a primitive
as “lite” means that the adversary is required to show all private tapes of
adversarially controlled parties; this enables us to conveniently separate
zero-knowledge (ZK) related security requirements from the remaining
security properties in the blind signature design methodology. Next, we
focus on the suitable ZK protocols for blind signatures. We formalize two
special ZK ideal functionalities, single-verifier-ZK (SVZK) and single-
prover-ZK (SPZK), both special cases of multi-session ZK that may be
of independent interest, and we investigate the requirements for realiz-
ing them in a commit-and-prove fashion as building blocks for adaptively
secure UC blind signatures. Regarding SPZK we find the rather surpris-
ing result that realizing it only against static adversaries is sufficient to
obtain adaptive security for UC blind signatures.
We instantiate all the building blocks of our design methodology both
generically based on the blind signature construction of Fischlin as well as
concretely based on the 2SDH assumption of Okamoto, thus demonstrat-
ing the feasibility and practicality of our approach. The latter construc-
tion yields the first practical UC blind signature that is secure against
adaptive adversaries. We also present a new more general modeling of
the ideal blind signature functionality.

1 Introduction

A blind signature is a cryptographic primitive that was proposed by
Chaum [12]; it is a digital signature scheme where the signing algorithm is
? Research partly supported by NSF CAREER Award CNS-0447808.

split into a two-party protocol between a user (or client) and a signer (or
server). The signing protocol’s functionality is that the user can obtain a
signature on a message that she selects in a blind fashion, i.e., without the
signer being able to extract some useful information about the message
from the protocol interaction. At the same time the existential unforge-
ability property of digital signatures should hold, i.e., after the successful
termination of a number of n corrupted user instantiations, an adversary
should be incapable of generating signatures for (n+1) distinct messages.

A blind signature is a very useful privacy primitive that has many
applications in the design of electronic-cash schemes, the design of elec-
tronic voting schemes as well as in the design of anonymous credential
systems. Since the initial introduction of the primitive, a number of con-
structions have been proposed [13, 32, 30, 35, 23, 36, 34, 37, 3, 1, 2, 5–7, 24,
31, 17, 21, 8]. The first formal treatment of the primitive in a stand-alone
model and assuming random oracles (RO) was given by Pointcheval and
Stern in [35].

Blind signatures is in fact one of the few complex cryptographic primi-
tives (beyond digital signatures, public-key encryption, and key-exchange)
that have been implemented in real world Internet settings (e.g., in the
Votopia [27] voting system) and thus the investigation of more realistic
attack models for blind signatures is of pressing importance. Juels, Luby
and Ostrovsky [23] presented a formal treatment of blind signatures that
included the possibility for an adversary to launch attacks that use arbi-
trary concurrent interleaving of either user or signer protocols. Still, the
design of schemes that satisfied such stronger modeling proved somewhat
elusive. In fact, Lindell [28] showed that unbounded concurrent security
for blind signatures is impossible under a simulation-based security def-
inition without any setup assumption; more recently in [21], the generic
feasibility of blind signatures without setup assumptions was shown but
using a game-based security formulation.

With respect to practical provably secure schemes, assuming random
oracles or some setup assumption, various efficient constructions were
proposed: for example, [5, 6] presented efficient two-move constructions
in the RO model, while [24, 31] presented efficient constant-round con-
structions without random oracles employing a common reference string
(CRS) model (i.e., when a trusted setup function initializes all parties’ in-
puts) that withstand concurrent attacks. While achieving security under
concurrent attacks is an important property for the design of useful blind
signatures, a blind signature scheme may still be insecure for a certain
deployment. Game-based security definitions [35, 23, 7, 24, 31, 21, 8] cap-

ture properties that are intuitively desirable. Nevertheless, the successive
amendments of definitions in the literature and the differences between
the various models exemplify the following: on the one hand capturing all
desirable properties of a complex cryptographic primitive such as a blind
signature is a difficult task, while on the other, even if such properties are
attained, a “provably secure” blind signature may still be insecure if de-
ployed within a larger system. For this reason, it is important to consider
the realization of blind signatures under a general simulation-based secu-
rity formulation such as the one provided in the Universal Composability
(UC) framework of Canetti [9] that enables us to formulate cryptographic
primitives so that they remain secure under arbitrary deployments and
interleavings of protocol instantiations.

In the UC setting, against static adversaries, it was shown how to
construct blind signatures in the CRS model [17] with two moves of inter-
action. Though the construction in [17] is round-optimal, it is unknown
whether it can admit concrete practical instantiations. In addition, se-
curity is argued only against static adversaries; and while it should be
feasible to extend the construction of [17] in the adaptive setting this
can only exacerbate the difficulty of concretely realizing the basic design.
Note that using the secure two party computation compiler of [11] one
can derive adaptively secure blind signatures but this approach is also
generic and does not suggest any concrete design.

