
Bringing People of Different Beliefs Together to
do UC

Sanjam Garg1, Vipul Goyal2, Abhishek Jain1, and Amit Sahai1

1 UCLA, {sanjamg,abhishek,sahai}@cs.ucla.edu
2 Microsoft Research, India, vipul@microsoft.com

Abstract. Known constructions of UC secure protocols are based on the
premise that different parties collectively agree on some trusted setup.
In this paper, we consider the following two intriguing questions: Is it
possible to achieve UC if the parties do not want to put all their trust
in one entity (or more generally, in one setup)? What if the parties have
a difference of opinion about what they are willing to trust? The first
question has been studied in only a limited way, while the second has
never been considered before.
In this paper, we initiate a systematic study to answer the above ques-
tions. We consider a scenario with multiple setup instances where each
party in the system has some individual belief (setup assumption in terms
of the given setups). The belief of a party corresponds to what it is will-
ing to trust and its security is guaranteed given that its belief “holds.”
The question considered is: “Given some setups and the (possibly) dif-
ferent beliefs of all the parties, when can UC security be achieved?” We
present a general condition on the setups and the beliefs of all the par-
ties under which UC security is possible. Surprisingly, we show that when
parties have different beliefs, UC security can be achieved with a more
limited “trust” than what is necessary in the traditional setting (where
all parties have a common belief).

1 Introduction

Suppose Alice and Bob want to execute a UC-secure [4] protocol. They know
that they will need to rely on some trust assumptions [6, 7] in order to achieve
UC security. Unfortunately, Alice and Bob have different beliefs about who is
trustworthy: Suppose that Microsoft, Intel, Google, and Yahoo have all published
common reference strings (CRS). Alice believes that either both Microsoft and
Intel are trustworthy, or both Google and Yahoo are trustworthy. Bob, however,
has a different view: Bob believes that either both Microsoft and Google are
trustworthy, or both Intel and Yahoo are trustworthy. This seems like a horrible
situation. Indeed, even if both Alice and Bob shared Alice’s trust belief (or if
they both shared Bob’s trust belief), most UC-secure protocols would be impos-
sible [13]. We show, surprisingly, that nevertheless in the situation above with
asymmetric beliefs, Alice and Bob can execute a protocol that will guarantee
UC security for all parties whose trust beliefs turn out to be valid. This paper



is a systematic study of this problem – when can we guarantee UC security (in
this sense) even when different parties have different trust beliefs.

Background. The last decade has seen a push towards obtaining secure compu-
tation protocols in the demanding network setting where there might be multiple
concurrent protocol executions. The framework of universal composability (UC)
was introduced by Canetti [4] to capture the security requirements in such a set-
ting. However unfortunately, soon after the introduction of the UC framework,
impossibility results were shown ruling out the existence of UC secure protocol
for most functionalities of interest [6, 7]. These results were further generalized
[18, 2] to rule out the existence of secure protocol even in various less demand-
ing settings. These impossibility results refer to the “plain model” where the
participating parties do not trust any external entity and they have no prior
communication among themselves, etc.

To overcome these deep impossibility results and obtain secure protocols
in the modern network setting, a number of different “setup assumptions” were
introduced. A few examples follow. Canetti and Fischlin [6] and Canetti, Lindell,
Ostrovsky and Sahai [8] consider the model where a trusted party publishes a
“common reference string” (CRS). Canetti, Pass and Shelat [9] generalized these
results by considering reference strings coming from an unknown distribution.
Barak, Canetti, Nielsen and Pass [1] introduced the so called “registered public
key” model; a variant of this model was considered by Canetti, Dodis, Pass
and Walfish [5]. Katz [14] (and subsequently [10, 11, 19]) studied a model where
the parties exchange tamper proof hardware tokens with each other. Under all
of these settings, general positive results for all ppt computable functionalities
have been shown in the UC framework. In addition, such positive results can
also be obtained in the setting where a majority of the participants are assumed
to be honest [3, 4, 15]. 3

Now that there are a number of different options in what one might “assume
about the world” to obtain UC protocols, the parties (or the system designer)
would be forced to choose one. In some situation, such a choice would be natural
from the environment where the protocols would be run. However in many other
scenarios, it would be unclear which setup assumption is the right one: should
the parties trust a CRS published by an authority or should they each register
a public key with an authority? Should they assume that a majority of them
are honest or should they not trust anyone and instead rely on tamper proof
hardware tokens? Making such a choice can be non-trivial since a wrong choice
could lead to a complete compromise of the system security.

In light of the above, we can consider the following two lines of thought.
First, given the importance of making a correct choice, it is not unreasonable
to imagine that in certain scenarios, the parties in the system cannot agree

3 We slightly abuse the terminology and consider the honest majority setting as just
another setup. Our study is targeted at assumptions which allow one to obtain UC
protocols but can go wrong leading to a security compromise. Honest majority is
one such assumption.



on a common choice, i.e., it is plausible that each party may have a different
choice about what setup to use. For example, one party may want to use a CRS
published by Microsoft while another may want to register keys with Google.
Yet another party might want to place more trust in tamper-proofness of certain
hardware tokens and not so much in any entity, and so on. In essence, each party
may have a different trust assumption (referred to as the “belief” of the party)
about the setups available. This gives rise to the following question:

Is it possible to construct UC protocols when parties have different beliefs
about setups?

An orthogonal line of thought is that since a wrong choice could lead to a
compromise of the system security, it might be desirable to diversify the risks
involved and avoid a single point of failure. In other words, how about basing the
protocol on a combination of setups rather than a single one? As an example,
the parties might have access to a published CRS as well as have registered
public keys with an authority. The protocol should retain its security even if one
of these setup assumptions “breaks down” (for example, if the published CRS
turned out to be adversarially chosen) but the other turned out to be “honestly
chosen.” Going a little further, there might be n instances of various setups and
the protocol security should hold as long as (e.g.) either one of the first two or
a majority of the rest were honestly done. More generally, we can consider the
following question:

Is it possible to construct UC protocols using multiple setups when the parties
share an arbitrary belief about the setups?

