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Abstract. Pair encodings and predicate encodings, recently introduced
by Attrapadung (Eurocrypt 2014) and Wee (TCC 2014) respectively,
greatly simplify the process of designing and analyzing predicate and
attribute-based encryption schemes. However, they are still somewhat
limited in that they are restricted to composite order groups, and the
information theoretic properties are not sufficient to argue about many
of the schemes. Here we focus on pair encodings, as the more general of
the two. We first study the structure of these objects, then propose a new
relaxed but still information theoretic security property. Next we show
a generic construction for predicate encryption in prime order groups
from our new property; it results in either semi-adaptive or full security
depending on the encoding, and gives security under SXDH or DLIN.
Finally, we demonstrate the range of our new property by using it to
design the first semi-adaptively secure CP-ABE scheme with constant
size ciphertexts.

Keywords. Predicate encryption, Attribute-based encryption, Pair en-
coding schemes, Dual system technique, Short ciphertexts

1 Introduction

In traditional public key encryption systems, a message is encrypted under a
particular public key, with the guarantee that it can only be decrypted by the
party holding the corresponding secret key. Attribute based encryption (ABE),
introduced in [30], instead allows us to use attributes to determine who has
the power to decrypt. In these systems, there is a single entity which publishes
system parameters and distributes the appropriate decryption keys to various
parties. In key-policy ABE (KP-ABE) [18], a message is encrypted under a set
of attributes describing that message, and each decryption key is associated with
a policy describing which ciphertexts it can decrypt. Conversely, in ciphertext-
policy ABE (CP-ABE) [8] each user is given a decryption key that depends on his
attributes, and ciphertexts are encrypted with policies describing which users can
decrypt them. ABE has been proposed for a variety of applications, from social

? Part of this work was done when the author was at Microsoft Research.



network privacy to pay-per-view broadcasting to health record access-control to
cloud security (see e.g. [28,34,6,1,31]).

Recently there has been a lot of progress in terms of both security and func-
tionality. Using the dual system framework introduced by Waters [35], several
works [23,25] have designed ABE schemes that satisfy the natural security defi-
nition, avoiding the restrictions of selective security3. Other works consider extra
features like short ciphertexts whose length is independent of the size of the as-
sociated attribute set and policy [5,37], or “unbounded” schemes that place no
bounds on the space of possible attributes or the number of attributes that can
be tied to a ciphertext or key [24,27,29]. Predicate encryption [10] generalizes the
concept to require only that the ciphertext and key are associated with values
x, y, and decryption succeeds iff some predicate P (x, y) holds. Note that in this
work we assume that x and y are revealed by the ciphertext and key respectively;
we do not consider attribute-hiding [11,21] or predicate-hiding [32,9].

As these schemes have progressed, however, constructions and proofs have
become increasingly complex. Many of the proposed schemes require composite
order pairings, in which the order of the pairing groups is a product of two
or more primes; since these schemes require that factoring the group order is
hard, this in practice means that these groups must be at least an order of
magnitude larger than prime order groups of comparable security level, and
according to [19] composite order pairing computations are at least 2 orders of
magnitude slower. This has prompted efforts to design schemes in prime order
groups [26,27,17,22,20], but many of these schemes still have fairly high cost as
compared to their selectively secure counterparts, and designing and analyzing
security of such schemes can be quite challenging.

Two very recent works, by Wee [36] and Attrapadung [2] make significant
progress in simplifying the design and analysis of new constructions. These works
introduce simple new objects, called predicate encodings and pair encodings re-
spectively in the two works, which can be used to construct ABE and other
predicate encryption schemes. Essentially, they consider one decryption key and
one ciphertext, and focus on what happens in the exponent space. Both for-
malisms introduce simple information theoretic properties on these objects and
show that if these properties are met, they can be extended into fully secure
ABE/predicate encryption schemes. The major advantage of this approach is
that instead of having to design and prove security of a complex scheme, now all
one has to do is design and analyze an appropriate encoding, which is a much
simpler task. This vastly simplifies the design of new schemes, and in fact, both
works resulted in new constructions and more efficient variants of previously
known schemes.

Currently these works have two primary limitations. First, they both result
in ABE schemes that rely on composite order pairings, which as explained above

3 The original construction of Sahai and Waters [30], and much of the following work,
considers what is referred to as the selective security model, in which the adver-
sary must commit to the attributes/policy used in the challenge ciphertext before
requesting any decryption keys.



is very undesirable from an efficiency standpoint. The second drawback is that
the strict information theoretic properties they require from the underlying ob-
jects mean that there are many constructions that they cannot capture in their
model. Attrapadung [2] addresses this by introducing a computational security
notion, which allows several more interesting constructions to be captured in the
framework. However, this security notion is much harder to analyze - it involves
not only the encodings in the exponent space, but also elements in the composite
order group in which it is embedded, and the proofs that the encodings satisfy
this notion are not only computational (rather than information theoretic) but
are based on much stronger assumptions.

Still these encodings seem extremely promising as a way to simplify the design
and analysis of predicate encryption schemes. In our work we further study these
objects, with the aim of understanding them better and beginning to address
these limitations. In particular we focus on the pair encodings from [2], as they
seem to be able to capture more constructions.

Our Contributions. First, we study the structure of pair encodings. Attra-
padung’s pair encodings have only limited structural requirements. This means
that he is able to capture many existing constructions in his framework, although
as mentioned above, in many cases the information theoretic security property
he defines does not hold for these schemes. A better understanding of the natural
structure of these schemes may help to design new schemes, by providing better
intuition for what is important and simply by limiting the search space.

Here we consider two structural properties. First we assume a simple property
that describes where the public parameters appear in the key and ciphertext.
This seems to reflect some basic structure, as all the pair encodings in [2] have
this property. Looking ahead, this property allows us to instantiate these schemes
efficiently in prime order groups. We then show that this implies a second, seem-
ingly unrelated property involving the use of random variables in the key and
ciphertexts. We can use this second property to simplify our security definitions
and analyses.

Using this understanding, we propose a relaxation of the information
theoretic security property proposed in [2]. This property essentially allows us
to consider the scheme at smaller granularity than an an entire key or ciphertext.
It is still information theoretic, and it does not depend on the group in which
it will be used; this means it is still easy to analyze whether a given encoding
satisfies this property. We consider two flavors of this property and show that
the stronger of the two is implied by the security properties in [2]. However,
we will see that our new property is indeed a relaxation in that it allows us to
consider encodings that did not satisfy the original property. Thus, we make a
first step towards addressing the limitations of the strict information theoretic
property of previous work.

Next we present a generic construction of predicate encryption from
pair encodings. Here we make use of the dual system groups introduced by [13];
although we must modify their properties slightly, we show that their instantia-



tions are still sufficient4. We show that pair encodings which satisfy the stronger
flavor of our new property result in fully secure predicate encryption schemes,
while pair encodings which satisfy the weaker flavor result in schemes which can
still be shown to be semi-adaptively secure5. While full security is preferable,
we will see that this second result allows us to design schemes in areas in which
even selectively secure constructions are hard to construct.

This approach has two advantages. First, this means that we can transform
any pair encoding scheme which satisfies the information theoretic security prop-
erties in [2] into a fully secure ABE or predicate encryption scheme in a prime
order group based only on the SXDH or DLIN assumption. This results in
schemes which are of practical efficiency, with strong security guarantees based
on mild assumptions. Moreover, the advantage of this approach is that while
proof of our generic construction is fairly involved, analyzing a given pair encod-
ing scheme to verify the necessary property is still quite straightforward.

Finally, to demonstrate how our relaxed security property allows us to con-
sider additional functionalities, we present a new pair encoding for CP-ABE
with constant-size ciphertext . When used in our generic construction, this
results in a CP-ABE with constant size-ciphertext which is semi-adaptively se-
cure and can be instantiated under either SXDH or DLIN. To the best of our
knowledge, prior to our work there were no known schemes for constant-size
CP-ABE, even considering only selectively security and allowing for very strong
assumptions.6 This shows then that our new techniques allow us to consider a
strictly greater range of schemes; we hope that they will continue to prove useful
and lead to other interesting constructions.

Other related work. As mentioned above, the original works of [36] and [2]
gave constructions only in composite order groups. In a recent work, however,
Chen, Gay, and Wee [12] proposed a transformation to go from pair encodings to
prime order predicate encryption schemes, requiring the same strong information
theoretic property on the underlying pair encoding as in [36]. However, they also
require strict restrictions on the structure of pair encodings, which are not sat-
isfied by most of the encodings which had previously been proposed; essentially
this requires that there be only one unit of randomness in each ciphertext or
key. They show that the previous encodings which satisfy the information theo-
retic property from [2] (the basic KP- and CP-ABE schemes) have counterparts
which satisfy these stricter requirements. This results in the most efficient known
constructions for a number of problems. As mentioned above, our generic con-

4 Since we use these groups in a black box way, any improvement in the underlying
instantiation will translate directly into an improvement in our generic construction.
In particular we believe that the simplified new dual system groups proposed in
[12] satisfy our modified definitions as well, so they could be used to simplify our
construction.

5 Unlike selective security, in semi-adaptive security an adversary is not forced to
commit to the challenge before seeing the public parameters.