1.1 Our Results

In this work we study the design of blind signatures in the UC framework
against adaptive adversaries. Our approach is “practice-oriented” in the
sense of minimizing communication complexity as well as entailing the
following points: (i) a constant number of rounds, (ii) a choice of session
scope that is consistent with how a blind signature would be implemented
in practice, in particular a multitude of clients and one signer should
be supported within a single session, (iii) a trusted setup string that
is of constant length in the number of parties within a session, (iv) the
avoidance, if possible, of cryptographic primitives that are “per-bit”, such
as bit-commitment, where one has to spend a communication length of
Ω(l) where l is a security parameter per bit of private input. Our results
are as follows:
Equivocal blind signatures. We introduce a new property for blind sig-
natures, called equivocality that is suitable for arguing security against
adaptive adversaries. In an equivocal blind signature there exists a simula-
tor that has the power to construct the internal state of a client including

all random tapes so that any simulated communication transcript can be
mapped to any given valid message-signature pair. This capability should
hold true even after a signature corresponding to the simulated tran-
script has been released to the adversary. Equivocality can be seen as a
strengthening of the notion of blindness as typically defined in game-based
security formulations of blind signatures: in an equivocal blind signature,
signing transcripts can be simulated in an independent fashion to the
message-signature pair they correspond to.

General methodology for building UC blind signatures. We present
a general methodology for designing adaptively secure UC blind signa-
tures. Our starting point is the notion of an equivocal lite blind signature:
The idea behind “lite” blind signatures is that security properties should
hold under the condition that the adversary deposits the private tapes of
the parties he controls. This “open-all-private-tapes” approach simplifies
the blind signature definitions substantially and allows one to separate
security properties that relate to zero-knowledge compared to other nec-
essary properties for blind signatures. Note that this is not an honest-but-
curious type of adversarial formulation as the adversary is not required to
be honestly simulating corrupted parties; in particular, the adversary may
deviate from honest protocol specification (e.g., bias the random tapes)
as long as he can present private tapes that match the communication
transcripts.

We then demonstrate two instantiations of an equivocal lite blind
signature, one that is based on generic cryptographic primitives that is
inspired by the blind signature construction of [17] and one based on the
design and the 2SDH assumption of [31].

Study of the ZK requirements for UC blind signatures. Hav-
ing demonstrated equivocal lite blind-signatures as a feasible starting
building block, we then focus on the formulation of the appropriate ZK-
functionalities that are required for building blind signatures in the adap-
tive adversary setting. Interestingly, the user and the signer have dif-
ferent ZK “needs” in a blind signature. In particular the corresponding
ZK-functionalities turn out to be simplifications of the standard multi-
session ZK functionality FMZK that restrict the multi-sessions to occur
either from many provers to a single verifier (we call this FSVZK) or from a
single prover to many verifiers (we call this FSPZK). Note that this stems
from our blind signature session scope that involves a multitude of users
interacting with a single signer: this is consistent with the notion that a
blind-signature signer is a server within a larger system and is expected

that the number of such servers would be very small compared to a much
larger population of users and verifiers.

First, regarding FSVZK, the ZK protocol that users need to execute as
provers, we show that it can be realized in a commit-and-prove fashion
using a commitment scheme that, as it is restricted to the single-verifier
setting, it does not require built-in non-malleability (while such prop-
erty would be essential for general multi-session UC commitments). We
thus proceed to realize FSVZK using mixed commitments [16, 29] with
only a constant length common reference string (as opposed to linear in
the number of parties that is required in the multi-session setting). Sec-
ond, regarding FSPZK, the ZK protocol the signer needs to execute as
a prover, we find the rather surprising result that it needs only be real-
ized against static adversaries for the resulting blind signature scheme to
satisfy adaptive security. This enables a much more efficient realization
design for FSPZK as we can implement it using merely an extractable com-
mitment and a Sigma protocol (alternatively, using an Ω-protocol [18]).
The intuition behind this result is that in a blind signature the signer
is not interested in hiding his input in the same way that the user is:
this can be seen by the fact that the verification-key itself leaks a lot of
information about the signing-key to the adversary/environment, thus,
using a full-fledged zero-knowledge instantiation is an overkill from the
signer’s point of view; this phenomenon was studied in the context of
zero-knowledge in [26]. We note that our FSPZK functionality can be seen
as a special instance of client-server computation as considered in [38]
(where the relaxed non-malleability requirement of such protocols was
also noted); interestingly FSVZK falls outside that framework (despite its
client-server nature).

Notations: a r← RND denotes randomly selecting a in its domain; negl()
denotes negligible function; poly() denotes polynomial function.

2 Equivocal Lite Blind Signatures

2.1 Building Block: Equivocal Lite Blind Signatures

A signature generation protocol is a tuple 〈CRSgen, gen, lbs1, lbs2, lbs3,
verify〉 where CRSgen is a common reference string generation algo-
rithm, gen is a key-pair generation algorithm, lbsi, i = 1, 2, 3, comprise
a two-move signature generation protocol between the user U and the
signer S as described in Figure 1 and verify is a signature verification
algorithm. A lite blind signature is a signature generation protocol that

satisfies completeness (see definition 1) as well as two security proper-
ties, lite-unforgeability and lite-blindness, defined below (consistency is
another property [10] for signatures that will be trivially satisfied in our
design and thus we omit it in this version).

U S

CRS = 〈crs〉 CRS = 〈crs〉
VerificationKey = 〈vk〉 VerificationKey = 〈vk〉
Plaintext = 〈m〉 SigningKey = 〈sk〉
ρ1

r← RND

u← lbs1(crs, vk,m; ρ1)
u

−−−−−−−−−−−−−−−−→ ρ2
r← RND

s← lbs2(crs, vk,u, sk; ρ2)

ρ3
r← RND

s
←−−−−−−−−−−−−−−−−

σ ← lbs3(crs, vk,m, ρ1,u, s; ρ3)

Fig. 1. Outline of a two-move signature generation protocol.