In this paper, we answer both the above questions in the affirmative. We
remark that a general perception following the prior work on UC security is that
a common trusted setup is necessary for achieving UC. As our results show, this
is in fact not necessary. We further note that one would expect UC to be harder
to achieve when parties may have asymmetric beliefs. On the contrary, we show
that the level of trust needed to obtain UC can be significantly weakened in such
a setting.

Related Work. There have been two previous works in the direction of basing
UC secure protocols based on multiple setups. However the works have been
much narrower in scope. Groth and Ostrovsky [13] consider the question of bas-
ing cryptography on multiple CRS. They showed how to construct UC protocols
under the assumption that a majority of the given reference strings were hon-
estly generated. Subsequently, Goyal and Katz [12] considered basing UC secure
protocol under a combination of a CRS and the honest majority assumption.

These questions can be viewed as two special cases of our general question
(in particular, the case of common belief). Our work subsumes these works and
provides answers to a host of other such interesting questions.

Our Results. In this paper, we initiate a systematic study of the question of
basing UC protocols on multiple different setups in a setting where each party



has its own belief (setup assumption in terms of the given setups) about these
setups. An informal problem statement is as follows. Consider a system with
multiple setups and parties. Each party has a belief expressed as an arbitrary
monotonic formula expressed in disjunctive normal form in terms of the setups,
e.g. (A ∧B) ∨ (C ∧D) where A,B,C and D are some setups. We interpret this
belief as– “Either setup A and setup B hold, or setup C and setup D hold.” We
ask the following question: “Given these setups and the different beliefs of all the
parties, when can UC security be achieved?” In answering this question, we give
a very general condition on the setups and the different beliefs of all the parties
under which UC security is possible. This result is presented in Section 5.

Towards the goal of answering the above question, we first look at a simpler
scenario in which all the parties have a “common belief,” i.e., all the parties
share the same belief about the setups in the system. We give a very general
condition on the setups and the common belief of all the parties under which
UC security is possible. This result is presented in Section 4.

As we discuss later in Section 2, a setup may be “corruptible” in multiple
ways; as such, parties might be willing to put trust in the “extent” of corruption
of a particular setup. Furthermore, different parties might be willing to put
different levels of trust in the same setup. The results of Section 4 and 5 handle
this case to some extent, but this scenario is handled in its full generality in
Appendix B. We advise the reader to look at some of the interesting examples
presented there.

In order to argue about security of a system with arbitrary setups, we ab-
stract formal properties that essentially capture what “extra powers” a setup
provides to a simulator over an adversary. These abstract properties allow us to
categorize setups and argue UC security of protocols that can be constructed
from them. We note that all known setups fit these definitions very well. We
further note that our results generalize the previously known tight results of
Groth and Ostrovsky [13] and Goyal and Katz [12]. Finally, we leave it as an
open problem to study the tightness of our results in the general case.

Overview of Main Ideas. In past, UC protocols for different setups have been
designed with very different techniques. Here, we wish to design a single protocol
that simultaneously uses a combination of a number of different setups. Our
starting point is the recent work of Lin, Pass and Venkitasubramaniam [16] which
puts forward a unified framework for designing UC secure protocols. In the UC
framework, to obtain positive results, the simulator is required to obtain some
“extra power” over the adversary. Lin, Pass and Venkitasubramaniam observe
that a general technique for constructing UC secure protocols is to have the
simulator obtain a “trapdoor string” which is hard to compute for the adversary.
This is formalized in the form of (two party) UC-puzzle protocols that enable
the simulator to obtain such a trapdoor string (but prevent the adversary from
doing so). Such a trapdoor string is already available to the simulator in the CRS
model and hence designing a UC-puzzle is trivial in that case. However, even in
case of other setup assumptions, Lin, Pass and Venkitasubramaniam show that



generally it is possible to easily design such a UC-puzzle at the end of which the
simulator obtains a trapdoor string (but the adversary does not).

Once we have a unified construction for UC protocols under different setup
assumptions, we come to our main question: how do we fruitfully use multiple
setups in a single protocol? Different setups might compose very differently with
each others. A priori, it might seem that each pair of setups may compose in a
unique way. Hence, considering the general question that we wish to study, it
seems unclear how to proceed at all.

A key conceptual contribution of our work is a classification of the setup
assumptions used to construct UC protocols. We observe that almost all setups
can be classified among three types. To understand these different types, recall
that in this work, we are concerned with unreliable setup assumptions that may
actually turn out to be false. Coming back to the framework of Lin et al [16], our
simulator would obtain a trapdoor string which would be hard to compute for the
adversary (this is of course if the setup was “honest”). However what happens if
the setup assumption was actually false (i.e., setup was “malicious”)? We could
have any one of the following three cases: (I) the adversary is able to obtain
the trapdoor string (associated with the UC-puzzle) but not the simulator, (II)
none of them are able to obtain the trapdoor string, and, (III) both the adversary
and the simulator are able to obtain the trapdoor string.4 Intuitively, the first
case corresponds to complete corruption of the setup, while the other two cases
correspond to partial corruption of the setup.

We are able to show that the above classification of setups solely decides the
composability properties of different setups. In general, Type II and Type III
setups have better composability properties than the Type I ones. For instance,
in the special case where we have multiple instances of the same setup, a majority
of them should be “honest” if the setup is of Type I. However if it is either of
Type II or Type III, it is sufficient to have a single “honest” setup.