6 Here we discount threshold access policies because when only threshold policies are
considered, CP-ABE and KP-ABE are equivalent.



struction can be applied directly to the original pair encodings [2]; this will yield
similar constructions, with slightly different tradeoffs (generally smaller public
parameters but slower decryption). Interestingly, our relaxed perfect security
property is designed to leverage exactly the kind of structure they prohibit, so
perhaps it suggests another way forward for predicates that cannot be addressed
under their model.

In concurrent work, Attrapadung [3] proposed a generic construction that
compiles any secure (computational or information-theoretic) pair encoding scheme
for a predicate R to a fully secure FE scheme for the same predicate in prime-
order groups under Matrix Diffie-Hellman assumption [16] (of which DLIN is a
special case) with an additional q-type assumption in the case of pair encod-
ings that only satisfy the computational security definition from [2]. This then
also gives prime order group constructions for any predicate encoding scheme
satisfying the strong information theoretic property under DLIN, and for KP-
ABE with short ciphertext (as well as unbounded KP-ABE and ABE for regular
languages) under a q-type assumption. However, as compared to this work, our
results have the following advantages: First, we use dual system groups in a
black box way, which simplifies the transformation, unifies prime and composite
order group constructions, and means that any new construction of dual system
groups directly gives new constructions for ABE. Moreover, our relaxed perfect
security property allows us to show semi-adaptive security for the short cipher-
text schemes based only on SXDH or DLIN, without any q-type assumptions;
in addition to giving us the new results on CP-ABE, we can also give a much
simpler proof of semi-adaptive security for Attrapadung’s KP-ABE with short
ciphertexts, and this proof does not require q-type assumptions. (See the full
version of the paper.)

Finally, we mention the concurrent work of Attrapadung, Hanaoka, and Ya-
mada [4]. This work presents various conversions among pair encoding schemes.
Among other things, they show that if one starts with the KP-ABE scheme with
constant-size ciphertexts recently proposed by Takashima [33], then by applying
the conversion one gets a CP-ABE scheme with constant-size ciphertexts, which
is selectively secure under the DLIN assumption. On the other hand, we get a
semi-adaptive scheme secure under any assumption which can be used to con-
struct dual system groups (which includes SXDH, DLIN, etc). Moreover, since
Takashima’s construction does not use any abstractions, our construction is sig-
nificantly more modular, easier to analyze and easier to extend. As we view the
CP-ABE more as a test-case for the utility of our new definition and transforma-
tion, having an approach that can extend easily to other types of ABE schemes
seems particularly valuable.

2 Preliminaries

We use ∼=,≡ and ≈ to denote statistical, perfect and computational indistin-
guishability respectively. Security parameter is denoted by λ, and negl(λ) denotes
a negligible function in λ.



We normally use lower case letters in bold to denote vectors; but if a vec-
tor’s elements are themselves vectors, we use upper case. For two vectors u =
(u1, . . . , un) and v = (v1, . . . , vn), we use u ·v to denote the entry-wise product,
i.e., (u1v1, . . . , unvn), and 〈u, v〉 to denote the inner-product, i.e.,

∑n
i=1 uivi.

The · operator naturally extends to vectors of vectors (or matrices): if U =
(u1, . . . ,um) and V = (v1, . . . ,vm), then U · V = (u1 · v1, . . . ,um · um). gu

should be interpreted as the vector (gu1 , . . . , gun). gA, where A is a matrix,
should be interpreted in an analogous way.

We use u1, . . . ,um ← SampAlg(·) to denote that the algorithm SampAlg is
run m times with independent coin tosses to generate samples u1, . . . ,um. Since
the output of this algorithm is a vector, we also use (u1, . . . , un)← SampAlg(·) to
denote that a single sample with co-ordinates u1, . . . , un is drawn from SampAlg
(this should not be confused with the previous notation). Finally, a ←R S de-
notes drawing an element a uniformly at random from the set S.

Bilinear Pairings: Let G,H and GT be three multiplicative groups. A pairing
e : G × H → GT is bilinear if for all g ∈ G, h ∈ H and a, b ∈ Z, e(ga, hb) =
e(g, h)ab. This pairing is non-degenerate if whenever e(g, h) = 1GT , then either
g = 1G or h = 1H (where 1G, for instance, denotes the identity element of G.)
We will only be interested in bilinear pairings that are efficiently computable.

The order of an element g of a group G is the smallest positive integer a such
that ga = 1G. The exponent of a group is defined as the least common multiple
of the orders of all elements of the group. One can show that if a non-degenerate
bilinear pairing e : G×H→ GT can be defined over three groups G,H and GT ,
then they all have the same exponent. We use exp(G) to denote the exponent of
a group G.

Homomorphism: A homomorphism from a group 〈G, ·〉 to a group 〈H,⊕〉 is a
function ψ : G→ H such that for all g1, g2 ∈ G, ψ(g1 · g2) = ψ(g1)⊕ ψ(g2). We
define two sets with respect to a homomorphism: Image(ψ) = {ψ(g) | g ∈ G}
and Kernel(ψ) = {g ∈ G | ψ(g) = 1H}.

2.1 Predicate Encryption (PE)

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of four PPT algorithms which satisfy a correctness
condition defined below.

– Setup(1λ, par)→ (mpk,msk). The Setup algorithm takes as input the unary
representation of the security parameter λ and some additional parameters
par. It outputs a master public key mpk and a master secret key msk. The
output of Setup defines a number N ∈ N (perhaps implicitly), and κ is set
to (N, par).

– Encrypt(mpk, x,m)→ ct. The encryption algorithm takes public parameters
mpk, an x ∈ Xκ and an m ∈Mλ as inputs, and outputs a ciphertext ct.

– KeyGen(mpk,msk, y) → sk. The key generation algorithm takes as input
the public parameters mpk, the master secret key msk and a y ∈ Yκ, and
outputs a secret key sk.



– Decrypt(mpk, sk,ct) → m′. The decryption algorithm takes as input the
public parameters mpk, a secret key sk and a ciphertext ct, and outputs a
message m′ ∈Mλ.

Correctness: For all λ and par, mpk and msk output by Setup(1λ, par), m ∈
Mλ, x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 1, if

ct← Encrypt(mpk, x,m) sk← KeyGen(mpk,msk, y),

then
Pr[Decrypt(mpk,ct, sk) 6= m] ≤ negl(λ),

where the probability is over the random coin tosses of Encrypt,KeyGen and
Decrypt.

Security: Let Π be an encryption scheme for a predicate family P = {Pκ}κ∈Nc
over a message spaceM = {Mλ}λ∈N. Consider the following experiment Expt

(b)
A,Π

(λ, par) between an adversary A and a challenger Chl for b ∈ {0, 1} when both
are given input 1λ and par:

1. Setup: Chl runs Setup(1λ, par) to obtain mpk and msk. It gives mpk to A.
2. Query: A issues a key query by sending y ∈ Yκ to Chl, and obtains sk ←

KeyGen(mpk, msk, y) in response. This step can be repeated any number of
times A desires.

3. Challenge: A sends two messages m0,m1 ∈ Mλ and an x ∈ Xκ to Chl, and
gets ct← Encrypt(mpk, x,mb) as the challenge ciphertext.

4. Query: This step is identical to step 2.

At the end of the experiment, A outputs a bit which is defined to be the
output of the experiment. We call an adversary admissible if for every y ∈ Yκ
queried in steps 2 and 4, Pκ(x, y) = 0. This prevents A from succeeding in the
experiment simply by decrypting ct.

Definition 1. An encryption scheme Π is adaptively or fully secure for a pred-
icate family P = {Pκ}κ∈Nc if for every PPT admissible adversary A and every
par,

|Pr[Expt(0)A,Π(λ, par) = 1]− Pr[Expt
(1)
A,Π(λ, par) = 1]| ≤ negl(λ),

where the probabilities are taken over the coin tosses of A and Chl. On the other
hand, Π is semi-adaptively secure if the above condition is satisfied w.r.t. to a
modified experiment where A provides x ∈ Xκ to Chl right after the setup phase
(instead of the challenge phase), i.e., before it starts querying [15].

3 Pair encoding schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung
[2]. Our definition of this scheme is slightly different from the one given by [2]
in that we place a restriction on the structure. Though the latter definition is



more general, we believe that our formulation mirrors the concrete design of
such schemes more closely. In particular, all the constructions of pair encoding
schemes given in [2] fit into our framework without any changes.

We first present the definition given by Attrapadung and discuss the re-
strictions we impose afterwards. A pair encoding scheme for a predicate family
Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par) consists of four polynomial-time
deterministic algorithms which satisfy a correctness condition as defined below.

– Param(par) → n. The Param algorithm takes the parameters par as input,
and outputs a positive integer n ∈ N which specifies the number of common
variables shared by the following two algorithms. Let b := (b1, b2, . . . , bn)
denote the common variables.

