
On Black-Box Separations among Injective
One-Way Functions

Takahiro Matsuda⋆ and Kanta Matsuura

The University of Tokyo, Japan {tmatsuda,kanta}@iis.u-tokyo.ac.jp

Abstract. A one-way permutation (OWP) is one of the most funda-
mental cryptographic primitives, and can be used as a building block for
most of basic symmetric-key cryptographic primitives. However, despite
its importance and usefulness, previous black-box separation results have
shown that constructing a OWP from another primitive seems hopeless,
unless building blocks already achieve “one-way” property and “permu-
tation” property simultaneously. In this paper, in order to clarify more
about the constructions of a OWP from other primitives, we study the
construction of a OWP from primitives that are very close to a OWP.
Concretely, as a negative result, we show that there is no fully black-box
construction of a OWP from a length-increasing injective one-way func-
tion (OWF), even if the latter is just 1-bit-increasing and achieves strong
form of one-wayness which we call adaptive one-wayness. As a corollary,
we show that there is no fully black-box construction of a OWP from
a regular OWF with regularity greater than 1. Since a permutation is
length-preserving and injective, and is a regular OWF with regularity
1, our negative result indicates that to construct a OWP from another
primitive is quite difficult, even if we use very close primitives to a OWP
as building blocks. Moreover, we extend our separation result of a OWP
from a length-increasing injective OWF, and show a certain restrictive
form of black-box separations among injective OWFs in terms of how
much a function stretches its input. This result shows a hierarchy among
injective OWFs (including a OWP).

Keywords: black-box separation, injective one-way function, one-way
permutation, adaptive one-wayness.

1 Introduction

A one-way permutation (OWP) is one of the most fundamental cryptographic
primitives1. It has been shown that OWPs are sufficient for constructing most
of basic “symmetric-key” primitives, which include, e.g. pseudorandom genera-
tors [18, 2], pseudorandom functions [4], symmetric-key encryption schemes and
message authentication codes. While most of primitives implied by a OWP are

⋆ Takahiro Matsuda is supported by JSPS Research Fellowships for Young Scientists.
1 Unless otherwise stated explicitly, whenever we say “OWP”, we mean a single OWP,
not a family of OWPs

later shown to be implied by an ordinary one-way function (OWF) (e.g. a pseu-
dorandom generator from any OWF [7]), it is usual that a primitive built from
a OWP is more efficient than the one built from a general OWF. Therefore, a
OWP is still quite an important primitive, and constructions of a OWP from
other (simpler) primitives (possibly efficiently) is worth studying. However, how
to construct a OWP from other primitives has not been studied well, compared
to constructions of other primitives that use a OWP as a building block. In this
paper, we focus on constructions of OWPs.

There are several negative results on this, in terms of black-box construc-
tions2. The combination of the results by Rudich [14] and Kahn et al. [10] shows
that there is no black-box construction of a OWP from a OWF. Chang et al. [3]
later extend it and show that there is no black-box construction of a OWP
from (a family of) trapdoor functions or private information retrieval protocols.
These negative results indicate that it is quite difficult to construct a OWP from
other primitives. There are also some positive results. However, to the best of
our knowledge, the only positive results about the construction of a OWP are
the constructions from primitives which already have “one-way” property and
“permutation” property simultaneously: Yao [18] shows that the existence of a
permutation which is weakly one-way implies that of a (normal) OWP. Goldre-
ich et al. [5] show that if a family of OWPs satisfies some special properties, it
can be used to construct a single OWP.

Taking into account these negative and positive results on the constructions
of OWPs, a natural question that arises here is: Which properties of a OWP
make it hard to construct a OWP from other primitives? To clarify this, in this
paper, we focus on a special type of OWFs, a length-increasing injective OWF,
and tackle the problem of whether we can construct a OWP from it. Recall
that a permutation is a function which is both length-preserving and injective.
Therefore, a length-increasing injective OWF is one of the primitives that is
extremely close to a OWP. Regarding this problem, our answer is negative.

The problem on a OWP versus a length-increasing injective OWF can be
generalized into the following form: Let m, ℓ be integers with m > ℓ ≥ 0. Can we
construct an ℓ-bit-increasing injective OWF from an m-bit-increasing injective
OWF? (Note that if m ≤ ℓ, then the answer to the question is trivially yes.) We
also tackle this problem and show a partial negative answer.

1.1 Our Contribution

In this paper, we show that even if we use a very close primitive to a OWP,
it is impossible to construct a OWP in a black-box manner. More concretely,

2 Roughly speaking, a construction of a primitive from another is black-box if the
constructed primitive does not use the code of the building block primitive, and the
reduction algorithm for the security proof does not use the code of an adversary
attacking the constructed primitive. In this paper, we only talk about the so-called
fully black-box constructions (reductions) defined in [13]. See [13] for other types of
black-box constructions/reductions.

we show in Section 3 that there is no fully black-box construction3 of a OWP
from a length-increasing injective OWF, even if the latter is just 1-bit-increasing
and achieves stronger type of one-wayness which we call adaptive one-wayness
(see below). We note that this separation result is not implied by the previous
results [14, 10, 3] on a black-box separation of a OWP from other primitives.
Actually, one of the results in [3] implies the separation of a OWP from an
injective OWF whose range is sparse (e.g. length-tripling functions). However,
our impossibility holds as long as the building block injective OWF is length-
increasing, regardless of the sparseness of the range. An immediate corollary of
the separation result is the non-existence of a fully black-box construction of a
OWP from a regular OWF4 for any regularity greater than 1. Note that a OWP is
also a regular OWF with regularity 1. Therefore, our negative results suggest that
constructing a OWP is quite difficult (or maybe impossible) unless a building
block primitive already achieves both “one-way” property and “permutation”
property simultaneously.

Moreover, we extend our above result to show some restricted type of black-
box separations among injective OWFs. More precisely, we show in Section 4
that for any integer pair (ℓ,m) satisfying m > ℓ ≥ 0, there is no range-invariant
fully black-box construction of an ℓ-bit-increasing injective OWF from an m-bit-
increasing injective OWF, where a construction of an injective OWF from other
primitives is said to be range-invariant if the range of the constructed injective
OWF depends only on the construction and is independent of the building block
primitives. Note that a OWP is a 0-bit-increasing injective OWF, and any con-
struction of a OWP from other primitives is inherently range-invariant, and thus
our first separation result is the special case of the latter one in which ℓ = 0.
Although this range-invariance condition seems a bit heavy when ℓ > 0, this
result shows a hierarchy among injective OWFs (including a OWP), and we
think this result is interesting. So far, we are not sure whether we can remove
the range-invariance condition from this separation result, and thus we would
like to leave it as an open problem.

