
Impossibility of Simulation Secure Functional
Encryption Even with Random Oracles

Shashank Agrawal1, Venkata Koppula2, and Brent Waters2?

1 Visa Research
shashank.agraval@gmail.com
2 University of Texas at Austin

{kvenkata, bwaters}@cs.utexas.edu

Abstract. In this work we study the feasibility of achieving simulation
security in functional encryption (FE) in the random oracle model. Our
main result is negative in that we give a functionality for which it is
impossible to achieve simulation security even with the aid of random
oracles.

We begin by giving a formal definition of simulation security that
explicitly incorporates the random oracles. Next, we show a particular
functionality for which it is impossible to achieve simulation security.
Here messages are interpreted as seeds to a (weak) pseudorandom func-
tion family F and private keys are ascribed to points in the domain of
the function. On a message s and private key x one can learn F (s, x). We
show that there exists an attacker that makes a polynomial number of
private key queries followed by a single ciphertext query for which there
exists no simulator.

Our functionality and attacker access pattern closely matches the stan-
dard model impossibility result of Agrawal, Gorbunov, Vaikuntanathan
and Wee (CRYPTO 2013). The crux of their argument is that no sim-
ulator can succinctly program in the outputs of an unbounded number
of evaluations of a pseudorandom function family into a fixed size ci-
phertext. However, their argument does not apply in the random oracle
setting since the oracle acts as an additional conduit of information which
the simulator can program. We overcome this barrier by proposing an
attacker who decrypts the challenge ciphertext with the secret keys is-
sued earlier without using the random oracle, even though the decryption
algorithm may require it. This involves collecting most of the useful ran-
dom oracle queries in advance, without giving the simulator too many
opportunities to program.

On the flip side, we demonstrate the utility of the random oracle in sim-
ulation security. Given only public key encryption and low-depth PRGs
we show how to build an FE system that is simulation secure for any
poly-time attacker that makes an unbounded number of message queries,
but an a-priori bounded number of key queries. This bests what is pos-
sible in the standard model where it is only feasible to achieve security
for an attacker that is bounded both in the number of key and message

? Supported by NSF CNS-1414082, DARPA SafeWare, Microsoft Faculty Fellowship,
and Packard Foundation Fellowship.

queries it makes. We achieve this by creating a system that leverages the
random oracle to get one-key security and then adapt previously known
techniques to boost the system to resist up to q queries.

Finally, we ask whether it is possible to achieve simulation security for
an unbounded number of messages and keys, but where all key queries
are made after the message queries. We show this too is impossible to
achieve using a different twist on our first impossibility result.

1 Introduction

The traditional notion of public key encryption systems provide “all or nothing”
semantics regarding encrypted data. In such a system a message m is encrypted
under a public key, pk, to produce a ciphertext ct. A user that holds the corre-
sponding secret key can decrypt ct and learn the entire message m, while any
other user will not learn anything about the contents of the message. The work
of Sahai and Waters [32] conceived cryptosystems that moved beyond these lim-
ited semantics to ones where a private key would give a select view of encrypted
data. These efforts [32, 13, 25] cumulated in the concept of functional encryption.
In a functional encryption system an authority will generate a pair of a public
key and master key pair (pk,msk). Any user can encrypt a ciphertext ct using
the public key, while the authority can use the master secret key msk to generate
a secret key skf that is tied to the functionality f . A holder of skf can use it to
decrypt a ciphertext ct, but instead of learning the message m, the decryptor’s
decryption will instead output f(m).

One challenge in defining and designing functional encryption (FE) systems
is in finding a definition to capture security. The earliest formal definitions of
functional encryption [13, 25] (back when the terminology of “predicate encryp-
tion” was used) defined security in terms of an indistinguishability game. Briefly,
a system is indistinguishability secure if no poly-time attacker that receives se-
cret keys for functions f1, . . . , fQ can distinguish between encryptions of m0,m1

so long as fi(m0) = fi(m1) for i = 1, . . . , Q.
Subsequent works [12, 29, 5, 2] aimed to capture various notions of simulation-

based security. To achieve simulation one must be able to show that for each
attacker there exists a poly-time simulator S that can produce a transcript that
emulates the attacker’s real world view, but when only given access to what
the evaluation of the secret key functions f(·) were on the attacker’s messages.
(We will return to describing simulation-based security in more detail shortly.)
While these simulation definitions had the appeal of perhaps capturing a stronger
notion of security than the indistinguishability-based ones, they were limited
in that multiple works [12, 29, 5, 2, 22] showed that this notion is impossible to
achieve in the standard model for even very basic functionalities such as identity-
based encryption [33, 11]. The only exception being in the restricted case where
the attacker is only allowed to access an a-priori bounded number of secret
keys [20].

