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Abstract. If a cryptographic primitive remains secure even if ` bits
about the secret key are leaked to the adversary, one would expect that
at least one of n independent instantiations of the scheme remains secure
given n ·` bits of leakage. This intuition has been proven true for schemes
satisfying some special information-theoretic properties by Alwen et al.
[Eurocrypt’10]. On the negative side, Lewko and Waters [FOCS’10] con-
struct a CPA secure public-key encryption scheme for which this intuition
fails.
The counterexample of Lewko and Waters leaves open the interesting
possibility that for any scheme there exists a constant c > 0, such that n
fold repetition remains secure against c·n·` bits of leakage. Furthermore,
their counterexample requires the n copies of the encryption scheme to
share a common reference parameter, leaving open the possibility that
the intuition is true for all schemes without common setup.
In this work we give a stronger counterexample ruling out these possi-
bilities. We construct a signature scheme such that:
1. a single instantiation remains secure given ` = log(k) bits of leakage

where k is a security parameter.
2. any polynomial number of independent instantiations can be broken

(in the strongest sense of key-recovery) given `′ = poly(k) bits of
leakage. Note that `′ does not depend on the number of instances.

The computational assumption underlying our counterexample is that
non-interactive computationally sound proofs exist. Moreover, under a
stronger (non-standard) assumption about such proofs, our counterex-
ample does not require a common reference parameter.
The underlying idea of our counterexample is rather generic and can be
applied to other primitives like encryption schemes.

1 Introduction

In a cryptographic security definition one must precisely specify in which way
an anticipated adversary can access the scheme. Classical security definitions
usually give the adversary only black-box access, that is she can observe the
input/output behavior of the scheme, but nothing else is leaked.

Unfortunately, in the last two decades, it has become evident that such no-
tions are often insufficient to guarantee security in the real world where the
physical implementation (e.g. on a smart-card) of a scheme is under attack. Two



important types on attacks which are not captured by classical security notions
are side-channel attacks and malware.

Side-Channel Attacks. Cryptanalytic attacks where the adversary exploits
information leakage from the physical implementation of a scheme are called
side-channel attacks. Important examples of side-channels that have been ex-
ploited include measuring the running-time [24, 29], electromagnetic radiation
[32, 17] or power consumption [25] of a cryptodevice. Cold-boot attacks [19] ex-
ploit the fact that memory retains its content for several seconds or even minutes
even after being removed from a laptop, allowing the adversary to learn (a noisy
version of) the content of the memory. In a probing attack [4], one measures the
contents carried by some wires of the circuit.

Malware. Today most computers (and even simpler devices) are connected to
the Internet, where they are constantly exposed to attacks by malicious soft-
wares like viruses and Trojans. Even with anti-virus protection in place, it is
quite inevitable that a computer is from time to time infected by malware. Such
attacks are particularly devastating if cryptographic keys are stored on the com-
puter, as the malware can send them out to the bad guys.

Notions for Key-Leakage. Traditional security notions only consider adver-
saries having black-box access to the primitive at hand, and thus do not capture
side-channel or malware attacks at all. The common approach to protect against
side-channel attacks (similarly for malware) is ad-hoc, in the sense that one has
to devise a countermeasure against all the known attacks. A more recent ap-
proach is to model security against “general” side-channel (or malware) attacks
at the definitional level.

Memory-Attacks. A basic such notion is called “security against memory-attacks”.
A cryptographic scheme is secure against memory attacks, if it remains secure
even if a bounded amount of information about the secret key is given to the
adversary. In this model, [1, 28, 7] construct public-key encryption schemes and
[22, 3] construct signature schemes, identification schemes and key exchange pro-
tocols.

Formally, memory attacks are modeled by giving the adversary – on top of
the normal black-box access – the power to choose any efficient leakage function
f with bounded range ` bits; she then gets f(sk) where sk denotes the secret
key of the scheme at hand. Of course ` must be significantly smaller than |sk|
since otherwise the adversary can just leak the entire key.

Although in a memory attack the adversary can learn arbitrary leakage, she
is limited to learn a total of ` bits. This is not sufficient to protect against most
side-channel attacks or malware, where we need stronger models. One way is to
consider “continuous” leakage, which requires frequent key-updates, or making
the key huge while preserving efficiency of the scheme.