Going further, we note that following the work of Lin et al [16], the task of
constructing UC secure protocols from any setup assumption reduces to the task
of constructing a UC-puzzle (in the hybrid model of the corresponding setup).
Then, in a scenario where all the parties share a common belief about the setups
in the system, the task of constructing UC protocols reduces to task of construct-
ing a UC-puzzle in the hybrid model of the multiple setups in the system. But
what of the scenario where the parties have different beliefs about the setups?
In this case, we show how to construct a family of UC-puzzles that in turn can
be used to construct a family of “concurrent simulation-sound” zero knowledge
protocols with “UC-simulation” property. For reasons discussed later in section
3 and 5, this is sufficient to construct UC protocols in such a setting.

Organization. We start by describing our model in Section 2. In Section 2.1,
we recall the notion of UC-puzzles [16] and give their classification into various
types. In Section 2.2, we give a classification of setups into types. We then present
our positive result for the case where parties share a common belief in Section

4 The fourth case is uninteresting as we argue later.



4. Next, in Section 5, we present our positive result for the case where parties
have different beliefs. Finally, in Appendix A and B, we extend our results to
cover some more involved settings.

2 Our Model

Traditionally, protocols that utilize a single instance of a setup have been con-
structed, and proven to be universally composable as long as the setup is “hon-
est” (i.e., the setup assumption holds). We, however, consider settings where a
protocol may utilize more than one setup; in such a setting, one or more setups
may in fact be “corrupted” (i.e., the setup assumption corresponding to a setup
no longer holds because of possible control of the setup by an adversary). We
wish to investigate when UC-security can be realized in such settings. To this
end, we first consider an augmented modeling for setups (that could either be
“honest” or “corrupted”).

Modeling Setup Failure. Typically, a setup is modeled as a “trusted” ideal
functionality that interacts with the parties in the system. Let G denote such an
ideal functionality. In order to account for the scenario that a setup could in fact
be corrupted by an adversary, we augment this model by considering another
ideal functionality mG that represents a “malicious” version of G. We refer to
mG as a failure mode of G. Then, we will model a setup as a pair (G,mG) of
ideal functionalities, where G represents to the honest version of the setup while
mG represents its failure mode.

For example, consider the common reference string (CRS) setup [6, 8]. In
previous works, the CRS setup is modeled as a trusted ideal functionality that
samples a CRS from a specified distribution. A party in the system can query
the ideal functionality, who in response, will return the CRS to the party. In our
setting, we will model the CRS setup as a pair (GCRS ,mGCRS) of ideal function-
alities. Here GCRS corresponds to the case where the CRS is generated honestly
by the ideal functionality, such that no adversary can obtain any “trapdoor”
information for the CRS. On the other hand, mGCRS corresponds to the case
where the functionality returns an adversarially chosen CRS; in particular, an
adversary may be able to obtain some “trapdoor” information for the CRS.

It should be implicit that we only consider setups that are “sufficient” to
realize UC-secure protocols. That is, we assume that given any setup (G,mG), it
is possible to construct UC-secure protocols in the G-hybrid model. We further
assume that constructing UC-secure protocols is impossible in the mG-hybrid
model.

Multiple Failure Modes. The above modeling of setups is not quite complete,
in that it is too restrictive to imagine that a setup may only have a single failure
mode. Specifically, one could imagine a setup failing in multiple ways depending
upon how it is corrupted by an adversary. For instance, let us consider the
tamper-proof hardware token setup of Katz [14]. In the model of Katz, it is
assumed that (a) parties can exchange tamper-proof hardware tokens with each



other (b) a token “creator” cannot send messages to the token after giving the
token to another party. This is modeled in the form of a wrapper functionality
that takes a program code as an input from a party and then uses that code
to “emulate” a token that interacts with the intended receiver. In this case, one
can consider different possible corruptions of the wrapper functionality (each
corresponding to a different failure mode mG) where either or both of the above
assumptions fail. In general, for a given honest version G of a setup, there may
be multiple failure modes mG1,mG2, . . . ,mGk.

In the sequel, for simplicity of exposition, we will first restrict ourselves to
the case where a setup only has a single failure mode. The results presented in
Section 4 and 5 are obtained under this restriction. Later in Appendix B, we
discuss how to extend our modeling to incorporate multiple failure modes and
then explain how our results can be extended to this case.

Setup Types. Now recall that one of the main goals of this paper is to provide
a way to construct UC secure protocols that utilize multiple different setups. A
priori, it might seem that different setups may compose very differently with each
other depending upon their specific properties, and that in the worst case, each
pair of setups might compose in a unique way. However, we show that this is not
the case; specifically, we give a classification of setups into different “Types,” and
then show that the Type of any setup solely decides the composability properties
of that setup. We then study composition of setup types and give positive results
for the feasibility of constructing UC-secure protocols in the presence of multiple
setups (of possibly different Types).

Our classification of a setup into Types is based on the feasibility of con-
structing a specific primitive called “UC-puzzle” (in the hybrid model of the
setup). We first recall the notion of UC puzzles in Section 2.1. Later, in Section
2.2, we give a classification of setups into Types.

2.1 UC Puzzles and their Classification

Lin et al [16] introduced the notion of UC-puzzles, where, informally speaking,
a UC-puzzle is a two-party protocol in a G-hybrid model (where G is a trusted
ideal functionality)5 such that no real world adversary can complete the puzzle
and also obtain a “trapdoor,” while there exists a simulator that can “simulate”
a puzzle execution (with the “correct” distribution) and also obtain a trapdoor.
Looking ahead, our positive results rely crucially on UC-puzzles; therefore, we
discuss them below in detail.

