
Two-Round Man-in-the-Middle
Security from LPN

David Cash1, Eike Kitz2, and Stefano Tessaro3

1 Rutgers University
2 Ruhr University Bochum

3 University of California, Santa Barbara

Abstract. Secret-key authentication protocols have recently received a
considerable amount of attention, and a long line of research has been
devoted to devising efficient protocols with security based on the hard-
ness of the learning-parity with noise (LPN) problem, with the goal of
achieving low communication and round complexities, as well as highest
possible security guarantees.
In this paper, we construct 2-round authentication protocols that are
secure against sequential man-in-the-middle (MIM) attacks with tight
reductions to LPN, Field-LPN, or other problems. The best prior pro-
tocols had either loose reductions and required 3 rounds (Lyubashevsky
and Masny, CRYPTO’13) or had a much larger key (Kiltz et al., EURO-
CRYPT’11 and Dodis et al., EUROCRYPT’12). Our constructions follow
from a new generic deterministic and round-preserving transformation
enhancing actively-secure protocols of a special form to be sequentially
MIM-secure while only adding a limited amount of key material and
computation.

Keywords. Secret-key authentication, Man-in-the-Middle security, LPN,
Field LPN.

1 Introduction

This paper constructs efficient provably-secure protocols for secret-key authenti-
cation, i.e., for the basic cryptographic task where one party, called the prover,
proves to another – the verifier – that they share the same key. Theoretical
constructions of such protocols (with strong security, to be defined below) exist
from any one-way function. Moreover, practical two-round protocols can be built
from any message-authentication code (MAC) by having one party authenticate
a random challenge, and can be instantiated efficiently for example assuming
AES-128 is unpredictable.

In contrast, this paper contributes to a line of work [16, 18, 13, 19, 20, 10, 15,
22] on building provably-secure authentication protocols with security reduc-
tions to the learning parity with noise (LPN) and related problems that are
as efficient as possible, meaning that key-size, communication, and rounds are
minimized. LPN problem provides confidence in security due to the failure to
find polynomial-time algorithms for it and its variants, despite wide interest [7,
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21, 5], and finding constructions of cryptographic primitives based on LPN has
given rise to a substantial body of works [6, 14, 2, 17].

The motivation behind LPN-based authentication protocols is their potential
to be implemented with different efficiency characteristics from protocols with
security reductions to blockcipher security or to problems from number theory
and related fields. For instance, the parallel nature of LPN-based protocols seems
difficult to achieve with factoring or discrete-log type assumption. The potential
efficiency benefits of LPN-based implementations are a subject of ongoing re-
search, which has identified some advantageous scenarios [15] but also invented
faster attacks [21]. We thus focus on developing techniques for protocol design
and theoretical analysis that beat previous asymptotic runtimes, key sizes, and
round complexity of protocols with similar security reductions. We make no
specific claims of more efficient protocols in specific deployment scenarios.

Concurrently to the above, the recent interest on secret-key authentication
has also motivated attempts to develop a better understanding of its founda-
tions, providing theoretical constructions based on concrete number-theoretic
assumptions like the Decisional Diffie-Hellman (DDH) assumption, or general
assumptions like weak pseudorandom functions [10, 22]. We will also contribute
to these lines of work with new constructions.

But before we turn to describing our contributions in detail, we first give an
overview of different security notions for secret-key authentication, as well as of
previous works.

Security notions. Several security notions for secret-key authentication pro-
tocols have been considered, inspired by corresponding notions for the task of
public-key authentication [12]. The weakest, passive security, says that an at-
tacker should not be able to fool the verifier after observing several sessions
between an honest prover and an honest verifier. This seems unreasonably weak
for most settings, so the stronger man-in-the-middle (MIM) security notion says
that no attacker should be able to cause the verifier to accept in any session where
a message has been changed. Realizing that MIM security from LPN seems diffi-
cult to achieve efficiently, several works instead targeted an intermediate notion
called active security which says that the attacker cannot fool the verifier after
interacting with the prover arbitrarily and observing sessions passively.

The LPN Assumption (and its variants). Recall that for parameters ` ∈ N
and 0 ≤ γ ≤ 1

2 , the (decisional) Learning Parity with Noise (LPN) problem
LPN`,γ is the problem of distinguishing a polynomial number of samples of the
form (ri, r

T
i s + ei), for a common random secret s ∈ {0, 1}`, random vector

ri ∈ {0, 1}`, and random bit ei (taking value one with probability γ), from
samples of the form (ri, bi), where bi is a random bit. The corresponding LPN`,γ
assumption is that no efficient (i.e., polynomial-time) attacker can distinguish
between the two distributions, except with negligible advantage. Ignoring the
obvious differences in the error distributions, this is the modulo 2 variant of the
learning with error problem introduced in [27].

We are also going to consider a variant of the LPN problem, introduced
and studied in [15], called Field LPN. The Field-LPN`,γ problem is very similar,
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however samples have the form (ri, ri ◦ s + ei) or (ri, r
′
i), where ◦ denotes multi-

plication of `-bit vectors interpreted as elements of the extension field F2` , ei is
a random vector where each component is 1 independently with probability γ,
and r′i is uniform.

Prior constructions. Let us briefly outline the landscape of earlier works on
secret-key authentication. Table 1 summarizes some of these results.

Juels and Weis [18] first pointed out that a very simple two-round secret-
key authentication protocol by Hopper and Blum [16], called the HB protocol,
enjoys very low hardware complexity, and is hence amenable to implementations
on RFID tags. Moreover, they proved that it is passively secure under the LPN
assumption. Also in [18], they proposed a further three-round protocol, called
HB+, which was proven actively secure in its sequential version under the LPN
assumption, and later the proof was extended to its parallel version by Katz
et al. [19]. The round complexity was then reduced to two rounds by a new
protocol of Kiltz et al. [20], and in contrast to HB+, this latter protocol enjoys
a tight reduction to the hardness of LPN. Heyse et al. [15] then proposed an
even more efficient two-round protocol, called Lapin, based on the hardness of
the field LPN problem. We stress that three-round protocols are less attractive
than two-round ones since the prover needs to keep a state (beyond the secret
key), which is problematic on lightweight devices like RFID tags.

In contrast, progress has been significantly harder in the context of MIM
security. On the one hand, researchers have attempted to design multiple HB-
like protocols with MIM security [8, 11, 25, 13] without or only partial security
proofs. Otherwise, provably MIM-secure constructions all in fact provide a full
message-authentication code (MAC) secure under LPN or Field LPN [20, 10,
15]. Unfortunately, these constructions are significantly less efficient than the
existing actively secure protocols mentioned above.

While following [3] the notion of MIM security traditionally allows an at-
tacker to interact with arbitrarily many instances of the prover and the verifier
concurrently, Lyubashevky and Masny [22] recently considered the notion of se-
quential MIM (sMIM) security, which slightly weakens MIM to only allow the
attacker to interfere with non-overlapping sequential sessions. They argue this
notion is sufficient for situations in which keys are managed to never allow paral-
lel session, and the sMIM notion is an interesting technical step towards improv-
ing authentication protocol security beyond active security while maintaining
efficiency. Moreover, existing MIM attacks against actively secure protocols are
often sequential (e.g., [26]). They give new protocols based on LPN and field-
LPN that nearly match the complexities of actively-secure ones, but all require
three rounds and suffer from a non-tight reduction to the underlying problem.

With respect to other assumptions, we also note that efficient three-round
constructions from DDH and weak pseudorandom functions have also been given,
achieving both active security [10] and sMIM security [22]. Two-round MIM
secure protocols from PRGs have recently been proposed [9].