Definition 1 (Completeness). A signature generation protocol as in
Figure 1 is complete if for all (crs, τ) ← CRSgen(1λ), for all (vk, sk) ←
gen(crs), for all ρ1, ρ2, ρ3

r← RND, whenever u ← lbs1(crs, vk,m; ρ1),
s ← lbs2(crs, vk,u, sk; ρ2), and σ ← lbs3(crs, vk,m, ρ1,u, s; ρ3), then
verify(crs, vk,m, σ) = 1.

Lite-unforgeability that we define below suggests informally that if we
“collapse” the lbs1, lbs2 procedures into a single algorithm this will result
to a procedure that combined with lbs3 will be equivalent to the signing
algorithm of an unforgeable digital signature sign in the sense of [19].
We note that lite-unforgeability is much weaker compared to regular un-
forgeability of blind signatures (as defined e.g., in [31, 21]) since it requires
from the adversary to open the internal tapes of each user instance (as
opposed to hiding such internals in the usual unforgeability definition for
blind signatures); note that this is not an honest-but-curious modeling as
the adversary is not restricted to flip coins honestly.

Definition 2 (Lite-unforgeability). A signature generation protocol
as in Figure 1 is lite-unforgeable if for all PPT A = (A1,A2) and for
any L = poly(λ), we have AdvA,L

luf (λ) ≤ negl(λ), where AdvA,L
luf (λ) def=

Pr[ExpLUF
A,L (λ) = 1] and the experiment ExpLUF

A,L (λ) is defined below:

Experiment ExpLUF
A,L (λ)

(crs, τ)← CRSgen(1λ); (vk, sk)← gen(crs); state := ∅; k := 0;
while k < L

(mk, ρ1,k, state)← A1(state, crs, vk);

sk ← lbs2(crs, vk, lbs1(crs, vk,mk; ρ1,k), sk; ρ2,k); ρ2,k
r← RND;

state← state||sk; k ← k + 1;
(m1, σ1, . . . ,m`, σ`)← A2(state);
if ` > L, and verify(crs, vk,mi, σi) = 1 for all 1 ≤ i ≤ `,

and mi 6= mj for all 1 ≤ i 6= j ≤ `
then return 1 else return 0.

Similarly we can formulate blindness (as defined, e.g. in [8]) in the
“lite” setting by requiring the adversary to open the private tape of the
signer for each user interaction. Given that blindness is subsumed by our
equivocality property (defined below), we will not explore this direction
further here (the reader may refer to the full version [25] for more details).
For simplicity we define equivocality only for two-move protocols following
the skeleton of Figure 1. Informally an equivocal blind signature scheme
is accompanied by a simulator procedure I which can produce signature
generation transcripts without using the user input m and furthermore
it can “explain” the transcripts to any adversarially selected m even af-
ter the signature σ for m has been generated. The property of equivocal
blind signatures parallels the property of equivocal commitments [4] or
zero-knowledge with state reconstruction, cf. [20]. We define the prop-
erty formally below (cf. Figure 2). In the definition, we use the relation
KeyPair defined as (vk, sk) ∈ KeyPair if and only if (vk, sk) ← gen(crs)
(omitting crs to avoid cluttering the notation). Note that we require
(vk, sk), (vk, sk′) ∈ KeyPair to imply sk = sk′ (otherwise a blind signa-
ture may be susceptible to an attack due to [22]).

Definition 3 (Equivocality). We say that a signature generation pro-
tocol is equivocal if there exists an interactive machine I = (I1, I2), such
that for all PPT A, we have AdvAeq(λ) ≤ negl(λ),

AdvAeq(λ) def=
∣∣∣∣Pr[(crs, τ)← CRSgen(1λ) : AUsers(crs,·)(crs) = 1]

−Pr[(crs, τ)← CRSgen(1λ) : AI(crs,τ,·)(crs) = 1]

∣∣∣∣ ,
where oracle Users(crs, ·) operates as:

-Upon receiving message (i,m, vk) from A, select ρ1
r← RND

and compute u ← lbs1(crs, vk,m; ρ1), record 〈i,m, vk,u, ρ1〉 into
historyi, and return message (i,u) to A.

-Upon receiving message (i, s, ρ2, sk) from A, if there exists a
record 〈i,m, vk,u, ρ1〉 in historyi and both (vk, sk) ∈ KeyPair and
s = lbs2(crs, vk,u, sk; ρ2) hold, then select ρ3

r← RND, compute
σ ← lbs3(crs, vk,m, ρ1,u, s; ρ3), update 〈i,m, vk,u, ρ1〉 in historyi

into 〈i,m, vk,u, σ, ρ1, ρ3〉, and return to A the pair (i, σ); otherwise
return to A the pair (i,⊥).

-Upon receiving message (i, open), return to A the pair (i, historyi).

and oracle I(crs, τ, ·) operates as:
-Upon receiving message (i,m, vk) from A, run (u, aux) ←
I1(crs, τ, vk), record 〈i,m, vk, u, aux〉 into temp, and return mes-
sage (i,u) to A.

-Upon receiving message (i, s, ρ2, sk) from A, if there exists a
record 〈i,m, vk,u, aux〉 in temp and both (vk, sk) ∈ KeyPair
and s = lbs2(crs, vk,u, sk; ρ2) hold, then select γ

r← RND,
compute σ ← sign(crs, vk, sk,m, γ) (where sign is the “col-
lapse” of lbsi for i = 1, 2, 3), update 〈i,m, vk,u〉 in temp into
〈i,m, vk,u, aux; s, sk, ρ2;σ, γ〉, and return the pair (i, σ) to A; oth-
erwise return to A the pair (i,⊥).