Recall that in our setting, setups are “corruptible.” For instance, in the above
example, the setup functionality in the system may in fact be mG (instead of
G) which is controlled by an adversary. Clearly, there may be no guarantee that
the aforementioned properties of a UC-puzzle still hold in this case; as such,
the original definition of [16] does not suffice for our purposes. To this end, we
5 We note that in the original definition of Lin et al [16], the existence of a an ideal

functionality G is not compulsory. However, in such cases, one can imagine G to be
an empty functionality.



extend the original definition of UC-puzzles to account for such a scenario. We
give an informal definition of a UC-puzzle as follows. Part of the definition below
is taken almost verbatim from [16].

UC-puzzle. Let (G,mG) be a setup. A UC-puzzle is a pair (〈S,R〉,R), where
〈S,R〉 is a protocol between two parties—a sender S, and a receiver R—in the
F-hybrid model (where F is either G or mG), and R ⊆ {0, 1}∗ × {0, 1}∗ is an
associated ppt computable relation.

I. If F is the “honest” ideal functionality G, i.e., the puzzle is in the G-hybrid
model, then it must satisfy the following two properties.

Soundness No ppt adversarial receiver R∗ after an execution with an hon-
est sender S can find (except with negligible probability) a trapdoor σ ∈
R(trans), where trans is the transcript of the puzzle execution.

Statistical Simulatability Let A be a real world adversary (in an environment
Z) that participates as a sender in multiple concurrent executions of a UC-
puzzle. Then, for every such A, there exists a simulator S interacting only
with Z such that no (possibly unbounded) Z can distinguish between an ex-
ecution with A from an execution with S, except with negligible probability.
Further, for every completed puzzle execution, except with negligible prob-
ability, S outputs a trapdoor σ ∈ R(trans), where trans is the transcript
of that puzzle execution.

II. Otherwise, if F is the “malicious” functionality mG, i.e., the puzzle is in the
mG-hybrid model, then we consider three sub-cases and define different “types”
for UC-puzzles. In order to describe these cases, we first define two properties
that can be seen as “strong” negations of the two aforementioned properties of
UC-puzzles.6

Unsound A UC-puzzle (〈S,R〉,R) is said to be Unsound in the mG-hybrid model
if there exists a ppt adversarial receiver R∗ that can find (except with neg-
ligible probability) a trapdoor σ ∈ R(trans), for a puzzle execution (with a
transcript trans) with an honest sender S.

Unsimulatable Further, we say that the UC-puzzle is Unsimulatable in the mG-
hybrid model if there exists an adversarial sender A such that no simulator
S can obtain (except with negligible probability) a trapdoor σ ∈ R(trans)
for a completed puzzle execution (where trans is the transcript of the puzzle
execution).

We now consider the following cases.

6 An intuitive explanation of the two new properties can be seen as follows. Informally
speaking, we wish to say that a UC-puzzle in the mG-hybrid model is Unsound if an
adversary in the mG-hybrid model enjoys the same power as any simulator in the
G-hybrid model. Similarly, a UC-puzzle in the mG-hybrid model is Unsimulatable
if a simulator in the mG-hybrid model enjoys no extra power as compared to an
adversary in the G-hybrid model.



Type I. We say that a UC-puzzle is of Type I if it is Unsound and Unsimulatable
in the mG-hybrid model.

Type II. We say that a UC-puzzle is of Type II if it satisfies Soundness but is
Unsimulatable in the mG-hybrid model.

Type III. We say that a UC-puzzle is of Type III if it is Unsound but satisfies
Statistical Simulatability in the mG-hybrid model.

Finally, we can consider the case where both Soundness and Statistical Sim-
ulatability are satisfied in the mG-hybrid model. We discard this case for the
following reasons. Note that this case implies that we can construct UC-puzzles
even in the mG-hybrid model. Then, from the result of [16], it would follow that
we can construct UC-secure protocols even in the mG-hybrid model. Informally
speaking, this means that the setup was not corrupted in any “interesting” way.

This completes our definition of UC-puzzles and their classification into
Types.

2.2 Classification of Setups

Having defined different Types of UC-puzzles, we are now ready to define the
Type of a setup based on the feasibility of constructing UC-puzzles in the hybrid
model of that setup.

Definition 1 (Setup Types). A setup (G,mG) is said to be of Type X if it is
possible to construct a UC-puzzle of Type X in the F-hybrid model, where F is
either G or mG, and X ∈ {I, II, III}.

Setups with multiple Types. Note that it may be possible to construct mul-
tiple UC-puzzles of different Types in the hybrid model of a setup (G,mG); as
such, the above definition allows a setup (G,mG) to have multiple Types. For
simplicity of exposition, in the sequel, we will first assume that each setup has a
unique Type. The results presented in Section 4 and 5 are obtained under this
restriction. Later, in Appendix A, we give an example of a custom setup that
has multiple types, and then explain how to extend our results to incorporate
setups with multiple Types.

Classification of known setups. We now briefly discuss some known setups
such as CRS [CF01, CLOS02, CPS07], tamper-proof hardware [Kat07], and key
registration [BCNP04]. We first note that the only “natural” failure mode for
the CRS setup corresponds to “complete corruption,” where the CRS is chosen
by the adversary. Then, it is not difficult to see that the CRS setup is of Type I.
In contrast, the key registration setup and the hardware-token setup naturally
allow “partial corruption”. Let us first consider the key registration setup. Recall
that in the key registration setup, it is assumed that parties can register their
public keys in such a way that: (a) the public keys of the honest parties are
“safe” (in the sense that the secret keys were chosen at random and kept secret
from the adversary), and (b) the public keys of the corrupted parties are ‘well-
formed” (in the sense that the functionality has seen the corresponding secret



keys). Then, an adversary may be able to corrupt the setup in multiple ways
(each corresponding to a different failure mode) such that either or both of these
assumptions are violated. The first failure mode corresponds to the complete
corruption of the setup (i.e., both the above assumptions fail); in this case, the
setup is of Type I. The second failure mode corresponds to the case where the
public keys of corrupt parties may not be “well-formed”; however, the secret
keys of the honest parties are still “safe.” In this case, the setup is of Type II.
Finally, in the third failure mode, the secret keys of honest parties may not be
“safe”; however, the public keys of corrupted parties are still “well-formed.” In
this case, the setup is of Type III. In a similar way, one can consider different
failure modes for the hardware token setup, each leading to a different Type. We
refer the reader to the full version of the paper for details.