Continuous Leakage Models. Typical side-channel attacks leak small amounts of
information per invocation, but since a scheme can typically be invoked many
times, no upper bound on the total leakage should be assumed. The notion of
“leakage-resilient cryptography” [15, 30, 16, 33, 10, 18, 21] and the recently intro-
duced model of “continuous memory attacks” [12, 8] capture such attacks, allow-
ing the adversary to learn a bounded amount of leakage (computed by adaptively
chosen leakage functions) with every invocation. In the model of leakage-resilience
one needs the additional assumption that during each invocation, only the part
of the memory that is actually accessed leaks. Continuous memory attacks re-
quire (almost) leakage free update phases.

The Bounded Retrieval Model. The bounded-retrieval model (BRM) [13, 11] pro-
pose a solution to the leakage of cryptographic keys from devices which can get
infected by malware as explained above. The idea is to design schemes where
the key can be made huge (2GB, say), and the scheme remains secure even if
a large amount (1GB, say) of arbitrary information of the key is leaked. The
key is protected, even if the computer is infected by malware which can perform
arbitrary computation on the infected computer, but can only send out at most
1GB worth of data, either due to low bandwidth or because larger leakage can be
detected. This notion is strictly stronger than security against memory attacks,
as here one additionally requires that the efficiency of the scheme is basically
independent of the size of the secret key. In the BRM model, symmetric au-
thentication schemes [13, 11, 9], password authentication [11] and secret-sharing
[14] were constructed. Recently the first public-key primitives in the BRM model
were constructed by Alwen at al.[3, 2].3

Security Amplification by Repetition. Given a scheme that withstands
memory attacks with, say ` = |sk|/2 leakage, we can construct a scheme that
withstands 1GB of leakage by using a huge key |sk| =2GB. This would not be
considered a solution in the BRM model, as this model requires the efficiency
of the scheme to depend only on some security parameter k, but not (or only
logarithmically) on the key length (In particular, schemes in the BRM model
cannot even read the entire key on a single invocation.)

The approach taken by Alwen et al. [3, 2] is to use parallel repetition. They
start with a scheme which can tolerate ` bits of leakage, and run this scheme
n times in parallel. For a signature scheme this means to sample n secret keys
sk1, . . . , skn, a signature for the parallel scheme would then consist of n signa-
tures, using the respective keys.4

3 The BRM predates the notion of memory-attacks, but public-key cryptography in
the BRM came only after it was constructed in the model of memory attacks.

4 This is still not really a scheme in the BRM model as efficiency of the scheme is
linear in n. To actually get signatures, [3] only use a cleverly chosen subset of the
keys for signing, and also must “compress” the n public keys in order to make their
size independent of n.



The hope is that if the signature scheme is secure against ` bits of leakage,
the parallel scheme will remain secure given n · ` bits of leakage. Alwen et al.
prove that for their particular scheme this is indeed the case, but their proof ex-
ploits information theoretic properties of the scheme, and cannot be generalized
to work for any scheme.

The Counterexample of Lewko and Waters. Recently, Lewko and Waters
[26] showed that in fact, n-fold parallel repetition does not, in general, amplify
leakage resilience from ` to n · ` bits. They construct a scheme (their main
example is encryption, but it is outlined how to adapt the counterexample to
signatures.) where a single instance is secure given ` bits of leakage, but can
be broken given c · n · ` bits of leakage for some constant c < 1. Their attack
also requires a common setup, in that all the instances of the basic scheme in
the parallel system must be over the same group, and the group order must be
secret.5

Our Results. The counterexample of Lewko and Waters leaves open the pos-
sibility that for every scheme, there exists a constant c > 0 such that n-fold
parallel repetition (even with common setup) amplifies leakage-resilience from `
to c · n · ` bits.

Moreover the common setup seems crucial for their counterexample, and
it leaves open the question whether n-fold parallel repetition without common
setup amplifies leakage-resilience from ` to n · ` bits for all schemes.