– EncC(x,N)→ (c := (c1, c2, . . . , cw1
);w2). The EncC algorithm takes an N ∈

N and an x ∈ X(N,par) as inputs, and outputs a sequence of w1 polynomials
c1, c2, . . . , cw1

with coefficients in ZN and a w2 ∈ N. Every polynomial c`
is a linear combination of monomials of the form s, si, sbj , sibj in variables
s, s1, s2, . . . , sw2 and b1, . . . , bn. More formally, for ` ∈ [1, w1],

c` := ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj ,

where ζ`, η`,i, θ`,j , ϑ`,i,j ∈ ZN are constants which define c`.
– EncK(y,N) → (k := (k1, k2, . . . , km1);m2). The EncK algorithm takes an
N ∈ N and a y ∈ Y(N,par) as inputs, and outputs a sequence of m1 polynomi-
als k1, k2, . . . , km1

with coefficients in ZN and an m2 ∈ N. Every polynomial
kt is a linear combination of monomials of the form α, ri′ , ri′bj in variables
α, r1, r2, . . . , rm2 and b1, . . . , bn. More formally, for t ∈ [1,m1],

kt := τtα +
∑

i′∈[1,m2]

υt,i′ri′ +
∑

i′∈[1,m2],j∈[1,n]

φt,i′,jri′bj ,

where τt, υt,i′ , φt,i′,j ∈ ZN are constants which define kt.
– Pair(x, y,N)→ E. The EncC algorithm takes an N ∈ N, an x ∈ X(N,par) and

a y ∈ Y(N,par) as inputs, and outputs a matrix E ∈ Zm1×w1

N .

Correctness: A pair encoding scheme is correct if for every κ = (N, par), x ∈ Xκ
and y ∈ Yκ such that Pκ(x, y) = 1, the following holds symbolically

kEcT =
∑

t∈[1,m1],
`∈[1,w1]

Et,`ktc` = αs.

Structural restrictions. We impose an additional restriction on the form of
E. Essentially this says that if kt has a monomial of the form ri′bj′ and a c` has
a monomial of the form sbj or sibj then Et,` must be 0. One can easily verify
that every pair encoding scheme given in [2] (as well as the new one we propose)
satisfies this. We also assume that the variable s is explicitly given out in the
encoding of x, i.e., s ∈ c.



Moreover, we can show that given the constraint on E, we can assume w.l.o.g.
that the set of polynomials output by EncC and EncK have a fairly restricted
structure. In simple words, if a polynomial contains the monomial sbj (or sibj ,
ri′bj), then there must exist a polynomial which only contains the monomial s
(resp. si, ri′). More precisely, we show that for any pair encoding which satisfies
the restriction on E, there is a corresponding one in which EncC and EncK have
this structure, and this correspondence preserves all of the security properties
defined in [2].

For formal statements see the full version. For the rest of this work, we will
assume that all pair encodings satisfy the properties listed above.

3.1 Security

Attrapadung provided two security notions for pair encoding schemes: perfect
and computational. As discussed in Section 1, in this paper we focus on perfect
security, which is the information theoretic property, for which we propose a
relaxation. First, we restate here the original security definition given by Attra-
padung (which is referred to as perfectly master-key hiding in his paper).

Definition 2 (Perfect security [2]). A pair encoding scheme (Param,EncC,
EncK,Pair) for a predicate family Pκ is perfectly secure if for every κ = (N, par),
x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0,(

c(s,b),k(0, r,b)
)
≡
(
c(s,b),k(α, r,b)

)
, (1)

where s←R Zw2+1
N , b←R ZnN , r←R Zm2

N and α←R ZN .

We propose a new relaxed notion of perfect security that allows more flex-
ibility in the design of pair encoding schemes. Very roughly, this property will
allow us to add noise gradually to the parameters used in the key, as long as this
noise is not detectable given the relevant part of the key and the ciphertext. The
goal is to eventually add sufficient noise to completely hide the master secret.
Towards this, we define a new randomized polynomial-time sampling algorithm
for pair encoding schemes. While the algorithms above are used in the generic
construction, the Samp algorithm described below will be used in the security
proof.

– Samp(d, x, y,N) → (bd := (bd,1, bd,2, . . . , bd,n)). This algorithm takes a d ∈
[1,m2], an N ∈ N, an x ∈ X(N,par), and a y ∈ Y(N,par) as inputs, and outputs
a sequence of n numbers in ZN . We require that the probability of this
algorithm producing (u · bd,1, u · bd,2, . . . , u · bd,n) as output is equal to the
probability that it produces (bd,1, bd,2, . . . , bd,n) as output, for any u ∈ Z∗N .

Jumping ahead, the dependence of Samp on its inputs will play a crucial role
in the proof of security of our generic construction. We will see that if Samp
doesn’t depend on x, then we can prove our construction to be fully secure. But
in case it does, we can only prove semi-adaptive security.



Recall that EncK on input y and N produces a sequence of polynomials
k(α, r,b) with coefficients in ZN , where every polynomial is a linear combination
of monomials of the form α, ri′ , ri′bj in variables α, r1, r2, . . . , rm2 and b1, . . . , bn.
In the following we use kd(α, rd,b), for d ∈ [1,m2], to denote the polynomials
in k obtained by setting all the variables in {r1, r2, . . . , rm2

} except rd to 0. We
are now ready to define our new notion of perfect security.

Definition 3 (Relaxed perfect security). A pair encoding scheme Γ = (Param,
EncC,EncK,Pair) for a predicate family Pκ is relaxed perfectly secure if there ex-
ists a PPT algorithm Samp (as defined above) such that for every par, x ∈ Xκ
and y ∈ Yκ such that Pκ(x, y) = 0, and every d ∈ [1,m2]:

{c(s,b),kd(0, rd,b)}N∈N ∼= {c(s,b),kd(0, rd,b + bd)}N∈N, (2)

where s←R Zw2+1
N , b←R ZnN , rd ←R ZN ,bd ← Samp(d, x, y,N). Furthermore,{

c(s,b),
∑

d∈[1,m2]

kd(0, rd,b+bd)

}
N∈N

∼=
{

c(s,b),
∑

d∈[1,m2]

kd(α, rd,b+bd)

}
N∈N

,

(3)
where s ←R Zw2+1

N , b ←R ZnN , r1, r2, . . . , rm2
←R ZN , α ←R ZN , bd ←

Samp(d, x, y,N) for d ∈ [1,m2], and ∼= denotes statistical indistinguishability.
We say Γ satisfies strong relaxed perfect security if Samp does not depend on x.

Note that in equations (2) and (3), we have distribution ensembles indexed
by N , unlike the definition of perfect security where we are dealing with only
one distribution. We require that the ensembles are statistically indistinguishable
from each other, which means that for large enough values of N , the statistical
distance between the distributions is negligible.

We now show that any pair encoding scheme that is perfectly secure under
the original definition is also secure under the stronger flavor of the relaxed
definition.

Lemma 1. Let Γ = (Param,EncC,EncK,Pair) be a pair encoding scheme. If Γ is
prefectly secure (Definition 2), then Γ is also relaxed perfectly secure (Definition
3). Moreover, we can define a Samp algorithm for Γ that does not depend on the
input x.

Proof. For any pair encoding scheme Γ , define Samp to output a vector of zeroes
on any input. With this definition, (2) is trivially satisfied for every d ∈ [1,m2],
and the two distributions in (3) reduce toc(s,b),

∑
d∈[1,m2]

kd(0, rd,b)

 and

c(s,b),
∑

d∈[1,m2]

kd(α, rd,b)

 . (4)

Since Γ is perfectly secure, we know that if s←R Zw2+1
N , b←R ZnN , r←R Zm2

N

and α←R ZN , then

{c(s,b),k(0, r,b)} ≡ {c(s,b),k(α, r,b)}.



We can replace k(α, r,b) with k(m2α, r,b) in the above without changing the
joint distribution. Now, observe that k(0, r,b) =

∑
d∈[1,m2]

kd(0, rd, b) and

k(m2α, r,b) =
∑
d∈[1,m2]

kd(α, rd,b) symbolically. Therefore, the two distribu-

tions in (4) are identical. ut

4 Dual System Groups

Our construction of predicate encryption schemes from pair encodings is based
on dual system groups (DSG), introduced by Chen and Wee [14] in a recent work.
Our formulation of DSG, given below, can be seen as a generalization of theirs.
However, as we will show, both their instantiations satisfy the new properties
without making any changes.

A dual system group is parameterized by a security parameter λ and a num-
ber n. It consists of six PPT algorithms as described below.

4.1 Syntax

– SampP(1λ, 1n): On input 1λ and 1n, SampP outputs public parameters pp
and secret parameters sp, which have the following properties:

• pp contains a triple of groups (G,H,GT ) and a non-degenerate bilinear
map e : G × H → GT , a homomorphism µ from H to GT , along with
some additional parameters used by SampG, SampH. Given pp, we know
the exponent of group H and how to sample uniformly from it. Let
N = exp(H) (see Section 2). We require that N is a product of distinct
primes of Θ(λ) bits.

• sp contains h̃ ∈ H (where h̃ 6= 1H) along with additional parameters
used by SampG and SampH.

– SampGT takes an element in the image of µ and outputs another element
from GT .

– SampG and SampH take pp as input and output a vector of n+ 1 elements
from G and H respectively.

– SampG and SampH take both pp and sp as inputs and output a vector of
n+ 1 elements from G and H respectively.

4.2 Properties

We require that all the properties below hold for every pp and sp output by
SampP. Let SampG0 be the algorithm that outputs only the first element of
SampG. Analogously, SampH0, SampG0 and SampH0 can be defined. A dual
system group is correct if it satisfies the following two properties7:

7 Note that we have omitted the H-subgroup property. It is required to construct
encryption schemes with key delegation like HIBE. We do not use this property in
our constructions.



