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Abstract. A Probabilistically Checkable Proof (PCP) allows a random-
ized verifier, with oracle access to a purported proof, to probabilistically
verify an input statement of the form “x ∈ L” by querying only few
bits of the proof. A zero-knowledge PCP (ZKPCP) is a PCP with the
additional guarantee that the view of any verifier querying a bounded
number of proof bits can be efficiently simulated given the input x alone,
where the simulated and actual views are statistically close.
Originating from the first ZKPCP construction of Kilian et al.(STOC ’97),
all previous constructions relied on locking schemes, an unconditionally
secure oracle-based commitment primitive. The use of locking schemes
makes the verifier inherently adaptive, namely, it needs to make at least
two rounds of queries to the proof.
Motivated by the goal of constructing non-adaptively verifiable ZKPCPs,
we suggest a new technique for compiling standard PCPs into ZKPCPs.
Our approach is based on leakage-resilient circuits, which are circuits
that withstand certain “side-channel” attacks, in the sense that these
attacks reveal nothing about the (properly encoded) input, other than
the output. We observe that the verifier’s oracle queries constitute a
side-channel attack on the wire-values of the circuit verifying member-
ship in L, so a PCP constructed from a circuit resilient against such
attacks would be ZK. However, a leakage-resilient circuit evaluates the
desired function only if its input is properly encoded, i.e., has a specific
structure, whereas by generating a “proof” from the wire-values of the
circuit on an ill-formed “encoded” input, one can cause the verification
to accept inputs x /∈ L with probability 1. We overcome this obstacle by
constructing leakage-resilient circuits with the additional guarantee that
ill-formed encoded inputs are detected. Using this approach, we obtain
the following results:
– We construct the first witness-indistinguishable PCPs (WIPCP) for

NP with non-adaptive verification. WIPCPs relax ZKPCPs by only
requiring that different witnesses be indistinguishable. Our construc-
tion combines strong leakage-resilient circuits as above with the PCP



of Arora and Safra (FOCS ’92), in which queries correspond to side-
channel attacks by shallow circuits, and with correlation bounds for
shallow circuits due to Lovett and Srivinasan (RANDOM ’11).

– Building on these WIPCPs, we construct non-adaptively verifiable
computational ZKPCPs for NP in the common random string model,
assuming that one-way functions exist.

– As an application of the above results, we construct 3-round WI
and ZK proofs for NP in a distributed setting in which the prover
and the verifier interact with multiple servers of which t can be cor-
rupted, and the total communication involving the verifier consists
of poly log (t) bits.

1 Introduction

In this work we study probabilistically checkable proofs with zero-knowledge
properties, and establish a connection between such proofs and leakage-resilient
circuits. Before describing our main results, we first give a short overview of
these objects.

Probabilistically Checkable Proof (PCP) systems [1, 2] are proof systems that
allow an efficient randomized verifier, with oracle access to a purported proof
generated by an efficient prover (that is also given the witness), to probabilisti-
cally verify claims of the form “x ∈ L” (for an NP-language L) by probing only
few bits of the proof. The verifier accepts the proof of a true claim with probabil-
ity 1 (the completeness property), and rejects false claims with high probability
(the probability that the verifier accepts a false claim is called the soundness
error). The celebrated PCP theorem [1, 2, 8] asserts that any NP language ad-
mits a PCP system with soundness error 1/2 in which the verifier reads only
a constant number of proof bits (soundness can be amplified using repetition).
Moreover, the verifier is non-adaptive, namely its queries are determined solely
by his randomness (a verifier is adaptive if each of his queries may also depend
on the oracle answers to previous queries).

A very different kind of proofs are zero-knowledge (ZK) proofs [14], namely
proofs that carry no extra knowledge other than being convincing. Combining
the advantages of ZK proofs and PCPs, a zero-knowledge PCP (ZKPCP) is
defined similarly to a traditional PCP, except that the proof is also randomized
and there is the additional guarantee that the view of any (possibly malicious)
verifier who makes a bounded number of queries can be efficiently simulated up
to a small statistical distance.

Previous ZKPCP constructions [21, 17, 19] are obtained from standard (i.e.,
non-ZK) PCPs in two steps. First, the standard PCP is transformed into a PCP
with a weaker “honest-verifier” ZK guarantee (which is much easier to achieve
than full-fledged ZK). Then, this “honest-verifier” ZKPCP is combined with
an unconditionally secure oracle-based commitment primitive called a “locking
scheme” [21, 17]. This transformation yields ZKPCPs for NP with statistical ZK
against query-bounded malicious verifiers, namely ones who are only limited to
asking at most p (|x|) queries, for some fixed polynomial p that is much smaller



than the proof length, but can be much bigger than the (polylogarithmic) number
of queries asked by the honest verifier.

A common limitation of all previous ZKPCP constructions is that they re-
quire adaptive verification, even if the underlying non-ZK PCP can be non-
adaptively verified. This raises the natural question of constructing PCPs that
can be non-adaptively verified, and guarantee ZK against malicious verifiers. We
note that the adaptivity of the verifier is inherent to any locking-scheme-based
ZKPCP, since the unconditional security of locking schemes makes their open-
ing inherently adaptive. Therefore, constructing ZKPCPs that can be verified
non-adaptively requires a new approach towards ZKPCP construction. An ad-
ditional advantage of eliminating the use of locking schemes is the possibility
of constructing ZKPCPs preserving the proof length (which is important when
these are used for cryptographic applications as described below), since locking
schemes inherently incur a polynomial blow-up in the PCP length.

Motivated by these goals, we suggest a new approach for the construction
of ZKPCPs. We apply leakage-resilient circuit compilers (LRCCs) to construct
witness-indistinguishable PCPs (WIPCPs) for NP, a weaker variant of ZKPCPs
in which the simulation is not required to be efficient. We then apply the so-called
“FLS technique” [12] to convert these WIPCPs into computational ZKPCPs
(CZKPCPs) in the common random string (CRS) model, based on the exis-
tence of one-way functions (OWFs). In such a CZKPCP, the view of any query-
bounded PPT verifier can be efficiently simulated, in a way which is computa-
tionally indistinguishable from the actual view.

Informally, an LRCC compiles any circuit into a new circuit that operates
on encoded inputs, and withstands side-channel attacks in the sense that these
reveal nothing about the (properly encoded) input, other than what follows
from the output. Works on LRCCs obtained information-theoretic security for
different classes of leakage functions [18, 11, 25, 10, 15, 23].

Other than the theoretical interest in this question, our study of PCPs with
ZK properties is motivated by their usefulness for cryptographic applications. For
instance, ZKPCPs are the underlying combinatorial building blocks of succinct
zero-knowledge arguments, which have been the subject of a large body of recent
work (see, e.g., [3–5] and references therein).

A more direct application of WIPCPs and ZKPCPs is for implementing
efficiently verifiable zero-knowledge proofs in a distributed setting involving a
prover, verifier, and multiple (potentially corrupted) servers. In this setting a
prover can distribute a ZKPCP between the servers, allowing the verifier to ef-
ficiently verify the claim by polling a small random subset of the servers.4 In
this and similar situations, ZKPCPs that only offer security against an honest
verifier are not sufficient for protecting against colluding servers. We use our
non-adaptively verifiable WIPCPs and CZKPCPs for NP to construct 3-round
WI and CZK proofs for NP in this distributed setting, in which the total com-
munication with the verifier is sublinear in the input length. The WI proofs are

4 Unlike the ZKPCP model, the answers of malicious servers may depend on the
identity of the verifier’s queries, but this can be overcome using techniques of [19].



unconditional, whereas the CZK proofs are based on the existence of OWFs.
This should be contrasted with standard sublinear ZK arguments, that require
at least 4 rounds of interaction, and require the existence of collision resistant
hash functions. We refer the reader to, e.g., [17] for additional discussion of
ZKPCPs and their applications.

1.1 Our Results and Techniques

We now give a more detailed account of our results, and the underlying tech-
niques.
From LRCCs and PCPs to WIPCPs. Let L be an NP-language with a
corresponding NP-relation RL, and a boolean circuit C verifying RL. Recall
that the prover P in a PCP system for RL is given the input x and a witness y
for the membership of x in L, and outputs a proof π that is obtained by applying
some function fP to x, y. For our purposes, it would be more convenient to think
of fP as a function of the entire wire values w of C, when evaluated on x, y. In a
ZKPCP, few bits in the output of fP should reveal essentially nothing about the
wire values w, i.e., C should withstand “leakage” from fP . In general, we cannot
assume that C has this guarantee, but using an LRCC, C can be compiled into a
circuit Ĉ with this property. Informally, an LRCC is associated with a function
class L (the leakage class) and a (randomized) input encoding scheme E, and
compiles a deterministic circuit C into a deterministic circuit Ĉ, that emulates
C, but operates on an encoded input. It is leakage-resilient in the following sense:
for any input z for C, and any ` ∈ L, the output of ` on the wire values of Ĉ,
when evaluated on E (z), reveals nothing other than C (z). This is formalized
in the simulation-based paradigm (i.e., the wire-values of Ĉ can be efficiently
simulated given only C (z)).

We establish a connection between ZKPCPs and LRCCs. Assume the exis-
tence of an LRCC associated with a leakage class L, such that any restriction
fIP of fP to a “small” subset I of its outputs satisfies fIP ∈ L. Then the oracle
answers to the queries of a query-bounded verifier V correspond to functions
in L, since for every possible set I of oracle queries, the answers are fIP (w).
Therefore, if w is the wire values of a leakage-resilient circuit then the system is
ZK. This gives a general method of transforming standard PCPs into ZKPCPs:
P, V replace Cx = C (x, ·) (i.e., C with x hard-wired into it) with Ĉx; and P
proves that Ĉx is satisfiable by generating the PCP π from the wire values of
Ĉx.

This transformation crucially relies on the fact that Ĉx emulates Cx (e.g., if
Ĉx always outputs 1 then the resultant PCP system is not sound). However, in
current constructions of LRCCs (e.g., [18, 11, 23]), this holds only if the encoded
input of Ĉx was honestly generated. Moreover, there always exists a choice of an
ill-formed “encoding” that satisfies Ĉx (i.e., causes it to output 1). In our case
the prover generates the encoded input of Ĉx (the verifier does not know this
input), so a malicious prover can pick an ill-formed “encoding” that satisfies Ĉx,
causing the verifier to accept with probability 1. Therefore, soundness requires
that if Cx is not satisfiable, then there exists no satisfying input for Ĉx (either



well- or ill-formed), a property which we call SAT-respecting. The main tool we
use are SAT-respecting LRCCs, which we construct based on the LRCC of Faust
et al. [11]. To describe our construction, we first need to delve deeper into their
construction.