3 UC Security via UC-puzzles

As observed by Lin et al [16], it is implicit from prior works [8, 17, 21, 20] that
the task of constructing UC-secure protocols for any well-formed7 functionality
reduces to the task of constructing a “concurrent simulation-sound” zero knowl-
edge protocol (ssZK) with “UC simulation” property.8 Very informally, these
properties can be described as follows (the text is taken almost verbatim from
[16]):

UC simulation: For every ppt adversary A receiving “honest” proofs of state-
ments x using witness w, where (x,w) are chosen by the environment Z, there
exists a simulator S (that only gets statements x as input) such that no Z
can distinguish (except with negligible probability) whether it is interacting
with A or S.

Concurrent simulation-soundness: An adversary who receives an unbounded
number of concurrent simulated proofs, of statements chosen by Z, cannot
prove any false statements (except with negligible probability).

Lin et al [16] gave a unified framework for constructing UC-secure protocols
from known setup assumptions like CRS [6, 8], tamper-proof hardware tokens
[14], key registration [1], etc. Specifically, Lin et al [16] gave a construction for an
ssZK protocol from a UC-puzzle in a G-hybrid model (where G is a “trusted” ideal
functionality that may correspond to, for instance, a CRS setup), and a strongly
non-malleable witness indistinguishable (SNMWI) argument of knowledge (see
[16] for details).

We note that following the work of [16], the task of constructing UC secure
protocols from any setup assumption reduces to the task of constructing a UC-
puzzle (in the hybrid model of the corresponding setup).9 Then, looking ahead,
the positive results in this paper crucially rely on the framework of [16].
7 We refer the reader to [8] for a definition of “well-formed” functionalities.
8 Formally, this can be modeled as implementing a specific “zero knowledge proof of

membership” functionality.
9 Note that [16] gave a construction of an SNMWI protocol based on one-way functions.



4 Common Belief About the Setups

We first consider the setting where all the parties in the system share a common,
though arbitrary, belief about the setups present in the system. For instance,
consider an example where there are three CRS setups in the system. In this
case, all the parties may share a common belief that either (a) the first CRS
is honestly generated, or (b) both the second and the third CRSs are honestly
generated. Ideally, given any function f , we would like to construct a protocol Π
(in the hybrid model of the three CRSs) that securely realizes f when either of
the above two cases is actually true. In this section, we investigate the possibility
of constructing such protocols. In particular, we will give a condition that takes
into account the setups present in the system and the common belief shared
by the parties; we then show that constructing secure protocols (where security
is defined in the above sense) is possible if our condition is satisfied. We first
introduce some notation and definitions.

Belief Set. In the above example, we can express the common belief of the
parties in the form of a DNF formula written as CRS1 or (CRS2 and CRS3),
where CRSi denotes the ith CRS. The DNF formula, in turn, can be represented
as a set Σ = {T1, T2} where T1 is a set that consists of CRS1, and T2 is a set
that consists of the CRS2 and CRS3.

We generalize this in the following manner. Let U be the set of all the setups
present in the system. Then, we will represent the common belief of the parties
as a set Σ = {T1, . . . , Tk} (where k is an arbitrary, possibly exponential, value),
where each member Ti is a subset of U . The common belief of the parties is
expressed as follows: ∃Ti ∈ Σ such each setup in Ti holds.10 We will refer to this
set Σ as the belief set.

Σ-secure protocols. We would like to construct secure computation protocols
that realize UC security if the common belief of the parties about the setups in
the system is actually true. We formalize this in following definition of Σ-secure
protocols.

Definition 2 (Σ-secure protocols). Let there be n setups in the system de-
noted by (G1,mG1), . . . , (Gn,mGn). Let F1, . . . ,Fn be n ideal functionalities,
where ∀i,Fi is either Gi or mGi. Let Σ = {T1, . . . , Tk} be a belief set over the n
setups that represents the common belief of the parties. We say that a protocol
Π Σ-securely realizes a functionality f in the (F1, . . . ,Fn)-hybrid model if Π
UC-securely realizes f in the (F1, . . . ,Fn)-hybrid model whenever ∃Ti ∈ Σ such
that each setup in Ti holds (i.e., Fj is the ideal functionality Gj, for each setup
(Gj ,mGj) ∈ Ti).

Remark. We note that our security definition does not immediately comply
with the traditional UC framework where setups are “incorruptible”. To this

10 Here, and throughout the text, it should be implicit that whenever we say a setup X
holds, what we actually mean is that the setup assumption corresponding to setup
X holds.



end, we consider a simple modification to the UC framework where the adver-
sary is allowed to choose (before the start of the protocol) the setups that she
wishes to corrupt. Of course, this information is not known to the protocol de-
signer, since in that case, achieving UC security is easy – the parties could simply
ignore the corrupt setups and use only the honest ones.

UC-compatible Belief Sets. Before we discuss our positive result on con-
structing Σ-secure protocols, we first define the notion of a UC-compatible belief
set, that is central to our result.

Definition 3 (UC-compatible belief set). A belief set Σ = {T1, T2 . . . Tk},
where ∀i ∈ [k], Ti 6= ∅, is said to be UC-compatible if ∀i, j ∈ [k], at least one of
the following conditions hold:

– Ti ∩ Tj 6= ∅.
– Both Ti and Tj contain at least one (not necessarily the same) Type II setup.
– Both Ti and Tj contain at least one (not necessarily the same) Type III setup.
– Either Ti or Tj contains at least one Type II setup as well as at least one

Type III setup.