All of our constructions come with reductions running in polynomial time
and succeeding with probability polynomially proportional to that of a given
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attack. One may consider looser reductions via so-called complexity leveraging
where the reduction loses an exponential factor, with the view that one can
enlarge the security parameter to compensate for the loss. Indeed one can prove
(say) the AUTH2 protocol from [20] as a fully-secure MAC with an exponential
loss of security. A concrete instantiation of the result (assuming the BKW attack
complexity is optimal [7]) will be more efficient than the other approaches we
have outlined.

Polynomial reductions, however, are preferred as they are more robust to
algorithmic advances against the underlying problems. Achieving them is, in
our view, an interesting theoretical challenge that requires new techniques. In
an implementation it is not clear to the authors if either approach (leveraging
or polynomial reductions) is necessarily more secure given the many factors one
must consider.

Our contributions. We provide the to-date most efficient constructions of
sMIM-secure authentication protocols based on the hardness of LPN, as well as
on other assumptions. Our constructions are two rounds and the first message
consists of a truly random challenge, and enjoy tight security reduction to the
underlying assumption.

We improve upon the round complexity of existing sMIM-secure protocols
without increasing key length and communication complexity, and without re-
sorting to complexity leveraging. See Table 1 for a comparison of two of our new
protocols to prior work. Note that our protocols are only a small constant factor
less efficient than the best known actively (or even passively) secure protocols.

At the high level, our constructions follow from a generic transformation
that upgrades a two round protocol of a special form to be sMIM-secure without
introducing significant overhead. The required form is not especially contrived,
but requires some care in its formalization and we present examples of such
protocols to obtain our instantiations. We note that our reduction does not
employ rewinding or forking lemmas like [22], and is tighter and (arguably, to
our taste) simpler as a result.

Our first construction achieves sMiM security with a tight reduction to LPN,
two rounds of communication, and only a modest increase in either key size or
communication over [22]. Our second construction, from Field LPN, matches
the key size and communication of prior work in two rounds instead of three
and has a tight reduction. In fact, for an appropriate choice of components, the
second construction can be understood as a two-round version of the three-round
protocol from [22], though their proof does not cover the two round version.

We also provide a simple construction of a two-round sMIM secure authen-
tication protocol based on the DDH assumption, where the prover response
consists of two group elements. Interestingly, the same construction was proven
MIM secure under the (less standard) Gap-CDH assumption in [10].

Our last construction is based on an arbitrary weak PRF. The complexity of
the construction is comparable to the one building a MAC from a weak PRF,
using for example the constructions in [23, 24, 1]. However, our new protocols
enjoy much better parallelism when compared to the naive approach, and is
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hence interesting on its own right. It is also fair to point out that [22] accom-
plishes in three rounds the harder task of finding a generic construction from
a (randomized) weak PRF. We observe however that the only known concrete
instantiations of weak PRFs are based on LPN/LWE-type assumptions as well
as on DDH, and for all these concrete instantiations our constructions are more
efficient.

We remark that it is not hard to see that our proofs do not show (full) MIM
security, but we are not aware of an explicit MIM attack against the protocols.

Organization. Section 2 contains basic definitions used below. In Section 3
we describe our transformation from weaker protocols of a special form, and in
Section 4 we give several instantiations of the transformation.

Protocol Rounds Security Complexity Compl. trade-off

Assumption Active(∗) sMiM key size com. key size com.

HB [16] 2 LPN`,γ – – ` `2 `2 2`

HB+ [18] 3 LPN`,γ q
√
ε – 2` 2`2 2`2 3`

AUTH2 [20]
2

LPN`,γ qε –
2` `2 2`2 2`

Lapin [15] Field-LPN`,γ 2` 2` – –

MAC2 [20]
2

LPN`,γ qε qε
3`2 `2 `3 4`

Lapin+MAC2 [15] Field-LPN`,γ `2 4` – –

LM [22] 3
LPN`,γ q

√
ε

`2 (∗∗) `2 `2 3`
Field-LPN`,γ 4` 3` – –

This work 2
LPN`,γ qε

5` `2 2`2 3`
Field-LPN`,γ 4` 3` – –

Table 1: Authentication protocols based on LPN-related Assumptions. The security
column lists the best possible security reduction from the given assumption, where q is
the number of tag and verification queries. (The two MAC2 protocols are even secure
in the full MiM model.) The complexity column lists the key sizes and communication
complexity of the protocol (with lower-order terms dropped), where ` parameterizes
the hardness of the assumption. All LPN-based protocols offer a trade-off between key
size and communication, which is listed in the last two columns. (∗): Reductions to
active security only considered one challenge session, and thus did not have the factor
q. We state the bound for q challenge sessions for a fair comparison to MiM security.
(∗∗): We remark that the key size of the LPN-based protocol in [22] is `2 but one may
be able to reduce it to O(`) by using an almost pairwise independent hash function.

2 Preliminaries

For a set X , x
$← X denotes sampling x from X according to the uniform

distribution. We use bold lowercase letters for vectors and bold uppercase letters
for matrices, e.g., x ∈ F`2, X ∈ F`×n2 . For c ∈ F`2, let Mc denote the matrix of the
linear map lc implementing the finite field multiplication with c when interpreted
as an element in F2` .

4

4 This representation is unique once the irreducible polynomial f defining F2n =
F2[x]/(f) is fixed.
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Symmetric authentication syntax. We are going to consider secret-key
authentication protocols, where a prover proves to a verifier that they hold the
same secret key over two or more rounds.

More formally, an r-round symmetric authentication protocol with associated
key space K is a triple of algorithms Auth = (Gen,P,V) with the following
properties:

– Key Generation. The probabilistic key-generation algorithm K ← Gen(1k)
takes as input a security parameter k ∈ N (in unary) and outputs a secret
key K ∈ K.

– Interactive Execution. The probabilistic interactive algorithms P and V, which
we refer to as the prover and the verifier, take both as input a secret key
K ∈ K, synchronously interact with each other over r rounds, and finally
V always receives the last message and outputs a decision out(PK ,VK) ∈
{accept, reject}.

We say that Auth has completeness error α if for all k ∈ N, Pr[out(PK ,VK) =
reject ;K ← Gen(1k )] ≤ α. In this paper, we will focus on the simpler case of two-
round protocols, where additionally the first message is a random challenge c ∈ C
for some set C. We call such protocols two-round random-challenge secret-key
authentication protocols. In particular, in such protocols the prover simplifies
to a probabilistic algorithm PK , taking the challenge and the secret key K,
and producing the message t to be sent back to the adversary. Moreover, for a
challenge c ∈ C and response t from the prover, the verifier is fully specified by
an algorithm VK(c, t) ∈ {accept, reject}.

Security. Several security notions for symmetric-key authentication protocols
have been considered in the literature. The weakest one, passive security, says
that an attacker should not be able to fool the verifier after observing several
sessions between a honest prover and a honest verifier. The stronger notion called
active security says that the attacker cannot fool the verifier after interacting
with the prover arbitrarily and observing sessions passively.

This paper targets the security notion of (sequential) security against man-
in-the-middle attacks (or s-mim security, for short). Here, the adversary acts as
a man-in-the middle in a sequence of independent sessions between the prover
and the verifier, all with the same secret key. The adversary wins whenever it
manages to let the verifier accept in some session and has changed at least one
of the messages sent by the prover or the verifier. We are going to formalize this
notion for the relevant case of two-round protocols with random challenge.