In order to make our black-box separation results stronger, for both of our
separation results, we consider a stronger type of one-wayness, adaptive one-
wayness, for building block OWFs. Roughly, an injective function is adaptively
one-way if it is one-way against adversaries that have access to a “magical”
inversion oracle which takes a string (other than a challenge instance that the
adversary has to invert) as input and returns the inverse of the value. Our
definition of adaptive one-wayness is different from the one introduced by Pandey
et al. [11] who considered it in a “tag-based” setting while ours does not consider
it. See Section 2 for a formal definition.

3 This is the most restrictive type of black-box constructions formalized in [13]. How-
ever, it should be noticed that most cryptographic constructions of a primitive from
another primitive is fully black-box.

4 Roughly, a function is said to be regular if it is length-preserving and each image
of the function has the same-sized set of preimages, and the regularity is the size of
the set of preimages which map to a same image.

1.2 Technical Overview of Our Separation Results

The combination the results by Rudich [14] and Kahn et al. [10] shows that
there is no (so-called ∀∃ semi-)black-box construction of a OWP from a OWF.
However, it is known that if we only need to exclude a more restrictive form of
black-box constructions, fully black-box constructions, of a OWP from a OWF,
proving the following statement is sufficient (see also [12]): “For any oracle prob-
abilistic polynomial time algorithm (PPTA) P, if PO implements a permutation
for all random oracles5 O, then there is an oracle PPTA that has access to O and
a PSPACE-complete oracle and inverts PO.”6 Let us call this statement “(A)”.

Since we will use the basic proof strategy for the statement (A) in our black-
box separation results, we briefly outline the proof, and then explain the prob-
lems that arise when proving our results.

Basic Proof Strategy for Separation of OWP and (Ordinary) OWF. To prove
the statement (A), we construct a computationally unbounded adversary A that
makes only polynomially many queries to its given random oracle O and success-
fully inverts PO: Given a string y∗ ∈ {0, 1}k which A has to find the preimege
under PO, A first generates an empty list L that will be used to maintain the
“known” query/answer pair of O, and then repeats the following steps 1 to 3 for
polynomially many times:

Step 1: find a string x′ and an oracle Õ under the condition: Õ(α) = O(α) for
all α ∈ L and PÕ(x′) = y∗.

Step 2: check if PO(x′) = y∗ (note that here we use O, not Õ), and terminate
with output this x′ if this is the case.

Step 3: askO all the queries made by PÕ(x′) and update the known query/answer
pair list L.

The key observation is that in each iteration, either (a) A finds a preimage
x∗ such that PO(x∗) = y∗ and terminates at Step 2, or (b) at Step 3 A finds (and
stores in L) at least one query that is also made by P during the computation of
y∗ = PO(x∗) but has not been contained in the known queries L. Very roughly,
this is because if (a) and (b) are simultaneously false, then we can construct a

“hybrid” random oracle Ô that behaves like O on the queries made by PO(x∗)

and like Õ on those made by PÕ(x′). This hybrid oracle Ô has the property

that PÔ(x∗) = PÔ(x′) = y∗ while x∗ ̸= x′, which is a contradiction because PÔ

implements a permutation which cannot have a collision (recall that PO
′
imple-

ments a permutation for all random oraclesO′). Since Pmakes only polynomially
many queries to O, by repeating the above procedure polynomially many times
A eventually finds the preimage x∗ and terminates, or we reach the situation
where L contains all the queries made by PO(x∗). Note that if L contains all

5 Here, “all random oracles” should be interpreted as “all the possible instances of
random oracles”.

6 According to [14, Sect. 9.1], this statement can be shown as a corollary of the result
independently discovered in [1, 6, 16]. For more details, see [14].

the queries made by PO(x∗), then the preimage of y∗ under the permutation PÕ

(where Õ is the oracle chosen at Step 1) must be x∗, because O(α) = Õ(α) for
all the queries α made by PO(x∗), which means that PO(x∗) = PÕ(x∗) = y∗.
Since Step 1 in each iteration can be simulated by a PPTA with oracle access to
a PSPACE-complete oracle7, A can actually be a PPTA.

Problems for Separations of OWP and Length-Increasing Injective OWF. For
our purpose of (fully) black-box separation of a OWP from a length-increasing
injective OWF (say, m-bit-increasing with m > 0), we would like to replace the
random oracle in the statement (A) with a random instance of oracles O which
is m-bit-increasing and injective (we call it m-bit-increasing injective oracle).
We are given an oracle PPTA P such that PO

′
implements a permutation for

all m-bit-increasing injective oracles O′. Then, consider the same proof strategy
as above, i.e. constructing a PPTA adversary A that has access to an m-bit-
increasing injective oracle O and PSPACE-complete oracle, and tries to invert
a given instance y∗ = PO(x∗) by the above procedure. However, if we naively

do the sampling process of x′ and Õ at Step 1, we will meet some problem
when arguing the above key observation. More concretely, even though we have

PÕ(x′) = y∗ and x∗ ̸= x′, it might be the case that the range of O and Õ
have an overlap outside the range corresponding to L, which could prevent the
hybrid oracle Ô from being injective. If Ô is not injective, then it is no longer

guaranteed that PÔ is a permutation, and thus having a collision does not cause
a contradiction.

Therefore, in order to avoid such a situation, we have to choose the m-
bit-increasing injective oracle Õ in Step 1 so that we can always construct an
“injective” hybrid oracle Ô from O and Õ. Our solution is to choose Õ so that
(i) Õ(α) = O(α) for all α ∈ L and (ii) for all other inputs from {0, 1}∗\L, the
range of Õ and that of O are disjoint. It will be shown later that picking such
Õ is always possible as long as Õ is length-increasing.