We are now ready to state our main result for the common belief case.

Theorem 1 (Main result for common belief case). Let there be n setups
in the system denoted by (G1,mG1), . . . , (Gn,mGn). Let F1, . . . ,Fn be n ideal
functionalities, where ∀i,Fi is either Gi or mGi. Let Σ be a belief set over the n
setups that represents the common belief of the parties. If Σ is UC-compatible,
then for every well-formed functionality f , there exists a non-trivial protocol Π
that Σ-securely realizes f in the (F1, . . . ,Fn)-hybrid model.

Proof (Sketch). As noted in Section 3, it follows from the work of [16] that the
task of constructing UC secure protocols from any setup assumption reduces to
the task of constructing a UC-puzzle (in the hybrid model of the corresponding
setup). Then, we note that in order to prove Theorem 1, it suffices to construct a
puzzle 〈S,R〉 with an associated relation R such that (〈S,R〉,R) is a UC-puzzle
in the (F1, . . . ,Fn)-hybrid model if the belief set Σ is UC-compatible. We now
briefly explain the puzzle construction.

Consider the n setups in the system. Recall that if a setup is of type ti, then
there exists a UC-puzzle (in the hybrid model of that setup) of type ti. Then,
our new puzzle protocol 〈S,R〉 is simply a sequential composition of the n puzzle
protocols obtained from the n setups. Defining the associated relation R (and
hence the trapdoor) is more tricky. Let Σ = {T1, . . . , Tk}, where Σ is the belief
set. Recall that as per definition 2, our (final) protocol should be UC-secure
whenever there exists Ti ∈ Σ such that each setup in Ti holds (in this case, we
say that set Ti is good). To this end, we define k trapdoors σi, one corresponding
to each set Ti; here, the main requirement is that if a set Ti is good, then (a) the
simulator can obtain the trapdoor σi, but (b) no adversary can obtain any of the
k trapdoors. We make the following observations: (a) the simulator can obtain



the trapdoor for the UC-puzzle corresponding to each setup present in a good
set (but the adversary cannot), (b) the simulator can obtain the trapdoor for
a Type III UC-puzzle even if the corresponding setup does not hold (hence,
these trapdoors are for “free”). In light of these observations, we define σi to
contain the trapdoor for the UC-puzzle corresponding to each setup present in
Ti; additionally, σi contains the trapdoor for each Type III UC-puzzle.

Now suppose that ∃i ∈ [k] such that Ti is good. Further, (in the worst case)
suppose that each Tj 6= Ti is such that none of the setups in Tj holds (we will call
such a set Tj to be bad). By definition, the simulator can obtain the trapdoor
σi. Further, no adversary can obtain the trapdoor σi. In order to argue that no
adversary can obtain any of the remaining k − 1 trapdoors (corresponding to
the bad sets), we make use of the fact that Σ is UC-compatible. That is, since
Σ is UC-compatible, for each bad set Tj , at least one of the four conditions (c.f.
Definition 3) must hold. The proof follows by a case analysis. Here, in addition to
the earlier observations, we use the fact that no adversary can obtain a trapdoor
for a Type II UC-puzzle (even if the corresponding setup does not hold). Due
to lack of space, we defer the details to the full version.

5 Different Beliefs About the Setups

In this section, we consider the setting where the parties in the system have
different and independent beliefs about the setups in the system. Note that in
such a scenario, depending upon the reality of how all the setups are implemented
(for e.g., a third party that publishes a CRS may or may not be honest), the
beliefs of some parties about the setups may turn out to be true, while that
of other parties may turn out to be false. Then let us consider what would be
an appropriate security definition for secure computation protocols in such a
setting. Ignoring for a moment whether the definition is actually realizable, note
that an acceptable security definition must provide standard security guarantees
for at least those parties whose beliefs about the setups turn out to be true.
But what of the parties whose belief about the setups turns out to be false?
Note that a party would not expect the protocol to be secure if its belief about
the setups turns out to be false. In light of this observation, below we consider
a security definition that provides security for only those honest parties whose
belief about the setups turns out to be true; any other party is considered to be
adversarial, and therefore, no security is provided for such a party. As we show
later, our definition is actually realizable when the beliefs of the parties about
the setups satisfy a specific property (see below for more details). We now give
more details.

Let P1, . . . , Pm denote the parties in the system. We will use the notion
of a belief set (as defined in Section 4) to represent the independent belief of
each party about the setups in the system. Specifically, let Σi = {Ti,1, . . . , Ti,ki}
denote the belief set of Pi.

(Σ1, . . . , Σm)-secure protocols. As mentioned above, we would like to con-
struct protocols that realize UC security with the (natural) condition that se-



curity is provided only for those (honest) parties whose beliefs about the setups
turn out to be true. To formally capture the fact that no security provided for a
specific set of parties, we consider a minor modification in the standard model
of UC security [4]. Specifically, let U = {P1, . . . , Pm} denote the set of parties
in the system. Let H ⊆ U be a set of parties for whom we wish to provide stan-
dard security guarantees. We stress that H is not an a-priori fixed set of parties.
Specifically, in our setting, H is determined once the adversary decides which
setups in the system it wishes to corrupt. Then, in the modified UC framework,
at the beginning of the protocol, the adversary A is required to corrupt each
party Pi ∈ U \H. The adversary can then further corrupt parties in H depend-
ing upon the corruption model (static or adaptive). We wish to provide security
for the honest parties in H. We are now ready to define (Σ1, . . . , Σm)-secure
protocols.