We give a new counterexample that answers both questions in the negative
(albeit the 2nd only under a non-standard assumption, details are given below.)
More concretely, from any secure signature scheme, we construct a new signature
scheme such that:

1. a single instantiation of the scheme remains secure given ` = log(k) bits of
leakage where k is a security parameter.

2. n independent instances (where n can be any polynomial in k) of the scheme
can be broken (in the strongest sense of key-recovery) given `′ = poly(k)
bits of leakage.

Note that `′ – the leakage needed to break n instances – does not even depend
on n.

Our techniques are quite general and we anticipate that they can be ex-
tended to construct counter-examples for other primitives as well. Besides the
counterexample for signature schemes just mentioned (which also works for one-
time signatures), we provide a similar counterexample for CCA-secure encryption
schemes.

We note here that the results of [26] are applicable to even 1-bit (CPA-secure)
encryption schemes and signature schemes with “random message unforgeability

5 The constant c depends on the underlying group, and can be made arbitrary small,
but once the group is fixed, so is c.



under no-message attack”, while our techniques do not seem to lend themselves
to such settings.

The main assumption underlying our results is the existence of non-interactive
CS proofs (see below). We note that in contrast, the counterexample of [26] is
based on a specific-number theoretic, but falsifiable assumption.

Our Techniques. Our negative results make crucial use of computationally
sound (CS) proofs as constructed by Micali [27] (using techniques from [23]).
Specifically, our counterexample relies on the existence of non-interactive CS
proofs for NP languages. The usefulness of non-interactive CS proofs lies in
the fact that they are extremely short; in particular, their length is only poly-
logarithmic in the size of the statement and its witness.
Proof Idea. We construct our counterexample by starting with any signature
scheme, and extending it as follows. To every secret key we add some random
string w, and to the public-key we add the value G(w) where G(.) is a (sufficiently
expanding) pseudorandom generator.

The signing algorithm is basically unchanged, except that it additionally
checks if the message to be signed contains a CS proof for the fact that G(w) is
indeed the the range of G(.). If this is the case, it does something stupid, namely
outputting its entire secret key as part of the signature.

The security of the underlying signature scheme and the CS proof system
implies that this altered scheme is secure against ` = log(k) bit of leakage. On
the other hand, a leakage function which has access to n secret keys, can output
a short (i.e. of length which is independent of n) CS proof showing that the
string G(w1), . . . , G(wn) is indeed the concatenation of n strings in the range of
G(.). This proof can then be used (making signing queries) to extract the entire
secret key of all the n instances of the scheme.

About the common reference parameter. Non-interactive CS proofs have been
shown to exist in the random oracle model (which in practice must be instanti-
ated with an efficient hash-function.) Since a random oracle implies a common
reference string, it seems that we haven’t improved upon the counterexample of
Lewko and Waters [26] as far as the usage of common setup is concerned. Recall
that the common setup in [26] contains a number N whose factorisation must
remain secret since otherwise the scheme can be trivially broken. In our case,
the common setup contains a hash function h(.) (replacing the random oracle).
Although for every h(.), there exist CS proofs for invalid statements, this may
not necessarily be a problem for us, as all we need is that it is hard to come up
with a proof for a random word not in the language (the language and exact
distribution depends on the PRG we use in our construction.) It is conceivable
that for some concrete choices of a PRG and hash function repalcing the ran-
dom oracle (SHA256, say), it is hard to come up with such invalid proofs even
given a polynomial amount of auxiliary information (containing e.g. many in-
valid proofs.) If we make such a (non-standard) assumption, our counterexample
does not need any common setup.



Related Work. We are aware of at least two works where proof systems with
short proofs are used to construct counterexamples. Closest to ours is the work
of “seed-incompressible functions” of Halevi, Myers and Rackoff [20], who use CS
proofs to show that no pseudorandom function exists which remains secure after
one leaks a “compressed” key. Another example is the work on parallel repetition
of computationally sound proofs [31] (based on [6]), which uses a different kind
of proof systems, universal arguments [5], to show that parallel repetition of
computationally sound protocols with eight (or more) rounds does in general
not reduce the soundness error of the protocol.