Concretely, we describe this security notion via the following game S-MIM
for an attacker A and a two-round random-challenge authentication protocol
Auth = (Gen,P,V) with challenge set C.
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main S-MIM:

sid← 0
K

$← Gen(1k )
Run AC(),P(),V()(1k )
Ret ∃i: (c[i], t[i]) 6= (c′[i], t′[i]) ∧ d[i] = accept

Procedure C():

If c[sid] = ⊥ then

c[sid]
$← C

Ret c[sid]

Procedure P(c′):

If c′[sid] = ⊥ then

c′[sid]← c′, t[sid]
$← PK(c′)

Ret t[sid]

Procedure V(t′):

t′[sid]← t′, c
$← C()

d[sid]← VK(c, t′[sid])
sid← sid + 1
Ret d[sid]

In the game, the attacker makes calls to three oracles, C(·),P(·) and V(·).
All oracles use a global variable sid to “synchronize” the sessions being sim-
ulated. The first oracle returns, for every session, a new random challenge.
The oracle P(c′) runs the prover on input c′ and returns the response t. Or-
acle V(t′) checks that t′ is a valid response for the current session challenge
c[sid] (obtained by calling C()), and increases the session number. Note that
there is a unique value c[sid] defined in every session, and P only provides (at
most) one valid challenge-tag pair (c′, t) per session. The s-mim advantage is

Advs-mim
Auth (A) = Pr

[
S-MIMA

Auth ⇒ true
]
, and we say that Auth is (t, r, ε)-s-mim-

secure if for all attackers A with time complexity t and running at most r sessions,
we have Advs-mim

Auth (A) ≤ ε.

Hash functions. Our constructions rely on almost pairwise-independent hash
functions.

Definition 1 (Almost pairwise-independent hash functions). For δ ≥ 1,
a function H : KH ×X → Y is δ-almost pairwise-independent if

Pr [HKH
(x) = y ∧ HKH

(x′) = y′ ] ≤ δ

|Y|2

for all distinct x, x′ ∈ X and all y, y′ ∈ Y, and where KH
$← KH. Moreover, by

itself, HKH
(x) is uniformly distributed over Y.

The requirement that a single input has uniformly distributed output is not
common, but will be useful in applications and satisfied by the construction
given below. Moreover, Definition 1 implies adaptive security, i.e., when given x,
HKH

(x) = y, for any x′ and y′ chosen adaptively depending on y, the probability
that HKH

(x′) = y′ is at most δ/|Y|.

Lemma 2. If H is δ-almost pairwise-independent, then for every (unbounded)
adversary A and every x ∈ X , we have

Pr[HKH
(x′) = y′ ∧ x′ 6= x : KH

$← KH, (x′, y′)
$← A(HKH

(x), x) ] ≤ δ

|Y|
.
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Proof. Assume wlog that A is deterministic, and let x′(x, y) and y′(x, y) be the
values of x′ and y′ output by A on inputs y, x, where x′(x, y) 6= x by assumption.
Then,

Pr
[
HKH

(x′) = y′ : KH
$← KH, (x′, y′)

$← A(HKH
(x), x)

]
=
∑
y

Pr [HKH
(x) = y ∧ HKH

(x′(x, y)) = y′(x, y) ] ,

which is smaller than |Y| · δ
|Y|2 = δ

|Y| . ut

A construction. We will make use of the following key-length efficient con-
struction of a δ-almost-pairwise independent function, where KH = F2, Y = F
and X = F` for some finite field F. The function, given KH = (a, b) ∈ F2 and

input x = (x0, . . . , x`−1) ∈ F`, outputs Ha,b(x) =
∑`−1
i=0 xi ◦ ai + b .

Lemma 3. The function H above is δ-almost pairwise independent for δ = `−1.

The folklore proof is given for completeness.

Proof. Fix x = (x0, x1, . . . , x`−1) and x′ = (x′0, x
′
1, . . . , x

′
`−1). Also, we define

the polynomial px(a) =
∑`−1
i=0 xi ◦ ai, and analogously, define px′(a). Given two

y, y′ ∈ F, we look at the number of keys (a, b) such that px(a) + b = y and
px′(a) + b = y′. This in particular implies that a needs to satisfy

px(a)− px′(a) =

`−1∑
i=0

(xi − x′i) ◦ ai = y − y′ ,

and since there exists i with xi 6= x′i, note that by the Schwartz-Zippel lemma
there are at most `− 1 solutions a with the above property, since px(a)− px′(a)
is a polynomial of degree at most `−1. Each such a defines a unique b, and thus
there are overall at most ` − 1 solutions, and each one of them is taken with
probability |F|2.

Finally, note that the distribution of Ha,b(x) is, by itself, uniform, because
the term b is uniform, and thus completely blinds the output. ut

3 Generic Construction

This section presents our main result, a generic construction of a two-round se-
quential MIM-secure authentication protocol Auth. Our construction relies on
a simpler two-round symmetric authentication protocol Auth′ used as a compo-
nent and which satisfies a particular form of security, in addition to having a
structured tag space, as we discuss next. Later below, we will provide several
instantiations of this generic construction in Section 4 via constructions of Auth′

based on a set of different assumptions.
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3.1 Tools

Our construction is going to rely on an authentication protocol Auth = (Gen,P,V)
whose responses given by the prover (which we call tags, following existing con-

ventions in the literature) τ
$← PK(c) are composed of two distinct components

τ = (τ1, τ2) ∈ T1×T2. We refer to τ1 and τ2 as the left and right tag, respectively.
In addition to this, we are going to require that the protocol satisfies two new
properties which we now introduce and discuss.

Tag sparsity. The first property is a combinatorial property on the tag space
of Auth. We are going to require that given any challenge c, any secret key K,
and any left component of the tag τ1, there are only few right components τ2
such that τ = (τ1, τ2) is a valid tag for challenge c and key K. This is captured
formally by the following definition.

Definition 4 (Right tag-sparsity). For an ε = ε(k), we say that Auth =
(Gen,P,V) with tags in T1×T2, challenge space C, and key space K has ε-sparse
right tags (or alternatively, Auth has ε-right tag sparsity) if

Pr
[
VK(c, (τ1, τ2)) = accept; τ2

$← T2
]
≤ ε

for all c ∈ C, K ∈ K, and τ1 ∈ T1.

Note that one equivalent formulation is that for all K, c, and τ1, there are at
most ε · |T2| valid τ2.

ROR-CMA security. We also consider a new property called real-or-random
right-tag chosen-message security (or ror-cma security, for short), which is specific
to protocols as above with tag space T1 × T2. It considers a game where an
attacker first receives a challenge c∗, then can obtain prover tags for arbitrary
challenges of its choice, and at the end can issue exactly one verification query
for the challenge c∗. The notion demands that the attacker cannot distinguish
this game from another game where queries for challenges c 6= c∗ have the right
tag τ2 replaced by a random element from the same set. Formally, we introduce
the following two games – denoted ROR-CMA(0),ROR-CMA(1) – involving Auth
as well as an adversary A which outputs a decision value in {true, false} at the
end of the game:

main ROR-CMA(b):

K
$← Gen(1k )

c∗
$← C

(τ∗, state)
$← AT(·)(c∗)

d← VK(c∗, τ∗)
Ret A(state, d)

Procedure T(c):

(τ1, τ
1
2 )

$← PK(c), τ02
$← T2

If c = c∗ then
Ret τ = (τ1, τ

1
2 )

Else ret τ = (τ1, τ
b
2)

Then, for an attacker A and a two-round protocol Auth, we define the ror-cma
advantage as

Advror-cma
Auth (A) = Pr[ROR-CMAAAuth(0)⇒ true]− Pr[ROR-CMAAAuth(1)⇒ true] .
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Accordingly, we say that Auth is (t, q, ε)-ror-cma-secure if for all t-time attackers
A issuing at most q queries to oracle T(·), we have Advror-cma

Auth (A) ≤ ε.