The LRCC of [11] transforms a circuit C into a circuit Ĉ that operates on
encodings generated by a linear encoding scheme, and emulates the operations of
C on these encodings. Leakage-resilience against functions in a restricted func-
tion class L is obtained by “refreshing” the encoded intermediate values of the
computation after every operation, using encodings of 0. (The LRCCs of [18, 23]
operate essentially in the same way.) The input of Ĉ includes sufficiently many
encodings of 0 to be used for the entire computation.5 However, by providing
Ĉ also with 1-encodings (i.e., encodings of 1), one can change the functionality
emulated by Ĉ. (In particular, if the encoding “refreshing” the output gate is a
1-encoding, the output is flipped.) This is not just an artifact of the construc-
tion, but rather is essential for their leakage-resilience argument. Concretely, to
simulate the wire values of Ĉ without knowing its input, the simulator some-
times uses 1-encodings, which rules out the natural solution of verifying that the
encodings used for “refreshing” are 0-encodings. We observe that if C were emu-
lated twice, it would suffice to know that at least one copy used only 0-encodings,
since then Ĉ is satisfiable only if the honestly-evaluated copy is satisfiable (i.e.,
C is satisfiable). At first, this may seem as no help at all, but it turns out that
by emulating C twice, we can construct what we call a relaxed LRCC, which is
similar to an LRCC, except that the simulator is not required to be efficient.
Specifically, assume that before compiling C into Ĉ, we would replace it with
a circuit C ′ that computes C twice, and outputs the AND of both evaluations.
Then Ĉ ′ would be relaxed leakage-resilient, since an unbounded simulator could
simulate the wire values of Ĉ ′ by finding a satisfying input zS for C, and hon-
estly evaluating Ĉ ′ on a pair of encodings of zS . Using a hybrid argument, we
can prove that functions in L cannot distinguish the simulated wire values WS

from the actual wire values WR of Ĉ ′ when evaluated on a satisfying input zR.
Indeed, we can first replace the input in the first copy from zR to zS (using
the leakage-resilience of the LRCC of [11] to claim that functions in L cannot
distinguish this hybrid distribution from WR), then do the same in the second
copy. By replacing the inputs one at a time, we only need to use 1-encodings in
a single copy.6 However, holding two copies of the original circuit still does not
guarantee that the evaluation in at least one of them uses only 0-encodings.

The natural solution would again be to add a sub-circuit verifying that the
encodings used are 0-encodings, but this sub-circuit should hide the identity of

5 Actually, [11] consider a model of continuous leakage, in which the circuit is invoked
multiple times on different inputs, and maintains a secret state. Their construction
uses tamper-proof hardware (called opaque gates) to generate the encodings of 0
used for refreshing. We consider the simpler model of one-time leakage on circuits
that operated on encoded inputs [18, 23], and as a result we can incorporate the
necessary encodings (used for refreshing) into the encoded input.

6 This technique is reminiscent of the “2-key trick” of [24], used to convert a CPA-
secure encryption scheme into a CCA-secure one.



the “correctly evaluated” copy. This is because the hybrid argument described
above first uses 1-encodings in the first copy (and 0-encodings in the second),
and then uses 1-encodings in the second copy (and only 0-encodings in the first).
Therefore, if functions in L could determine which copy uses only 0-encodings,
they could also distinguish between the hybrids. Instead, we describe an “obliv-
ious” checker T0, which at a high-level operates as follows. To check that either
the first or the second copy use only 0-encodings, it checks that for every pair
of encodings, one from the first copy, and one from the second, the product of
the encoded values is 0. To guarantee that leakage on T0 reveals no information
regarding which copy uses only 0-encodings, we use the LRCC of [11] to compile
T0 into a leakage-resilient circuit T̂0. This introduces the additional complication
that now we must also verify the encodings used to “refresh” the computation
in T̂0 (otherwise 1-encodings may be used, potentially changing the functional-
ity of T̂0 and rendering it useless). However, since T̂0 does not operate directly
on the inputs to Ĉ ′ (it operates only on the encodings used for “refreshing”),
we show that the “refreshing” encodings used in T̂0 can be checked directly (by
decoding the encoded values and verifying that they are 0). Additional tech-
nicalities arise since introducing these additional components prevents us from
using the LRCC of [11] as a black box (see Section 3 for additional details on the
analysis). Finally, we note that our circuit-compiler is relaxed -leakage-resilient
because in all hybrids, we need the honestly-evaluated copy to be satisfied, so the
simulator needs to find a satisfying input for C. This is also the reason that we
get WI PCPs, and not ZK PCPs. If we had a SAT-respecting LRCC, the trans-
formation described above would give a ZKPCP. However, we show that known
LRCCs withstanding global leakage [18, 11, 23] cannot be transformed into SAT-
respecting non-relaxed LRCCs (i.e., LRCCs with an efficient simulator), unless
NP ⊆ BPP. Intuitively, this is because these constructions admit a simulator
which is universal in the sense that it simulates the wire values of the compiled
circuit without knowing the leakage function, and the simulated values “fool”
all functions in L. Combining such a SAT-respecting LRCC with PCPs for NP
(through the transformation described above) would give a BPP algorithm of
deciding any NP-language.

Constructing WIPCPs for NP. Recall that our general transformation de-
scribed above relied on fP being in the function class L that is associated with
the SAT-respecting relaxed-LRCC. We observe that the PCP system of Arora
and Safra [2] has the property that every “small” subset of proof bits can be gen-
erated using a low-depth circuit of polynomial size over the operations ∧,∨,¬,⊕,
with “few” ⊕ gates. We use recent correlation bounds of Lovett and Srivinasan
[22], which roughly state that such circuits have negligible correlation with the
boolean function that counts the number of 1’s modulo 3 in its input, to con-
struct a SAT-respecting circuit compiler that is relaxed leakage-resilient with
respect to this function class. Combining this relaxed LRCC with our general
transformation, we prove the following, where NA-WIPCP denotes the class
of all NP-languages that have a PCP system with a negligible soundness er-
ror, polynomial-length proofs, a non-adaptive honest verifier that queries poly-



logarithmically many proof bits, and guarantee WI against (adaptive) malicious
verifiers querying a fixed polynomial number of proof bits.

Theorem 1 (NA-WIPCPs for NP). NP = NA−WIPCP.

Constructing CZKPCPs for NP. Using a general technique of Feige et al.
[12], and assuming the existence of OWFs, we transform our WIPCP into a
CZKPCP in the CRS model, in which the PCP prover and verifier both have
access to a common random string. Concretely, we prove the following result,
where NA-CZKPCP corresponds exactly to the class NA-WIPCP, except that
the WI property is replaced with CZK in the CRS model.

Corollary 1 (NA-CZKPCPs for NP). Assume that OWFs exist. Then NP =
NA− CZKPCP.

In Section 4 we describe a simple alternative approach for constructing CZKPCPs
by applying a PCP on top of a standard non-interactive zero-knowledge (NIZK)
proof. This should be contrasted with our main construction that only relies on
a OWF.

2 Preliminaries

Let F be a finite field, and Σ be a finite alphabet (i.e., a set of symbols). In the
following, function composition is denoted as f ◦g, where (f ◦ g) (x) := f (g (x)).
If F,G are families of functions then F ◦ G = {f ◦ g : f ∈ F, g ∈ G}. Vectors
will be denoted by boldface letters (e.g., a). If D is a distribution then X ← D,
or X ∈R D, denotes sampling X according to the distribution D. Given two
distributions X,Y , SD (X,Y ) denotes the statistical distance between X and
Y . For a natural n, negl (n) denotes a function that is negligible in n. For a
function family L, we sometimes use the term “leakage family L”, or “leakage
class L”. In the following, n usually denotes the input length, m usually denotes
the output length, d, s denote depth and size, respectively (e.g., of circuits, as
defined below), t is used to count ⊕ gates, and σ is a security parameter. We
assume that standard cryptographic primitives (e.g., OWFs) are secure against
non-uniform adversaries.

Definition 1 (Leakage-indistinguishability of distributions). Let D,D′

be finite sets, L = {` : D → D′} be a family of leakage functions, and ε > 0.
We say that two distributions X,Y over D are (L, ε)-leakage-indistinguishable,
if for any function ` ∈ L, SD (` (X) , ` (Y )) ≤ ε.

Remark 1. In case L consists of functions over different domains, we say that
X,Y over D are (L, ε)-leakage-indistinguishable if SD (` (X) , ` (Y )) ≤ ε for every
function ` ∈ L with domain D.

Encoding schemes. An encoding scheme E over alphabet Σ is a pair (Enc,Dec)
of algorithms, where the encoding algorithm Enc is a probabilistic polynomial-
time (PPT) algorithm that given a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂



for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm,
that given an x̂ of length n̂ in the image of Enc, outputs an x ∈ Σn. Moreover,
Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. We say that E is onto, if Dec is
defined for every x ∈ Σn̂(n).

An encoding scheme E = (Enc,Dec) over F is linear if for every n, n di-
vides n̂ (n), and there exists a decoding vector rn̂(n) ∈ Fn̂(n)/n such that the
following holds for every x ∈ Fn. First, every encoding y in the support of
Enc (x) can be partitioned into n equal-length parts y =

(
y1, ...,yn

)
. Second,

Dec (y) =
(
〈rn̂(n),y1〉, ..., 〈rn̂(n),yn〉

)
(where “〈·, ·〉” denotes inner product).

Given an encoding scheme E = (Enc,Dec) over F, and n ∈ N, we say that a
vector v ∈ Fn̂(n) is well-formed if v ∈ Enc (0n).
Parameterized encoding schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1σ, which
is used as a security parameter. Concretely, the encoding length depends also
on σ (and not only on n), i.e., n̂ = n̂ (n, σ), and for every σ the resultant
scheme is an encoding scheme (in particular, for every x ∈ Σn and every σ ∈
N, Pr [Dec (Enc (x, 1σ) , 1σ) = x] = 1). We call such schemes parameterized. A
parameterized encoding scheme is onto if it is onto for every σ. It is linear if it
is linear for every σ (in particular, there exist decoding vectors {rn̂(n,σ)}). For
n, σ ∈ N, a vector v ∈ Fn̂(n,σ) is well-formed if v ∈ Enc (0n, 1σ). We will only
consider parameterized encoding schemes, and therefore when we say “encoding
scheme” we mean a parameterized encoding scheme.

Definition 2 (Leakage-indistinguishability of functions and encod-
ings). Let L be a family of leakage functions, and ε > 0. A randomized function
f : Σn → Σm is (L, ε)-leakage-indistinguishable if for every x, y ∈ Σn, the
distributions f (x) , f (y) are (L, ε)-leakage-indistinguishable.

We say that an encoding scheme E is (L, ε)-leakage-indistinguishable if for
every large enough σ ∈ N, Enc (·, 1σ) is (L, ε)-leakage indistinguishable.