2 Preliminaries

2.1 Leakage-resilient Signatures

Our definition of leakage resilient signatures is essentially the standard notion of
existentially unforgeability under adaptive chosen message attacks, except that
we allow the adversary to specify an arbitrary function f(·) (whose output length
is bounded by the leakage parameter), and obtain the value of f applied to the
signing key. Let k be the security parameter, and (KeyGen, Sign, Verify) denote a
signature scheme. Let ` denote the leakage parameter. In order to define leakage
resilient signatures, we consider the following experiment.

1. Compute (pk, sk)← KeyGen(1k, `) and give pk to the adversary.
2. Run the adversary A(1k, pk, `). The adversary may make adaptive queries

to the signing oracle Signsk(·) and the leakage oracle Leaksk(·), defined as
follows:
– On receiving the ith query mi, Signsk(mi) computes σi ← Sign(sk,mi)

and outputs σi.
– On receiving an input f (where f is a polynomial-time computable func-

tion, described as a circuit), Leaksk(f) outputs f(sk) to A. The adver-
sary is allowed only a single query to the leakage oracle. It can choose
any function f(·) of the form f : {0, 1}∗ → {0, 1}`.

3. At some point, A stops and outputs (m,σ).

We say that A succeeds if (a) Verify(pk, σ) = 1, and (b) m was never queried
to Signsk(·).

Definition 1. A signature scheme (KeyGen, Sign, Verify) is `-leakage resilient
if all polynomial-time adversaries A can succeed with only negligible probability
in the above experiment.

2.2 CS Proofs

Our negative result makes crucial use of CS proofs as constructed by Micali [27]
(using techniques from [23]). Below, we recall the definition of non-interactive
CS proofs. The definition below is taken almost verbatim from [20].



Definition 2 (Non-interactive CS proofs). A non-interactive CS-proof sys-
tem for a language L ∈ NP (with relation RL), consists of two deterministic
polynomial-time machines, a prover P and a verifier V , operating as follows:

– On input (1k, x, w) such that (x,w) ∈ RL, the prover computes a proof π =
P (x,w) such that |π| ≤ poly(k, log(|x|+ |w|)).

– On input (1k, x, π), the verifier decides whether to accept or reject the proof
π (i.e., V (x, π) ∈ {accept,reject}).

The proof system satisfies the following conditions, where the probabilities are
taken over the random coins of the prover and the verifier:

Perfect completeness: For any (x,w) ∈ RL and for any k,

Pr[π ← P (x,w), V (x, π) = accept] = 1

Computational soundness: For any polynomial time machine P̃ and any in-
put x /∈ L, it holds that

Pr[π ← P̃ (x), V (x, π) = accept] ≤ negl(k)

3 A Leakage Resilient Signature Scheme

Let k be the security parameter. Let (KeyGen, Sign, Verify) be any λ-leakage
resilient signature scheme where λ is at least logarithmic in the security param-
eter. Let G : {0, 1}k → {0, 1}2k be a pseudo-random generator (PRG). Let L be
an NP language such that a string y ∈ L iff y = y1, y2, . . . (where |yi| = 2k) and
∀i, ∃wi such that G(wi) = yi. Let 〈P, V 〉 be a non-interactive CS-proof system
for the language L, where both prover and verifier are ppt machines. We now
describe a new `-leakage resilient signature scheme (KeyGen, Sign, Verify),
where ` = log(k).

KeyGen(1k, `): Compute (pk, sk)← KeyGen(1k, λ). Choose random w ∈ {0, 1}k
and compute y = G(w). The public key is PK = (pk, y) and the secret key is
SK = (sk, w).

Sign(SK,m): To sign message m = m1,m2 using secret key SK = (sk, w), first
parse m1 as m1

1,m
2
1, . . . such that |mi

1| = 2k. If ∃i such that mi
1 = y (= G(w)),

then run V (m1,m2). If it returns accept, then output SK. Otherwise, output
σ ← Sign(sk,m) as the signature.

Verify(PK,m, σ): Given a signature σ on message m with respect to the public
key PK = (pk, y), output 1 iff Verify(pk,m, σ) = 1.

This completes the description of our signature scheme. We now state our main
results.