-Upon receiving message (i, open), if there exists a record
〈i,m, vk,u, aux〉 in temp then run ρ1 ← I2(i, temp), record
〈i,m, vk,u, ρ1〉 into historyi, and return to A the pair (i, historyi);
if there exists a record 〈i,m, vk,u, aux; s, sk, ρ2;σ, γ〉 in temp,
then run (ρ1, ρ3) ← I2(i, temp), record 〈i,m, vk,u, σ, ρ1, ρ3〉 into
historyi, and return message (i, historyi) to A.

We call a signature generation protocol that satisfies completeness,
lite-unforgeability as well as the equivocality property an equivocal lite
blind signature scheme.

2.2 Constructions

In this subsection, we present two equivocal lite-blind signature construc-
tions. The first construction is generic and is based on the blind signature
design of [17] whereas the second is a concrete construction that is based
on [31]. In the full version of this work [25] we present additional con-
structions.
Generic equivocal lite blind signature. Our first construction is
based on [17]; the main difference here is that we need the equivocal-
ity property (the original design employed two encryption steps for the
user that are non-equivocal); in our setting, it is sufficient to have just

Fig. 2. The two worlds an equivocality adversary is asked to distinguish in Definition 3.
In the left-hand the adversary is interacting with a set of users whereas in the right-
hand side the users are interacting with an honest signer instantiation whereas the
adversary is interacting with the simulator I.

one equivocal commitment (that is not extractable) in the first stage
and then employ an extractable commitment in the second (that is not
equivocal). Refer to the signature generation protocol in Figure 3: the
CRSgen algorithm produces crs = 〈pkeqc, pkexc, crsnizk〉; EQC is a com-
mitment scheme with committing key pkeqc and EQCcom is its commit-
ting algorithm; EXC is a commitment scheme with committing key pkexc

and EXCcom is its committing algorithm; NIZK is an NIZK argument
scheme with CRS crsnizk where NIZKprove is the proof generation al-
gorithm and NIZKverify is the proof verification algorithm. The gen
algorithm produces a key-pair 〈vk, sk〉 for a signature scheme SIG where
SIGsign is the signature generation algorithm and SIGverify is the
corresponding verification algorithm. The language LR

def= {x|(x,w) ∈
R} where R def= {(crs, vk, E,m), (u, s, ρ1, ρ3) |u = EQCcom(pkeqc,m; ρ1) ∧
SIGverify(vk,u, s) = 1 ∧ E = EXCcom(pkexc,u, s; ρ3)}. The verify al-
gorithm given a message m and signature σ operates as follows: parse σ
into E and $, and check that NIZKverify((crs, vk, E,m), $) =? 1.

Theorem 1. The two-move signature generation protocol in Figure 3 is
an equivocal lite blind signature as follows: it satisfies lite-unforgeability
provided that (i) SIG is EU-CMA secure, (ii) EQC is binding, (iii) EXC is
extractable, and (iv) NIZK satisfies soundness; and it satisfies equivocality
provided that (i) EQC is equivocal, (ii) EXC is hiding, and (iii) NIZK is
non-erasure zero-knowledge.

Concrete equivocal lite blind signature. In Figure 4 we present a lite
blind signature 〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉 that uses the 2SDH

crs = 〈pkeqc, pkexc, crsnizk〉
U S

VerificationKey = 〈vk〉 VerificationKey = 〈vk〉
Plaintext = 〈m〉 SigningKey = 〈sk〉
ρ1

r← RND; u← EQCcom(pkeqc,m; ρ1)
u
−−−→ ρ2

r← RND

SIGverify(vk,u, s) =? 1
s
←−−− s← SIGsign(vk, sk,u; ρ2)

ρ3, ρ4
r← RND; E ← EXCcom(pkexc,u, s; ρ3)

$ ← NIZKprove((crs, vk, E,m), (u, s, ρ1, ρ3); ρ4

: u = EQCcom(pkeqc,m; ρ1)
∧ SIGverify(vk,u, s) = 1
∧E = EXCcom(pkexc,u, s; ρ3))

σ ← E||$
verify(crs, vk,m, σ) =? 1

output (m;σ)

Fig. 3. A generic signature generation protocol.

assumption and is based on Okamoto’s blind signature scheme [31]; the
main contribution here is Theorem 2 that shows that the design is in
fact equivocal (instead of merely blind as shown in [31]). In this scheme
the CRSgen algorithm produces crs = 〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉,
where ê : G1 × G2 → GT is a bilinear map, G1,G2 are groups of order
p, the gen algorithm produces a key-pair vk = 〈X〉, sk = 〈x〉 such that
X = gx

2 , and the verify algorithm given a message m and signature
σ = 〈ς, α, β, V1, V2〉, responds as follows: check that m,β ∈ Zp, ς, V1 ∈
G1, α, V2 ∈ G2, ς 6= 1, α 6= 1 and ê(ς, α) = ê(g1, gm

2 u2v
β
2), ê(V1, α) =

ê(ψ(X), X) · ê(g1, V2).

Theorem 2. The two-move protocol of Figure 4 is an equivocal lite blind
signature as follows: it satisfies lite-unforgeability under the 2SDH as-
sumption; and it satisfies equivocality unconditionally.