Relation to active security. We stress that ror-cma security and negligi-
ble right-tag sparsity, when achieved simultaneously, do not even imply passive
security. Indeed, it is easy to modify any protocol with these two properties into
one accepting tags of the form (τ1, 0) for every K and c (and hence becoming
completely insecure) without invalidating these two properties. However, any
such protocol can easily be enhanced to be secure against active adversaries by
blinding τ2 with a secret field element K, either via addition or multiplication.
(Note that negligible right-tag sparsity implies that the set of right tags has
overwhelming size.)

Nonetheless, in order to better understand our construction below, it is im-
portant to observe why the resulting protocol is not necessarily s-mim secure.
Consider e.g. the protocol such that PK(c) = (τ1, τ2 = PRFK(τ1‖c)) for a ran-
dom τ1 and pseudorandom function PRF with key K and n-bit output, and
for which VK accepts (τ1, τ2) on input c if and only if PRFK(τ1‖c) has Ham-
ming distance at most 1 from τ2. One can verify that this protocol is ror-cma
secure and has negligible right-tag sparsity. But when the above tranformation
is applied, resulting in tags (τ1, τ2 = PRFK(τ1‖c) + K ′), an attacker can eas-
ily derive a new valid tag for c as (τ1, τ2 + ∆) for any weight-one ∆ – hence
breaking s-mim security. (Similar counterexamples can be built when blinding
via multiplication.)

3.2 The Generic Construction

We now turn to describing our generic construction transforming a ror-cma-
secure two-round random challenge authentication protocol Auth′ with ε-right
tag sparsity (for a small ε) into a sequential MIM secure two-round authentica-
tion protocol.

Description. Let Auth′ = (Gen′,P′,V′) be two-round authentication protocol
with associated key space K, challenge space C, and split tag space T = T1×T2,
where we assume that T2 = F is a finite field.5 We will use + and ◦ to denote
addition and multiplication of field elements, respectively. Let H : KH × T1 →
F be a hash function. We build a 2-round symmetric authentication protocol
Auth = (Gen,P,V) as follows. (The protocol Auth inherits the completeness
error of Auth′.)

– Key Generation. The key-generation algorithm Gen(1k) picks a key KH
$←

KH for H, an element KF
$← F \ {0}, and generates a key K ′

$← Gen′(1k) for
Auth′. The key is K = (K ′,KH,KF).

– Challenge. The challenge is generated by the verifier V as c
$← C.

5 This is w.l.o.g., as we can always represent T2 as a bit-string {0, 1}t for some t ∈ N
which we associate with F2t .
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– Response. The response σ = (σ1, σ2) to challenge c ∈ C is computed by the

prover P by first running τ = (τ1, τ2)
$← P′K′(c) and

σ = (σ1, σ2) = (τ1, τ2 ◦KF + HKH
(τ1)) ∈ T1 × F.

– Verify. Given challenge c and response σ = (σ1, σ2), the verifier V recon-
structs

τ = (τ1, τ2) = (σ1, (σ2 − HKH
(σ1)) ◦KF

−1)

and returns the decision {accept, reject} ← V′K′(c, τ).

Overhead. We note that our transformation does not increase the tag size of
the underlying protocol Auth′, and thus retains its communication complexity.
Moreover, the key length increases by adding KF and KH. Below, we will show
that H can be instantiated with the hash-function construction given in Section 2,
and thus these two additional keys consist overall of three field elements.

3.3 Security

The following theorem establishes the concrete security of our generic construc-
tion. In particular, it says that as long as for sufficiently small δ and ε, H is
δ-almost pairwise independent and Auth′ has both ε-right-tag sparsity and is
ror-cma-secure, then the construction is s-mim-secure.

Theorem 5 (Security of the generic construction). Assume that H is δ-
almost universal and that Auth′ satisfies ε-right tag sparsity and has completeness
error α. Then, for all s-mim-attackers A invoking at most r sessions, there exists
a ror-cma-attack B such that

Advs-mim
Auth (A) ≤ r ·

(
Advror-cma

Auth′ (B) +
r

|C|
+ εδ

|F|
|F| − 1

+ r · α
)
,

where B has running time approximately equal to that of A, and makes at most
r queries to its oracle. In other words, if Auth′ is (t, r, ε)-ror-cma-secure, then
Auth is (t′, r, r · (ε+ r/|C|+ εδ|F|/(|F| − 1)))-s-mim-secure, where t′ ≈ t.

Proof. Let A be an attacker for game S-MIM which calls its oracles for at
most r sessions. In the following, we are going to upper bound Advs-mim

Auth (A) =

Pr
[
S-MIMA

Auth ⇒ true
]
. The proof proceeds via a sequence of games.

As our first step, we prove that it is sufficient to consider the first round
where the attacker alters the communication between prover and verifier, and
the latter still accepts. Formally, for all sid∗ ∈ {1, . . . , r}, let Winsid∗ be the
event that in the experiment S-MIMA

Auth session sid∗ is the first session where
the attacker makes the verifier non-trivially accept (and thus d[sid∗] = accept)
with (c′[sid∗], t′[sid∗]) 6= (c[sid∗], t[sid∗]). In particular, for all sid < sid∗ we ei-
ther have (c[sid], t[sid]) = (c′[sid], t′[sid]) or d[sid] = reject. Moreover, let Win =
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main Gsid∗ :

sid← 0
KAuth′

$← Gen′(1k )

KH
$← KH

KF
$← F \ {0}

Run AC(·),P(·),V(·)(1k )
Ret ((c[sid∗], σ[sid∗]) 6=
(c′[sid∗], σ′[sid∗]))

∧ (d[sid∗] = accept)

Procedure C():

If c[sid] = ⊥ then

c[sid]
$← C

Ret c[sid]

Procedure P(c′):

If c′[sid] = ⊥ then c′[sid]← c′ else ret ⊥
(τ1, τ2)

$← P′KAuth′
(c′), σ2 ← τ2 ◦KF + HKH(τ1)

σ[sid]← (τ1, σ2)
Ret σ[sid]

Procedure V(σ′ = (σ′1, σ
′
2)):

d[sid]← reject, c[sid]
$← C()

If sid < sid∗ and (c′[sid], σ′) = (c[sid], σ[sid])
then
d[sid]← accept

If sid = sid∗ then
σ′[sid]← (σ′1, σ

′
2)

τ ′1 ← σ′1, τ ′2 ← (σ′2 − HKH(σ′1)) ◦K−1
F

d[sid]← V′KAuth′
(c[sid], (τ ′1, τ

′
2))

sid← sid + 1
Ret d[sid]

Fig. 1: Game Gsid∗ for sid∗ ∈ {1, . . . , r} in the proof of Theorem 5. All oracles return
⊥ if sid > sid∗.⋃r

sid∗=1 Winsid∗ be the event that S-MIMA
Auth outputs true in the first place.

Clearly, the r events Win1, . . . ,Winr are disjoint, and therefore

Pr [Win ] = Pr

[
r⋃

sid∗=1

Win∗sid

]
=

r∑
sid∗=1

Pr [Win∗sid ] .