Theorem 1. The proposed signature scheme ( KeyGen, Sign, Verify) is `-
leakage resilient, where ` = log(k).

Theorem 2. There exists a fixed polynomial q(·) such that any n-fold repetition
(where n can be any polynomial in k) of the signature scheme ( KeyGen, Sign,
Verify) can be broken by a key-recovery attack with `′ = q(k) bits of leakage.

Remark. Note that in Theorem 2, `′ = q(k) only depends on the security pa-
rameter, but does not depend on the number of repetitions n.

We prove Theorem 1 in the next subsection. Theorem 2 is proven in Section
4.

3.1 Leakage Resilience of our Signature Scheme

We will prove theorem 1 by contradiction. Specifically, we will show that given
an adversary A that forges signatures for (KeyGen, Sign, Verify) with non-
negligible probability δ, we can construct an adversary B that forges signatures
for (KeyGen, Sign, Verify) with probability δ′ = δ−negl(k)

k .

Description of B. Let C denote the challenger for the signature scheme (KeyGen,
Sign, Verify). At a high level, B works by internally running the adversary A;
B answers A’s queries by using the responses (to its own queries) from C, and
then outputs the signature forgery created by A. We now give more details.

On receiving a public key pk from C, B chooses a random w ∈ {0, 1}k and
computes y = G(w). It then sends PK = (pk, y) as the public key to A. Now,
when A makes a signature query m = m1,m2, B first parses m1 as m1

1,m
2
1, . . .

such that |mi
1| = 2k. If ∃i such that mi

1 = y, then B runs V (m1,m2). If it
returns accept, then B outputs the abort symbol ⊥ and stops. Otherwise, it
obtains a signature σ on message m from C and sends σ to A. Further, when A
makes a leakage query f , B simply guesses y = f(sk, w) (where sk is the secret
key corresponding to pk) and sends y to A. Finally, when A creates a forgery
(m∗, σ∗), B outputs (m∗, σ∗) and stops. This completes the description of B.

Let us now analyze the interaction between B and A. First note that since the
leakage query function f has a bounded output length ` = log(k), B’s response
to A’s leakage query is correct with probability ε = 1

k . Now assuming that B
outputs the abort symbol during its interaction with A with only negligible
probability, we can establish that B outputs a valid forgery with probability
δ′ = δ−negl(k)

k which proves our hypothesis. Therefore, in order to complete the
proof, we only need to argue that B outputs the abort symbol with negligible
probability.

Lemma 1. B outputs the abort symbol ⊥ with probability negl(k).

We prove lemma 1 by a simple hybrid experiment. Consider two hybrids H0

and H1, described as follows.



H0: This is the real experiment between B and A. Here B uses a pseudo-random
generator G to compute y as part of the public key PK.

H1: Same as H0, except that B chooses y ∈ {0, 1}2q uniformly at random.

Recall that B outputs the abort symbol only when A sends a signature query
m = m1,m2 where m1 = m1

1,m
2
1, . . . (|mi

1| = 2q) and ∃i such that mi
1 = y and

V (m1,m2) outputs accept (i.e., if m contains a non-interactive CS proof that
“explains” y). We will denote such a query as a bad query. Let p0 (resp., p1) be
the probability that A makes a bad query in hybrid H0 (resp., H1). Then, from
the pseudo-randomness property of G, it follows that:

p0 − p1 ≤ negl(k) (1)

Now, note that since y is chosen uniformly at random in hybrid H1, A can
make a bad query in H1 only if it can create a false non-interactive CS proof.
Then, from the soundness of the CS proof system 〈P, V 〉, it follows that the
probability that A makes a bad query in H1 is negligible, i.e., p1 = negl(k).
Combining this with equation 1, we establish that p0 = negl(k). This completes
the proof of lemma 1.

4 Attack on Parallel System

Recall from Definition 2 that the length of a non-interactive CS proof is q′(k, log(|x|+
|w|)) for some polynomial q′(., .), where x is the instance and w is the witness
for x. Now, note that for any such pair (x,w), if |x| and |w| are polynomial in k,
then for sufficiently large k, we have that |x|+ |w| ≤ klog(k). Therefore, there ex-

ists a fixed polynomial q(·) def= q′(., log(klog k)) such that for any non-interactive
CS proof π = P (x,w), we have that |π| ≤ q(k) for sufficiently large k.