Projective: For all h ∈ H and coin tosses σ, SampGT(µ(h);σ) = e(SampG0

(pp;σ), h).

Associative: If (g0, g1, . . . , gn) and (h0, h1, . . . , hn) are samples from SampG(pp)
and SampH(pp) respectively, then for all i ∈ [1, n], e(g0, hi) = e(gi, h0).

For security we require the following three properties to hold:

Orthogonality: h̃ ∈ Kernel(µ), i.e., µ(h̃) = 1GT .

Non-degeneracy:

1. SampH0(pp, sp) ∼= h̃δ, where δ ←R ZN .
2. ∃ g̃ ∈ G s.t. SampG0(pp, sp) ∼= g̃α, where α←R ZN .
3. For all ĝ0 ← SampG0(pp, sp), e(ĝ0, h̃)β is uniformly distributed over GT ,

where β ←R ZN .

(Here ∼= denotes statistical indistinguishability.)

Remark 1. In [14], the non-degeneracy property is defined in a slightly different

way. First, they require that for all ĥ0 ← SampH0(pp, sp), h̃ lies in the group

generated by ĥ0, instead of the first point above. And secondly, they do not have
any constraint on the output of SampG0(pp, sp) like in the second point above.
The third property, though, is also present in their definition8.

Indistinguishability. For two (positive) polynomials poly1(·) and poly2(·), de-
fine G,H, Ĝ, Ĥ, Ĝ′, Ĥ′ as follows:

(pp, sp)← SampP(1λ, 1n); γ1, γ2, . . . , γn ←R ZN ;

g1,g2, . . . ,gpoly1(λ)
← SampG(pp); G := (g1,g2, . . . ,gpoly1(λ)

);

h1,h2, . . . ,hpoly2(λ)
← SampH(pp); H := (h1,h2, . . . ,hpoly2(λ)

);

∀i ∈ [1, poly1(λ)], ĝi := (ĝi,0, . . .)← SampG(pp, sp); ĝ′i := (1, ĝγ1i,0, ĝ
γ2
i,0, . . . , ĝ

γn
i,0)

∀j ∈ [1, poly2(λ)], ĥj := (ĥj,0, . . .)← SampH(pp, sp); ĥ′j := (1, ĥγ1j,0, ĥ
γ2
j,0, . . . , ĥ

γn
j,0)

Ĝ := (ĝ1, ĝ2, . . . , ĝpoly1(λ)
); Ĥ := (ĥ1, ĥ2, . . . , ĥpoly2(λ)

);

Ĝ′ := (ĝ′1, ĝ
′
2, . . . , ĝ

′
poly1(λ)

); Ĥ′ := (ĥ′1, ĥ
′
2, . . . , ĥ

′
poly2(λ)

).

We call a dual system group Left Subgroup Indistinguishable (LSI), Right Sub-
group Indistinguishable (RSI) and Parameter hiding (PH) if for all polynomials
poly1(·) and poly2(·),

{pp,G} ≈ {pp,G · Ĝ}, (5)

{pp, h̃,G · Ĝ,H} ≈ {pp, h̃,G · Ĝ,H · Ĥ}, and (6)

{pp, h̃, Ĝ, Ĥ} ≡ {pp, h̃, Ĝ · Ĝ′, Ĥ · Ĥ′} (7)

8 In the composite-order instantiation of [14], this property holds only in a computa-
tional sense.



hold respectively. Observe that the two distributions in (5) and (6) are compu-
tationally indistinguishable, while the two distributions in (7) are identical.

Instantiations of DSG. The three indistinguishability properties defined above
are generalizations of the corresponding ones in Chen and Wee[14]. In the full
version we show that the two instantiations of DSG – in composite-order groups
under the subgroup decision assumption and in prime-order groups under the
decisional linear assumption (d-LIN) – given by [14] satisfy our generalized in-
distinguishability properties as well as our new definition of non-degeneracy.

Remark 2. In the prime-order instantiation of dual system groups under the
d-LIN assumption given by [14], an element from groups G or H is represented by
d+ 1 elements from a source prime-order group (an element from GT is mapped
to just one element of a target prime-order group). Now, suppose we have an
encryption scheme in dual system groups where the ciphertext/key consists of
elements from G or H (and possibly an element from GT ). Then, a concrete
instantiation in prime-order groups would only double the size of ciphertext/key,
if we make the SXDH assumption (special case of d-LIN with d = 1), and only
triple it if we make the DLIN assumption (special case of d-LIN with d = 2).

5 Predicate encryption from pair encodings

In this section, we show how to construct a predicate encryption scheme ΠP =
(Setup,Encrypt, KeyGen,Decrypt) for any predicate family P = {Pκ}κ∈Nc for
which we have a pair encoding scheme ΓP = (Param,EncC,EncK,Pair), using
dual system groups. The message space for ΠP would be the target group in
DSG. Recall that κ specifies a number N ∈ N and some additional parameters
par.

– Setup(1λ, par): First run Param(par) to obtain n, then run SampP(1λ, 1n) to
obtain pp and sp. Recall that given pp, we know the exponent of group H
and can sample uniformly from it. Output

msk←R H mpk := (pp, µ(msk)).

Set N = exp(H) and κ = (N, par).
– Encrypt(mpk, x,m): On input an x ∈ Xκ and an m ∈ GT , run EncC(x,N)

to obtain a sequence of w1 polynomials (c1, c2, . . . , cw1) and a w2 ∈ N. Draw
w2 + 1 samples from SampG:

(g0,0, . . . , g0,n)← SampG(pp;σ)

(g1,0, . . . , g1,n)← SampG(pp), . . . , (gw2,0, . . . , gw2,n)← SampG(pp),

where σ denotes the coin tosses used in drawing the first sample from SampG.
Recall that the polynomial c` is given by

ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj ,



where ζ`, η`,i, θ`,j , ϑ`,i,j ∈ ZN are constants. Output ct := (ct1, . . . ,ctw1
,

ctw1+1) as the encryption of m under x where

ct` := gζ`0,0 ·
∏

i∈[1,w2]

g
η`,i
i,0 ·

∏
j∈[1,n]

g
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

g
ϑ`,i,j
i,j

for ` ∈ [1, w1] and ctw1+1 := m ·SampGT(µ(msk);σ). Notice that the mono-
mials s, si, sbj , and sibj are mapped to group elements g0,0, gi,0, g0,j , and
gi,j , respectively.

– KeyGen(mpk,msk, y): On input a y ∈ Yκ, run EncK(y,N) to obtain a se-
quence of m1 polynomials (k1, k2, . . . , km1

) and an m2 ∈ N. Draw m2 samples
from SampH:

(h1,0, . . . , h1,n)← SampH(pp), . . . , (hm2,0, . . . , hm2,n)← SampH(pp).

Output the key as sk := (sk1, sk2, . . . , skm1
) where for t ∈ [1,m1]

skt := mskτt ·
∏

i′∈[1,m2]

h
υt,i′

i′,0 ·
∏

i′∈[1,m2],j∈[1,n]

h
φt,i′,j
i′,j .

In this case, the variables α, ri′ , and ri′bj are mapped to msk, hi′,0, and
hi′,j , respectively.

– Decrypt(mpk, sky,ctx): On input sky := (sk1, sk2, . . . , skm1) and ctx :=
(ct1, . . . ,ctw1+1), run Pair(x, y,N) to obtain an m1×w1 matrix E. Output

ctw1+1 ·

 ∏
t∈[1,m1],`∈[1,w1]

e(ct`, sk
Et,`
t )

−1 .
Correctness (Sketch). We know that if Pκ(x, y) = 1, then

∑
t∈[1,m1],`∈[1,w1]

Et,`ktc` = αs. Consider two polynomials kt and c`. When these polynomials are
multiplied together, no two monomials – one from kt and one from c` – combine
to give the same monomial in the product polynomial ktc`, except when

– s is multiplied with ri′bj and sbj is multiplied with ri′ , or
– si is multiplied with ri′bj and sibj is multiplied with ri′ ,

because of the restriction on the form of E. Now, s is mapped to g0,0, ri′bj is
mapped to hi′,j , sbj is mapped to g0,j and ri′ is mapped to hi′,0. By the associa-
tivity property of dual system groups, we know that e(g0,0, hi′,j) = e(g0,j , hi′,0).
Further, we mapped si to gi,0 and sibj to gi,j , and associativity guarantees that
e(gi,0, hi′,j) = e(gi,j , hi′,0). Therefore, from the observations above, it follows
that ∏

t∈[1,m1],`∈[1,w1]

e(ct`, sk
Et,`
t ) = e(g0,0,msk).

Finally, by projective property we know that e(g0,0,msk) = SampGT(µ(msk);σ).



Remark 3 (Preserving size). Observe that the output of Encrypt consists of w1+1
elements, w1 from G and 1 from GT , where w1 is the number of polynomials
output by EncC. Further, any key has the same number of elements from H as
the number of polynomials output by EncK. Hence, in particular, if w1 (resp.
m1) is a constant then ciphertexts (resp. keys) are also of constant size, in terms
of dual system group elements. Further, if we instantiate dual system groups
in prime-order groups under SXDH or DLIN assumption, then the ciphertexts
(resp. keys) would still be of constant size (see Remark 2.)