As our first step, we introduce r new games G1, . . . ,Gr, where Gsid∗ only allows
the adversary A to execute sid∗ sessions, and the verifier returns reject for the
first sid∗−1 sessions unless the adversary A has been simply forwarding honestly
generated messages. A formal description of Gsid∗ is given in Figure 1. There,
we implicitly assume that all oracles return ⊥ whenever sid > sid∗. It is easy
to see that by construction, Pr

[
GA

sid∗ ⇒ true
]
≥ Pr [Winsid∗ ]− (sid∗−1)α. The

offset depending on the completeness error α is due to the fact that GA
sid∗ always

accepts honest executions in sessions sid < sid∗, whereas this is not necessarily
true in S-MIMA

Auth. Therefore,

Pr
[
S-MIMA

Auth ⇒ true
]

= Pr [Win ] ≤ r2α+

r∑
sid∗=1

Pr
[

GA
sid∗ ⇒ true

]
. (1)

In the remainder of this proof, for every sid∗ ∈ {1, . . . , r}, we are going to prove
an upper bound on Pr

[
GA

sid∗ ⇒ true
]
. In particular, we now fix an arbitrary

sid∗ ∈ {1, . . . , r}, and let H0 = Gsid∗ .
The proof now continues by transitioning from Game H0 in turn to games

H1, H2 and H3. With respect to H0, these games will only differ in the way in
which queries to P are answered, but all games will otherwise inherit the main
procedure, as well as C and V, verbatim from Gsid∗ = H0. A formal specification
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Procedure P(c′): // H1

If c′[sid] = ⊥ then
c′[sid]← c′

Else Ret ⊥
(τ1, τ2)

$← P′KAuth′
(c′)

If c′ 6= c[sid∗] then

τ2
$← T2

σ2 ← τ2 ◦KF + HKH(τ1)
σ[sid]← (τ1, σ2)
Ret σ[sid]

Procedure P(c′): // H2

If c′[sid] = ⊥ then
c′[sid]← c′

Else Ret ⊥
(τ1, τ2)

$← P′KAuth′
(c′)

If c′ = c[sid∗] then
σ2 ← τ2 ◦KF + HKH(τ1)

Else σ2
$← T2

σ[sid]← (τ1, σ2)
Ret σ[sid]

Procedure P(c′): // H3

If sid < sid∗ and c′ = c[sid∗]
then Ret ⊥

If c′[sid] = ⊥ then c′[sid]← c′

Else Ret ⊥
(τ1, τ2)

$← P′KAuth′
(c′)

If c′ = c[sid∗] then
σ2 ← τ2 ◦KF + HKH(τ1)

Else σ2
$← T2

σ[sid]← (τ1, σ2)
Ret σ[sid]

Fig. 2: Modified prover oracles in the games H1, H2, and H3.

of the respective procedures is given in Figure 2, and we now discuss them in
detail.

We first transition to Game H1, where we will use ror-cma security of Auth′

to replace the right half of every tag computed by P to a random component
whenever c′ 6= c[sid∗], i.e., different from the random challenge used in the last
round. The proof of the following lemma is given below.

Lemma 6. There exists an attacker B such that

Pr
[

HA
0 ⇒ true

]
− Pr

[
HA

1 ⇒ true
]
≤ Advror-cma

Auth′ (B) ,

where B has running time approximately equal to that of A, and makes at most
r queries to its oracle.

Subsequently, in Game H2, whenever c′ 6= c[sid∗], instead of generating τ2 at
random, we directly generate σ2 uniformly at random from the same set. Note
that because KF 6= 0, we have that τ2 ·KF is a fresh random value, and thus the
two games H1 and H2 are identical,

In the next game, Game H3, the procedure P replies to a query c′ = c[sid∗]
only if it is made in session sid∗, and otherwise returns ⊥. As c[sid∗] is chosen
uniformly at random, and independent of the interaction between the adversary
and the oracles in the first sid∗ − 1 sessions, the “fundamental lemma” of game
playing [4] yields

Pr
[

HA
2 ⇒ true

]
− Pr

[
HA

3 ⇒ true
]

≤ Pr [ c[sid∗] ∈ {c′[1], c′[2], . . . , c′[sid∗ − 1]} ] ≤ r

|C|
. (2)

Therefore, putting together Equation (1), Lemma 6, and Equation (2), we obtain
that there exists an attacker B making at most r oracle queries and with time
complexity close to the one of A such that

Pr
[
S-MIMA

Auth ⇒ true
]
≤ r ·

(
Advror-cma

Auth′ (B) +
r

|C|
+ Pr

[
HA

3 ⇒ true
])

+ r2α .
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In the rest of the proof, we give an upper bound on the probability that the
game H3 outputs true. The argument is going to rely on the almost pairwise-
independence of H and the right-tag sparsity of Auth′, and is from now on a
purely information-theoretic argument. In particular, it does not rely on KAuth′

being hidden, but only on the fact that all the right tags in sessions prior to sid∗

are random.

Analysis of winning probability in H3. In the following, for notational
convenience we let σ[sid∗] = (σ1 = τ1, σ2) and σ′[sid∗] = (σ′1, σ

′
2) be the original

and modified values in the second-round of session sid∗. Similarly, we simply
denote c = c[sid∗] and c′ = c′[sid∗]. Concretely, we are going to consider three
different cases when analyzing the probability Pr

[
HA

3 ⇒ true
]

: (1) c′ 6= c, (2)
c′ = c and σ1 = σ′1, and (3) c′ = c and σ1 6= σ′1. We now analyze the three
individual cases.

Case c′ 6= c. Observe first that in session sid∗, the attacker obtains (τ1, σ2),

where (τ1, τ2)
$← P′K(c′sid∗) and σ2

$← T2, and inputs (σ′1, σ
′
2) to V. It wins if

(σ′1, τ
′
2) is a valid tag, where τ ′2 = (σ′2 − HKH

(σ′1)) ◦K−1F .
The crucial point is that KF and KH have never been used prior to the

computation of τ ′2, as the oracle P has only returned random right tags. So we
can equivalently think of generating these uniformly at random for the first time
at this point independent of the rest of the game, and consider the probability
that V′K(c, (σ′1, τ

′
2)) verifies. Moreover, the value Y := HKH

(σ′1) is going to be
uniform (as we don’t evaluate the function on any other point) by the δ-almost
pairwise independence of H. Therefore, for every value t ∈ F,

Pr [ τ ′2 = t ] = Pr
[

(σ′2 − Y ) ◦K−1F = t
]

= Pr [Y = KF ◦ t+ σ′2 ] =
1

|F|
.

However, by ε-right tag sparsity, we know that there are at most ε|F| possible
values t for which (σ′1, t) is a valid tag, and thus by the union bound

Pr
[

HA
3 ⇒ true | c′ 6= c

]
= Pr [V′K(c, (σ′1, τ

′
2)) = accept ] ≤ ε · |F| · 1

|F|
= ε . (3)

Case c′ = c, σ1 = σ′1 = τ1 and σ2 6= σ′2. In this case, in session sid∗, the

attacker obtains (τ1, σ2), where (τ1, τ2)
$← P′K(c) and σ2

$← τ2 ◦KF + HKH
(τ1).

Subsequently, it inputs (τ1, σ
′
2) to V. It wins if V′K(c, (τ1, τ

′
2)) = accept, where

τ ′2 = (σ′2−HKH
(τ1))◦K−1F 6= τ2. Once again, we evaluate H only with one input,

and as above Y = HKH
(τ1) is uniformly distributed.

Now, given σ2, τ2, and σ′2, we want to upper bound the probability that
τ ′2 = t 6= τ2 for some value t ∈ F, where the probability is over the choice of KF
and Y .

Pr [ τ ′2 = t | σ2 = τ2 ◦KF + Y ] =
Pr [ t ◦KF + Y = σ′2 ∧ τ2 ◦KF + Y = σ2 ]

Pr [ τ2 ◦KF + Y = σ2 ]
.