Circuits. We consider arithmetic circuits C over the field F and the set X =
{x1, ..., xn} of variables. C is a directed acyclic graph whose vertices are called
gates and whose edges are called wires. The wires of C are labled with functions
over X. Every gate in C of in-degree 0 has out-degree 1 and is either labeled
by a variable from X and is referred to as an input gate; or is labeled by a
constant α ∈ F and is referred to as a constα gate. Following [11], all other
gates are labeled by one of the following functions +,−,×, copy or id, where
+,−,× are the addition, subtraction, and multiplication operations of the field
(i.e., the outcoming wire is labeled with the addition, subtraction, or product
(respectively) of the labels of the incoming wires), and these vertices have fan-in
2 and fan-out 1; copy vertices have fan-in 1 and fan-out 2, where the labels of the
outcoming edges carry the same function as the incoming edge; and id vertices
have fan-in and fan-out 1, and the label of the outcoming edge is the same as
the incoming edge. We write C : Fn → Fm to indicate that C is an arithmetic
circuit over F with n inputs and m outputs. The size of a circuit C, denoted |C|,
is the number of wires in C, together with input and output gates. Shallow (d, s)



denotes the class of all depth-d, size-s, arithmetic circuits over F. Similarly,
ShallowB (d, s) denotes the class of all depth-d, size-s, boolean circuits with ∧,∨
gates (replacing the +,−,× gates of arithmetic circuits), id, copy, const0, and
const1 gates (with fan-in and fan-out as specified above), and ¬ gates with fan-
in and fan-out 1. Somewhat abusing notation, we use the same notations to
denote the families of functions computable by circuits in the respective class of
circuits. AC0 denotes all constant-depth and polynomial-sized boolean circuits
over unbounded fan-in and fan out ∧,∨,¬, const0 and const1 gates.

Definition 3. For F = F2, a circuit C : Fn → F over F2 is satisfiable if there
exists an x ∈ Fn such that C (x) = 1. For F 6= F2, C is satisfiable if there exists
an x ∈ Fn such that C (x) = 0.

2.1 Circuit Compilers

We define the notion of a circuit compiler. Informally, it consists of an encoding
scheme and a compiler algorithm, that compiles a given circuit into a circuit
operating on encodings, and emulating the original circuit. Formally,

Definition 4 (Circuit compiler over F). A circuit compiler over F is a pair
(Comp,E) of algorithms with the following syntax.

– E = (Enc,Dec) is an encoding scheme, where Enc is a PPT encoding algo-
rithm that given a vector x ∈ Fn, and 1σ, outputs a vector x̂. We assume
that x̂ ∈ Fn̂ for some n̂ = n̂ (n, σ).

– Comp is a polynomial-time algorithm that given an arithmetic circuit C over
F outputs an arithmetic circuit Ĉ.

We require that (Comp,E) satisfy the following correctness requirement. For

any arithmetic circuit C, and any input x for C, we have Pr
[
Ĉ (x̂) = C (x)

]
= 1,

where x̂ is the output of Enc
(
x, 1|C|

)
.

A boolean circuit compiler is a circuit compiler over F2.

We consider circuit compilers that are also “sound”, meaning that satisfying
(possibly ill formed) inputs for the compiled circuit exist only if the original
circuit is satisfiable.

Definition 5 (SAT-respecting circuit compiler). A circuit compiler
(Comp,E) is SAT-respecting if it satisfies the following soundness requirement
for every circuit C : Fn → F. If Ĉ = Comp(C) is satisfiable then C is satisfiable,
i.e., if Ĉ (x̂∗) = 0 for some x̂∗ ∈ Fn̂, then there exists an x ∈ Fn such that
C (x) = 0. (For F = F2, we require that if Ĉ outputs 1 on some input, then so
does C.)



2.2 Leakage-Resilient Circuit Compilers (LRCCs)

We consider circuit compilers whose outputs are leakage resilient for a class L
of functions, in the following sense. For every “not too large” circuit C, and
every input x for C, the wire values of the compiled circuit Ĉ, when evaluated
on a random encoding x̂ of x, can be simulated given only the output of C; and
functions in L cannot distinguish between the actual and simulated wire values.

Notation 2 For a Circuit C, a leakage function ` : F|C| → Fm for some natural
m, and an input x for C, [C, x] denotes the wire values of C when evaluated on
x, and ` [C, x] denotes the output of ` on [C, x].

Definition 6 (Relaxed LRCC). For a function class L, ε (n) : N→ R+, and
a size function S (n) : N → N, we say that (Comp,E) is (L, ε (n) ,S (n))-relaxed
leakage-resilient if there exists an algorithm Sim such that the following holds.
For all sufficiently large n’s, every boolean circuit C of input length n and size

at most S (n), every ` ∈ L of input length
∣∣∣Ĉ∣∣∣, and every x ∈ {0, 1}n, we have

SD
(
` [Sim (C,C (x))] , `

[
Ĉ, x̂

])
≤ ε (|x|), where x̂← Enc

(
x, 1|C|

)
.

Definition 6 is relaxed in the sense that (unlike [18, 11, 23]) Sim is not required
to be efficient.

The error in Definitions 5 and 6 is defined with relation to the input length n.
Both definitions can be naturally extended such that the compiler is also given
a security parameter κ, and the error depends on κ (and possibly also n).

3 SAT-Respecting Relaxed LRCC

In this section we construct a SAT-respecting relaxed LRCC. We first describe a
relaxed LRCC over any finite field F 6= F2, then use its instantiation over F3 to
construct a boolean relaxed LRCC (which we later use to construct WIPCPs and
CZKPCPs). Our starting point is the circuit-compiler of Faust et al. [11], which

we denote by
(
CompFRRTV,EFRRTV

)
. They present a general circuit-compiler

that guarantees correctness, and a stronger notion of leakage-resilience (infor-
mally, that the wire values of the compiled circuit can be efficiently simulated).
However, the correctness of their construction relies on the assumption that the
inputs to the compiled circuit are honestly encoded. Therefore, their construction
is not SAT-respecting, since by using ill-formed encoded inputs one can cause the
compiled circuit to output arbitrary values, even if other than that the compiler
was honestly applied to the original circuit. We describe a method of generalizing
their construction such that the circuit-compiler is also SAT-respecting. We first
give a high-level overview of the compiler of [11].
Gadgets. On input a circuit C, our compiler, and that of CompFRRTV, replace
every wire of C with a bundle of wires, and every gate in C with a gadget. More
specifically, a bundle is a string of field elements, encoding a field element ac-
cording to some encoding scheme E; and a gadget is a circuit which operates



on bundles and emulates the operation of the corresponding gate in C. A gad-
get has both standard inputs, that represent the wires in the original circuit,
and masking inputs, that are used to achieve privacy. More formally, a gadget
emulates a specific boolean or arithmetic operation on the standard inputs, and
outputs a bundle encoding the correct output. Every gadget G is associated with
a set MG of “well-formed” masking input bundles (e.g., in the circuit compiler
of [11], MG consists of sets of 0-encodings). For every standard input x, on input
a bundle x encoding x, and any masking input bundles m ∈MG, the output of
the gadget G should be consistent with the operation on x. For example, if G
computes the operation ×, then for every standard input x = (x1, x2), for every
bundle encoding x = (x1,x2) of x according to E, and for every masking input
bundles m ∈ MG, G (x,m) is a bundle encoding x1 × x2 according to E. Since
all the encoding schemes that we consider are onto, we may think of the mask-
ing input bundles m as encoding some set mask of values, in which case we say
that G takes |mask| masking inputs. The privacy of the internal computations in
the gadget will be achieved when the masking input bundles of the gadget are
uniformly distributed over MG, regardless of the actual values encoded by the
masking input bundles.

Gadget-based circuit-compilers. Ĉ = CompFRRTV (C) is a circuit in which
every gate is replaced with the corresponding gadget, and output gates are fol-
lowed by decoding sub-circuits (computing the decoding function of E). Recall
that the gadgets also have masking inputs. These are provided as part of the
encoded input of Ĉ, in the following way. EFRRTV uses an “inner” encoding

scheme Ein =
(
Encin,Decin

)
, where EncFRRTV uses Encin to encode the inputs

of C, concatenated with 0κ for a “sufficiently large” κ (these 0-encodings will
be the masking inputs to the gadgets); and DecFRRTV uses Decin to decode its
input, and discards the last κ symbols.

3.1 The Construction

Let C : Fn → F be the circuit to be compiled. In the following, let r = r (σ)
denote the number of masking inputs used in a circuit compiled according to
the compiler of [11]. Recall that our compiler, given a circuit C, generates two
copies C1, C2 of C (that operate on two copies of the inputs); compiles C1, C2

into circuits Ĉ1, Ĉ2 using the circuit-compiler of [11]; generates the circuit Ĉ ′

that outputs the AND of Ĉ1, Ĉ2; generates a circuit T0 verifying that at least
one of the copies Ĉ1, Ĉ2 uses well-formed masking inputs (i.e., its masking inputs
are well-formed vectors); compiles T0 into T̂0 using the circuit-compiler of [11];
and finally verifies “in the clear” that T̂0 uses well-formed masking inputs. We
now describe these ingredients in more detail.

Our first ingredient checks the validity of the masking inputs used in the
compiled circuit Ĉ ′. If m1,m2 are masking inputs used in the first and second
copies Ĉ1, Ĉ2 in Ĉ ′, respectively (i.e., these copies are given encodings of m1,m2),
then we compute vij = m1

i ×m2
j for every i, j ∈ [r], and check that all the vij ’s



are zero. To make this check easier, we will use the following “binarization”
sub-circuit, which outputs 1 if its input is 0, and outputs 0 on all other values.

Construction 3 (“Binarization” sub-circuit T ) T : F → F is defined as
T (z) = −

∏
06=a∈F (z − a), computed using O (|F|) × and constant gates arranged

in O (log |F|) layers.

Observation 4 T (0) = 1, and for every 0 6= z ∈ F, T (z) = 0.

The sub-circuit T0 described next checks the masking inputs m1,m2 used in
the copies of Ĉ, and outputs 1 if and only if one of m1,m2 is the all-zero string.
It computes all products of the form m1

i ×m2
j , then applies T to every product,

and computes the products of all these outputs.

Construction 5 (Oblivious mask-checking sub-circuit T0) T0 : Fr×Fr →
F is defined as follows. T0 (y, z) =

∏
i,j∈[r] T (yi × zj), computed using a multi-

plication tree of size O (r) and depth O (log r) (on top of the multiplication trees
used to compute T ).

Observation 6 Since the outputs of T are in {0, 1}, T0 (y, z) = 1 if and only if
for every i, j ∈ [r], T (yi, zj) = 1 (which by Observation 4 happens if and only if
yi × zj = 0), otherwise it outputs 0.

Our final ingredient is a sub-circuit TV checking the masking inputs used in
the compiled sub-circuit T̂0. At a high level, TV decodes every masking input;
uses T to map the decoded values into {0, 1} such that only 0 is mapped to
1; and multiplies all these values, to guarantee that all the masking inputs are
well-formed. In the following, r0 = r0 (σ) denotes the number of masking inputs
used in T̂0.

Construction 7 (Non-oblivious mask-checking sub-circuit TV ) Let n, σ,

κ ∈ N, n̂ = n̂ (n+ κ, σ), and
{
dn̂
}

be the decoding vectors of Ein. We define

the decoding sub-circuit DV : Fn̂ → F corresponding to dn̂ as follows: DV (v) =
〈dn̂, v〉, where 〈·, ·〉 denotes inner-product. DV is computed using any correct
decoding circuit with O (n̂) gates arranged in O (log n̂) layers.