Another problem that arises here is that it might not be possible to execute
Step 1 modified as above by only using a PSPACE-complete oracle and making
only polynomially many queries to O, because it seems that we need the entire
knowledge about the range of O in order to pick such Õ. However, since O
is a random m-bit-increasing injective oracle, it seems hard to know the range
of O entirely by making only polynomially many queries to O. To solve it, we
adopt the so-called “two oracle” separation paradigm introduced by Hsiao and
Reyzin [8], which is sufficient for showing the non-existence of fully black-box
constructions. More concretely, we introduce another oracle B (which we call
“breaking oracle”) that helps A to do the above procedure of picking x′ such

that PÕ(x′) = y∗ where Õ is chosen as above. To make Step 3 possible, the

oracle B also outputs a query set that is made by PÕ(x′) to Õ.

7 This is because what we need is not the entire oracle Õ, but the queries made by

PÕ(x′), which is a witness for a certain NP language statement, which can be picked
by using a PSPACE-complete oracle.

Now, since we have introduced a new oracle B, we also have to show that an
m-bit-increasing injective oracle O is one-way in the presence of B. We will show
that (adaptive) one-wayness of O in the presence of B can be reduced to (adap-
tive) one-wayness of a random permutation oracle π against computationally
unbounded adversary S that makes only polynomially many queries.

1.3 Paper Organization

The rest of this paper is organized as follows. In Section 2 we review some basic
definitions and facts used for describing our results. In Section 3, we show our
main result on a black-box separation of a OWP from a length-increasing injec-
tive OWF, and we extend the result for a restricted type of black-box separations
among injective OWFs in Section 4.

2 Preliminaries

In this section, we review basic definitions and some fact necessary used for
describing our results.

Basic Notations. Throughout this paper, we use the following notations: “N”
denotes the set of natural numbers. “x||y” denotes a concatenation of x and y. If x
is a string, then “|x|” denotes the bit length of x. “x← y” denotes an assignment
of y to x. If S is a set, then “|S|” denotes its size, and “x←R S” denotes that x is
chosen uniformly at random from S. If Ψ is a probability distribution, then “x←R

Ψ” denotes that x is chosen according to Ψ , and “[Ψ]” denotes the “support” of Ψ ,
that is, [Ψ] = {x|Prx′←RΨ [x

′ = x] > 0}. “PPTA” denotes probabilistic polynomial
time algorithm. If A is a (probabilistic) algorithm, then “z ←R A(x, y, . . .)”
denotes that A takes x, y, . . . as input and outputs z, and “AO” denotes that
A has oracle access to an oracle O. If f is a function/algorithm/oracle and S is
a (sub)domain of f , then we define f(S) = {f(x)|x ∈ S}. We say that an oracle
algorithm has query complexity q if the algorithm makes at most q queries to
its given oracle. “Permn” denotes the set of all permutations over {0, 1}n. A
function f : N → [0, 1] is said to be negligible in k if f(k) < 1/p(k) for any
positive polynomial p(k) and all sufficiently large k ∈ N.

2.1 One-Way Functions

We say that a function f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF) if
there exists a PPTA that for any x computes f(x), and for any PPTA A, the
following advantage function AdvOWf,A(k) is negligible in k:

AdvOWf,A(k) = Pr[x∗ ←R {0, 1}k; y∗ ← f(x∗);x′ ←R A(1k, y∗) : f(x′) = y∗].

If the function f is injective, then we call it an injective OWF. If f is injective and
length-preserving (i.e. permutation), we call it a one-way permutation (OWP).
If |f−1(f(x))| = |f−1(f(y))| for any x, y ∈ {0, 1}n and any n ∈ N, we call it

a regular OWF, and in particular, if α(n) = |f−1(f(x))|, then we call it an
α-regular OWF.

Adaptive One-wayness for Injective Functions. In this paper, we will use a
stronger type of one-wayness for strengthening our black-box separation results.

We say that an injective function f : {0, 1}∗ → {0, 1}∗ is adaptive one-way,
if there exists a PPTA that for any x computes f(x), and for any PPTA A, the
following advantage function AdvAOWf,A(k) is negligible in k.

AdvAOWf,A(k) = Pr[x∗ ←R {0, 1}k; y∗ ← f(x∗);x′ ←R Af−1
̸=y∗ (·)(1k, y∗) : x′ = x∗],

where f−1̸=y∗(·) is the inversion oracle which takes a string y as input and outputs
x such that f(x) = y if such x exists and y ̸= y∗, or outputs ⊥ otherwise.

We also say that f is an adaptive one-way function (AOWF). (Whenever we
say f is an AOWF, we always mean that f is injective.)

2.2 Basic Fact about Random Permutations

In this paper, we will use a simple fact that a random permutation is adaptively
one-way even against a computationally unbounded adversary who is given or-
acle access to the permutation and its inversion only polynomially many times.

LetA be an oracle adversary. Consider the following experiment ExptAOWRP,A(k):

ExptAOWRP,A(k) : [π ←R Permk;α
∗ ←R {0, 1}k;β∗ ← π(α∗);

Return 1 iff Aπ,π−1
̸=β∗ (1k, β∗) returns α∗]

(Here, “RP” stands for “random permutation”, and note that the experiment
includes the choice of the permutation π.) We define the advantage function of
an oracle adversary A by AdvAOWRP,A(k) = Pr[ExptAOWRP,A(k) = 1]. Regarding the
above experiment, the following is easy to prove (the proof is omitted due to
lack of space).

Lemma 1. For any (even computationally unbounded) adversary A with poly-
nomial query complexity, AdvAOWRP,A(k) is negligible in k. Specifically, if A has

query complexity q, then AdvAOWRP,A(k) ≤
(q+1)
2k−q .

3 Black-box Separation of OWP from Length-Increasing
Injective AOWF

In this section, we show that there is no fully black-box construction of a OWP
from a length-increasing injective OWF, even if the latter is just 1-bit-increasing
and achieves adaptive one-wayness.

We first recall the formal definition of a fully black-box construction [13] of
a OWP from an m-bit-increasing injective AOWF.

Definition 1. Let m > 0 be an integer. We say that there exists a fully black-
box construction of a OWP from an m-bit-increasing injective AOWF, if there
exist oracle PPTAs P and R such that for all functions f that implement m-
bit-increasing injective functions and all algorithms A (where f and A are of
arbitrary complexity):

Correctness: Pf is a permutation.

Security: If AdvOWPf ,A(k) is non-negligible, so is AdvAOWf,Rf,A(k).

Now, we show the following separation between a OWP and a length-increasing
injective OWF:

Theorem 1. For any integer m > 0, there is no fully black-box construction of
a OWP from an m-bit-increasing injective AOWF.