Since τ2 6= t, there exists exactly one KF such that (τ2 − t) · KF = σ2 − σ′2,
and moreover, this defines a unique value for Y , which is taken with probability
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at most 1/|F|, and thus the probability in the numerator is upper bounded
by 1/(|F|(|F| − 1)). Moreover, τ2 ◦ KF + Y is clearly uniform (because Y is
uniform), and thus the denominator is 1/|F|. Putting these together gives us
Pr [ τ ′2 = t | σ2 = τ2 ◦KF + Y ] ≤ 1/(|F| − 1). Now, due to ε-right tag sparsity,
there are at most ε · |F| right tags τ ′2 that verify, and thus

Pr
[

HA
3 ⇒ true | c′ = c ∧ σ1 = σ′1

]
≤ ε · |F|

|F| − 1
. (4)

Case c′ = c and σ1 6= σ′1. For the final case, the attacker obtains (τ1, σ2) as

in the previous case, but inputs (σ′1 6= τ1, σ
′
2) to V, and the latter computes

τ ′2 = (σ′2 − HKH
(σ′1)) ◦K−1F .

Here, we indeed evaluate HKH
on two inputs. However, by Lemma 2, we

see that for every possible values σ′1 and y′, chosen adaptively depending on τ1
and HKH

(τ1), HKH
(σ′1) = y′ with probability at most δ/|F|. Therefore, for every

possible t such that V′K(c, (σ′1, t)) = accept, we have

Pr [ τ ′2 = t ] = Pr [HKH
(σ′) = KF · t+ σ′2 ] ≤ δ/|F|.

Now, due to ε-right tag sparsity, there are at most ε · |F| such right tags, and
thus

Pr
[

HA
3 ⇒ true | c′ = c ∧ σ1 6= σ′1

]
≤ ε · |F| · δ

|F|
= εδ . (5)

Putting things together. To conclude the proof, we observe that all terms

in Equations (3), (4) and (5) are upper bounded by ε · δ · |F||F|−1 , and thus we also

have Pr
[

HA
3 ⇒ true

]
≤ ε · δ · |F||F|−1 . ut

Proof (Lemma 6). The attacker B for ROR-CMA(b) is very simple. It simu-
lates the execution of Hb to the attacker A. Initially, B uses its input challenge
c∗ as csid∗ . Then, when simulating queries to P on input c′, it forwards them
to its own oracle T, to obtain a pair (τ1, τ2). Finally, B uses the one avail-
able verification query to compute V’s decision bit in session sid∗. Finally, B
outputs the games Hb’s output. By inspection, it is not hard to verify that
Pr
[
ROR-CMA(b)BAuth′ ⇒ true

]
= Pr

[
HA
b ⇒ true

]
, which concludes the proof of

the lemma. ut

4 Instantiations

In this section, we will provide examples of ror-cma-secure authentication pro-
tocols. All of them can be transformed to s-mim-secure authentication protocols
using the transformation from Section 3. Table 2 summarizes the resulting pro-
tocols compactly.
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Scheme Assump. Gen(1n) / Response P(c) / Verify V(c, σ)

AuthLPN §4.1 LPN
Gen(1n) : (x1, . . . ,x5)

$← (F`2)5

P(c) = (R,R · (Mc · x1 + x2) + x3 ◦ e + Hx4,x5(R) ∈ F`×n2 × F`2
V(c, (R, z)) : |(z− Hx4,x5(R)−R · (Mc · x1 + x2)) ◦ x−1

3 | small?

AuthTLPN §4.1 LPN
Gen(1n) : (X1,X2,x3,x4)

$← (Fn×`2 )2 × (F`2)2

P(c) = (r, (X1 ·Mc + X2) · r + x3 ◦ e + x4) ∈ F`2 × Fn2
V(c, (r, z)) : |(z− x4 − (X1 ·Mc + X2) · r) ◦ x−1

3 | small?

AuthField-LPN §4.2 Field-LPN
Gen(1n) : (x1, . . . ,x4)

$← (F2`)
4

P(c) = (r, r ◦ (x1 ◦ c + x2) + x3 ◦ e + x4) ∈ F2` × F2`

V(c, (R, z)) : |(z− x4 − r ◦ (x1 ◦ c + x2)) ◦ x−1
3 + x4)| small?

Authddh §4.4 ddh
Gen(1n) : (x1, x2, X)

$← F2
q ×G

P(c) = (R,X ·Rx1c+x2) ∈ G×G
V(c, (r, z)) : X ·Rx1c+x2 = z?

Authwprf §4.3 wprf
(x0,0, . . . , x`,1,x1,x2)

$← D2` × F2

P(c) = (r,
∑`
i=1 F (xi,ci , r) + Hx1,x2(r)) ∈ D× F

V(c, (r, z)) :
∑`
i=1 F (xi,ci , r) + Hx1,x2(r) = z?

Table 2: New s-mim-secure 2-round authentication protocols.

4.1 Instantiations from LPN

Learning Parity with Noise. For a parameter 0 < γ ≤ 1/2, we define

the Bernoulli distribution Bγ that assigns e
$← Bγ the values 1 and 0 with

probabilities γ and 1 − γ, respectively. If D is a distribution over D, then x
$←

Dn denotes the n-fold distribution where each component of x ∈ Dn is chosen
according to D.

To define the LPN`,γ problem in dimension ` ∈ N and Bernoulli parameter
0 < γ ≤ 1/2 we introduce the LPN advantage as the quantity

AdvLPN(A) = Pr
[
ALPNs,γ() ⇒ true

]
− Pr

[
ALPNs,1/2() ⇒ true

]
,

where s
$← F`2 and LPNs,α (α ∈ {γ, 1/2}) returns (r, rT · s + e) for r

$← F`2 and

e
$← Bα. Note that oracle LPNs,1/2 always returns uniform (r, z)

$← F`2×F2. We
say that the LPN`,γ is (t, q, ε)-hard if for all attackers A with time complexity t,

making at most q oracle queries, we have AdvLPN(A) ≤ ε.
ROR-CMA secure Protocol. Let n = O(`) denote the number of repeti-
tions, γ the parameter of the Bernoulli distribution, and γ′ := 1/4 + γ/2 con-
trols the correctness error. The following authentication protocol Auth′LPN =
{Gen′,P′,V′} originates from [20]. It has associated key space K = (F`2)2, tag
space T = T1 × T2 = F`×n2 × Fn2 , and challenge space C = F`2.
– Key Generation. The key-generation algorithm Gen′ outputs a secret key

K = (k1,k2)
$← (F`2)2.

– Challenge. The challenge is generated by the verifier V′ as c
$← F`2.

– Response. The response τ = (τ1, τ2) to challenge c ∈ F`2 is computed by the

prover P′ by sampling R
$← F`×n2 and computing τ = (R,RT · (Mc · k1 +
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k2) + e), where e
$← Bnγ . (Recall that Mc is the matrix representation of the

finite field multiplication with c.)
– Verification. Given challenge c ∈ F`2 and response τ = (R, z) ∈ F`×n2 ×Fn2 , the

verifier V′ outputs accept iff: rank(R) = n and |RT ·(Mc ·k1+k2)−z| ≤ γ′n.
With the choice of γ′ = 1/4+γ/2, Auth′LPN has 2−O(n) completeness error [20, Th.

4]. Further, it has ε-sparse right tags, where ε = Pr[ z ≤ γ′n | z $← Fn2 ] ≤ 2−O(n),
using the Hoeffding bound.

The proof of the following theorem is postponed to Appendix A.2.

Theorem 7. If LPN`,γ is (t, nq, ε)-hard, then Auth′LPN is (t′, q, ε)-ror-cma-secure
with t ≈ t′.