We define TV :
(
Fn̂
)r0 → F as follows: for R = (r1, ..., rr0) where ri ∈ Fn̂ for

every 1 ≤ i ≤ r0, TV (R) =
∏
i∈[r0] T (DV (ri)). TV is computed using O (r0) ×

gates, arranged in a tree of depth O (log r0) (on top of the sub-circuits T ◦ DV ).

Observation 8 Let R = (r1, ..., rr0) ∈
(
Fn̂
)r0

, then for every i ∈ [r0], DV (ri) =
vi, where vi is the value that ri encodes. Since the outputs of T are in {0, 1},
T (DV (ri)) = 1 if and only if vi = 0, so TV = 1 if and only if all ri’s are
well-formed, otherwise it outputs 0.

Our circuit-compiler (Construction 9) uses the ingredients described above.
Comp first compiles 2 copies C1, C2 of C, and T0, into Ĉ1, Ĉ2, T̂0 (respectively),
using the compiler of [11]. Then, it generates a flag bit indicating whether Ĉ1, Ĉ2



have the same output, and the masking inputs used in Ĉ1, Ĉ2, T̂0 are well-formed.
If so, the output is that of Ĉ1, otherwise it is 1. (Recall that an arithmetic circuit
is satisfied iff its output is 0.) The encodings scheme generates encoded inputs for
both copies Ĉ1, Ĉ2, as well as sufficient masking inputs to be used in Ĉ1, Ĉ2, T̂0.

Construction 9 ((L, ε (n) ,S (n))-LRCC over F) The circuit compiler
(Comp,E = (Enc,Dec)) is defined as follows. Let r = r (σ) , r0 = r0 (σ) : N → N
be parameters whose value will be set later.

Let Ein =
(
Encin,Decin

)
be a linear encoding scheme over F, with encod-

ings of length n̂in = n̂in (n, σ), and decoding vectors {dn̂in}. Then Enc (x, 1σ) =
(x̂1, x̂2), where x̂i ← Encin ((x, 0r+r0) , 1σ); and Dec ((x̂1, x̂2) , 1σ) computes
Decin (x̂1, 1

σ), and discards the last r + r0 symbols. We use n̂ = n̂ (n, σ) to de-
note the length of encodings output by Enc, and n̂1 = n̂1 (σ) := n̂ (1, σ). (No-
tice that n̂ (n, σ) = 2n̂in (n+ r + r0, σ).) For (x̂1, x̂2) ← Enc (x, 1σ), we denote
x̂i =

(
x̂ini ,Ri,R

0
i

)
, where x̂ini is the encoding of x, and Ri,R

0
i are encodings

of 0r, 0r0 , respectively. (R0
2 is not used in the construction, but it is part of x̂2

because the same internal encoding scheme Encin is used to generate x̂1, x̂2.)

Let
(
CompFRRTV,EFRRTV

)
be the circuit compiler of [11]. Comp on input a

circuit C : Fn → F, outputs the circuit Ĉ : Fn̂(n,|C|) → F defined as follows.

– Let C1, C2 be two copies of C, Ĉi = CompFRRTV (Ci) for i = 1, 2, and
T̂0 = CompFRRTV (T0).

– Let f
((
x̂in1 ,R1,R

0
1

)
,
(
x̂in2 ,R2,R

0
2

))
:= T

(
Ĉ1

(
x̂in1 ,R1

)
− Ĉ2

(
x̂in2 ,R2

))
×

T̂0
(
(R1,R2) ,R0

1

)
× TV

(
R0

1

)
. (f = 1 if Ĉ1, Ĉ2 have the same output, and

in addition the masking inputs used in T̂0, and at least one of Ĉ1, Ĉ2, are
well-formed. Otherwise, f = 0.) Then:

Ĉ
((
x̂in1 ,R1,R

0
1

)
,
(
x̂in2 ,R2,R

0
2

))
=
(
1− f

((
x̂in1 ,R1,R

0
1

)
,
(
x̂in2 ,R2,R

0
2

)))
+f
((
x̂in1 ,R1,R

0
1

)
,
(
x̂in2 ,R2,R

0
2

))
· Ĉ1

(
x̂in1 ,R1,R

0
1

)
(Notice that the output is Ĉ1

(
x̂in1 ,R1,R

0
1

)
if f = 1, otherwise it is 1.)

Let rFRRTV denote the maximal number of masking inputs used in a gadget used
by the compiler of [11], and S0 (r) denote the size of T0. Then r (σ) = σ · rFRRTV

and r0 (σ) = σ · S0
(
rFRRTV

)
.

Next, we briefly analyze the properties of the construction. (The full analysis
appears in the full version.)
SAT-respecting. If the masking inputs of T̂0 are ill-formed, then TV resets
the flag, so the output is 1 (i.e., Ĉ is not satisfied). Conditioned on T̂0 having
well-formed masking inputs, the correctness of the compiler of [11] (applied to
T̂0)), guarantees that the flag is reset if the masking inputs of both Ĉ1, Ĉ2 are
ill-formed. Finally, if at least one of Ĉ1, Ĉ2 has well-formed masking inputs, and
Ĉ is satisfied (in particular, the flag is not reset), then there exists an x ∈ Fn



that satisfies the correctly evaluated copy, and therefore also satisfies C. We note
that the encoding scheme should be onto, otherwise computations in compiled
circuits may not correspond to computations in the original circuits (since the
“encoded” input may not correspond to a valid input for the original circuit).

Relaxed leakage-resilience. At a high level, on input C : Fn → F, and
C (x) for x ∈ Fn, Sim finds a y ∈ Fn such that C (y) = C (x) (this is the rea-
son that Sim is unbounded); generates Ĉ = Comp (C) and ŷ ← Enc

(
y, 1|C|

)
;

honestly evaluates Ĉ on ŷ; and outputs the wire values of Ĉ. If E is leakage-
indistinguishable for a leakage class which is “somewhat stronger” than L, then

for every ` ∈ L, SD
(
`
[
Ĉ, x̂

]
, `
[
Ĉ, ŷ

])
≤ ε (n), where x̂ ← Enc

(
x, 1|C|

)
. Infor-

mally, this follows from a hybrid argument, where we first replace the input of
Ĉ1 from x̂ to ŷ, and then do the same for Ĉ2. (This is also the reason that we do
not explicitly verify that Ĉ1, Ĉ2 are evaluated on encodings of the same input.)

To show that each adjacent pair of hybrids is leakage-indistinguishable, we
first use an argument similar to that of [11], where we first replace the bundles
of Ĉ1 or Ĉ2 (depending on the pair of hybrids in question) that are external to
the gadgets (i.e., bundles that correspond to wires of the original circuit C) with
random encoding of the “correct” values; and then replacing the bundles internal
to the gadgets of Ĉ1 (or Ĉ2) with simulated values. However, our compiled circuit
Ĉ consists also of T̂0, TV , so the analysis in our case is more complex, and in
particular we cannot use the leakage-resilience analysis of [11] as a black box. To
explain the difficulty in generating these wires values, we need to take a closer
look at their leakage-resilience analysis.

Recall that the leakage-indistinguishability proof for every pair of adjacent
hybrids contains in itself two series of hybrid arguments, one replacing external
bundles, and the other replacing internal bundles. In the first case, leakage-
indistinguishability is reduced to that of the underlying encoding scheme Ein,
whereas in the second it is reduced to the leakage-indistinguishability of the
actual and simulated wire values of a single gadget. Specifically, the leakage
function `in in the reduction is given either an encoding of a single field element,
or the wire values of a single gadget; uses its input to generate all the wire
values of the compiled circuit ; and then evaluates ` on these wire values. Thus,
if originally we could withstand leakage from some function class Lin, and the
additional wires can be generated by a function class LR, then after the reduction
we can withstand leakage from any function class L such that L ◦ LR ⊆ Lin.
In particular, if Lin consists of functions computable by low-depth circuits, and
computing the internal wires of T̂0, TV require deep circuits (consequently, LR
necessarily contains functions whose computation requires deep circuits), then
we have no leakage-resilience. To overcome this, we show how to simulate these
additional wires using shallow circuits. This is possible because (due to the way
in which the hybrids are defined) the masking inputs in at least one copy are well-
formed. Specifically, the structure of T̂0, TV guarantees that conditioned on the
masking inputs of Ĉ2 being well-formed, these wire values can be computed by
shallow circuits. When the masking inputs of Ĉ2 are ill-formed, we are guaranteed
that the masking inputs of Ĉ1 are well-formed. Conditioned on this event, we



show an alternative method of computing the internal wires of T̂0, TV , which can
be done by shallow circuits. Thus, we get the following result.

Proposition 1 (SAT-respecting relaxed LRCC over F). Let L,LE be fam-
ilies of functions, S (n) : N → N be a size function, and ε (n) : N → R+.

Let Ein =
(
Encin,Decin

)
be a linear, onto, (LE, ε (n))-leakage-indistinguishable

encoding scheme with parameters n = 1, σ and n̂ = n̂ (σ), such that
LE = L ◦ Shallow

(
7, O

(
n̂4 (S (n)) · S (n)

))
. Then there exists a SAT-respecting,

(L, 8ε (n) · S (n) ,S (n))-relaxed-LRCC over F. Moreover, For every C : Fn → F,

the compiled circuit Ĉ has size
∣∣∣Ĉ∣∣∣ = O

(
|F| · n̂5 (S (n)) · |C|2

)
.

3.2 A SAT-Respecting Relaxed LRCC Over F2

In this section we describe a relaxed LRCC over F2. Our starting point is the
circuit-compiler of Construction 9 over the field F, which we apply to an “arith-
metic version” of the boolean circuit. At a high-level, we construct our circuit
compiler over F2 as follows: we represent field elements of F using bit-strings; and
operations +,−,×, id, copy, constα, α ∈ F as functions over dlog |F|e-bit strings.
(For now, we assume that there exist gates operating on dlog |F|e-bit strings and
computing these operations.) We “translate” boolean circuits into arithmetic
circuits with such operations, and apply the circuit-compiler of Construction 9
(where the field operations are implemented using the boolean operations de-
scribed in Section 2) to the “translated” circuit. (We note that leakage-resilience
deteriorates when an arithmetic compiler is transformed to a boolean one, but
only by a constant factor in the depth and size of circuits computing the leakage
functions.) Concretely, we set F = F3.
From boolean circuits to arithmetic circuits. Our boolean circuit-
compiler operates on boolean circuits, but employs an arithmetic circuit-compiler
operating on arithmetic circuits over F. Therefore, we first transform the boolean
circuit into an equivalent arithmetic circuit in the natural manner (i.e., repre-
senting every bit operation as a polynomial over the arithmetic field).