To prove Theorem 1, We use a variant of the two oracle separation paradigm [8]:

Lemma 2. Let m > 0 be an integer. Assume that there exists a distribution Ψ
of an oracle pair (O,B) that satisfies the following three conditions:

(1): O implements an m-bit-increasing injective function for all (O,B) ∈ [Ψ].

(2): For any oracle PPTA A, E(O,B)←RΨ [Adv
AOW
O,AO,B(k)] is negligible.

(3): For any oracle PPTA P, if PO
′
implements a permutation for all (O′,B′) ∈

[Ψ], then there is an oracle PPTA A s. t. E(O,B)←RΨ [Adv
OW
PO,AO,B(k)] = 1.

Then, there is no fully black-box construction of a OWP from an m-bit-increasing
injective AOWF.

In order to use Lemma 2, we define the distribution Ψ of an oracle pair
(O,B) in Section 3.1. Then we show that Ψ satisfies the conditions (1) and
(2) in Section 3.2, and Ψ satisfies the condition (3) in Section 3.3. Finally in
Section 3.4 we show the formal proof of Theorem 1.

3.1 Definitions of Oracles and Their Distribution

m-Bit-Increasing Injective Oracle O. Let m > 0 be an integer. We say that an
oracle O is an m-bit-increasing injective oracle if (1) for every n ∈ N, O is of the
form O : {0, 1}n → {0, 1}n+m, and (2) O is injective. Let Om be the set of all
m-bit-increasing injective oracles.

“Breaking” Oracle B. Before describing the definition of our breaking oracle,
we introduce the following notation.

Definition 2. Let P be an oracle algorithm, O ∈ Om be an m-bit-increasing
injective oracle, and x be a string. A query set with respect to (P,O, x), denoted
by QSPO(x), is a set of all the queries to O made by PO(x), i.e., QSPO(x) =

{ α | PO(x) makes a query α to O }.

By definition, if the running time of P is bounded by τP, then |QSPO(x)| ≤ τP.

Now, we describe the definition of the breaking oracle B formally. Our break-
ing oracle B is associated with an m-bit-increasing injective oracle O ∈ Om.
Since B generates a slightly different m-bit-increasing injective oracle Õ based
on O during its procedure, in order not to mix up them we refer to the oracle
O with which B is associated as the “original oracle”, and the oracle Õ that is
generated in the procedure of B as a “modified oracle”.
B takes the following three objects as input:

1. a description of an oracle algorithm P that is a candidate of a OWP.
2. a set of strings L ⊆ {0, 1}∗
3. a string y

B then does the following:

Step 1 (Correctness check): Check if PO
′
implements a permutation over

{0, 1}|y| for all the possible instances of m-bit-increasing injective oracles
O′ ∈ Om. If the check fails, output ⊥ and stop.

Step 2 (Generating a modified oracle Õ): For each n ∈ N, pick uniformly
anm-bit-increasing injective function g′n : {0, 1}n → ({0, 1}n+m\O({0, 1}n)).
Here, note that the size of the set {0, 1}n+m\O({0, 1}n) is 2n+m − 2n ≥ 2n

(because m > 0), and thus picking such an injective function g′n is always

possible. Then, a “modified” oracle Õ is defined as:

Õ(α) =

{
O(α) if α ∈ L

g′|α|(α) otherwise

Note that Õ ∈ Om: clearly Õ is m-bit-increasing, and is injective for each
of the subdomains L and {0, 1}∗\L; the set Õ(L) = O(L) and the set

Õ({0, 1}∗\L) = {g′|α|(α)|α ∈ {0, 1}
∗\L} are always disjoint, and thus there

is no pair (α, α′) ∈ L× ({0, 1}∗\L) such that Õ(α) = Õ(α′).
Step 3 (Finding a preimage and a query set wrt. Õ): Find x such that

PÕ(x) = y. (Note that x ∈ {0, 1}|y| is unique since it is guaranteed by

Correctness check that PÕ implements a permutation over {0, 1}|y|.) Output
x and the corresponding query set QSPÕ(x).

The above completes the description of B. Although B is probabilistic (see Step
2), in order to make B behave as a deterministic function, we assume that the
randomness B uses to pick functions {g′n(·)}n∈N is fixed for each input to B, and
make B choose the same functions {g′n(·)}n∈N for the same input (P, L, y).)

Let τP be the maximum running time of P, where the maximum is over all
oracles O ∈ Om and all inputs of length |y|. Similarly to [15] and [17], we count
each B-query as |L|+τP queries, rather than naively counting it as a single query,
and make B output the response after these steps have passed from the point B
receives the input. This is to prevent an adversary from making a very “large”
B-query that may give too much information about O to the adversary.

We call a B-query valid if the correctness check passes, and invalid otherwise.
What should be noticed about the modified m-bit-increasing injective oracle

Õ is: For any L ⊆ {0, 1}∗,

– Õ(α) = O(α) for all α ∈ L

– the set O({0, 1}∗) and the set Õ({0, 1}∗\L) are always disjoint

Moreover, the following property of B will be used later for breaking any candi-
date of OWP that is constructed from O ∈ Om.

Lemma 3. Let P be a PPTA such that PO
′
implements a permutation for all

O′ ∈ Om. For any string x, any L ⊆ {0, 1}∗, and any O ∈ Om, if B is associated
with O and QSPO(x) ⊆ L, then B(P, L,PO(x)) returns x and QSPO(x).

Proof. Fix a string x, a set L ⊆ {0, 1}∗ such that QSPO(x) ⊆ L, and O ∈ Om.

Let y = PO(x). By the given condition, P will pass the correctness check. Let

Õ be the modified m-bit-increasing injective oracle generated in the step 2 of
B. By the definition of B and the given condition QSPO(x) ⊆ L, it holds that

Õ(α) = O(α) for all α ∈ QSPO(x) . This means that PÕ(x) = PO(x) = y and

QSPÕ(x) = QSPO(x). Since P
Õ(·) is a permutation, the preimage of y under PÕ(·)

is unique and must be x, which is found and output in Step 3 of B together with
the query set QSPÕ(x) = QSPO(x). This completes the proof of Lemma 3. ⊓⊔

Distribution Ψ of Oracles (O,B). We define “how to pick oracles (O,B) accord-
ing to the distribution Ψ” as follows: Pick an m-bit-increasing injective oracle
O ∈ Om uniformly at random, and then pick the breaking oracle B associated
with O (B’s internal randomness is fixed in this step).