3 Designing Adaptively Secure UC Blind Signatures

In this section we present our design methodology for constructing UC-
blind signatures secure against adaptive adversaries, i.e., the protocol
obtained by our method can UC-realize the blind signature functionality
FBSIG (defined in Figure 5). A previous formalization of the blind signa-
ture primitive in the UC setting was given by [17]. In the full version, we

crs = 〈p, g1, g2,G1,G2,GT , ê, ψ, u2, v2〉
U S

vk = 〈X = gx
2 〉 vk = 〈X = gx

2 〉
msg = 〈m〉, m ∈ Zp sk = 〈x〉

t, s
r← Zp; W ← gmt

1 ut
1v

st
1

W
−−−−−−−−−−−→

r, l
r← Zp s.t. x+ r 6= 0

f, h
r← Zp; ς ← Y

1
ft

mod p Y,l,r
←−−−−−−−−−−− Y ← (Wvl

1)
1

x+r

α← Xfgfr
2 ; β ← s+ l

t
mod p

V1 ← ψ(X)
1
f gh

1 ; V2 ← Xfh+rgfrh
2

σ ← 〈ς, α, β, V1, V2〉
verify(crs, vk,m, σ) =? 1

output (m;σ)

Fig. 4. Signature generation protocol based on Okamoto digital signature [31].

include in the ideal functionality an explicit description of how corrup-
tions are handled, and we justify our definition. Note that our FBSIG does
not require strong unforgeability from the underlying signing mechanism;
this makes the presentation more general as strong unforgeability is not
necessary for many applications of the blind signature primitive. Further,
protocols realizing the functionality of [17] require a single “global trap-
door” that enables the functionality to produce a signature for a given
message that will be valid for any given public-key; while this can be
handy in the security proof, it is not a mandatory requirement for a UC-
blind signature (which may allow for a different trapdoor to be used by
the functionality in each signature generation); we reflect this in our ideal
functionality by allowing the adversary in the corrupted signer setting to
“patch” the ideal functionality with a different signing key for each user.
In a blind signature session we allow for a single signer (whose identity
is hard-coded into the session identifier sid) and a multitude of users.
Our signer is active throughout the session and, after key-generation, is
responsive to any user communicating with it via the network without
waiting authorization by the environment.

Our design for UC-realizing FBSIG is modular and delineates the com-
ponents required for designing UC blind signatures in the adaptive secu-
rity setting. We present our methodology in two steps. First, we employ
an equivocal lite blind signature scheme and we operate in a hybrid world
where the following ideal functionalities exist: FCRS,FRU

SVZK,F
RS
SPZK. Here

Functionality FBSIG

Key generation: Upon receiving (KeyGen, sid) from party S, verify that sid =
(S, sid ′) for some sid ′. If not, ignore the input. Else, forward (KeyGen, sid)
to the adversary S.
Upon receiving (Algorithms, sid , sig, ver) from the adversary S, record
〈♠, sig, ver〉 in history(S), and output (VerificationAlg, sid , ver) to party
S, where sig is a signing algorithm, and ver is a verification algorithm.

Signature generation: Upon receiving (Sign, sid ,m, ver′) from party U 6=
S, where sid = (S, sid ′), record 〈m, ver′〉 in history(U), and send
(Sign, sid , U, ver′) to the adversary S.
Upon receiving (SignStatus, sid , U,SignerComplete) from the adversary S,
where U is a user that has requested a signature, output (SignStatus, sid ,
U, complete) to party S, and record 〈U, complete〉 in history(S).
Upon receiving (SignStatus, sid , U,SignerError) from the adversary S,
where U is a user that has requested a signature, output (SignStatus,
sid , U, incomplete) to party S, and record 〈U,⊥〉 in history(S).
Upon receiving (Signature, sid , U,UserComplete) from the adversary S,
where U is a user that has requested a signature,

– if S is not corrupted and 〈U, complete〉 is not recorded in history(S), then
halt.

– if S is not corrupted and 〈U, complete〉 has been recorded in history(S)
that also contains 〈♠, sig, ver〉, then compute σ ← sig(m, rnd) flipping the
required random coins rnd , and do the following: if ver′(m,σ) 6= 1, then
halt; else if ver′(m,σ) = 1 but ver(m,σ) 6= 1, output (Signature, sid , σ)
to party U , and update history(U) into 〈m,σ, rnd〉; else if ver′(m,σ) =
ver(m,σ) = 1, output (Signature, sid , σ) to party U , and update
history(U) into 〈m,σ, rnd , done〉.

– else if S is corrupted, then compute σ ← sig′(m, rnd) flipping the re-
quired random coins rnd , where sig′ is an algorithm that the adversary
S has provided specifically for U (subject to the restriction that any sig′

corresponds to a single ver′), and do the following: if ver′(m,σ) = 1, out-
put (Signature, sid , σ) to party U , update history(U) into 〈m,σ, rnd〉;
else if ver′(m,σ) 6= 1, halt.

Upon receiving (Signature, sid , U,UserError) from the adversary S, where U
is a user that has requested a signature, output (Signature, sid ,⊥) to party
U and update history(U) into 〈m〉.

Signature verification: Upon receiving (Verify, sid ,m, σ, ver′) from party V ,
where sid = (S, sid ′), do: if, (i) the signer S is not corrupted, (ii) history(S)
contains 〈♠, sig, ver〉, (iii) ver′ = ver, (iv) ver(m,σ) = 1, and (v) there is no
U such that m is recorded with done in history(U), then halt. Else, output
(Verified, sid , ver′(m,σ)) to party V .