The field elements of F, and the arithmetic operations over F that are used
by the arithmetic relaxed LRCC (Construction 9) will be represented using bit
strings and boolean operations, respectively.
Representing field elements as bit strings. We can use any 1:1 trans-
formation Eb : F3 → {0, 1}2, such that every bit string is associated with a
field element. This is required for the SAT-respecting property, to guarantee
that whatever values are carried on the wires of the boolean circuit, they can
be “translated” into wires of the arithmetic circuit over F3, and is achieved by
defining a “reverse” mapping E−1b .
Implementing field operations. The compiled arithmetic circuit uses the
field operations +,−,×, and also copy, id and constα, α ∈ F3. These operations
are represented using bit operations over bit strings generated by Eb. Specifically,
we think of every field operation as a boolean function with 4 inputs (a pair of
2-bit strings representing the pair of input field elements) and 2 outputs (a 2-bit



string representing the output field element). We stress that though an honest
construction over bits uses only 3 of the 4 possible 2-bit strings encoding field
elements (i.e., only the strings in the image of Eb as defined, for example, in
Construction 11), the function representing a field operation in F3 should be
defined to output the correct values on all 2-bit strings. The truth table of each
output bit has constant size, and can be represented by a constant-size, depth-3
boolean circuit. copy, id and constα gates are handled similarly. Therefore, the
size (depth) of each gadget (and consequently, of the entire compiled circuit)
increases by a constant multiplicative factor (specifically, by a factor of 3).

Notice that representing boolean circuits using arithmetic circuits introduces
the following obstacle. For a satisfiable circuit Ĉ, we are only guaranteed the
existence of an x ∈ Fn satisfying the original arithmetic circuit, whereas for
boolean circuits we require that x ∈ {0, 1}n. Therefore, we need an additional
“input checker” sub-circuit that will guarantee that the inputs to the compiled
circuit encode binary strings.

Definition 7 (Input-checker T in). T in : F → F is defined as follows:
T in (z) = T

(
z2 − z

)
.

Observation 10 For every z ∈ F3, T in (z) ∈ {0, 1}, and T in (z) = 1 if and only
if z ∈ {0, 1}.

Construction 11 (SAT-respecting relaxed LRCC) Let Eb : F3 → {0, 1}2
such that Eb (0) = 00, Eb (1) = 01, and Eb (2) = 11, and let E−1b : {0, 1}2 → F3

such that E−1b (00) = 0, E−1b (01) = E−1b (10) = 1, and E−1b (11) = 2. Let T ′ be
an algorithm transforming boolean circuits into arithmetic circuits over F3, and
(Comp,E = (Enc,Dec)) be the circuit compiler over F3 of Construction 9. The

circuit compiler over F2 is
(
Compb,Eb =

(
Encb,Decb

))
, where:

– Encb = Eb ◦ Enc and Decb = Dec ◦ E−1b
– Compb on input C : {0, 1}n → {0, 1}:
• Uses T ′ to transform C into an equivalent arithmetic circuit C ′ : Fn3 →
F3.

• Constructs the circuit C ′′ : Fn3 → F3 such that C ′′ (x1, ..., xn) = 1 −(
C ′ (x1, ..., xn)×

(
×ni=1T in (xi)

))
. (Notice that C ′′ (x1, ..., xn) outputs 0

if and only if C ′ (x1, ..., xn) = 1 and x1, ..., xn ∈ {0, 1}.)
• Computes Ĉ ′′ = Comp (C ′′).
• Replaces every gate in Ĉ ′′ with a constant-size, depth-3 boolean circuit

computing the truth table of the gate operation. Compb can use any cor-
rect circuit, as long as these circuits are used consistently (i.e., for every
gate the same circuit is used to replace all appearances of the gate in
Ĉ ′′).

• Denote the output of Ĉ ′′ by e ∈ F3, represented by the string (e1, e2) ∈
{0, 1}2. Then Compb outputs the circuit Ĉb obtained from Ĉ ′′ by applying
a ∨ gate, followed by a ¬ gate, to the output of Ĉ ′′. (This reduces the
output string of Ĉ ′′ to a single bit, and flips the output of Ĉ ′′, which is
required due to the negation added in step 2.)



We use Ĉ1,b, Ĉ2,b, T̂0,b, TV,b to denote the components of Ĉb corresponding to

Ĉ1, Ĉ2, T̂0, TV , respectively.

Observation 12 Ĉb (x̂) ∈ {0, 1} for every x̂. Moreover, Ĉb (x̂) = 1 if and only
if Ĉ ′′ (x̂) = 0. If Comp is SAT-respecting, then this guarantees that C ′′ (x) = 0
for some x ∈ F3. The definition of C ′′, and the correctness of T ′, guarantees
that x ∈ {0, 1}n, and that C ′ (x) = C (x) = 1.

In the full version, we prove that if Construction 9 is a SAT-respecting
relaxed-LRCC over F3, then so is Construction 11 (over F2), against a somewhat-
weaker leakage family. The leakage family is weaker because relaxed leakage-
resilience is proved by reduction to the relaxed leakage-resilience of Construc-
tion 9 (the leakage function in the reduction, given the wire values of the arith-
metic compiled circuit, generate the internal wires emulating these operations
using boolean operations). Formally, we obtained the following.

Proposition 2. Let L,LE be families of functions, S (n) : N→ N be a size func-
tion, and ε (n) : N→ R+. Let Ein be a linear, onto encoding scheme over F3 with
parameters n = 1, σ and n̂ = n̂ (σ), that is (LE, ε (n))-leakage-indistinguishable,

and LE = L ◦ ShallowB
(

33, O
(
n̂5 (S (n)) · S (n)

2
))

. Then there exists a con-

stant c > 0, and a SAT-respecting, (L, c · ε (n) · S (n) ,S (n))-relaxed-LRCC over

F2. Moreover,
∣∣∣Ĉb∣∣∣ = O

(
n̂5 (S (n)) |C|2

)
.

Taking Ein to be the parity encoding in the previous proposition, and using a
result of H̊astad [16] that AC0 circuits (i.e., constant-depth and polynomial-sized
boolean circuits with unbounded fan-in ∧,∨ and ¬ gates) cannot distinguish
parity encodings of 0 and 1, we obtain an LRCC against AC0-leakage. (We note
that the compiler can also be made to withstand leakage that outputs more than
one bit, using a result of Dubrov and Ishai [9]. The details of this construction,
and the proof of Corollary 2, are deferred to the full version.)

Corollary 2. There exists a SAT-respecting
(
AC0, negl (n) , poly (n)

)
-relaxed-

LRCC over F2.

3.3 Withstanding Leakage from AC0 Circuits with ⊕ Gates

Recall that AC0 denotes the class of constant-depth, polynomial-sized boolean
circuits over unbounded fan-in and fan-out ∧,∨,¬ gates. In this section we de-
scribe a SAT-respecting circuit-compiler withstanding leakage computed by AC0

circuits, augmented with a sublinear number of ⊕ gates of unbounded fan-in
and fan-out. Concretely, we use Construction 11, where the underlying arith-
metic LRCC over F3 is instantiated with the encoding scheme Ein that maps an
element γ ∈ F3 into a vector v ∈ {0, 1}k (for some natural k), which is random
subject to the constraint that the number of 1’s in v is congruent to γ modulo
3. We show, by reduction to correlation bounds of [22], that AC0 circuits, aug-
mented with a sublinear number of ⊕ gates, have a negligible advantage in distin-
guishing between random encodings of 0 and 1 according to Ein. (This reduction



is non-trivial and appears in Appendix A.) Using the leakage-indistinguishability
of Ein, we prove the existence of a circuit compiler withstanding leakage from
AC0 circuits that have several output bits and are augmented with a sublinear
number of ⊕ gates. (The proof appears in the full version.)

Theorem 13. For input length parameter n, leakage length bound n̂ = n̂ (n),
size bound s = s (n), output length bound m = m (n), parity gate bound t = t (n),

and depth bound d, let Lmn̂,d,s,⊕t =
⋃
n∈N L

m(n)
n̂(n),d,s(n),⊕t(n), where Lm0

n̂0,d0,s0,⊕t0 de-

notes the class of boolean circuits of input length n̂0 over ¬ gates and unbounded
fan-in ∧,∨,⊕ gates, whose depth, size, output length, and number of parity gates
are bounded by d0, s0,m0, t0, respectively. Then for every positive constants d, c,
polynomials m, t, and polynomial size bound s′ = s′ (n), there exists a polyno-

mial l (n), such that there exists a SAT-respecting
(
Lml,d,lc,⊕t, 2−n

c

, s′ (n)
)

-relaxed

LRCC over F2, which on input a circuit C : {0, 1}n → {0, 1} of size |C| ≤ s′ (n)
outputs a circuit Ĉ of size |Ĉ| ≤ l (n).

4 WIPCPs and CZKPCPs

Given a relation R = R (x,w), we let LR := {x : ∃w, (x,w) ∈ R}. A probabilistic
proof system (P, V ) for an NP-relation R = R (x,w) consists of a PPT prover P
that on input (x,w) outputs a proof π (in standard probabilistically checkable
proofs the prover is deterministic, but our constructions will crucially rely on
the prover being probabilistic), and a probabilistic verifier V that given input x
and oracle access to a proof π outputs either accept or reject. We say that V is
q-query-bounded if V makes at most q queries to π.

WIPCPs. A probabilistic proof system is a WIPCP for an NP-relation R =
R (x,w) if it satisfies the following. First, when given x ∈ LR, and oracle ac-
cess to an honestly generated proof, the verifier accepts with probability 1 (this
is called completeness). Second, given x /∈ LR, the verifier rejects except with
some probability εS , regardless of its “proof” oracle (this is called εS-soundness).
Thirdly, for every (possibly malicious, possibly adaptive) q∗-query bounded ver-
ifier V ∗, every x ∈ LR, and every pair w1, w2 of witnesses for x, the view of V ∗

when verifying an honestly generated proof for (x,w1) is εZK-statistically close
to its view when verifying an honestly generated proof for (x,w2) (this is called
(εZK, q

∗)-WI ). A WIPCP is a non-adaptive WIPCP (NA-WIPCP) system for
a relation R = R (x,w), if the honest verifier is non-adaptive. In the follow-
ing, we denote by NA−WIPCP [r, q, q∗, εS , εZK, `] the class of NP-languages that
admit an NP-relation R with a non-adaptive (εZK, q

∗)-WIPCP, in which the
prover outputs proofs of length `, the honest verifier tosses O (r) coins, queries
O (q) proof bits, and rejects false claims except with probability at most εS .
We use PCP [r, q, ε, `] to denote the class of NP-languages admitting a stan-
dard (i.e., non-WI) PCP system with the same properties, and write R ∈
PCP [r, q, ε, `] to denote that LR ∈ PCP [r, q, ε, `]. We denote NA−WIPCP :=
NA−WIPCP[poly log n, poly log n, poly (n) , negl (n) , negl (n) , poly (n)].



We describe a transformation from PCPs to NA-WIPCPs, which can be
applied to any PCP system in which the proof is obtained from the witness
through an “easy” function (we formalize this notion below). Recall that a stan-
dard PCP π can be generated from the wire values [CR, (x,w)] of the verification
circuit CR of the relation, on input x and witness w. If the function f taking
[CR, (x,w)] to π is in a function class L, then the system can be made WI as fol-
lows. The prover and verifier both compile CR (x, ·) (i.e., CR with x hard-wired
into it) into a SAT-respecting circuit ĈR that is relaxed leakage-resilient against
L. The prover then samples a random encoding ŵ of w, and generates the PCP

π = f
[
ĈR, ŵ

]
. The verifier probabilistically verifies that ĈR is satisfiable by

reading few symbols of π, which (if the verifier is non-adaptive) correspond to
applying a leakage function from L to the wire values of ĈR. This gives the fol-
lowing result. (The detailed construction, and the proof of Proposition 3, appear
in the full version.)