Definition 4 ((Σ1, . . . , Σm)-secure protocols). Let there be n setups in the
system denoted by (G1,mG1), . . ., (Gn,mGn). Let F1, . . . ,Fn be n functionalities,
where ∀i,Fi is either Gi or mGi. Let U = {P1, . . . , Pm} denote the set of parties
in the system. For every i, let Σi = {Ti,1, . . . , Ti,ki

} be a belief set over the
n setups that represents the independent belief of Pi. We say that a protocol Π
(Σ1, . . . , Σm)-securely realizes a functionality f in the (F1, . . . ,Fn)-hybrid model
if ∀H ⊆ {P1, . . . , Pm}, Π UC-securely realizes f in the (F1, . . . ,Fn)-hybrid model
against all adversaries that initially corrupt all parties in U \H, when ∀Pi ∈ H,
∃j ∈ [ki] such that each setup in Ti,j ∈ Σi holds (i.e., F` = G` for each setup
(G`,mG`) ∈ Ti,j).

UC-compatibility for Collection of Belief Sets. The notion of UC-compatibility
(as defined in Section 4) is central to our results. Here, we extend this notion to
a collection of belief sets.

Definition 5 (UC-compatible collection of belief sets). A collection of
belief sets Σ1, . . . , Σm where Σi = {Ti,1, . . . , Ti,ki

} and Ti,` 6= ∅ ∀i ∈ [m], ` ∈ [ki],
is said to be UC-compatible if ∀i, j ∈ [m] and ∀` ∈ [ki], ˆ̀∈ [kj ], at least one of
the following conditions hold:

– Ti,` ∩ Tj,ˆ̀ 6= ∅.
– Both Ti,` and Tj,ˆ̀ contain at least one (not necessarily the same) Type II

setup.
– Both Ti,` and Tj,ˆ̀ contain at least one (not necessarily the same) Type III

setup.
– Either Ti,` or Tj,ˆ̀ contains at least one Type II setup as well as at least one

Type III setup.

Remark. Note that it is possible that given two belief sets Σ1, Σ2, neither of
them is UC-compatible but the collection {Σ1, Σ2} is UC-compatible.

We are now ready to state our main result for the different beliefs case.



Theorem 2 (Main result for different beliefs case). Let there be n setups
in the system denoted by (G1,mG1), . . . , (Gn,mGn). Let F1, . . . ,Fn be n ideal
functionalities, where ∀i,Fi is either Gi or mGi. Let P1, . . . , Pm be m parties. For
every i, let Σi be a belief set over the n setups that represents the independent
belief of Pi. If the collection of belief sets Σ1, . . . , Σm is UC-compatible, then
for every well-formed functionality f , there exists a non-trivial protocol Π that
(Σ1, . . . , Σm)-securely realizes f in the (F1, . . . ,Fn)-hybrid model.

Proof (Idea). As noted earlier in Section 3, the task of constructing UC-secure
protocols for any well-formed functionality reduces to the task of constructing
an ssZK protocol. Intuitively, this is because given a functionality f , we can start
with a semi-honest secure computation protocol Π for f , and then “compile” Π
with an ssZK protocol to obtain a UC-secure protocol against active adversaries.
Furthermore, following the result of [16], given any setup assumption (such as
CRS), the above task is further reduced to the task of constructing a UC-puzzle
in the hybrid model of the corresponding setup.

Now recall that in light of the above, we proved our positive result in the
common belief case by simply constructing a UC-puzzle if the belief set (that
represents the common belief of the parties) is UC-compatible. In the different
beliefs case, however, instead of constructing a single UC-puzzle, we will con-
struct a family of UC-puzzles if the collection of belief sets Σ1, . . . , Σm (where
Σi represents the belief of party Pi) is UC-compatible. Specifically, for each pair
of parties Pi and Pj , we will construct two different UC-puzzles, (a) one where
Pi (resp., Pj) acts as the sender (resp., receiver) and (b) the other where the
roles of Pi and Pj are reversed. Then, given such a family of UC-puzzles, we
can construct a family of ssZK protocols where the protocols in the family are
concurrent simulation-sound with respect to each other. Specifically, for each
pair of parties Pi and Pj , we can construct two different ssZK protocols, (a) one
where Pi (resp., Pj) acts as the prover (resp., verifier), and (b) the other, where
the roles of Pi and Pj are reversed. Finally, in order to construct a UC-secure
protocol for any well-formed functionality f , we can start with a semi-honest
protocol Π for f , and then “compile” Π with the above family of ssZK proto-
cols in the following manner. Whenever a party Pi sends a protocol message to
Pj , it proves that it has “behaved honestly so far in the protocol” by running
an execution of the “appropriate” ssZK protocol (i.e., where Pi and Pj play the
roles of the prover and verifier respectively) from the above family.

Due to lack of space, the details of the proof are deferred to the full version.

References

1. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with
relaxed set-up assumptions. In: FOCS (2004)

2. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS (2006)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)



4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS (2001)

5. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: TCC (2007)

6. Canetti, R., Fischlin, M.: Universally composable commitments. In: CRYPTO
(2001)

7. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. J. Cryptology 19 (2006)

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

9. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an
imperfect reference string. In: FOCS (2007)

10. Chandran, N., Goyal, V., Sahai, A.: New constructions for uc secure computation
using tamper-proof hardware. In: EUROCRYPT (2008)

11. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated
zero knowledge. In: EUROCRYPT (2008)

12. Goyal, V., Katz, J.: Universally composable multi-party computation with an un-
reliable common reference string. In: TCC (2008)

13. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: CRYPTO
(2007)

14. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: EUROCRYPT (2007)

15. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: STOC (2006)

16. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent se-
curity: universal composability from stand-alone non-malleability. In: STOC (2009)

17. Lindell, Y.: Bounded-concurrent secure two-party computation without setup as-
sumptions. In: STOC (2003)

18. Lindell, Y.: Lower bounds for concurrent self composition. In: TCC (2004)
19. Moran, T., Segev, G.: David and goliath commitments: Uc computation for asym-

metric parties using tamper-proof hardware. In: EUROCRYPT (2008)
20. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest

majority. In: STOC (2004)
21. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-

stant number of rounds. In: FOCS (2003)

A Setups with Multiple Types

In the preceding text, for simplicity of exposition, we first restricted ourselves
to the setting where each setup has a unique type. In this section, we discuss
how our results can be extended to incorporate setups with multiple Types. Due
to lack of space, we only provide an informal treatment of the results here. We
refer the reader to the full version for more details.