6 Proof of security

In this section, we show that the encryption scheme ΠP constructed for a pred-
icate family P = {Pκ}κ∈Nc in the previous section is secure using the properties
of dual system groups and relaxed perfect security of pair encoding schemes.
More formally, we prove the following theorem.

Theorem 1. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC,
EncK,Pair) is a relaxed perfectly secure pair encoding scheme, then the en-
cryption scheme ΠP = (Setup,Encrypt, KeyGen,Decrypt) constructed in Section
5 (using ΓP ) is semi-adaptively secure. Furthermore, if the algorithm Samp
does not depend on input x, then ΠP is fully secure (see Definition 1).

Using Lemma 1, a corollary of the above theorem is that:

Corollary 1. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC,
EncK, Pair,Samp) is a perfectly secure pair encoding scheme, then the encryp-
tion scheme ΠP = (Setup,Encrypt, KeyGen,Decrypt) constructed in Section 5
(using ΓP ) is fully secure.

Recall that dual system groups can be instantiated in prime-order groups under
the d-LIN assumption. Together with the above corollary, this gives a useful and
interesting result:

Corollary 2. Every perfectly secure pair encoding scheme proposed by Attra-
padung [2] has a fully secure predicate encryption scheme in prime order groups
under the d-LIN assumption.

The rest of this section is devoted to the proof of Theorem 1. We first define
auxiliary algorithms for encryption and key generation.

– Encrypt(pp, x,m; (g′0,g
′
1, . . . ,g

′
w2

),msk): This algorithm is the same as Encrypt
except that it uses the input g′i ∈ Gn+1 instead of choosing samples gi from
SampG for i ∈ [0, w2], and sets ctw1+1 := m · e(g′0,0,msk), where g′0,0 if the
first element of the vector g′0.

– KeyGen(pp,msk, y; (h′1, . . . ,h
′
m2

)): This algorithm is the same as KeyGen ex-
cept that it uses h′i instead of the samples hi from SampH for i ∈ [1,m2].

Using these algorithms, we define alternate forms for the ciphertext and
master secret key:



– Semi-functional master secret key is defined to be msk := msk · h̃β where
β ←R ZN .

– Semi-functional ciphertext is given by Encrypt(pp, x,m; G · Ĝ,msk) where
g1,g2, . . . ,gw2 ← SampG(pp), ĝ1, ĝ2, . . . , ĝw2 ← SampG(pp, sp), G := (g1,g2,
. . . ,gw2), and Ĝ := (ĝ1, ĝ2, . . . , ĝw2). Observe that Encrypt(pp, x,m; G,msk)
is identically distributed to Encrypt(mpk, x,m) – the normal ciphertext – by
the projective property of dual system groups.

Table 1 defines various forms of keys for ρ ∈ [1,m2] and the inputs that
need to be passed to KeyGen (besides pp and y) in order to generate them.
Intermediate-3 and SF-intermediate-3 keys are also defined for ρ = 0 (SF stands
for semi-functional). In the table, h1, . . . ,hm2

← SampH(pp), ĥ1, . . . , ĥm2
←

SampH(pp, sp), and zd := (1, zd,1, . . . , zd,n), where (zd,1, . . . , zd,n) ← Samp(d, x,
y,N) for all d ∈ [1,m2]. For convenience in the following, we define a slightly
modified form of Samp, called Samp, which just prepends 1 to the output of
Samp. Note that 0-Intermediate-3 is distributed identically to a normal key and
0-SF-intermediate-3 is distributed identically to a SF noisy key. Since we have
many forms of keys, (where appropriate) we use a box to highlight the part of a
key which is different from the previous key.

Table 1: Various types of keys

Type of key Inputs to KeyGen (besides pp and y)

Normal msk; (h1, . . . ,hm2)

ρ-Intermediate-1 msk; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2)

ρ-Intermediate-2 msk; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2)

ρ-Intermediate-3 msk; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · h̃zρ ,hρ+1, . . . ,hm2)

Pseudo-normal noisy msk; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 )

Pseudo-SF noisy msk ; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 )

SF noisy msk; (h1 · h̃z1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-1 msk; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-2 msk; (h1, . . . ,hρ−1, hρ · ĥρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-3 msk; (h1, . . . ,hρ−1, hρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

SF msk; (h1, . . . ,hm2)

Proof structure: The novelty in our proof is that instead of working at the
level of a key, we work at the level of samples that form the key. Let ξ denote
the number of queries made by the adversary, and let yϕ denote the ϕth query



for ϕ ∈ [1, ξ]. Further, let m2,ϕ be the second output of EncK(yϕ, N). We define
the following hybrids for ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ] (fix any b ∈ {0, 1}).

– Hyb0: This is the real security game Expt
(b)
A,ΠP (λ, par) described in Section

2.1.
– Hyb1: This game is same as the above except that the ciphertext is semi-

functional.
– Hyb2,ϕ,i,ρ for i ∈ {1, 2, 3}: This game is same as the above except that the

first ϕ− 1 keys are semi-functional, ϕth key is of the form ρ-intermediate-i,
and rest of the keys are normal.

– Hyb2,ϕ,4: This game is same as the above except that the ϕth key is Pseudo-
normal noisy.

– Hyb2,ϕ,5: This game is same as the above except that the ϕth key is Pseudo-
SF noisy.

– Hyb2,ϕ,6: This game is same as the above except that the ϕth key is SF noisy.
– Hyb2,ϕ,i,ρ for i ∈ {7, 8, 9}: This game is same as the above except that the
ϕth key is of the form ρ-SF-intermediate-(i− 6).

– Hyb3: This game is same as Hyb2,ξ,9,m2,ξ
except that the ciphertext is a

semi-functional encryption of a random message in GT .

Table 2: An outline of the proof structure.

Indistinguishability Properties needed

Hyb0 ≈ Hyb1 left subgroup indistinguishability

Hyb2,ϕ,3,ρ−1 ≈ Hyb2,ϕ,1,ρ right subgroup indistinguishability

Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ non-degeneracy, parameter-hiding, relaxed perfect security (2)

Hyb2,ϕ,2,ρ ≈ Hyb2,ϕ,3,ρ right subgroup indistinguishability

Hyb2,ϕ,3,m2,ϕ
≈ Hyb2,ϕ,4 right subgroup indistinguishability

Hyb2,ϕ,4
∼= Hyb2,ϕ,5 non-degeneracy, parameter-hiding, relaxed perfect security (3)

Hyb2,ϕ,5 ≈ Hyb2,ϕ,6 right subgroup indistinguishability

Hyb2,ϕ,9,ρ−1 ≈ Hyb2,ϕ,7,ρ right subgroup indistinguishability

Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ non-degeneracy, parameter-hiding, relaxed perfect security (2)

Hyb2,ϕ,8,ρ ≈ Hyb2,ϕ,9,ρ right subgroup indistinguishability

Hyb2,ξ,9,m2,ξ
∼= Hyb3 projective, orthogonality, non-degeneracy

Our goal is to show that Hyb0 and Hyb3 are computationally indistinguishable
from each other, for both values of the bit b used by Chl in the security game

Expt
(b)
A,ΠP (λ, par). Since Chl encrypts a random message in Hyb3, there would be



no way for a PPT adversary to tell whether m0 or m1 was encrypted. This would
imply that ΠP is a secure encryption scheme.

Our proof proceeds as follows. We first show that Hyb0 and Hyb1 are com-
putationally indistinguishable due to the left subgroup indistinguishability (LSI)
property of dual system groups; this takes the ciphertext from normal to semi-
functional space (the form of the ciphertext doesn’t change after this step).
After that, we take the keys one by one from normal to semi-functional space
by going through a series of hybrids. We show that Hyb2,1,3,0 (or, equivalently,
Hyb1) is computationally indistinguishable from Hyb2,1,9,m2,1

by following the
steps shown in Table 2 for ϕ = 1; this makes the first key semi-functional while
keeping the rest of the keys unchanged. Then, we show that Hyb2,2,3,0 (or, equiv-
alently, Hyb2,1,9,m2,1

) is computationally indistinguishable from Hyb2,2,9,m2,2
by

once again following the steps shown in Table 2, but now for ϕ = 2; as a result,
the second key also moves into the semi-functional space. We continue in the
same fashion till all the keys are in the semi-functional space, i.e., we are in the
hybrid Hyb2,ξ,9,m2,ξ

. The last step of the proof is to show that Hyb2,ξ,9,m2,ξ
and

Hyb3 are statistically close to each other.
We formally prove the indistinguishability of hybrids that require relaxed

perfect security, our new information-theoretic notion of security, in Lemma 2
and 3 below, but defer the other proofs to the full version because they follow
directly from the properties of dual system groups in a manner similar to Chen
and Wee’s security proof for HIBE [14].

Remark 4 (Full vs. semi-adaptive security.). In transitioning from Hyb2,ϕ,1,ρ to

Hyb2,ϕ,2,ρ in Lemma 2, we add randomness using the algorithm Samp to the

ρ-th sample of the ϕ-th key. Observe that if Samp depends on input x, then this
transition can only take place if x is known before any key queries are issued.
Therefore, in this case, we can prove semi-adaptive security. On the other hand,
if Samp does not depend on x, then we get full security (and as shown in Lemma
1, this is the case for all of the perfectly secure pair encoding schemes of [2]).