Proposition 3. Let n be a length parameter, εS , εZK ∈ [0, 1], S = S (n) be a size
function, q∗ = q∗ (n) be a query function, and g(·) be a polynomial. Let L be a
family of leakage functions, such that:

– there is a SAT-respecting (L, εZK,S)-relaxed LRCC (Comp,E) satisfying
|Comp(C)| ≤ g (|C|);

– there is a PCP [r (n) , q (n) , εS , ` (n)] system for 3SAT, such that for every
(ϕ,W ) ∈ 3SAT, every subset Q of q∗ bits of an honestly-generated proof
π = π (ϕ,W ) is computable from W by a function fϕ,Q ∈ L.

Then for every NP-relation R = R (x,w) with verification circuit CR of size
at most S, we have that R ∈ NA−WIPCP [r (t) , q (t) , q∗, εS , 2εZK, ` (t)], where
t = O

(
g
(∣∣CR∣∣)), and WI holds against non-adaptive verifiers.

In the full version we use techniques of [7] to generalize the WI property of
Proposition 3 to adaptive verifiers, while increasing the statistical distance of the
WI by a multiplicative factor of roughly `q

∗
(all other parameters remain un-

changed). Then, we prove that the PCP system of [2] for 3SAT has the property
that every proof bit is generated from the NP-witness by an AC0 circuit, aug-
mented with “few” ⊕ gates. Theorem 1 follows by combining these two results
with Theorem 13.
CZKPCPs in the CRS model. A probabilistic proof system is a CZKPCP in
the CRS model for an NP-relation R = R (x,w) if the prover and verifier have
access to a common random string s; correctness holds for any s; soundness
holds for a uniformly random s; and there exists a PPT simulator Sim such that
for every q∗-query bounded verifier V ∗, and every x ∈ LR, Sim (x) is computa-
tionally indistinguishable from the joint distribution of a uniformly random s,
and the view of V ∗ given s and oracle access to an honestly generated proof for
x (this is called computational ZK (CZK)). Similar to NA-WIPCPs, a CZKPCP
system is non-adaptive (NA-CZKPCP) if the honest verifier is non-adaptive.
Applying the techniques of [12] to Proposition 3, we obtain a general transfor-
mation from NA-WIPCPs to NA-CZKPCPs, and Corollary 1 follows by using
the NA-WIPCP of Theorem 1 (see the full version for details).



We note that a simple alternative construction of CZKPCP for NP can be
obtained by applying a standard PCP on top of a standard NIZK proof [6, 13].
Concretely, the CZKPCP prover generates a PCP for the NP-claim “there exists
a NIZK for the claim x ∈ LR, relative to the CRS s, that would cause the NIZK-
verifier to accept”, where the witness is the NIZK proof string. Since the NIZK
itself is CZK, the resultant PCP is also CZK. However, NIZK proofs for NP are
not known to follow from the existence of one-way functions, and can currently
be based only on much stronger assumptions such as the existence of trapdoor
permutations [12].
The (im)possibility of SAT-respecting non-relaxed LRCCs. Known
constructions of LRCCs withstanding global leakage [18, 11, 23] guarantee a uni-
versal simulation property, in the sense that the simulator generates the sim-
ulated wire values without knowing the identity of the leakage function; and
these values are guaranteed to be indistinguishable from the actual wire values,
for every leakage function in the leakage class. Consequently, our construction
(which is based on the LRCC of [11]), also guarantees this universal simulation
property. Our general transformation from SAT-respecting relaxed LRCCs to
WIPCPs can also be applied to a SAT-respecting non-relaxed LRCC, in which
case we would get ZK PCP for all NP, with a universal PPT simulator that
generates a simulated proof without seeing the queries of the verifier. This simu-
lator can be used to decide the NP-language, so the existence of SAT-respecting
LRCCs with a universal simulator would imply that NP ⊆ BPP. (See the full
version for additional details.) We note that our transformation of Section 4
does not require the LRCC simulator to be universal. However, the construction
of (SAT-respecting) non-relaxed LRCCs with a non-universal simulator would
require developing new techniques for constructing LRCCs.

4.1 Distributed ZK and WI Proofs

We use our WIPCPs and CZKPCPs to construct 3-round distributed WI and
CZK proofs (respectively) for NP in a distributed setting, in which the PPT
prover P and verifier V are aided by m polynomial-time servers S1, ..., Sm. We
call such systems m-distributed proof systems. We note that P has input (x,w),
V has input x, and the servers have no input. Our motivation for studying proofs
in a distributed setting is to minimize the round complexity, and underlying as-
sumptions, of sublinear ZK proofs. Concretely, it is known that assuming the
existence of collision resistant hash functions, there exist 2-party 4-round sublin-
ear ZK arguments for NP [20, 17]. (Arguments guarantee soundness only against
bounded malicious provers.) We show that in the distributed setting, there exist
3-round sublinear CZK (respectively, WI) proofs for NP, assuming the existence
of OWFs (respectively, unconditional). Thus, the distributed setting allows us to
improve previous results in terms of round complexity, underlying assumptions,
and soundness type.
Distributed CZK\WI proof systems. An m-distributed proof system is
a (t,m)-distributed ZK proof system for an NP-relation R if it satisfies the
following properties. First, if all parties are honest and (x,w) ∈ R then V accepts



x with probability 1 (the correctness property). Second, if x /∈ LR then V rejects
x except with negligible probability, even if the prover is corrupted and colludes
with at most t corrupted servers (the soundness property). Thirdly, for every
adversary A corrupting V and t′ ≤ t servers there exists a PPT simulator Sim
such that for every x ∈ LR, Sim (x) is computationally indistinguishable from
the the view of A in the protocol execution, when it has input x. This notion
can be naturally relaxed to WI, or CZK in the CRS model.

We use WIPCPs (respectively, CZKPCPs) to construct a 3-round
distributed-WI proof system (respectively, CZK proof system in the CRS model)
which, at a high level, operates as follows. In the first round the prover dis-
tributes a WIPCP (respectively, a CZKPCP) between the servers, and in the
second and third rounds the verifier and servers emulate the WIPCP (respec-
tively, CZKPCP) verification procedure (the verifier sends the proof queries of
the WIPCP or CZKPCP verifier, and the servers provide the corresponding
proof bits). This overview is an over-simplification of the construction: the veri-
fication procedure of the WIPCP (respectively, CZKPCP) cannot be used as-is
since it only guarantees soundness when the verification is performed with a
proof oracle, whereas corrupted servers can determine their answers after seeing
the queries of the verifier. We overcome this by using techniques of [19] (a more
detailed description and analysis of these distributed proof systems appears in
the full version). Thus, we obtain the following results.

Theorem 14 (Sublinear distributed WI proofs). For every NP-relation R,
and polynomial t (n), there exists a polynomial m (n) > t (n) such that R has a
3-round sublinear (t,m)-distributed WI proof system, where n is the input length.

Theorem 15 (Sublinear distributed CZK proofs in the CRS model).
Assume that OWFs exist. Then for every NP-relation R, and polynomial t (n),
there exists a polynomial m (n) > t (n) such that R has a 3-round sublinear
(t,m)-distributed CZK proof system in the CRS model, where n is the input
length.

These constructions crucially rely on the non-adaptivity of the honest
WIPCP (respectively, CZKPCP) verifier (otherwise we would need at least 4
rounds, since rounds cannot be compressed). Moreover, the verifier may collude
with a subset of servers, so the PCP should be WI (respectively, CZK) against
malicious verifiers.
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A A Leakage-Indistinguishable Encoding Scheme

In this section we define the encoding scheme that is used to prove Theorem 13,
and use correlation bounds of [22] to show that it is leakage-indistinguishable
against leakage computable by AC0 circuits, augmented with few ⊕ gates.

Notation 16 For γ ∈ {0, 1, 2} and n ∈ N, Unγ denotes the uni-

form distribution over
{
v ∈ {0, 1}3n : #1 (v) ≡ γ mod 3

}
; #1 (v) denotes

the number of 1’s in v; and Un1,2 denotes the uniform distribution over{
v ∈ {0, 1}3n : #1 (v) 6≡ 0 mod 3

}
.

Definition 8. We define an encoding scheme E3 = (Enc3,Dec3) over F3 such
that for every e ∈ F3, Enc3 (e, 1n) is distributed according to Une ,7 and Dec3 (v)
returns (#1 (v) mod 3). Notice that E3 is linear, with decoding vectors

{
13n
}

,
and consequently also onto.

The leakage class we consider is “AC0, augmented with few ⊕ gates”:

Definition 9 (Lmn,d,s,⊕t leakage family). Let n ∈ N be a length parameter,
d ∈ N be a depth parameter, s ∈ N be a size parameter, and t ∈ N be a parity
gate bound. The family Ln,d,s,⊕t consists of all functions computable by a boolean
circuit C : {0, 1}n → {0, 1} of size at most s and depth d, with unbounded fan-in
and fan-out ∧,∨,¬,⊕ gates, out of which at most t are ⊕ gates. The family
Ld,s,⊕t of functions is defined as Ld,s,⊕t = ∪n∈NLn,d,s,⊕t.

For a length parameter m ∈ N, and a function f : {0, 1}n → {0, 1}m, let
fi (x1, ..., xn) , i ∈ [m] denote the i’th output bit of f . We use the following
notation: Lmn,d,s,⊕t = {f : {0, 1}n → {0, 1}m : ∀1 ≤ i ≤ m, fi ∈ Ln,d,s,⊕t}, and

Lmd,s,⊕t := ∪n∈N
(
Lmn,d,s,⊕t

)
.

We use a correlation bound of Lovett and Srinivasan [22, Theorem 6] which,
informally, states that AC0 circuits, augmented with “few” ⊕ gates, have negli-
gible correlation with the boolean function MOD3 where MOD3 (v) = 0 if and

7 Enc3 can be computed efficiently by repeating the following procedure n2 times. Pick
v ∈ {0, 1}n uniformly at random, compute t := #1 (v), and if t = e then return v. If
all iterations fail, return a fixed ve ∈ {0, 1}n such that #1 (v) = e. Then the output
of Enc3 is statistically close to Un

e .



only if #1 (v) ≡ 1 mod 3. (Their result is more general, but we state a weaker
and simpler version that suffices for our needs.) We first define the notion of
correlation.

Definition 10 (Correlation). Let n ∈ N, g, f : {0, 1}n → {0, 1}, and let D
be a distribution over {0, 1}n. The correlation of g and f in relation to D is
CorrD (g, f) = 2

∣∣ 1
2 − Prx←D [g (x) = f (x)]

∣∣ .
For a class G of functions, CorrD (G, f) = maxg∈G CorrD (g, f) .

We are interested in correlations with the following function:

Notation 17 (MODs function) Let s ∈ N. The function MODn
s : {0, 1}3n →

{0, 1} is defined as MODs (x) = 0 if and only if
∑3n
i=1 xi ≡ 0 mod s. We use

MODs to denote the family of functions ∪n∈NMODn
s .