There exists an alternative ror-cma-secure authentication protocol [10, 20] which
defines τ2 = RT · k↓c + e, where k↓c is the projection of k with respect to all `
non-zero bits of c ∈ C := {F2`

2 : |c| = `}.
MiM secure Protocol. A s-mim-secure 2-round authentication protocol AuthLPN
is obtained via the generic transformation from Section 3. An example instan-
tiation using the almost pairwise independent hash function from Section 2 is
given in Table 2.

Trade-off. For all LPN-based protocols there exists a natural trade-off between
key-size and communication complexity, as we will explain now. In the ror-cma-

secure protocol AuthT′LPN we can chose the key as (K1,K2)
$← (Z`×n2 )2 and define

the response to a challenge c ∈ F `2 as (r, (Mc ·K1 + K2) · r + e ∈ F`2×Fn2 , where

r
$← F`2. In the resulting s-mim-secure protocol we can use the specific pairwise

independent hash function HS1,s2(r) := S1r + s2, where (S1, s2) ∈ F`×n2 × Fn2 .
The response to a challenge c is computed as σ = (r, z), where

z = ((Mc ·K1 + K2) · r + e) ◦KF + S1r + s2

= (Mc ·K1 ·MKF + K2 ·MKF + S1) · r + MKF · e + s2.

This can be rewritten as z = (Mc ·X1+X2)·r+e◦x3+x4 using the substitutions

x1 := K1 ·MKF , X2 := K2 ·MKF + S1, x3 := KF, x4 := s2.

The resulting protocol AuthTLPN is described in Table 2.

4.2 Instantiations from Field-LPN

Field Learning Parity with Noise. To define the Field-LPN`,γ problem over
the extension field (F2` , ◦,+) and Bernoulli parameter 0 < γ ≤ 1/2, we introduce
the Field-LPN advantage as the quantity

AdvField-LPN(A) = Pr
[
AFLPNs,γ() ⇒ true

]
− Pr

[
AFLPNs,1/2() ⇒ true

]
,

where s
$← F2` and FLPNs,α returns (r, r ◦ s + e) for r

$← F2` and e
$← B`α.

Note that FLPNs,1/2 always returns uniform (r, z)
$← (F2`)

2. We say that the
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Field-LPN`,γ is (t, q, ε)-hard if for all attackers A with time complexity t making

at most q oracle queries, we have AdvField-LPN(A) ≤ ε.
ROR-CMA secure Protocol. Let γ the parameter of the Bernoulli distri-
bution, and γ′ := 1/4 + γ/2 controls the correctness error. We use F = F2`

to denote the finite field. The following authentication protocol Auth′Field-LPN =
{Gen′,P′,V′} originates from [15]. It has associated key space K = F2, split tag
space T = T1 × T2 = F× F, and challenge space C = F.
– Key Generation. The key-generation algorithm Gen′ outputs a secret key

K = (k1,k2)
$← F2.

– Challenge. The challenge is generated by the verifier V′ as c
$← F.

– Response. The response τ = (τ1, τ2) to challenge c ∈ F is computed by the

prover P′ as τ = (r, r ◦ (k1 ◦ c + k2) + e), where r
$← F, e

$← B`γ .
– Verification. Given challenge c ∈ F and response τ = (r, z) ∈ F2, the verifier

V′ outputs accept iff |r ◦ (k1 ◦ c + k2)− z| ≤ γ′n.
As in the LPN case, Auth′Field-LPN has 2−O(`) completeness error and 2−O(`)-sparse
right tags. The proof of the following theorem is similar to that of Theorem 7
and is therefore omitted.

Theorem 8. If Field-LPN`,γ is (t, q, ε)-hard, then Auth′Field-LPN is (t′, q, ε)-ror-cma-
secure with t′ ≈ t.

MiM secure Protocol. We now apply our generic transformation from Sec-
tion 3 to Auth′Field-LPN to obtain a s-mim-secure protocol. The key consists of
(k1,k2,KF, s1, s2), where we use the concrete pairwise-independent hash func-
tion Hs1,s2(r) = s1◦r+s2. The response to a challenge c is computed as σ = (r, z),
where z = (r ◦ (k′1 ◦ c + k′2) + e) ◦KF + s1 ◦ r + s2
= (r ◦ (k′1 ◦ KF ◦ c + k′2 ◦ KF + s1) + e ◦ KF + s2. This can be written as
z = (r◦(x1◦c+x2)+e◦x3+x4 using the substitutions x1 := k1◦KF, x2 := k2◦
KF + s1, x3 := KF, x4 := s2. The resulting simplified protocol AuthField-LPN
is given in Table 2.

4.3 Instantiations from weak PRFs

Weak Pseudorandom Function. Let F be a function family F : K×D→ F.
To define the wprfF assumption over function family F we introduce the wprf
advantage of an adversary A as the quantity

Advwprf
F (A) = Pr[AFx() ⇒ true ]− Pr[AU() ⇒ true ] ,

where x
$← K, Fx returns (r, F (x, r)) for r

$← D, and U returns uniform (r, z)
$←

D × F. We say that F is a (t, q, ε)-weak PRF if for all attackers A with time

complexity t, making at most q oracle queries, we have Advwprf
F (A) ≤ ε.

ROR-CMA secure Protocol. We define an authentication protocols Auth′wprf =

{Gen′,P′,V′} with associated key space K = K`, split tag space T = T1 × T2 =
D× F, and challenge space C = {0, 1}`.
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– Key Generation. The key-generation algorithm Gen′ outputs a secret key

K = (x1,0, . . . , x`,0, x1,1, . . . , x`,1)
$← K2×`.

– Challenge. The challenge is generated by the verifier V′ as c
$← {0, 1}`.

– Response. The response τ = (τ1, τ2) to challenge c ∈ {0, 1}` is computed by

the prover P′ as τ = (r, z =
∑`
i=1 F (xi,ci , r)), where r

$← D.
– Verification. Given challenge c ∈ {0, 1}` and response τ = (r, z) ∈ D×F, the

verifier V′ outputs accept iff
∑`
i=1 F (xi,ci , r) = z.

The protocol has perfect completeness and 1/|F|-sparse right tags. It is easy to
extend Auth′wprf to randomized weak PRFs (with additive noise), as defined in
[22]. This way we obtain protocols from a more general class of assumptions,
such as Toeplitz-LPN [22]. The proof of the following theorem is in Appendix
A.2.

Theorem 9. If F is a (t, q, ε)-weak PRF, then Auth′wprf is (t′, q, ε/`)-ror-cma-
secure with t′ ≈ t.

4.4 Instantiation from DDH

The DDH Problem. Let G be a family of groups with Gn = (G, g, p), where G
is a cyclic group of prime-order p with dlog pe = n and g generates G. To define
the ddhG problem over group family G we introduce the ddh advantage as the
quantity

Advddh
G (A) = Pr

[
ADDHx() ⇒ true

]
− Pr

[
AU() ⇒ true

]
,

where x
$← Zp and DDHx returns (R,Rx) for R

$← Zp, and U returns uniform

(R,Z)
$← G2. We say that ddhG is (t, q, ε)-hard if for all attackers A with time

complexity t making at most q oracle queries, we have Advddh(A) ≤ ε. Note that
classical ddh hardness is exactly (t′, 1, ε′)-hardness of ddhG and by the random
self-reducibility of ddh we have that ddhG is (t, q, ε)-hard iff it is (t′, 1, ε′)-hard
with t ≈ t′ and ε ≈ ε′.