Fig. 5. Blind signature functionality FBSIG. Each session contains a signer and unlim-
ited number of users. Each user U obtains at most one signature.

FCRS will be an appropriate common reference string functionality; on the
other hand, FRU

SVZK,F
RS
SPZK will be two different zero-knowledge function-

alities that are variations of the standard multi-session ZK functionality.
This reflects the fact that the ZK “needs” of the user and the signer
are different in a blind signature. (1) FRU

SVZK is the “single-verifier zero-
knowledge functionality for the relation RU” where the user will be the
prover and, (2) FRS

SPZK is the “single-prover zero-knowledge functionality
for the relation RS” where the signer will be the prover. They differ from
the multi-session ZK ideal functionality FMZK (e.g., see F̂ZK in figure 7,
page 49, in [11]) in the following manner: FSVZK assumes that there is
only a single verifier that many provers wish to prove to it a certain type
of statements; on the other hand, FSPZK assumes that only a single prover
exists that wishes to convince many verifiers regarding a certain type of
statement. Our setting is different from previous UC-formulations of ZK
where multiple provers wish to convince multiple verifiers at the same
time; while we could use such stronger primitives in our design, recall
that we are interested in the simplest possible primitives that can instan-
tiate our methodology as these highlight minimum sufficient requirements
for blind signature design in the UC setting.

3.1 Construction in the (FCRS, FSVZK, FSPZK)-Hybrid World

In this section we describe our blind signature construction in the hy-
brid world. In Figure 6, we describe a UC blind signature protocol in
the (FCRS,FRU

SVZK,F
RS
SPZK)-hybrid world that is based on an equivocal lite

blind signature protocol. The relations parameterized with the ZK func-
tionalities are RU = {((crs, vk,u), (m, ρ1)) | u = lbs1(crs, vk,m; ρ1)} and
RS = {((crs, vk,u, s), (sk, ρ2)) | s = lbs2(crs, vk,u, sk; ρ2) ∧ (vk, sk) ∈
KeyPair}. We prove the following theorem:

Theorem 3. Given a signature generation protocol that is an equivocal
lite blind signature, the protocol πΣ(BSIG) in Figure 6 securely realizes
FBSIG in the (FCRS,FRU

SVZK, F
RS
SPZK)-hybrid model.

3.2 Realizing FSVZK and FSPZK

In this subsection we focus on the requirements for the UC-realization
of the two ZK functionalities FSVZK and FSPZK. We note that they can
be instantiated generically based on non-interactive zero-knowledge as in
[11] or [20]. Nevertheless, by focusing on the exact requirements needed

Protocol πΣ(BSIG) in the (FCRS,FRU
SVZK,F

RS
SPZK)-Hybrid Model

CRS generation: crs ← CRSgen(1λ) where λ is the security parameter.
Key generation: When party S is invoked with input (KeyGen, sid) by Z,

it verifies that sid = (S, sid ′) for some sid ′; If not, it ignores the input;

Otherwise, it runs (vk, sk)← gen(crs), lets the verification algorithm ver
def
=

verify(crs, vk, ·, ·), and sends output (VerificationAlg, sid , ver) to Z.
Signature generation: On input (Sign, sid ,m, ver′) by Z where sid = (S, sid ′),

party U obtains vk′ by parsing ver′, selects random ρ1, computes u ←
lbs1(crs, vk

′,m; ρ1) and sends (ProveSVZK, sid , U, (crs, vk′,u), (m, ρ1)) to
FRU

SVZK.

Upon receiving (VerifiedSVZK, sid , U, (crs ′, vk′,u)) from FRU
SVZK, party

S verifies crs ′ = crs and vk′ = vk. If not, then party
S outputs (SignStatus, sid , U, incomplete) to Z. Else party S se-
lects random ρ2 and computes s ← lbs2(crs, vk,u, sk; ρ2) and
sends (ProveSPZK, sid , U, (crs, vk,u, s), (sk, ρ2)) to FRS

SPZK, and outputs
(SignStatus, sid , U, complete) to Z.
Upon receiving (VerifiedSVZK, sid , U,⊥) from FRU

SVZK, party S outputs
(SignStatus, sid , U, incomplete) to Z.
Upon receiving (VerifiedSPZK, sid , U, (crs ′, vk′′,u′, s)) from FRS

SPZK, party
U verifies that crs ′ = crs and vk′′ = vk′ and u′ = u. If not, then party
U outputs (Signature, sid ,⊥) to Z. Else, party U selects random ρ3 and
computes σ ← lbs3(crs, vk

′,m, ρ1,u, s; ρ3), and outputs (Signature, sid , σ)
to Z.
Upon receiving (VerifiedSPZK, sid , U,⊥) from FRS

SPZK, party U outputs
(Signature, sid ,⊥) to Z.

Signature verification: When party V is invoked with input
(Verify, sid ,m, σ, ver′) by Z where sid = (S, sid ′), it outputs
(Verified, sid , ver′(m,σ)) to Z.