Now consider a parallel system (KeyGen, Sign, Verify) defined as an n-
fold repetition of (KeyGen, Sign, Verify), where n = p(k) for any polynomial
p(·). KeyGen runs KeyGen n times to generate n key pairs (PK1, SK1), . . . , (PKn, SKn).
To sign a message m, Sign computes σi ← Sign(SKi,m) for each i ∈ [n]
and outputs σ = (σ1, . . . , σn) as the signature. Finally, on input a signature
σ = (σ1, . . . , σn), Verify outputs 1 iff ∀i, Verify(PKi,m, σi) = 1.

We now describe an adversary A that can mount a key-recovery attack on
(KeyGen, Sign, Verify) given q(k) bits of leakage. The adversary A receives
(PK1, . . . , PKn) from the challenger of the signature scheme. Recall that ∀i,
key pairs (PKi, SKi) are of the form: PKi = (pki, yi), SKi = (ski, wi). Let y =
y1, . . . , yn and π be a non-interactive CS-proof to prove the membership of y in L.
Then, A makes a leakage query with function f such that f(SK1, . . . , SKn) = π.
As discussed above, it holds that |π| ≤ q(k). A now queries the challenger for a
signature on the message m = m1,m2 where m1 = y1, . . . , yn and m2 = π. At
this point, A must receive SK1, . . . , SKn in response since π is a valid proof for
the statement y ∈ L.

This completes the description of the attack on the parallel system.



5 Extending Our Techniques to Other Primitives

The techniques used in section 3 are rather general and not specific to signature
schemes. In particular, they can be used to construct other leakage resilient
crypto primitives that are insecure under parallel repetition. As an example, in
this section, we briefly explain how to construct a leakage resilient CCA-secure
public-key encryption scheme that is insecure under parallel repetition.

Let (KeyGen, Encrypt, Decrypt) be a CCA-secure public-key encryption scheme
that can tolerate at least logarithmic amount of leakage (here the adversary has
to choose the leakage function before getting the challange ciphertext). Let G
be a length doubling PRG and 〈P, V 〉 be a non-interactive CS-proof system for
the language L, as described in section 3. We now describe a new `-leakage
resilient CCA-secure public-key encryption scheme (KeyGen, Encrypt, De-
crypt), where ` is logarithmic in the security parameter.

KeyGen(1k, `): Compute (pk, sk) ← KeyGen(1k). Choose random w ∈ {0, 1}k
and compute y = G(w). The public key is PK = (pk, y) and the secret key is
SK = (sk, w).

Encrypt(PK,m): To encrypt a message m using public key PK = (pk, y),
simply compute c← Encrypt(pk,m).

Decrypt(SK, c): Given a ciphertext c = c1, c2 and secret key SK = (sk, w),
first parse c1 as c11, c

2
1, . . . such that |ci1| = 2k. If ∃i such that ci1 = G(w),

then run V (c1, c2). If it returns accept, then output SK. Otherwise, output
m← Decrypt(sk, c) as the decrypted message.

It is not difficult to see that the new scheme is `-leakage resilient, where
` = log(k). Essentially, we can leverage the soundness of CS proof system and the
fact that G is a PRG (in the same manner as in the security proof of the signature
scheme described in section 3) to reduce the security of (KeyGen, Encrypt,
Decrypt) to that of the underlying scheme (KeyGen, Encrypt, Decrypt).

Now, consider an n-fold repetition of the above scheme. Let PKi = (pki, yi)
denote the public key of the ith instance of the above scheme. A natural way to
encrypt a message m in the parallel system is to split m into n shares and en-
crypt each share mi with PKi. Now, (as in the proof of Theorem 2) an adversary
A can make a leakage query to obtain a short CS proof π that explains each yi.
Then, since A has access to a decryption oracle, it can now send a decryption
query c = c1, c2 where c1 = y1, . . . , yn and c2 = π. A can therefore successfully
recover the secret key of the parallel system.
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