Remark 5 (Perfectly secure encodings). Recall from the proof of Lemma 1 that
for any perfectly secure pair encoding scheme, we can define a dummy sampling
algorithm that always outputs a vector of 0s. When this is the case, the security
proof can be considerably simplified: we could directly go from Hyb1 to Hyb2,ϕ,4
and also from Hyb2,ϕ,5 to Hyb2,ϕ,9,m2,ϕ

using right subgroup indistinguishability.

Remark 6 (Cost of our reduction). There are many complex predicates for which
we do not know any perfectly secure pair encoding schemes. But if one can design
a scheme that is relaxed perfectly secure, then we show that an encryption
scheme can be derived from it, which is secure under standard assumptions.
The reduction cost of our security proof, however, is higher than usual: if an
adversary makes ξ queries and m2 is the maximum number of samples used in
any key, then the cost is O(ξ ·m2). For instance, this cost only depends on the
number of pre-challenge queries in the case of Attrapadung’s computationally
secure encodings (Theorem 1 in [2]). Note, however, that computational security
of the encoding itself is proved under q-type assumptions.



Lemma 2. For every ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ], Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ.

Proof. Given pp,msk and h̃, one can generate mpk and every key except the ϕth
(because in order to generate this key and the ciphertext, we need to be able to
sample from SampH and SampG, for which secret parameters sp are required).
Hence, it suffices to show that the following two distributions are statistically
close (for clarity, we omit ϕ in the following):

{pp,msk, h̃,Encrypt(pp, x,m; G · Ĝ,msk),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))},

{pp,msk, h̃,Encrypt(pp, x,m; G · Ĝ,msk),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2
))}.

But observe that:

Encrypt(pp, x,m; G·Ĝ,msk) = Encrypt(pp, x,m; G,msk)·Encrypt(pp, x, 1; Ĝ,msk),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2
))

= KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2
))·

KeyGen(pp, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1)),

KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))

= KeyGen(pp,msk, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2
))·

KeyGen(pp, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

because of the way Encrypt and KeyGen are defined and bilinearity of e (see the
construction in Section 5). The first component on the right hand side of each of
the above equations can be generated given pp,msk and h̃. Hence, we only need
to focus on the second components, i.e., it is enough to show that the following
two distributions are statistically close:

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1))},
(8)

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ·h̃zρ , 1, . . . , 1))}.
(9)

Let us focus on the first distribution between the two above. By the parameter-
hiding property of dual system groups we know that {pp, h̃, Ĝ, ĥρ} and {pp, h̃, Ĝ·
Ĝ′, ĥρ · ĥ′ρ} are identically distributed. Hence (8) is identically distributed to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ·Ĝ′,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ·ĥ′ρ, 1, . . . , 1))}.
(10)



Let ĉt := (ĉt1, . . . , ĉtw1+1) and ŝk := (ŝk1, . . . , ŝkm1
) denote the output of

Encrypt and KeyGen respectively. We know that for ` ∈ [1, w1],

ĉt` = ĝζ`0,0 ·
∏

i∈[1,w2]

ĝ
η`,i
i,0 ·

∏
j∈[1,n]

(ĝ0,j ·ĝ
γj
0,0)θ`,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j ·ĝ
γj
i,0)ϑ`,i,j ,

where (ĝi,0, . . . , ĝi,n) ← SampG(pp, sp) for i ∈ [0, w2] and γ1, . . . , γn ←R ZN .
Also, ĉtw1+1 = e(ĝ0,0,msk). Using the non-degeneracy property of dual system
groups, we can write ĝ0,0 and ĝi,0 as g̃δ and g̃δi respectively, for i ∈ [1, w2],
where δ, δ1, . . . , δw2

←R ZN . Then we consider ĝ0,j (and ĝi,j) for j = 1, . . . , n
to be values sampled from SampG conditioned on the value of ĝ0,0 (resp. ĝi,0).
(These values may not be efficiently sampleable.) Therefore, we have

ĉt` = g̃ζ`δ+
∑
i∈[1,w2] η`,iδi+

∑
j∈[1,n] θ`,jδγj+

∑
i∈[1,w2],j∈[1,n] ϑ`,i,jδiγj ·∏

j∈[1,n]

ĝ
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

ĝ
ϑ`,i,j
i,j (11)

Shifting our focus to the key, we know that its tth component is given by

ŝkt = ĥ
υt,ρ
ρ,0 ·

∏
j∈[1,n]

(ĥρ,j · ĥ
γj
ρ,0)φt,ρ,j ,

for t ∈ [1,m1], where (ĥρ,0, . . . , ĥρ,n) ← SampH(pp, sp). Using non-degeneracy

once again, we can write ĥρ,0 as h̃ω for an ω ←R ZN , and consider ĥρ,j for

j = 1, . . . , n to be sampled from SampH conditioned on the value of ĥρ,0. Hence,

ŝkt = h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jωγj ·

∏
j∈[1,n]

ĥ
φt,ρ,j
ρ,j . (12)

Now, observe the superscripts of g̃ and h̃ in (11) and (12) respectively (over
` ∈ [1, w1] and t ∈ [1,m1]). We know that δ, δ1, . . . , δw2

, γ1, . . . , γn and ω are
randomly chosen from ZN . Hence, we can use the first property (2) of relaxed
perfect security to add noise to the ρ-th sample used in the key. But the problem
is that in any sample drawn from SampG and SampH, elements of the sample
may depend on each other. In particular ĝ0,j may reveal some information about

δ, and similarly for ĝi,j and for ĥρ,j , so we must ensure that (2) applies even
given this information. Recall the discussion on structural restrictions after the
definition of pair encoding schemes. We know that if ϑ`,i,j 6= 0 for any ` ∈ [1, w1]
and j ∈ [1, n] (otherwise, we don’t need to worry about ĝi,j), then δi is an explicit
part of the encoding output by EncC. Similarly, if φt,ρ,j 6= 0 for any t ∈ [1,m1]
and j ∈ [1, n], then ω is an explicit part of the encoding output by EncK. Further,
δ is always explicit. Therefore, given a sample from either of the distributions in
(2), one can compute the first element of the samples from SampG and SampH,
and then draw rest of the elements conditioned on the first ones.

In a nutshell, we can apply (2) to conclude that the distribution

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (ŝk1, . . . , ŝkm1
)}



is statistically close to

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (s̃k1, . . . , s̃km1
)},

where

s̃kt := h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jω(γj+zj) ·

∏
j∈[1,n]

ĥ
φt,ρ,j
ρ,j

= h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jωγj ·

∏
j∈[1,n]

(ĥρ,j · h̃ωzj )φt,ρ,j ,

for t ∈ [1,m1], and zρ = (z1, . . . , zn)← Samp(ρ, x, y,N). We use the fact that δ
is always explicit to generate the w1 + 1th component of the ciphertext.

Observe that the only difference between ŝkt and s̃kt is that an extra h̃ωzj

is multiplied with ĥρ,j in the latter case. Hence, the key (s̃k1, . . . , s̃km1
) can be

generated by giving ĥρ · ĥ′ρ · h̃zρ as the ρ-th sample to KeyGen (zρ has the same
distribution as ω · zρ since ω ∈ Z∗N with high probability). Therefore, (10) is
statistically close to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ·Ĝ′,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ·ĥ′ρ·h̃zρ ,
1, . . . , 1)).

Using parameter-hiding once again, we can show that the above distribution is
identical to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (1, . . . , 1, ĥρ·h̃zρ , 1, . . . , 1)),

which completes the proof. ut

The above proof can be easily adapted to show that Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ.

In this case, we want that the two distributions

{pp,msk, h̃,Encrypt(pp, x,m; G · Ĝ,msk),

KeyGen(pp,msk, y; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2
· h̃zm2 ))},

{pp,msk, h̃,Encrypt(pp, x,m; G · Ĝ,msk),

KeyGen(pp,msk, y; (h1, . . . ,hρ−1,hρ · ĥρ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 ))}.

are indistinguishable from each other. Observe that the only difference now is
that we have msk instead of msk, and noise is present in the samples ρ+1, . . . , n
instead of 1, . . . , ρ− 1. So, we can split Encrypt and KeyGen in a way similar to
the above proof, and once again it suffices to show that exactly the distributions
in (8) and (9) are indistinguishable.

Lemma 3. For every ϕ ∈ [1, ξ], Hyb2,ϕ,4
∼= Hyb2,ϕ,5.