3.2 Adaptive One-Wayness of O in the Presence of B

From the definition of Ψ in the previous subsection, it is clear that for any
(O,B) ∈ [Ψ], O implements an m-bit-increasing injective function. The rest of
this subsection is devoted to proving the following.

Lemma 4. For any oracle PPTA A, E(O,B)←RΨ [Adv
AOW
O,AO,B(k)] is negligible.

Proof. Fix an arbitrary PPTA adversaryA, and let τA = τA(k) beA’s maximum
running time (when run with input 1k). Since A is a PPTA, τA is polynomial.

The expectation (over the choice of (O,B)) of the advantage of the adversary
A attacking adaptive one-wayness of O can be written as:

E
(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
= Pr[(O,B)←R Ψ ;x

∗ ←R {0, 1}k; y∗ ← O(x∗);x′ ←R AO,O−1
̸=y∗ ,B(y∗) : x′ = x∗]

For notational convenience, we denote by Ẽxpt
AOW

Om,A(k) the experiment

Ẽxpt
AOW

Om,A(k) : [(O,B)←R Ψ ;x
∗ ←R {0, 1}k; y∗ ← O(x∗);x′ ←R AO,O−1

̸=y∗ ,B(y∗)],

and we write Ãdv
AOW

Om,A(k) = E(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
.

Assume towards a contradiction that Ãdv
AOW

Om,A(k) is not negligible. Then,
we show that we can construct another computationally unbounded adversary
S that has query complexity at most τA (and thus has polynomial query com-
plexity) and has non-negligible advantage in the experiment ExptAOWRP,S(k), which

will contradict Lemma 1. S is given 1k and an image β∗ = π(α∗) for randomly
chosen α∗ ∈ {0, 1}k and π ∈ Permk, is given oracle access to π and π−1̸=β∗ , and

has to find α∗. The description of Sπ,π
−1
̸=β∗ (1k, β∗) is as follows.

Description of Sπ,π
−1
̸=β∗ (1k, β∗ = π(α∗)): (Below, recall that S is computation-

ally unbounded and thus can do very powerful things such as picking an injec-
tive function uniformly, etc.) Firstly, S picks its own m-bit-increasing injective
oracle O ∈ Om uniformly at random8. Next, S defines a slightly modified m-bit-
increasing injective oracle Oπ into which S’s oracle π is “embedded” as follows:

Oπ(α) =

{
O(π(α)) if |α| = k

O(α) otherwise

Note that this modification does not change the range of the m-bit-increasing
injective oracle, i.e. Oπ({0, 1}∗) = O({0, 1}∗).

Then, S sets y∗ ← O(β∗) = O(π(α∗)) = Oπ(α
∗), and runs A with in-

put (1k, y∗). Hereafter, S starts simulating Ẽxpt
AOW

Om,A for A in which the m-bit-
increasing injective oracle is Oπ. We note that since π is not entirely known to
S, Oπ for input length k (and the corresponding inversion) is not entirely known
to S. However, S knows all the knowledge about O (recall that O is picked by S)
and S can access to π and π−1̸=β∗ , and thus S can perfectly simulate the responses

of O-queries and the inversion (i.e. O−1̸=y∗ -)queries from A.
When A makes a B-query (P, L, y), if (P, L, y) has been queried before, the

same answer is used as a response. Otherwise, S responds as follows.

1. Firstly, S does Correctness check of P as is done in Step 1 in B, by its com-
putationally unbounded power (e.g. exhaustively checking if PO

′
implements

a permutation over {0, 1}|y| for all O′ ∈ Om)9. If the check fails, S returns
⊥ to A after |L|+ τP steps from the point A made the B-query, where τP is
the maximum running time of P.
Next, for each α ∈ L∩{0, 1}k, S issues α to π and obtains the corresponding
value β = π(α). Then, for each response β ∈ π(L ∩ {0, 1}k) obtained in the
above procedure, S computes γ ← O(β).

2. S generates the “modified” m-bit-increasing injective oracle Õπ (correspond-
ing to Oπ) as is done in Step 2 of B10. As mentioned earlier, S does not have

8 Here, actually it is enough to pick O for input length up to τA, because A cannot
issue an O-query (and an O−1

̸=y∗ -query) of length more than τA.
9 Here, it is enough to check the correctness of P with oracles O that is defined up to
input length τP, because P cannot issue an O-query of length longer than τP.

10 With similar reasons to what we mentioned in the previous footnotes, the new oracle
Õπ is only needed to be defined for input length up to τA.

all the knowledge about the m-bit-increasing injective oracle Oπ that S is

using for simulating Ẽxpt
AOW

Om,A for A, because π is not entirely known to

S. However, for the strings α ∈ L ∩ {0, 1}k, the corresponding evaluations
γ = Oπ(α) = O(π(α)) are already calculated in the above step, and to

generate Õπ, no further knowledge about π(·) is needed. Note also that O
itself was generated by S, and the range of Oπ is identical to that of O
(i.e. Oπ({0, 1}∗) = O({0, 1}∗)), which means that S can appropriately pick
an injective function g′n : {0, 1}n → ({0, 1}n+m\Oπ({0, 1}n)) for each input
length n ∈ N.

3. S finds x such that PÕπ (x) = y and the corresponding query set QSPÕπ (x)

by using S’s computationally unbounded power and the entire knowledge
about Õπ. Finally, S returns x and QSPÕ(x) to A after |L| + τP steps from

the point A made this B-query.

WhenA terminates with an output, S outputs whatA outputs as a candidate
of the preimage of β∗ under π and terminates.

The above completes the description of S. Let us confirm the query complex-
ity of S. S issues at most one query to π (resp. π−1̸=β∗) for simulating a response

to an O-query (resp. O−1̸=y∗-query), and at most |L| queries to π for simulating

a response to a B-query. Recall that in the original experiment Ẽxpt
AOW

Om,A, each
B-query (P, L, y) is responded after |L| + τP steps from the point B is invoked,
where τP is the maximum running time of P (for |y|-bit input). These imply that
the number of S’s queries never exceeds A’s running time. Since the running
time of A is at most τA, S’s query complexity is at most τA.