Fig. 6. Blind signature protocol πΣ(BSIG) in the (FCRS,FRU
SVZK,F

RS
SPZK)-hybrid

model based on a lite-blind signature scheme 〈CRSgen, gen, lbs1, lbs2, lbs3, verify〉.
Here functionalities FRU

SVZK and FRS
SPZK are parameterized with relations RU =

{((crs, vk,u), (m, ρ1)) | u = lbs1(crs,m; ρ1)} and RS = {((crs, vk,u, s), (sk, ρ2))
| s = lbs2(crs, vk,u, sk; ρ2) ∧ (vk, sk) ∈ KeyPair}, respectively.

for the blind signature setting we manage to get more simplified concrete
constructions; note that we will opt for minimizing the overall communi-
cation length as opposed to round complexity.

Realizing FRU
SVZK. The functionality FRU

SVZK will be realized against adap-
tive adversaries. We proceed as follows: first given (x,w) ∈ RU , we will
have the prover commit the witness w into a value C; in order to obtain
an efficient construction, we employ the mixed commitment primitive of
[16, 29]; a critical observation in our setting is that due to the fact that
we have a single verifier (the signer) it is possible to maintain a constant
size common reference string (independent in the number of committers).
In contrast we note that in [16, 29] it was necessary to rely on a linear
length common reference string in the number of protocol participants;
this was to suppress man-in-the-middle attacks that could be launched
within their session scope (while such attacks are not possible within our
session scope). Our construction also employs a non-erasure Sigma pro-
tocol based on which we show the consistency of the witness between the
commitment C and the statement x by performing a proof of language
membership; finally to defend against a dishonest verifier, our Sigma pro-
tocol will have to be strengthened so that it can be simulated without
knowing the witness; this e.g., can be based on Damg̊ard’s trick [14].

Based on the above we obtain an efficient number-theoretic instan-
tiation of the functionality that is secure under the Decisional Com-
posite Residuosity assumption of Paillier [33]. The underlying mixed-
commitment is based on Damg̊ard-Jurik encryption [15]; it could be also
based on other encryption schemes as well.
Realizing FRS

SPZK. Regarding FRS
SPZK we find that, rather surprisingly,

our task for attaining an adaptive secure UC blind signature is simpler
since security against a static adversary suffices. The reason is that in the
UC blind signature security proof, the simulator knows the signing secret
which means the witness for FRS

SPZK is known by the simulator, and thus no
equivocation of dishonestly simulated transcripts is ever necessary! This
behavior was explored by the authors in the context of zero-knowledge
in [26]; in the framework of that paper, we can say a blind signature
protocol falls into the class of protocols where a leaking version of FRS

SPZK

is sufficient for security and thus FRS
SPZK need be realized only against

static adversaries.
Similarly to the realization of FRU

SVZK, for (x,w) ∈ RS , we have the
prover commit to the witness w into the value C, but here we only need
employ an extractable commitment considering we only need to realize
FRS

SPZK against static adversaries; then we develop a Sigma protocol to

show the consistency between the commitment C and the statement x by
performing a proof of language membership; the first two steps together
can be viewed as an Ω-protocol in [18]; further we need to wrap up such
Ω-protocol by applying e.g., Damg̊ard’s trick to defend against dishonest
verifiers.

3.3 Concrete Construction

In this section, we demonstrate how it is possible to derive an efficient
UC blind signature instantiation based on Theorem 3 and the realiza-
tion of its hybrid world with the related ZK-functionalities. Note that
we opt for minimizing the overall communication complexity as opposed
to round complexity. We need three ingredients: (1) an equivocal lite
blind signature scheme, (2) a UC-realization of the ideal functionality
FRU

SVZK, (3) a UC-realization of the ideal functionality FRS
SPZK. Regarding

(1) we will employ the equivocal lite blind signature scheme of Figure 4.
Regarding the two ZK functionalities we will follow the design strat-
egy outlined in the previous subsection. Recall that in Figure 6, RU =
{((crs, vk,u), (m, ρ1)) | u = lbs1(crs,m; ρ1)} and RS = {((crs, vk,u, s),
(sk, ρ2)) | s = lbs2(crs, vk,u, sk; ρ2) ∧ (vk, sk) ∈ KeyPair}. Instantiat-
ing these relations for the protocol of Figure 4 we have that RU =
{((crs, X,W), (m, t, s)) | W = gmt

1 ut
1v

st
1 } andRS = {((crs, X,W, Y, l, r), x)

| Y = (Wvl
1)

1
x+r ∧X = gx

2}. Please refer to the full version for all the de-
tails [25] as well as the full description of the blind signature protocol.

Finally, we can obtain the corollary below:

Corollary 1. Under the DCR assumption, the DLOG assumption, and
the 2SDH assumption, and assuming existence of collision resistant hash
function, there exists a blind signature protocol that securely realizes FBSIG

in the FCRS-hybrid model.

Acknowledgements. We thank Jesper Nielsen for helpful clarifications
on some of his zero-knowledge and commitment protocols and models.
We also thank the anonymous referees for their constructive comments.

References

1. M. Abe. A secure three-move blind signature scheme for polynomially many sig-
natures. In B. Pfitzmann, editor, EUROCRYPT 2001, pages 136–151. Springer,
2001.

2. M. Abe and M. Ohkubo. Provably secure fair blind signatures with tight revoca-
tion. In C. Boyd, editor, ASIACRYPT 2001, pages 583–602. Springer, 2001.

3. M. Abe and T. Okamoto. Provably secure partially blind signatures. In M. Bellare,
editor, CRYPTO 2000, pages 271–286. Springer, 2000.