Theorem 18 ([22], Theorem 6 (rephrased)). For every constant depth pa-
rameter d ∈ N there exist constants c, ε ∈ (0, 1), such that for every constant
l ∈ N there exists a minimal length parameter n0 ∈ N such that for every n ≥ n0,
CorrDn3

(
L3n,d,nl,⊕nε ,MODn

3

)
≤ 2−n

c

, where Dn3 is the distribution induced by the
following process: first pick a random bit b ∈R {0, 1}; if b = 0 pick x ∈ {0, 1}3n
according to the distribution Un0 , otherwise pick x ∈ {0, 1}3n according to Un1,2.

Next, we use Theorem 18 to show that AC0 circuits, augmented with “few” ⊕
gates, have a negligible advantage in distinguishing between random encodings
of 0,1, and 2 according to the encoding scheme of Definition 8. Formally:

Corollary 3. For every constant depth parameter d ∈ N there exist constants
c, ε ∈ (0, 1), such that for every constant l ∈ N there exists a minimal length
parameter n0 ∈ N such that for every n ≥ n0 the encoding scheme Enc3 (·, 1n) of
Definition 8 is

(
L3n,d,nl,⊕nε , 2

−nc)-leakage-indistinguishable.

We proceed to prove Corollary 3 in two steps. First, we show that Theorem 18
implies that AC0 circuits, augmented with “few” ⊕ gates, cannot distinguish
between random encodings of 0, and random encodings of either 1 or 2. Second,
we show that this implies indistinguishability of encodings of every pair of values
in {0, 1, 2}. The first step follows from the next lemma.

Lemma 1. Let ε ∈ (0, 1), n ∈ N, and G be a class of functions from
{0, 1}3n to {0, 1}. If CorrDn3 (G,MODn

3 ) ≤ ε then Un0 , U
n
1,2 are (G, ε)-leakage-

indistinguishable, where Dn3 is the distribution defined in Theorem 18.

Proof. Let g ∈ G. We first establish the connection between the probability
pg := Prx←Dn3 [g (x) = MODn

3 (x)] that g computes MODn
3 correctly, and the

distinguishing advantage of g:

pg = Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 0] · Pr
x←Dn3

[MODn
3 (x) = 0] +

+ Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 1] · Pr
x←Dn3

[MODn
3 (x) = 1]



observing that for x← Dn3 , MODn
3 (x) is 0 (or 1) with probability half, and that

Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 0] = Pr
x←Un0

[g (x) = 0]

Pr
x←Dn3

[g (x) = MODn
3 (x) |MODn

3 (x) = 1] = Pr
x←Un1,2

[g (x) = 1]

we get:

pg =
1

2
+

1

2

(
Pr

x←Un1,2
[g (x) = 1]− Pr

x←Un0
[g (x) = 1]

)
.

By the assumption of the lemma,

2

∣∣∣∣12 − pg
∣∣∣∣ = CorrDn3 (g,MODn

3 ) ≤ ε.

Therefore, we get: ∣∣∣∣ Pr
x←Un1,2

[g (x) = 1]− Pr
x←Un0

[g (x) = 1]

∣∣∣∣ ≤ ε.
ut

Next, we establish a connection between the distinguishing advantage of cir-
cuits between the following pairs of distributions: U2n

0 , U2n
1,2 (over 6n-bit vectors);

Un0 , U
n
1,2; and Un0 , U

n
1 (over 3n-bit vectors).

Lemma 2. Let d, s, t ∈ N, and c ∈ (0, 1) be a constant. If there exists an n0 ∈ N
such that for every n ≥ n0, Un0 , U

n
1,2 are (L3n,d,s,⊕t, ε)-leakage-indistinguishable

for ε = 2−n
c

, and U2n
0 , U2n

1,2 are (L6n,d+1,2s+1,⊕2t, ε)-leakage-indistinguishable,

then there exists an n′0 such that for every n ≥ n′0, Un0 , U
n
1 are

(
L3n,d,s,⊕t,

√
7ε
)
-

leakage-indistinguishable.

In the following proofs, we use the following notation, and the following
observation regarding the connection between Un1 , U

n
2 and Un1,2.

Notation 19 Let n ∈ N. For γ ∈ {0, 1, 2}, we use Snγ to denote supp
(
Unγ
)
, Sn1,2

to denote supp
(
Un1,2

)
, and knγ to denote

∣∣Snγ ∣∣.
Observation 20 For every n ∈ N, and every function g : {0, 1}3n → {0, 1}, by
the law of total probability, and since Prx←Un1,2 [x ∈ Sn1 ] = Prx←Un1,2 [x ∈ Sn2 ] = 1

2 ,

Pr
x←Un1,2

[g (x) = 1] =
1

2

(
Pr

x←Un1
[g (x) = 1] + Pr

x←Un2
[g (x) = 1]

)
.

Proof (of Lemma 2). If the lemma does not hold, then there exist infinitely many
n’s, for each of which Un0 , U

n
1 are not

(
L3n,d,s,⊕t,

√
7ε
)
-leakage-indistinguishable.

Let ε′ = ε′ (n) >
√

7ε denote the maximal distinguishing advantage between

Un0 , U
n
1 , let D̂ =

{
D̂n

}
be a family of distinguishers obtaining this advantage,



and let N be the infinite set of n’s for which D̂ obtains this advantage. For

γ ∈ {0, 1, 2}, let pnγ := Prx←Unγ

[
D̂n (x) = 1

]
. Assume first that pn0 > pn1 for

infinitely many n’s in N . There are two possible cases: either for infinitely many
n’s inN , pn2 ≤ pn0 ; or pn2 > pn0 for infinitely many n’s inN . In the first case, D̂ has

advantage at least ε′

2 >
√
7ε
2 >

√
4ε
2 ≥ε≤1 ε in distinguishing between Un0 , U

n
1,2,

for every n such that pn0 ≥ pn2 and pn0 ≥ pn1 + ε′. Indeed, using Observation 20,∣∣∣∣ Pr
x←Un0

[
D̂n (x) = 1

]
− Pr
x←Un1,2

[
D̂n (x) = 1

]∣∣∣∣ =

∣∣∣∣pn0 − 1

2
(pn1 + pn2 )

∣∣∣∣
using the case assumption that pn0 ≥ pn1 , pn2 , this advantage is equal to:

1

2
(pn0 − pn1 ) +

1

2
(pn0 − pn2 ) ≥ 1

2
(pn0 − pn1 ) ≥ ε′

2
.

Therefore, only the second case remains, and Lemma 3 below shows that
there exists an n̂0 ∈ N such that for every such n which is greater than n̂0,

U2n
0 , U2n

1,2 are distinguishable in L6n,d+1,2s+1,⊕2t with advantage at least
(ε′)

2

6 +

E (n) >
(
√
7ε)

2

6 + E (n) = ε + ε+E(n)
6 , where E (n) = O

(
2−3n

)
. Recall that

ε = 2−n
c

, so E (n) = o (ε), and let n′ ∈ N such that for every n ≥ n′, |E (n)| ≤ ε
(notice that E (n) may be negative). Then for every n ≥ max {n′, n̂0} in N
such that pn2 > p20 ≥ pn1 + ε′ (there are infinitely many such n’s by the case

assumption), ε + ε+E(n)
6 ≥ ε, meaning that U2n

0 , U2n
1,2 can be distinguished in

L6n,d+1,2s+1,⊕2t with advantage more than ε, a contradiction to the assumption
of the lemma. Therefore, if pn0 ≥ pn1 +ε′ for infinitely many n’s in N , then Un0 , U

n
1

are
(
L3n,d,s,⊕t,

√
7ε
)
-distinguishable only for finitely many n’s.

Assume now that pn0 ≥ pn1 only for finitely many n’s in N , i.e., pn1 ≥ pn0 for
infinitely many n’s in N . If for infinitely many n’s in N , pn2 ≥ pn0 and pn1 > pn0 ,
then the advantage of D̂n in distinguishing between Un0 , U

n
1,2 is at least∣∣∣∣pn0 − pn1 + pn2

2

∣∣∣∣ =
pn1 − pn0

2
+
pn2 − pn0

2
≥ pn1 − pn0

2
≥ ε′

2
.

The second case, where pn2 < pn0 < pn1 for infinitely many n’s, follows from
Lemma 3 in the same manner as before. ut

We now prove the lemma used in the proof of Lemma 2, for the case pn2 >
pn0 > pn1 (or pn1 > pn0 > pn2 ) for infinitely many n’s. Notice that Lemma 3 uses the
distributions U2n

0 , U2n
1,2 over 6n-bit vectors, and distinguishers over 3n-bit vectors.

Lemma 3. Let n, d, s, t ∈ N, ε > 0, and {Dn ∈ L3n,d,s,⊕t}n∈N. For γ ∈
{0, 1, 2}, denote pnγ := Prx←Unγ [Dn (x) = 1]. Then there exist error terms

E+ (n) , E− (n) = O
(
2−3n

)
, and an n0 ∈ N, such that the following holds

for every n0 ≤ n ∈ N. If pn2 > pn0 > pn1 and pn0 − pn1 ≥ ε, then U2n
0 , U2n

1,2

are
(
L6n,d+1,2s+1,⊕2t,

ε2

6 + E+ (n)
)

-distinguishable; and if pn2 < pn0 < pn1 and

pn1 − pn0 ≥ ε, then U2n
0 , U2n

1,2 are
(
L6n,d+1,2s+1,⊕2t,

ε2

6 + E− (n)
)

-distinguishable.