Moreover, as we have explained in the description of S, S perfectly simulates

the experiment Ẽxpt
AOW

Om,A(k) for A so that the m-bit-increasing injective oracle
is Oπ. Under this situation, if A succeeds in outputting a preimage O−1π (y∗) =
π−1(O−1(y∗)), since β∗ = O−1(y∗), S also succeeds in outputting the preimage

α∗ = π−1(β∗). Therefore, we have AdvAOWRP,S(k) = Ãdv
AOW

Om,A(k), which means that

if Ãdv
AOW

Om,A(k) = E(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
is non-negligible, so is AdvAOWRP,S(k).

Since S has only polynomial query complexity (at most polynomial τA), this
contradicts Lemma 1, and thus E(O,B)←RΨ

[
AdvAOWO,AO,B(k)

]
must be negligible.

This completes the proof of Lemma 4. ⊓⊔

3.3 Breaking Any Candidate of One-Way Permutation with B

In this subsection, we show that for any candidate of a OWP that is constructed
using an m-bit-increasing injective oracle O ∈ Om, there is a perfect inverter
that has access to O and B, where (O,B) are chosen according to Ψ defined in
Section 3.1.

Lemma 5. For any oracle PPTA P, if PO
′
implements a permutation for all

(O′,B′) ∈ [Ψ], then there is an oracle PPTA A such that E(O,B)←RΨ [Adv
OW
PO,AO,B(k)] =

1.

Proof. Fix an oracle PPTA P such that PO
′
implements a permutation for all

O′ ∈ Om. Let τP = τP(k) be the maximum running time of P on input k-bit
strings. Since P is a PPTA, τP is a polynomial.

The expectation (over the choice of (O,B)) of the advantage of an oracle
PPTA adversary A attacking the one-wayness of PO can be written as:

E
(O,B)←RΨ

[
AdvOWPO,AO,B(k)

]
= Pr

[
(O,B)←R Ψ ;x

∗ ←R {0, 1}k; y∗ ← PO(x∗);x′ ←R AO,B(y∗) : x′ = x∗
]

For notational convenience, we denote by Ẽxpt
OW

P,A(k) the experiment

Ẽxpt
OW

P,A(k) : [(O,B)←R Ψ ;x
∗ ←R {0, 1}k; y∗ ← PO(x∗);x′ ←R AO,B(y∗)]

(Ẽxpt
OW

P,A(k) includes the sampling of oracles (O,B) according to Ψ), and we write

Ãdv
OW

P,A(k) = E(O,B)←RΨ

[
AdvOWPO,AO,B(k)

]
.

We show that there is an oracle PPTA adversary A such that Ãdv
OW

P,A(k) = 1.

That is, A is given 1k and y∗ ∈ {0, 1}k, has access to two oracles (O,B), and
will always find the preimage x∗ ∈ {0, 1}k of y∗ under the permutation PO. The
description of AO,B(1k, y∗) is as follows:

Description of AO,B(1k, y∗): Firstly, A generates an empty list L1 = ∅. Then
for 1 ≤ i ≤ τP + 1, A does the following.

Iterations for 1 ≤ i ≤ τP + 1: A issues a B-query (P, Li, y
∗). Let xi and QS

PÕi (xi)

be the response from B, where Õi is the modified m-bit-increasing injective
oracle generated in the step 2 of B in the i-th iteration, xi is a string such

that PÕi(xi) = y∗, and QS
PÕi (xi)

is the corresponding query set. (Since PO
′

implements a permutation for all oracles O′ ∈ Om, A’s B-query is always
valid.) Then, A computes yi ← PO(xi). If yi = y∗, A terminates with output
xi as the preimage of y∗ under the permutation PO. Otherwise (i.e. yi ̸= y∗),
A updates the list by Li+1 ← Li ∪QSPÕi (xi)

, and goes to the next iteration.

If A does not terminate after τP + 1 iterations, A simply gives up and aborts.

The above completes the description of A. We first confirm the query com-
plexity of A. Clearly, the query complexity becomes maximum if A performs
all τP + 1 iterations without discovering the preimage. Thus we consider this
case. In the i-th iteration, A makes one B-query (P, Li, y

∗) which is counted as
|Li| + τP queries, and executes PO once during which at most τP queries are
made to O. Therefore, in the i-th iteration, the query complexity can increase
by at most |Li| + 2τP. Moreover, recall that in each iteration the list Li is up-
dated to Li+1 ← Li ∪ QS

PÕi (xi)
. Since |L1| = 0 and it is always the case that

|QS
PÕi (xi)

| ≤ τP, we have |Li| ≤ (i − 1)τP ≤ τ2P for 1 ≤ i ≤ τP + 1. This im-

plies that in the i-th iteration, the query complexity can increase by at most

|Li|+2τP ≤ τ2P +2τP = τP(τP +2). Thus, after τP +1 iterations, A’s total query
complexity is at most τP(τP + 1)(τP + 2), which is polynomial in k. Therefore,
the number of steps incurred by the use of oracles (O,B) is at most polynomial,
which means A works in polynomial time.

Next, we show that A can always find the preimage x∗ of y∗ under PO. We
show the following key claim, which states that in each iteration A either finds
the preimage x∗ or finds at least one “undiscovered” O-query α ∈ QSPO(x∗)\Li,

i.e. a query to O that is made by P during a computation of PO(x∗) but is not
contained in Li.

Claim 1. For every i ∈ {1, . . . , τP}, at least one of the following two is true:

(a) xi = x∗

(b) the set QS
PÕi (xi)

\Li contains at least one α ∈ QSPO(x∗)\Li

Proof of Claim 1. Assume towards a contradiction that we have both (a)
xi ̸= x∗ and (b) no α ∈ QSPO(x∗)\Li is contained in the set QS

PÕi (xi)
\Li. The

latter means that the set QSPO(x∗)\Li and the set QS
PÕi (xi)

\Li are disjoint.