ROR-CMA secure Protocol. We define an authentication protocol Auth′ddh =
{Gen′,P′,V′} with associated key space K = Z2

p, split tag space T = T1 × T2 =
G×G, and challenge space C = Zp.
– Key Generation. The key-generation algorithm Gen′ outputs a secret key

K = (y1, y2)
$← Z2

p.

– Challenge. The challenge is generated by the verifier V′ as c
$← Zp.

– Response. The response τ = (τ1, τ2) to challenge c ∈ Fp is computed by the

prover P′ as τ = (R,Ry1·c+y2), where R
$← G.

– Verification. Given challenge c ∈ Zp and response τ = (R,Z) ∈ G2, the
verifier V′ outputs accept iff Ry1·c+y2 = Z.

The protocol Auth′ddh has perfect completeness and 1/p-sparse right tags.
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Theorem 10. If ddhG is (t, q, ε)-hard, then Auth′ddh is (t′, q, ε)-ror-cma-secure
with t′ ≈ t.

The proof is similar to the one of Theorem 7 and is omitted.

MiM secure Protocol. We now apply our generic transformation from Sec-
tion 3 to Auth′ddh to obtain a s-mim-secure protocol. By using the field structure of
Zp in the exponent, we can use the concrete pairwise-independent hash function
Hs1,S2

(R) = Rs1 ·S2 ∈ G, where (s1, S2) ∈ Zp×G. The key of Authddh consists of
(y1, y2,KF, s1, S2). We now show that the key of Authddh can be shrinked by two
elements, see Table 2. The response to a challenge c is computed as σ = (R,Z),
where Z = (Ry1·c+y2)KF · Rs1S2 = Ry1KF·c+y2KF+s1S2. This can be written as
Z = Rx1c+x2S2 using the substitutions x1 := y1KF, x2 := y2KF + s1, X :=
S3. The resulting simplified protocol Authddh is given in Table 2.
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A Omitted proofs

A.1 Proof of Theorem 7

Proof. Let A be an adversary in the ROR-CMAAAuth′(b) security game. We de-
fine an adversary BLPNs,α() against the LPN`,γ problem, where α ∈ {γ, 12} is
unknown.

Adversary BLPNs,α :

k′2
$← Z`2

c∗
$← F`2

(τ∗, state ′)
$← AT (·)(1k, c∗)

Parse τ∗ = (R∗, z∗) ∈ F`×n2 × Fn2
If |(R∗)T · k′2 − z∗| ≤ γ′n and rank(R) = n
d← accept.

Else d← reject
Ret A(state, d)

Procedure T (c):

If c = c∗ then
z

$← Bnγ
R

$← F`×n2

Else
(R̃, z)

$← LPNn
s,α()

RT ← R̃T · (Mc −Mc∗)
−1

τ1 ← R
τ2 ← z + RTk′2
Ret (τ1, τ2)

Note that due to the finite field properties of the linear map Mc, matrix Mc −
Mc∗ is always invertible for c 6= c∗. Adversary B implicitly defines k1 := s and
k2 := −Mc∗ · k1 + k′2, where s is the LPN secret. As k′2 is uniform, the key
k = (k1,k2) has the correct distribution. The definition of K = (k1,k2) implies
that

K(c) := Mc · k1 + k2 = (Mc −Mc∗) · k1 + k′2. (6)
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As K(c∗) = k′2, the bit d is always computed correctly by B. We now consider
the distribution of T(c). First note that τ1 is always a uniform matrix in F`×n2 .
For c = c∗, z is Bernoulli distributed and, using Equation (6), τ2 = RTk′2 + z is
distributed as computed by prover P′. Further, for c 6= c∗ we have

τ2 = R̃T · s + e + RTk′2

= RT · (Mc −Mc∗) · k1 + e + RTk′2

= RT · (Mc · k1 + k2) + e,

where e
$← B`α. If α = 1

2 , then τ1 and τ2 are uniformly distributed and

Pr[BLPNs,1/2() ⇒ true ] = Pr[ROR-CMAAAuth′(0)⇒ true ].

If α = γ, then τ = (τ1, τ2) is distributed as computed by prover P′. Hence
Pr
[
BLPNs,γ() ⇒ true

]
= Pr[ROR-CMAAAuth′(1)⇒ true ]. The last two equations

provide AdvLPN(B) = Advror-cma
Auth′ (A), where the running time of B is approxi-

mately that of A. ut

A.2 Proof of Theorem 9

Proof. Let A be an attacker in the ROR-CMA(1) game. We now describe games
G0, . . . ,G` that are exactly like the ROR-CMA(1) game, but with modified pro-
cedure T (c). For j ∈ {0, . . . , ` − 1}, let Sj : {0, 1}j → F be a random function,
where S0(ε) is defined to be 0. Note that Sj can be efficiently simulated by lazy
evaluation.

main Gj :

K
$← Gen′(1k )

c∗
$← {0, 1}`

(τ∗, state)
$← AT (·)(c∗)

d← V′K(c∗, τ∗)
Ret A(state, d)

Procedure T (c): //Gj

r
$← D

If c|j = c∗|j then

z =
∑`
i=1 F (xi,ci , r)

Else
z = Sj(c|j) +

∑`
i=j+1 F (xi,ci , r)

Ret τ = (τ1 ← r, τ2 ← z)

Note that in game G0 all tags τ are computed correctly by T and hence G0 =
ROR-CMA(1). Furthermore, in game G`, all tags except for challenge c∗ are
uniform and hence G` = ROR-CMA(0). The following lemma completes the proof
of Theorem 9.

Lemma 11. For any j ∈ {0, . . . , `− 1}, there exists an attacker Bj such that

Pr
[
GAj ⇒ true

]
− Pr

[
GAj+1 ⇒ true

]
≤ Advwprf

F (B).

To prove the lemma, we define an adversary B = B
O()
j (0 ≤ j ≤ ` − 1) against

F , where O ∈ {Fx,U}.
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Adversary BO:

c∗
$← {0, 1}`

xi,k =

{
undefined i = j + 1 ∧ k 6= c∗j+1

uniform in K otherwise

(τ∗, state)
$← AT (·)(c∗)

Parse τ∗ = (r∗, z∗) ∈ D× F
If
∑`
i=1 F (xi,c∗i , r

∗) = z∗

d← accept.
Else d← reject
Ret A(state, d)

Procedure T (c):

If c|j+1 = c∗|j+1 then

r
$← D; z =

∑`
i=1 F (xi,ci , r)

Else
if cj+1 6= c∗j+1 then (r, z′)

$← O()

Else r
$← D; z′ = F (xj+1,cj+1

, r)

z = Sj(c|j) + z′ +
∑`
i=j+2 F (xi,ci , r)

τ1 ← r
τ2 ← z
Ret (τ1, τ2)

Adversary B knows all secrets xi,k except xj+1,1−c∗j which he defines implicitly
as the secret x from the Fx oracle. In particular, he knows xi,c∗i and the bit d
is always computed correctly. It remains to analyze the distribution of T(c). If
cj+1 = c∗j+1, then the output of T(c) in games Gj and Gj+1 is identical. We
now analyze the case cj+1 6= c∗j+1. If O = Fx, then z = Sj(c|j) + F (x, r) +∑`
i=j F (xi,ci , r) = Sj(c|j) +

∑`
i=j+1 F (xi,ci , r) and hence Pr[BFx() ⇒ true ] =

Pr[GAj ⇒ true ]. If O = U, then z = Sj(c|j)+z′+
∑`
i=j+1 F (xi,ci , r) = Sj(c|j+1)+∑`

i=j+1 F (xi,ci , r) and hence Pr[BU() ⇒ true ] = Pr[GAj+1 ⇒ true ]. ut