Proof. This proof proceeds in a manner similar to the proof of Lemma 2. To
begin with, we observe as before that given pp,msk and h̃, one can generate
mpk and every key except the ϕth (for clarity, we omit ϕ below). Hence, it
suffices to show that the distribution

{pp,msk, h̃,Encrypt(pp, x,m; G ·Ĝ,msk),KeyGen(pp,msk, y; (h1 · ĥ1 · h̃z1 , . . . ,

hm2
· ĥm2

· h̃zm2 ))},

is statistically close to a distribution where msk is replaced by msk, the semi-
functional master secret key. Further,

Encrypt(pp, x,m; G·Ĝ,msk) = Encrypt(pp, x,m; G,msk)·Encrypt(pp, x, 1; Ĝ,msk),

KeyGen(pp,msk, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2
· ĥm2

· h̃zm2 ))

= KeyGen(pp,msk, y; (h1, . . . ,hm2
))·KeyGen(pp, 1, y; (ĥ1·h̃z1 , . . . , ĥm2

·h̃zm2 )),

KeyGen(pp,msk, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2
· ĥm2

· h̃zm2 ))

= KeyGen(pp,msk, y; (h1, . . . ,hm2
))·KeyGen(pp, h̃β , y; (ĥ1·h̃z1 , . . . , ĥm2

·h̃zm2 )),

where β ←R ZN . The first component on the right hand side of each of the
above equations can be generated given pp,msk and h̃. Hence, it is enough to
show that the following two distributions are statistically close:

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, 1, y; (ĥ1·h̃z1 , . . . , ĥm2
·h̃zm2 ))},

(13)

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, h̃β , y; (ĥ1·h̃z1 , . . . , ĥm2
·h̃zm2 ))}.

(14)

Let us focus on the first distribution between the two above. By the parameter-
hiding property of dual system groups, it is identically distributed to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ · Ĝ′,msk),KeyGen(pp, 1, y; (ĥ1 · ĥ′1 · h̃z1 , . . . ,

ĥm2 · ĥ′m2
· h̃zm2 ))}. (15)

Let ĉt := (ĉt1, . . . , ĉtw1+1) and ŝk := (ŝk1, . . . , ŝkm1) denote the output of
Encrypt and KeyGen respectively. We know that for ` ∈ [1, w1],

ĉt` = ĝζ`0,0 ·
∏

i∈[1,w2]

ĝ
η`,i
i,0 ·

∏
j∈[1,n]

(ĝ0,j ·ĝ
γj
0,0)θ`,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j ·ĝ
γj
i,0)ϑ`,i,j ,

where (ĝi,0, . . . , ĝi,n) ← SampG(pp, sp) for i ∈ [0, w2] and γ1, . . . , γn ←R ZN .
Using non-degeneracy property of dual system groups, we can write ĝ0,0 and ĝi,0



as g̃δ and g̃δi respectively, for i ∈ [1, w2], where δ, δ1, . . . , δw2
←R ZN . Therefore,

we have

ĉt` = g̃ζ`δ+
∑
i∈[1,w2] η`,iδi+

∑
j∈[1,n] θ`,jδγj+

∑
i∈[1,w2],j∈[1,n] ϑ`,i,jδiγj ·∏

j∈[1,n]

ĝ
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

ĝ
ϑ`,i,j
i,j (16)

Shifting our focus to the key, we know that its tth component is given by

ŝkt =
∏

i′∈[1,m2]

ĥ
υt,i′

i′,0 ·
∏

i′∈[1,m2],j∈[1,n]

(ĥi′,j · ĥ
γj
i′,0 · h̃

zi′,j )φt,i′,j ,

for t ∈ [1,m1], where (ĥi′,0, . . . , ĥi′,n) ← SampH(pp, sp) and (zi′,1, . . . , zi′,n) ←
Samp(i′, x, y,N) for i′ ∈ [1,m2]. Using non-degeneracy once again, we can write

ĥi′,0 as h̃ωi′ for an ωi′ ←R ZN . Hence,

ŝkt = h̃
∑
i′∈[1,m2][υt,i′ωi′+

∑
j∈[1,n](φt,i′,jωi′γj+φt,i′,jzi′,j)] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j

= h̃
∑
i′∈[1,m2][υt,i′ωi′+

∑
j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j ,

(17)

since the distribution of (zi′,1, . . . , zi′,n) is statistically close to (ωi′zi′,1, . . . , ωi′zi′,n)
(with high probability ωi′ ∈ Z∗N ) for all i′ ∈ [1,m2].

Now, observe the superscripts of g̃ and h̃ in (16) and (17) respectively (over
` ∈ [1, w1] and t ∈ [1,m1]). We know that δ, δ1, . . . , δw2

, γ1, . . . , γn and ω1, . . . , ωm2

are randomly chosen from ZN . Hence, we can use the second property (3) of re-
laxed perfect security to add noise to the master secret key. (The dependencies
between the elements of the samples drawn from SampG and SampH can be
handled as in the previous proof.) Therefore, we have that the distribution

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (ŝk1, . . . , ŝkm1
)}

is statistically close to

{pp,msk, h̃, (ĉt1, . . . , ĉtw1+1), (s̃k1, . . . , s̃km1
)},

where

s̃kt := h̃τtβ+
∑
i′∈[1,m2][υt,i′ωi′+

∑
j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j ,

for t ∈ [1,m1], and β ←R ZN . Observe that the only difference between ŝkt
and s̃kt is that an extra τtβ is begin added to the exponent of h̃ in the latter
case. Hence, the key (s̃k1, . . . , s̃km1

) can be generated by providing h̃β as master
secret key to KeyGen. Therefore, (15) is statistically close to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ · Ĝ′,msk),KeyGen(pp, h̃β , y; (ĥ1 · ĥ′1 · h̃z1 , . . . ,

ĥm2 · ĥ′m2
· h̃zm2 ))}.



Using parameter-hiding once again, we can show that the above distribution is
identical to

{pp,msk, h̃,Encrypt(pp, x, 1; Ĝ,msk),KeyGen(pp, h̃β , y; (ĥ1·h̃z1 , . . . , ĥm2
·h̃zm2 ))},

which completes the proof. ut

7 Ciphertext-Policy ABE

In this section, we design a relaxed perfectly secure pair encoding scheme for
Ciphertext-Policy Attribute Based Encryption (CP-ABE). The access policy is
represented by a linear secret sharing (LSS) scheme (A, π), where A is a matrix
of size n1 × n2 with entries in ZN and π is a mapping from [1, n1] to a universe
of attributes U . Let ai denote the ith row of A for i ∈ [1, n1]. Let S ⊆ U be a
set of attributes and Υ = {i | i ∈ [1, n1], π(i) ∈ S} be the indices of rows in A
associated with S.

We say that the LSS scheme (A, π) accepts S if e = (1, 0, . . . , 0) lies in the
span of rows associated with S (otherwise the scheme rejects S). In other words,
if S is acceptable, there exists constants {εi}i∈Υ such that

∑
i∈Υ εiai = e. (This

set of constants can be easily computed given S.) An interesting property of LSS
schemes that will be useful to us later in the proofs is that if (A, π) rejects S,
then there must exist a vector w = (w1, . . . , wn2

) such that 〈w,ai〉 = 0 for all
i ∈ Υ but 〈w, e〉 = 1. This, in particular, implies that w1 = 1. (See [7], Claim 2,
for a proof of this and other properties below about secret sharing schemes.)

In order to share a secret s ∈ ZN , one picks v2, v3, . . . , vn1 ←R ZN , and
outputs 〈ai,v〉 as the ith share for i ∈ [1, n1], where v = (s, v2, v3, . . . , vn1

). This
way of sharing a secret leads to two useful properties:

– Correctness: For every S accepted by (A, π), every secret s ∈ ZN and any
v2, v3, . . . , vn1 ∈ ZN ,

∑
i∈Υ εi〈ai,v〉 = 〈v,

∑
i∈Υ εiai〉 = s.

– Privacy: For every S rejected by (A, π), the distribution of {〈ai,v〉}i∈Υ is
independent of the secret s being shared.

The predicate family for CP-ABE is indexed by κ = (N,n1, n2,U , T ). Xκ is
the set of all LSS schemes where the matrix is of size n1×n2 with entries in ZN
and the mapping is from [1, n1] to U . Yκ is given by the set {S | S ⊆ U , |S| ≤ T}.
For all x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and only if x accepts y. It is clear from
our definition of predicate family that there is a bound on the size of matrices
and the number of attributes associated with a key. But there are no other
restrictions: the size of attribute universe U could be arbitrary and π need not
be injective. Without loss of generality, we assume U to be ZN .

We are now ready to design a relaxed perfectly secure pair encoding scheme
Φcp-abe = (Param, EncC,EncK,Pair) for the CP-ABE predicate family.

7.1 Pair Encoding Scheme

– Param(par)→ n1(n2+T+1). Let b = ({bi,j}i∈[1,n1],j∈[1,n2], {b′i,t}i∈[1,n1],t∈[0,T ]).



– EncC((A, π), N)→ c(s,b) := (c1, c2) where

c1 = s c2 = s

 ∑
i∈[1,n1]
j∈[1,n2]

ai,jbi,j +
∑

i∈[1,n1]
t∈[0,T ]

π(i)tb′i,t

 ,

and s = (s), and ai,j denotes the entry in the ith row and jth column of A.
– EncK(S,N)→ k(α, r,b) := ({k1,i, k2,i,j k3,i,`,j , k4,i,y k5,i,`,t} i,`∈[1,n1],i6=`,j∈[1,n2],y∈S,t∈[0,T ])

where
k1,i = ri k2,i,j = ribi,j − vj k3,i,`,j = rib`,j

k4,i,y = ri
∑

t∈[0,T ]

ytb′i,t k5,i,`,t = rib
′
`,t

and r = (r1, r2, . . . , rn1
, v2, . . . , vn2

) and v1 = α.