Proof. Let D′n be the distinguisher that interprets its input as a pair (x, y) of
3n-bit vectors, and outputs Dn (x) ∧ Dn (y). Notice that if Dn ∈ L3n,d,s,⊕t,
then D′n ∈ L6n,d+1,2s+1,⊕2t. We now analyze the advantage of D′n in dis-
tinguishing between U2n

0 , U2n
1,2. Using Lemma 5, Pr(x,y)←U2n

0
[D′n (x, y) = 1] =

(pn0 )
2+2pn1 p

n
2

3 + E0 (n) + E′0 (n) · pn2 , where E0 (n) , E′0 (n) are error terms, and
|E0 (n)| , |E′0 (n)| = O

(
2−3n

)
. Using Lemma 6, Pr(x,y)←U2n

1,2
[D′n (x, y) = 1] =

2pn0 p
n
1 +(pn1 )

2+2pn0 p
n
2 +(pn2 )

2

6 + E1,2 (n) + E′1,2 (n) · pn2 + E′′1,2 (n) · (pn2 )
2
, where

E1,2 (n) , E′1,2 (n) , E′′1,2 (n) are error terms, and |E1,2 (n)| ,
∣∣E′1,2 (n)

∣∣ , ∣∣E′′1,2 (n)
∣∣ =

O
(
2−3n

)
. Therefore,

ED′n := Pr
x←U2n

1,2

[D′n (x, y) = 1]− Pr
x←U2n

0

[D′n (x, y) = 1] =

=
2pn0p

n
1 + (pn1 )

2
+ 2pn0p

n
2 + (pn2 )

2 − 2 (pn0 )
2 − 4pn1p

n
2

6
+

+E (n) + E′ (n) · pn2 + E′′ (n) · (pn2 )
2

where E (n) , E′ (n) , E′′ (n) are error terms, and |E (n)| , |E′ (n)| , |E′′ (n)| =
O
(
2−3n

)
. Thinking of ED′n as a function of pn2 , there exists an n0 such that

for every n ≥ n0, the minimal value of ED′n (pn2 ) is obtained when pn2 =
2pn1−p

n
0−3E

′(n)
1+6E′′(n) ≈ 2pn1 − pn0 . Let n ≥ n0, and assume first pn2 > pn0 > pn1

and pn0 − pn1 ≥ ε. Then
2pn1−p

n
0−3E

′(n)
1+6E′′(n) ≈ 2pn1 − pn0 < p0, and in the domain

z ≥ 2pn1−p
n
0−3E

′(n)
1+6E′′(n) , ED′ is monotonically increasing, so the minimal value of

ED′ in this section is obtained when pn2 = pn0 (since by the case assumption,

pn2 ≥ pn0 ), in which case ED′n |pn2 =pn0 =
(pn0−p

n
1 )

2

6 + E (n) + E′ (n) · pn0 + E′′ (n) ·
(pn0 )

2 ≥ ε2

6 + E (n) + E′ (n) · pn0 + E′′ (n) · (pn0 )
2

=pn0∈(0,1) ε2

6 + E+ (n), where

E+ (n) = O
(
2−3n

)
, so D′n obtaining advantage δ+ := ε2

6 + E+ (n) in distin-

guishing between U2n
0 , U2n

1,2, where E+ (n) = O
(
2−3n

)
.

Second, assume that pn2 < pn0 < pn1 and pn1 − pn0 ≥ ε. Then
2pn1−p

n
0−3E

′(n)
1+3E′′(n) ≈

2pn1 − pn0 > p0. Since by the case assumption pn2 < pn0 then in the domain

z ≤ 2pn1−p
n
0−3E

′(n)
1+3E′′(n) the function is monotonically decreasing, so the minimal

advantage is obtained when pn0 = pn2 , and the rest of the analysis follows as in
the previous case. ut

We now state and prove the lemmas that were used in the proof of Lemma 3.
We will need the following result about the values of kn0 , k

n
1 , k

n
2 . (The proof,

which is by induction and uses Observation 20, appears in the full version.)

Lemma 4. Let n ∈ N. Then kn1 = kn2 = 23n+(−1)n−1

3 , and kn0 = 23n+2·(−1)n
3 .

Lemma 5. Let D′n, p
n
0 , p

n
1 , p

n
2 be as defined in the proof of Lemma 3.

Then Pr(x,y)←U2n
0

[D′n (x, y) = 1] =
(pn0 )

2+2pn1 p
n
2

3 + E0 (n) + E′0 (n) · pn2 , where

E0 (n) , E′0 (n) are error terms, and |E0 (n)| , |E′0 (n)| = O
(
2−3n

)
.



Proof. Since

S2n0 =
{

(x, y) : x, y ∈ {0, 1}3n ∧ (x, y ∈ Sn0 ∨ x ∈ Sn1 , y ∈ Sn2 ∨ x ∈ Sn2 , y ∈ Sn1 )
}

then by the law of total probability, Pr(x,y)←U2n
0

[D′n (x, y) = 1] is equal to:

Pr
(x,y)←U2n

0

[D′n (x, y) = 1|x, y ∈ Sn0 ] · Pr
(x,y)←U2n

0

[x, y ∈ Sn0 ] +

+ Pr
(x,y)←U2n

0

[D′n (x, y) = 1|x ∈ Sn1 , y ∈ Sn2 ] · Pr
(x,y)←U2n

0

[x ∈ Sn1 , y ∈ Sn2 ] +

+ Pr
(x,y)←U2n

0

[D′n (x, y) = 1|x ∈ Sn2 , y ∈ Sn1 ] · Pr
(x,y)←U2n

0

[x ∈ Sn2 , y ∈ Sn1 ] =

=

(
Pr

x←Un0
[D (x) = 1]

)2

· |S
n
0 |

2

|S2n0 |
+2 Pr

x←Un1
[D (x) = 1]· Pr

x←Un2
[D (x) = 1]· |S

n
1 | · |Sn2 |
|S2n0 |

If n is even, then by Lemma 4: kn0 = |Sn0 | = 23n+2
3 ; k2n0 =

∣∣S2n0 ∣∣ = 26n+2
3 ; and

kn1 = |Sn1 | = 23n−1
3 . Therefore,

|Sn0 |
2

|S2n0 |
=

(
23n+2

3

)2
26n+2

3

=
1

3
· 2

6n + 23n+2 + 4

26n + 2
=

1

3
·
(

1 +
23n+2 + 2

26n + 2

)
=

1

3
+O

(
2−3n

)

|Sn1 | · |Sn2 |
|S2n0 |

=
|Sn1 |

2

|S2n0 |
=

(
23n−1

3

)2
26n+2

3

=
1

3
· 26n − 23n+1 + 1

26n + 2
=

1

3
−O

(
2−3n

)
Otherwise, n is odd, and by Lemma 4: kn0 = |Sn0 | = 23n−2

3 ; k2n0 =
∣∣S2n0 ∣∣ =

26n+2
3 ; and kn1 = |Sn1 | = 23n+1

3 . Similar calculations give:

|Sn0 |
2

|S2n0 |
=

1

3
−O

(
2−3n

)
,
|Sn1 | · |Sn2 |
|S2n0 |

=
1

3
+O

(
2−3n

)
Consequently,

Pr
(x,y)←U2n

0

[D′n (x, y) = 1] =
(pn0 )

2
+ 2pn1p

n
2

3
+ E0 (n) + E′0 (n) · pn2

where E0, E
′
0 are error terms, and |E0 (n)| , |E′0 (n)| = O

(
2−3n

)
. ut

The proof of the following lemma is similar to the proof of Lemma 5, and
appears in the full version.

Lemma 6. Let D′n, p
n
0 , p

n
1 , p

n
2 be as defined in the proof of Lemma 3.

Then Pr(x,y)←U2n
1,2

[D′n (x, y) = 1] =
2pn0 p

n
1 +(pn1 )

2+2pn0 p
n
2 +(pn2 )

2

6 + E1,2 (n) +

E′1,2 (n) · pn2 + E′′1,2 (n) · (pn2 )
2
, where E1,2, E

′
1,2, E

′′
1,2 are error terms, and

|E1,2 (n)| ,
∣∣E′1,2 (n)

∣∣ , ∣∣E′′1,2 (n)
∣∣ = O

(
2−3n

)
.



Next, we prove that if Un0 , U
n
1 are leakage-indistinguishable against some

family of leakage functions, then E3 is leakage indistinguishable against a slightly
weaker family of leakage functions.

Lemma 7. Let n, d, s, t ∈ N, and ε = ε (n) > 0. If there exists an n0 ∈ N such
that for every n ≥ n0, Un0 , U

n
1 are (L3n,d,s,⊕t, ε)-leakage-indistinguishable, then

for every n ≥ n0, E3 (·, 1n) is (L3n,d−1,s−3n,⊕t, 2ε)-leakage-indistinguishable.

Proof. We show first that Enc3 (0, 1n) ,Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, ε)-
leakage-indistinguishable for every n ≥ n0. Otherwise, there exist infinitely
many n’s and for each a distinguisher Dn ∈ L3n,d−1,s−3n,⊕t that achieves advan-
tage ε′ > ε in distinguishing between the distributions Enc3 (0, 1n), Enc3 (2, 1n).
For every such n we define D′n to apply negation gates on its inputs, and run
Dn. Then D′n ∈ L3n,d,s,⊕t, and notice that since the encoding length is di-
visible by 3, and the transformation v → v̄ is 1:1 and onto (where v̄ denotes
the vector obtained by coordinate-wise negating v) then: if v ← Enc3 (0, 1n)
then v̄ ← Enc3 (0, 1n); and if v ← Enc3 (1, 1n) then v̄ ← Enc3 (2, 1n). There-
fore, for every such n, |Pr [D′n (Enc (0, 1n)) = 1]− Pr [D′n (Enc (1, 1n)) = 1]| =
|Pr [Dn (Enc (0, 1n)) = 1]− Pr [Dn (Enc (2, 1n)) = 1]| = ε′ > ε, contradict-
ing the assumption of the lemma. Second, since for every n ≥ n0,
Enc3 (0, 1n), Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, ε)-leakage-indistinguishable, and
Enc3 (0, 1n) ,Enc3 (1, 1n) are (L3n,d,s,⊕t, ε)-leakage-indistinguishable, then using
the triangle inequality Enc3 (1, 1n) ,Enc3 (2, 1n) are (L3n,d−1,s−3n,⊕t, 2ε)-leakage-
indistinguishable. ut

We are finally ready to prove Corollary 3.

Proof (of Corollary 3). Let d′ = d+ 2, let ε, c be the constants for which Theo-
rem 18 holds for depth parameter d′, and we set c′ = c

2 , and ε′ = ε
2 . Given l, let

l′ = l+1, and let n0 be the minimal length parameter for which Theorem 18 holds
with parameters d′, l′. Let n′0 be such that for every n ≥ n′0, 2

(
nl + 3n

)
+1 ≤ nl′ ,

2nε
′ ≤ nε, and 2

√
7 · 2−n

c

2 ≤ 2−n
c′

. Let n′′0 be the minimal length parameter
whose existence is guaranteed in Lemma 2 for the length parameter max{n0, n′0},
constant c, depth parameter d + 2, size parameter s = nl + 3n, and parity
gate bound t = nε

′
. Let ñ0 = max{n0, n′0, n′′0}. We show that the corollary

holds for minimal length parameter ñ0 and constants c′, ε′. Indeed, for every

n ≥ ñ0 Theorem 18 guarantees that CorrDn3

(
L3n,d+2,2(nl+3n)+1,⊕2nε′ ,MODn

3

)
≤

2−n
c

(since n ≥ n0 and n ≥ n′0). By Lemma 1, this implies that for ev-

ery n ≥ ñ0, Un0 , U
n
1,2 are

(
L3n,d+1,nl+3n,⊕nε′ , 2

−nc
)

-leakage-indistinguishable,

and U2n
0 , U2n

1,2 are
(
L6n,d+2,2(nl+3n)+1,⊕2nε′ , 2

−nc
)

-leakage-indistinguishable. By

Lemma 2, for every n ≥ ñ0, Un0 , U
n
1 are

(
L3n,d+1,nl+3n,⊕nε′ ,

√
7 · 2−n

c

2

)
-

leakage-indistinguishable (because n ≥ n′′0). By Lemma 7, E3 (·, 1n) is(
L3n,d,nl,⊕nε′ , 2

√
7 · 2−n

c

2

)
-leakage-indistinguishable. Since ñ0 ≥ n′0, E3 (·, 1n)

is
(
L3n,d,nl,⊕nε′ , 2

−nc
′)

-leakage-indistinguishable ut