4. D. Beaver. Adaptive zero knowledge and computational equivocation (extended
abstract). In STOC 1996, pages 629–638. ACM, 1996.

5. M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme. J.
Cryptology, 16(3):185–215, 2003. The preliminary version entitled as “The power
of RSA inversion oracles and the security of Chaum’s RSA-based blind signature
scheme” appeared in Financial Cryptography 2001, Springer-Verlag(LNCS 2339).

6. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor, PKC
2003, pages 31–46. Springer, 2003.

7. J. Camenisch, M. Koprowski, and B. Warinschi. Efficient blind signatures without
random oracles. In C. Blundo and S. Cimato, editors, SCN 2004, pages 134–148.
Springer, 2004.

8. J. Camenisch, G. Neven, and A. Shelat. Simulatable adaptive oblivious transfer.
In M. Naor, editor, EUROCRYPT 2007, pages 573–590. Springer, 2007.

9. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS 2001, pages 136–145. IEEE, 2001.

10. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Cryptology ePrint Archive, Report 2000/067, December 2005. Latest
version at http://eprint.iacr.org/2000/067/.

11. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In STOC 2002, pages 494–503. ACM,
2002. Full version at http://www.cs.biu.ac.il/~lindell/PAPERS/uc-comp.ps.

12. D. Chaum. Blind signatures for untraceable payments. In D. Chaum, R. L. Rivest,
and A. T. Sherman, editors, CRYPTO 1982, pages 199–203. Plemum Press, 1982.

13. I. Damg̊ard. Payment systems and credential mechanisms with provable security
against abuse by individuals. In S. Goldwasser, editor, CRYPTO 1988, pages
328–335. Springer, 1988.

14. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, pages 418–430. Springer, 2000.

15. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, PKC 2001, pages
119–136. Springer, 2001.

16. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In M. Yung,
editor, CRYPTO 2002, pages 581–596. Springer, 2002.

17. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In CRYPTO 2006.

18. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge pro-
tocols using signatures. J. Cryptology, 19(2):169–209, 2006. An extended abstract
appeared in Eurocrypt 2003, Springer-Verlag (LNCS 2656), pages 177-194, 2003.

19. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

20. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for
NP. In S. Vaudenay, editor, EUROCRYPT 2006, pages 339–358. Springer, 2006.

21. C. Hazay, J. Katz, C.-Y. Koo, and Y. Lindell. Concurrently-secure blind signatures
without random oracles or setup assumptions. In S. P. Vadhan, editor, TCC 2007,
pages 323–341. Springer, 2007.

22. O. Horvitz and J. Katz. Universally-composable two-party computation in two
rounds. In A. Menezes, editor, CRYPTO 2007, pages 111–129. Springer, 2007.

23. A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (extended
abstract). In B. S. K. Jr., editor, CRYPTO 1997, pages 150–164. Springer, 1997.

24. A. Kiayias and H.-S. Zhou. Concurrent blind signatures without random oracles.
In R. D. Prisco and M. Yung, editors, SCN 2006, pages 49–62. Springer, 2006.

25. A. Kiayias and H.-S. Zhou. Equivocal blind signatures and adaptive UC-security.
In Cryptology ePrint Archive: Report 2007/132, 2007. Full version.

26. A. Kiayias and H.-S. Zhou. Trading static for adaptive security in universally
composable zero-knowledge. In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki,
editors, ICALP 2007, pages 316–327. Springer, 2007.

27. K. Kim. Lessons from Internet voting during 2002 FIFA WorldCup Ko-
rea/Japan(TM). In DIMACS Workshop on Electronic Voting – Theory and Prac-
tice, 2004.

28. Y. Lindell. Bounded-concurrent secure two-party computation without setup
assumptions. In STOC 2003, pages 683–692. ACM, 2003. Full version at
http://www.cs.biu.ac.il/~lindell/PAPERS/conc2party-upper.ps.

29. J. B. Nielsen. On protocol security in the cryptographic model. Dissertation Series
DS-03-8, BRICS, 2003. http://www.brics.dk/DS/03/8/BRICS-DS-03-8.pdf.

30. T. Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes. In E. F. Brickell, editor, CRYPTO 1992, pages 31–53.
Springer, 1992.

31. T. Okamoto. Efficient blind and partially blind signatures without random oracles.
In S. Halevi and T. Rabin, editors, TCC 2006, pages 80–99. Springer, 2006.

32. T. Okamoto and K. Ohta. Divertible zero knowledge interactive proofs and com-
mutative random self-reducibility. In J.-J. Quisquater and J. Vandewalle, editors,
EUROCRYPT 1989, pages 134–148. Springer, 1989.

33. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, EUROCRYPT 1999, pages 223–238. Springer, 1999.

34. D. Pointcheval. Strengthened security for blind signatures. In K. Nyberg, editor,
EUROCRYPT 1998, pages 391–405. Springer, 1998.

35. D. Pointcheval and J. Stern. Provably secure blind signature schemes. In K. Kim
and T. Matsumoto, editors, ASIACRYPT 1996, pages 252–265. Springer, 1996.

36. D. Pointcheval and J. Stern. New blind signatures equivalent to factorization
(extended abstract). In CCS 1997, pages 92–99. ACM, 1997.

37. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361–396, 2000.

38. M. Prabhakaran and A. Sahai. Relaxing environmental security: Monitored func-
tionalities and client-server computation. In J. Kilian, editor, TCC 2005, pages
104–127. Springer, 2005.