Extending our results of Section 4 and 5. For simplicity of exposition, we
will only consider the case where a setup is of all three types – Type I, Type
II and Type III (other cases can be handled in a similar manner). The main
idea that allows to handle setups with multiple types is that we can think of a



setup (G,mG) as three separate setups of unique type. If (G,mG) “holds”, then
each of the three setups must “hold,” while if it is “corrupt”, then each of the
three setups are “corrupt.” Then, roughly speaking, simply replacing (G,mG)
with these three setups of unique types allows us to directly use the results of
Section 4 and Section 5.

More specifically, recall that a belief set (as defined in Section 4) is expressed
in terms of setups with unique types. If, instead, a belief set has a setup with
multiple types, then we can modify the belief set and express it in terms of
setups with unique types by following the above trick. Once we reduce all the
setups in the system into setups of unique types and the belief set of parties
are expressed in terms of these setups, then we can directly apply Theorem 1
to obtain a possibility result in the common belief case. In case parties have
different belief sets as in Section 5, then we will need to express belief sets of all
parties in terms of setups of unique types. Then we can directly apply Theorem 2
to obtain a possibility result for the distinct belief case.

B Setups with Multiple Failure Modes

In the preceding text, for simplicity of exposition, we first restricted ourselves to
the setting where a setup has only a single failure mode. We now briefly discuss
how to handle setups with multiple failure modes. Due to lack of space, our
discussion will be informal and brief. We refer the reader to the full version for
details.

Example. We first discuss a motivating example to highlight the importance
of handling setups with multiple failure modes. Consider a system with three
instances of the key registration setup. Recall that a key registration setup is
based on the following two assumptions: (1) the secret keys of honest parties are
“safe”, and (2) the public keys of corrupted parties are “well-formed.” Then, the
parties in the system may have the following common belief: either

– the first key registration functionality is “honest”, but in case it fails, then
either (1) or (2) still holds (i.e., it never fails completely), or

– the second and third key registration functionalities are “honest”, but in
case the second functionality fails, then (1) still holds, while if the third
functionality fails, then (2) still holds.

We stress that the above example is very “natural”, and that in a real-world
scenario, the parties may be willing to put trust into the “extent” of corruption
of a setup. (In some scenarios, this may be due to some physical constraints
imposed upon an adversary because of how the setup is done.) It is interesting
to note that UC is indeed possible in the above example. We now briefly explain
how to extend our model and our earlier results to accommodate setups with
multiple failure modes.

Extending our model to accommodate multiple failure modes. Consider
a setup modeled by an ideal functionality G with failure modesmG1,mG2, . . . ,mG`.



For lack of a better terminology, we will refer to each pair (G,mGi) (that was
originally referred to as a setup) as a setup mode. Then, we can define Types
for a setup mode in the same manner as we defined Types as in Definition 1.
A setup mode (G,mG) is said to be of Type X if it is possible to construct a
UC-puzzle of Type X in (G,mG) hybrid model. Note that the above definition
allows a setup mode to have multiple Types. For simplicity of exposition, in this
subsection, we will restrict ourselves to the case where a setup mode has only
a single Type. We stress that this restriction can be easily removed by using
techniques from Appendix A.

Extending our results of Section 4 and Section 5. Due you lack of space,
we informally explain how our results in the common belief case can be extended.
We refer the reader to the full version of the paper for details on the different
beliefs case.

We note that the key issue that arises because of multiplicity of failure modes
is in the definition of UC-compatible belief set (c.f. Definition 3). We start by giv-
ing a more general definition of UC-compatible belief set (see below) which takes
into account the multiplicity of failure modes for setups. We then briefly argue
that given this more general definition of UC-compatible belief set, Theorem 1
is still applicable.

Definition 6 (Generalization of Definition 3). A belief set Σ = {T1, T2 . . . Tk},
where ∀i ∈ [k], Ti 6= ∅, is said to be UC-compatible if ∀i, j ∈ [k], at least one of
the following conditions hold:

– There exists a setup G such that both Ti and Tj contain a setup mode (G, ?).
– Both Ti and Tj contain at least one (not necessarily the same) Type II

setup mode.
– Both Ti and Tj contain at least one (not necessarily the same) Type III

setup mode.
– Either Ti or Tj contains at least one Type II setup mode as well as at least

one Type III setup mode.

Definition 6 differs from Definition 3 in two ways: (a) The first condition
of Definition 6 ignores the failure mode of the setups when taking intersection.
However, we note that this is not really a fundamental difference because the
failure modes of the setups were irrelevant in the first condition of Definition 3
as well. This is because we earlier restricted setups to exhibit only a single failure
mode. Intuitively, this condition captures the case when the sets Ti and Tj share
a setup and that setup holds. Hence, the failure mode is of no consequences.
(b) The remaining three conditions in Definition 6 differ from the corresponding
conditions in Definition 3 in the usage of setup modes instead of setups. We note,
however, that these conditions in Definition 3 (resp., Definition 6) rely only on
the types of the setup (resp., setup mode), and disregard the actual setups
themselves. Hence, intuitively, the fact the same setup is leading to different
types is of no consequences. Due to the above reasons, the proof of Theorem 1
easily extends to the general case with multiple failure modes.