Consider the following “hybrid” oracle Ô defined by:

Ô(α) =

{
Õi(α) if α ∈ (QS

PÕi (xi)
\Li)

O(α) otherwise

We argue Ô ∈ Om, i.e., Ô is also a possible instance of an m-bit-increasing injec-
tive oracle. For notational convenience, we write A = (QS

PÕi (xi)
\Li). Firstly, it is

clear that Ô ism-bit-increasing, and is injective for each of the subdomains A and
{0, 1}∗\A, because so are O and Õi. Secondly, recall that the sets Õi({0, 1}∗\Li)
and O({0, 1}∗) are always disjoint (see the explanation after the description of
B in Section 3.1). Since we trivially have A ⊆ ({0, 1}∗\Li) and ({0, 1}∗\A) ⊆
{0, 1}∗, the set Ô(A) = Õi(A) and the set Ô({0, 1}∗\A) = O({0, 1}∗\A) are also
disjoint, which means that there is no pair (α, α′) ∈ A × ({0, 1}∗\A) such that

Ô(α) = Ô(α′). These imply Ô ∈ Om.

Therefore, PÔ also implements a permutation.
Next, we confirm the property of this hybrid oracle Ô. The condition (b)

and the definitions of O, Õi, and Ô imply the following relations among these
oracles:

(1): Ô(α) = O(α) = Õi(α) for all α ∈ Li

(2): Ô(α) = O(α) for all α ∈ QSPO(x∗)\Li

(3): Ô(α) = Õi(α) for all α ∈ QS
PÕi (xi)

\Li

where (2) is due to the condition (b), i.e. the set QSPO(x∗)\Li and the set

QS
PÕi (xi)

\Li are disjoint. On the one hand, (1) and (2) imply Ô(α) = O(α)
for all α ∈ QSPO(x∗), which in turn implies PÔ(x∗) = PO(x∗) = y∗. On the

other hand, (1) and (3) imply Ô(α) = Õi(α) for all α ∈ QS
PÕi (xi)

, which in turn

implies PÔ(xi) = PÕi(xi) = y∗.

In summary, we have PÔ(x∗) = PÔ(xi) = y∗, while we also have x∗ ̸= xi by

the condition (a). This is a contradiction because PÔ is a permutation, which
cannot have a collision. Therefore, our hypothesis must be false, and (a) or (b)
must be true. This completes the proof of Claim 1. ⊓⊔

Due to Claim 1, in the i-th iteration (for 1 ≤ i ≤ τP) A finds the preimage
x∗ and stops, or the set QS

PÕi (xi)
\Li contains at least one α which is contained

in QSPO(x∗) but is not contained in Li. In the latter case, since the list Li is
updated as Li+1 ← Li ∪QS

PÕi (xi)
, the size of the set of “undiscovered queries”

QSPO(x∗)\Li decreases at least by one in each iteration. Recall that |QSPO(x∗)| ≤
τP. Therefore, when A is executed, A finds the preimage x∗ and stops within τP
iterations, or after τP iterations we have QSPO(x∗) ⊆ LτP+1. In the latter case,
by Lemma 3, the (τP+1)-th B-query (P, LτP+1, y

∗) results in x∗ (and QSPO(x∗)).
These imply that A always outputs x∗ within τP+1 iterations, which means

that we have Ãdv
OW

P,A = E(O,B)←RΨ [Adv
OW
PO,AO,B(k)] = 1. This completes the proof

of Lemma 5. ⊓⊔

3.4 Putting Everything Together

Here, we show the formal proof of Theorem 1.

Proof of Theorem 1. Let m > 0 be an integer. We use the distribution Ψ of
oracles (O,B) defined in Section 3.1 for Lemma 2. Then, by definition any O
where (O,B) ∈ [Ψ] is m-bit-increasing and injective, and thus the assumption
(1) in Lemma 2 is satisfied. Moreover, the assumptions (2) and (3) are satisfied
due to Lemma 4 in Section 3.2 and Lemma 5 in Section 3.3, respectively. Since
the distribution Ψ satisfies all the assumptions in Lemma 2, it follows that there
is no fully black-box construction of a OWP from an m-bit-increasing injective
AOWF. This statement holds for any integer m > 0. This completes the proof
of Theorem 1. ⊓⊔

An immediate corollary of Theorem 1 is the following:

Corollary 1. For any integer m > 0, there is no fully black-box construction of
a OWP from a 2m-regular OWF.

Proof. Let m > 0. Suppose f : {0, 1}n → {0, 1}n+m is an m-bit-increasing
injective OWF. From f , construct a new function g : {0, 1}n+m → {0, 1}n+m

by g(x||x′) = f(x) where |x| = n and |x′| = m (i.e, g ignores the last m-bits of
the input). Then, this function g is a 2m-regular OWF (for security parameter
1n) as long as g is an m-bit-increasing injective OWF (for security parameter
1n). Trivially, the construction of g from f and the security proof are black-box,
and thus for any integer m > 0, there is a fully black-box construction of a 2m-
regular OWF from an m-bit-increasing injective OWF. Since a fully-black-box

construction of a primitive from another primitive is a transitive relation, we
have the claimed result. ⊓⊔

Remark. In Theorem 1, the “stretch”m of the building block (injective) AOWFs
has been treated as a constant. However, our negative results can be extended
to the case in which m = m(k) is a function of the input-length k (i.e. security
parameter), as long as m(k) > 0 for all k > 0. m in Corollary 1 can be a function
of the security parameter as well.

4 Restricted Type of Black-box Separations among
Injective OWFs

In this section, we show that Theorem 1 can be extended to show the impossibil-
ity of a restricted type of black-box constructions, which we call range-invariant
fully black-box constructions, of an injective OWF from another injective OWF.

Definition 3. Let ℓ,m ≥ 0 be integers. We say there exists a range-invariant
fully black-box construction of an ℓ-bit-increasing injective OWF from an m-bit-
increasing injective AOWF, if there exist oracle PPTAs G and R such that:

(Correctness) For all m-bit-increasing injective functions f (of arbitrary com-
plexity), Gf is an ℓ-bit-increasing injective function and has the same range11.

(Security) For all m-bit-increasing injective functions f and all algorithms A
(where f and A are of arbitrary complexity), if AdvOWGf ,A(k) is non-negligible,

so is AdvAOWf,Rf,A(k).

In other words, the range of the constructed ℓ-bit-increasing injective function
Gf depends solely on G, and independent of the building block f .

Now, we state our black-box separation result among injective OWFs.

Theorem 2. For any integer pair (ℓ,m) satisfying m > ℓ ≥ 0, there is no range-
invariant fully black-box construction of an ℓ-bit-increasing injective OWF from
an m-bit-increasing injective AOWF.