We informally discuss how to recover αs by combining the polynomials gen-
erated by EncC and EncK, with an intent to provide some intuition about
the scheme, and defer a formal proof to the full version. We can think of
v2, v3, . . . , vn1 as the randomness picked in order to share v1 = α according
to the scheme (A, π). Hence, if we find 〈ai,v〉 for all i ∈ Υ , we can recover α
(ignore s for now). One could start out by multiplying ai,j by k2,i,j and summing
over j, for an i ∈ Υ . This does give

∑
j ai,jvj but also produces an extra term

ri
∑
j ai,jbi,j (ignore ri for now). We could try to get rid of this term by using

c2 but the product ai,jbi,j there is also summed over i (since we want EncC to
produce a constant number of polynomials, we are forced to pack as much into
one polynomial as possible). Fortunately, we have the polynomials k3,i,`,j for
` 6= i. We can multiply these by a`,j and remove the unwanted ai,jbi,j terms.
But we are not done yet: we must also remove the term

∑
i,t π(i)tb′i,t left in the

mix because we used c2. If π(i) ∈ S, then this is easy: use k4,i,π(i) to remove∑
t π(i)tb′i,t, and k5,i,`,t · π(`)t to remove the rest. However, if π(i) /∈ S, there is

no way to do this.

7.2 Relaxed Perfect Security

We now prove that the pair encoding scheme Φcp-abe designed above is relaxed
perfectly secure (Definition 3). Towards this, we first define a sampling algorithm
Samp as follows. On input an i ∈ [1, n1], (A, π) ∈ Xκ, S ∈ Yκ and N , Samp checks

whether π(i) /∈ S. If yes, it picks elements b̂i,1, b̂i,2, . . . , b̂i,n2 independently and
uniformly from ZN ; otherwise it picks them uniformly but with the constraint
that

∑
j∈[1,n2]

ai,j b̂i,j = 0. Samp outputs

b̂i := (0, . . . , . . . , . . . , 0︸ ︷︷ ︸
(i− 1)n2

, b̂i,1, b̂i,2, . . . , b̂i,n2 , 0, . . . , . . . , . . . , . . . , 0︸ ︷︷ ︸
(n1 − i)n2 + n1(T + 1)

). (18)

Observe that the output of Samp depends on (A, π), the input to EncC. Hence,
this sampling algorithm would lead to a semi-adaptively secure scheme.



We consider only those N ∈ N which are a product of distinct primes of
Θ(λ) bits. This is sufficient for our purposes because the Setup algorithm of the
generic construction in Section 5 defines N of exactly this form. We first show
that for all i ∈ [1, n1] and N ∈ N,(

c(s,b),ki(0, ri,b)
)
≡

(
c(s,b),ki(0, ri,b + b̂i)

)
, (19)

where s ←R Z1
N , b ←R ZnN , ri ←R ZN , b̂i ← Samp(i, (A, π), S,N). Recall

that ki denotes the polynomials in k obtained by setting all the variables in
r = (r1, r2, . . . , rn1

, v2, . . . , vn2
) except the ith to 0. For i ∈ [n1 + 1, n1 + n2 −

1], the only polynomial in ki is −vi−n1+1, or, more importantly, there is no
monomial with any b. Hence, the equation above trivially holds for i in this
range irrespective of what Samp outputs. (That is why we don’t care about
defining Samp’s behavior on such inputs.)

Let us refer to the left and right distributions in Equation (19) as ∆L and
∆R respectively. Fix an arbitrary i∗ ∈ [1, n1]. By the definition of ki∗ , we know
that in these two distributions only those components of the key survive which
have subscript i∗. Further, in the components k2,i∗,1, . . . , k2,i∗,n2 , the variables
v1, . . . , vn2

are all set to 0. Now, focus on the distribution ∆R. It is clear from

Equation (18) that the added randomness b̂i∗ affects only k2,i∗,1, . . . , k2,i∗,n2

components. For i ∈ [1, n1] and j ∈ [1, n2], let δi,j := bi,j if i 6= i∗ and δi∗,j :=

bi∗,j + b̂i∗,j . Since bi,j are uniformly and independently distributed, so are δi,j .
The second component of ciphertext encoding, c2, can now be rewritten as

s

 ∑
i∈[1,n1]
j∈[1,n2]

ai,jδi,j −
∑

j∈[1,n2]

ai∗,j b̂i∗,j +
∑

t∈[0,T ]

π(i∗)tb′i∗,t +
∑

i∈[1,n1],i6=i∗
t∈[0,T ]

π(i)tb′i,t

 .

Observe that the only difference between ∆L and ∆R is that in the latter case
there is an additional term rand :=

∑
j∈[1,n2]

ai∗,j b̂i∗,j in c2. If π(i∗) ∈ S, then

this term is 0 by our choice of Samp. On the other hand when π(i∗) /∈ S, we show
that

∑
t∈[0,T ] π(i∗)tb′i∗,t is an independent uniform random variable over ZN , and

therefore, the additional term rand does not matter. Towards this, consider the
polynomial f(x) = b′i∗,T ·xT +b′i∗,T−1 ·xT−1 + . . .+b′i∗,0. Since b′i∗,T , . . . , b

′
i∗,0 are

chosen at random, any T + 1 distinct points on f(x) are uniformly distributed
over ZT+1

N . The only components of the key which depend on b′i∗,T , . . . , b
′
i∗,0

are {k4,i∗,y}y∈S , which could also be rewritten as {ri∗f(y)}y∈S . There could be
at most T such components because |S| ≤ T . Therefore,

∑
t∈[0,T ] π(i∗)tb′i∗,t =

f(π(i∗)) is independently and uniformly distributed.
The second and last step in proving relaxed perfect security is to show that

when (A, π) does not accept S, Equation (3) holds, i.e., for large enough values
of N , the statistical distance between the distributions,c(s,b),

∑
i∈[1,n1+n2−1]

ki(0, ri,b + b̂i)

 and

c(s,b),
∑

i∈[1,n1+n2−1]

ki(α, ri,b + b̂i)

 ,

(20)



is negligible, where s ←R Z1
N , b ←R ZnN , r ←R Zn1+n2−1

N , α ←R ZN , and

b̂i ← Samp(i, (A, π), S,N) for i ∈ [1, n1 + n2 − 1]. Let us denote the left and
right distributions in Equation (20) above by ΓL and ΓR respectively. The second
component of the key in these two distributions is given by

k2,i,j = ribi,j + rib̂i,j − vj

for i ∈ [1, n1] and j ∈ [1, n2]. The only difference between the distributions is in
the components k2,1,1, . . . , k2,n1,1. In the case of ΓL, v1 = (n1 + n2 − 1)α = 0,
while in the case of ΓR, it is chosen independently and uniformly from ZN .

Let us focus on the distribution ΓL. Recall that there exists a vector w =
(w1, . . . , wn2

) orthogonal to all the rows associated with S such that w1 = 1. We

claim that if we replace the variables b̂i,j by b̂i,j−r−1i wjα, where α←R ZN , then
ΓL is not affected. (With high probability ri ∈ Z∗N , so r−1i exists.) If π(i) /∈ S, we

know that b̂i,1, b̂i,2, . . . , b̂i,n2
are independently and uniformly distributed. Hence

adding −r−1i wjα has no effect on their joint distribution. On the other hand

when π(i) ∈ S, b̂i,1, b̂i,2, . . . , b̂i,n2
are uniformly chosen with the constraint that∑

j∈[1,n2]
ai,j b̂i,j = 0. Now, when −r−1i wjα is added,∑

j∈[1,n2]

ai,j(b̂i,j−r−1i wjα) =
∑

j∈[1,n2]

ai,j b̂i,j − r−1i α
∑

j∈[1,n2]

ai,jwj = 0

because w is orthogonal to every ai such that π(i) ∈ S. Hence, the variables

b̂i,1, b̂i,2, . . . , b̂i,n2
still satisfy the constraint they did before.

After replacing b̂i,j by b̂i,j − r−1i wjα, we have that k2,i,j = ribi,j + rib̂i,j −
wjα − vj (where v1 = 0). The final step in the proof is to replace the variables
w1α,w2α+ v2, . . . , wn2

α+ vn2
by α, v2, . . . , vn2

. This does not affect ΓL because
v2, . . . , vn2 are picked independently and uniformly from ZN (and w1 = 1). But
now ΓL is exactly the distribution ΓR.

7.3 Instantiation: Constant-size ciphertext

We briefly comment about instantiating the pair encoding scheme Φcp-abe =
(Param,EncC,EncK,Pair). Using the generic method in Section 5, one can con-
struct a predicate encryption scheme Πcp-abe = (Setup, Encrypt,KeyGen,Decrypt)
for CP-ABE using Φcp-abe. According to Theorem 1, Πcp-abe is semi-adaptively
secure because the Samp algorithm we defined in the previous sub-section de-
pends on the access structure. However, since EncC outputs only two polynomi-
als, Encrypt outputs only two elements from G (and one element from GT ). Now,
from Remark 2, it follows that one can design a concrete scheme for CP-ABE in
prime-order groups where the ciphertext contains only 4 group elements under
the SXDH assumption, and only 6 elements under the DLIN assumption (plus an
additional element from the target group). Furthermore, only a constant number
of pairing operations would be required to decrypt a ciphertext.
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