Note that a permutation is a 0-bit-increasing injective function. Moreover, any
construction of a permutation from other primitives has the same range, namely,
a set of all strings, and thus is inherently range-invariant. Therefore, Theorem 1
is the special case of Theorem 2 in which ℓ = 0.

Since Theorem 2 can be proved very similarly to Theorem 1, below we only
show the outline of the proof, highlighting the different points from the proof of
Theorem 1 we need to care.

As in the case of Theorem 1, in order to show Theorem 2, we can use the
generalized version of Lemma 2 (which can be proved similarly to Lemma 2):

11 That is, Gf and Gf ′
have the same range for any f , f ′ implementing m-bit-increasing

injective functions.

Lemma 6. Let ℓ and m be integers satisfying m > ℓ ≥ 0. Assume that there
exists a distribution Ψ of an oracle pair (O,B) that satisfies the following three
conditions:

(1) and (2): Same as Lemma 2.
(3): For any oracle PPTA G, if GO

′
implements an ℓ-bit-increasing injective

function and has the same range for all (O′,B′) ∈ [Ψ], then there exists an
oracle PPTA A such that E(O,B)←RΨ [Adv

OW
GO,AO,B(k)] = 1.

Then, there is no range-invariant fully black-box construction of an ℓ-bit-increasing
injective OWF from an m-bit-increasing injective AOWF.

We remark that the range-invariance condition in Theorem 2 is due to the addi-
tional condition on the range of GO in (3) in the above lemma. The reason why
we need this additional condition on the range of G is to ensure that if a string
y is in the range of GO for some O ∈ Om, then y is also in the range of GO

′
for

any O′ ∈ Om, and thus the preimage of y under GO
′
always exists.

To use Lemma 6 to prove Theorem 2, it remains to show the definition of
an oracle pair (O,B) and their distibution Ψ , and the conditions (1) to (3) of
Lemma 6 (i.e. the statements corresponding to Lemmas 4 and 5). For O, we
again use an m-bit-increasing injective oracle. The breaking oracle B needs to
be modified slightly: in Step 1, B checks if a given description of an algorithm
G implements an ℓ-bit-increasing injective function and has the same range for
all m-bit-increasing injective oracles, and also checks if a given string y belongs
to the range of GO. If G and y pass the check, then it is guaranteed that there

always exist x satisfying y∗ = GO(x∗) = GÕ(x) where Õ is the modified oracle
generated in the step 2 of B and x is a string found in the step 3 of B. (Without
the checks, it is possible that such x does not exist, which we want to avoid.)
The distribution Ψ is also naturally defined.

The statement corresponding to Lemma 4, which roughly states that a ran-
dom m-bit-increasing injective function is adaptively one-way even against ad-
versaries with access to B that is modified as above, can be similarly proved as
Lemma 4.

To show the statement corresponding to Lemma 5, which roughly states
that no ℓ-bit-increasing injective function GO with the “range-invariance” can
be one-way if B is available, we need to rely on the additional assumption on
the range of G, especially when showing the statement analogous to Claim 1.
Recall that in order to prove Claim 1 by contradiction we need a property that
under several different oracles, namely the original oracle O, the modified oracle
Õi, and the “hybrid oracle” Ô, P always implements a permutation and causes

a situation in which y∗ = PÔ(x∗) = PÔ(xi) and x∗ ̸= xi. In order for the same
strategy to work, the challenge instance y∗ needs to belong to the range of the

ℓ-bit-increasing injective functions GO, GÕi , and GÔ. Due to the assumption
we have made, however, it is guaranteed that y∗ always belong to the range of
these ℓ-bit-increasing injective functions, and we can cause a situation in which

y∗ = GÔ(x∗) = GÔ(xi) and x∗ ̸= xi.

Acknowledgement

The authors would like to thank Jacob Schuldt for his helpful discussion. The
authors also would like to thank anonymous reviewers of TCC 2011 for their
invaluable comments.

References

1. M. Blum and R. Impabliazzo. Generic oracles and oracle classes (extended ab-
stract). FOCS 1987, pp. 118–126, 1987.

2. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Computing, 13(4):850–864, 1984.

3. Y.-C. Chang, C.-Y. Hsiao, and C.-J. Lu. The impossibility of basing one-way
permutations on central cryptographic primitives. J. of Cryptology, 19(1):97–114,
2006.

4. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

5. O. Goldreich, L.A. Levin, and N. Nisan. On constructing 1-1 one-way functions.
Electronic Colloquium on Computational Complexity (ECCC), 2(29), 1995.

6. J. Hartmanis and L.A. Hemachandra. One-way functions and the nonisomorphism
of NP-complete sets. Theor. Comput. Sci., 81(1):155–183, 1991.

7. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a pseudorandom
generator from any one-way function. SIAM J. Computing, 28(4):1364–1396, 1999.

8. C.-Y. Hsiao and L. Reyzin. Finding collisions on a public road, or do secure hash
functions need secret coins? CRYPTO 2004, LNCS 3152, pp. 92–105, 2004.

9. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. STOC 1989, pp. 44–61, 1989.

10. J. Kahn, M. Saks, and C. Smyth. A dual version of Reimer’s inequality and a
proof of Rudich’s conjecture. CoCo 2000, pp. 98–103, 2000.

11. O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and
applications. CRYPTO 2008, LNCS 5157, pp. 57–74, 2008.

12. O. Reingold. On black-box separations in cryptography,
2006. One of Tutorials in TCC 2006. A slide file available at
http://research.ihost.com/tcc06/slides/Reingold-tutorial.ppt.

13. O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between crypto-
graphic primitives. TCC 2004, LNCS 2951, pp. 1–20, 2004.

14. S. Rudich. Limits on the provable consequences of one-way functions, 1988. PhD
thesis, University of California at Berkeley.

15. D.R. Simon. Finding collision on one-way street: Can secure hash functions be
based on general assumptions? EUROCRYPT 1998, LNCS 1403, pp. 334–345,
1998.

16. G. Tardos. Query complexity, or why is it difficult to separate NPA∪coNPA from
PA by random oracles A? Combinatorica, 9(4):385–392, 1989.

17. Y. Vahlis. Two is a crowd? a black-box separation of one-wayness and security
under correlated inputs. TCC 2010, LNCS 5978, pp. 165–182, 2010.

18. A.C. Yao. Theory and application of trapdoor functions. FOCS 1982, pp. 80–91,
1982.