While these results essentially put a hard stop on realizing (collusion-resistant)
simulation security in the standard model, the door to leveraging the random or-

2

acle model [6] still remained wide open. Notably, Boneh, Sahai and Waters [12]
building on techniques from non-committing encryption [28] showed that the
random oracle could be leveraged to turn any indistinguishability secure public
index FE scheme into one that was simulation secure. Recall that a public index
scheme is one where an encrypted message is split into a hidden payload and
a non-hidden index and the secret key operates only on the index. The set of
such schemes includes identity-based encryption [33, 11] and attribute-based en-
cryption [32]. Thus, they showed that introducing a random oracle was enough
to circumvent their own standard model IBE result. In this work we wish to
understand what are the possibilities and limitations (if any) for using random
oracles to achieve simulation security in FE systems. Our work begins with the
question:

Is it possible to achieve simulation secure functional encryption
for any functionality in the random oracle model?

Our main result is to show that there exist functionalities for which there
cannot exist a simulation secure functional encryption system even in the random
oracle model.

On the flip side, we demonstrate the utility of the random oracle in simula-
tion security. Given only public key encryption and low-depth PRGs we show
how to build an FE system that is simulation secure for any poly-time attacker
that makes an unbounded number of message queries, but an a-priori bounded
number of key queries. This beats what is possible in the standard model where
it is only feasible to achieve security for an attacker that is bounded both in
the number of key and message queries it makes. We achieve this by creating a
system that leverages the random oracle to get one-key security and then adapt
previously known techniques to boost the system to resist up to q queries.

Finally, we ask whether it is possible to achieve simulation security for an un-
bounded number of messages and keys, but where all key queries are made after
the message queries. We show this too is impossible to achieve by repurposing
our main impossibility result to the new setting.

1.1 Our Main Impossibility Result

We show the impossibility result for the case where messages are interpreted as
keys or seeds to a (weak) Pseudo Random Function (PRF) [18] family and secret
keys are points in the domain of the PRF. Agrawal, Gorbunov, Vaikuntanathan
and Wee [2] showed that such a functionality could not be simulation secure
in the standard model. Here we show that this limitation holds even with the
introduction of random oracles.

We begin our exposition by describing the definition of simulation security
in a little more depth and briefly overviewing the AGVW impossibility analysis.

Simulation security. Simulation security for FE is defined by means of real and
ideal experiments. In the real experiment, an adversary A gets secret keys for

3

functions f and ciphertexts for challenge messages m of its choice. The secret
key queries can either be sent before the challenge messages (also referred to as
pre-challenge queries) or after the challenge messages (post challenge queries).
In the ideal world, on the other hand, a simulator S needs to generate challenge
ciphertexts and keys given only the minimal information. In particular, when A
requests that a challenge message m be encrypted, S only gets f(m) on all the
pre-challenge functions f queried by A (instead of m itself), and must generate
a ciphertext that A cannot distinguish from the one in the real world. Similarly,
when A makes a post-challenge key query for f ′, S must generate a secret key
given just f ′, f ′(m) for all challenge messages m.

An FE scheme is (qpre, qchal, qpost)-simulation secure if it can withstand adver-
saries that make at most qpre pre-challenge key queries, qchal challenge encryption
requests, and qpost post-challenge key queries. Ideally, one would like to capture
all polynomial-time adversaries, who can make any number of queries they want.
However, even simple functionalities like identity-based encryption do not have
a scheme secure against an arbitrary number of encryption requests followed by
one key query, i.e., IBE does not have a (0, poly, 1)-simulation secure scheme [12,
5] in the standard model. Here poly denotes that any number of encryption
requests can be made, as long as there is a polynomial bound on them.

AGVW impossibility. A different kind of impossibility was shown by Agrawal et
al. [2]. They interpret messages as seeds to a weak pseudorandom family wPRF3

and secret keys as points in the domain of the family. When a ciphertext for
s is decrypted with a secret key for x, the output is wPRF(s, x). They show
that there does not exist a simulation-secure FE scheme for this family that can
tolerate adversaries which can make an arbitrary number of pre-challenge key
queries and then request for the encryption of just one message (i.e., (poly, 1, 0)-
simulation security). Intuitively, when the adversary outputs a message s in the
ideal world, the simulator gets wPRF(s, x1), . . . ,wPRF(s, xq) (if q is the number
of post-challenge key queries), which is computationally indistinguishable from
q uniformly random strings. The simulator must output a ciphertext ct now that
decrypts correctly with all the keys issued before. Note that when the keys were
issued, simulator had no information about s, so it must somehow compress q
random strings into ct. However, as Agrawal et al. show, the output of a pseudo-
random function family is incompressible. Thus, by choosing a large enough q,
they arrive at the impossibility result.

Random oracle model. In the random oracle model though, Agrawal et al.’s
impossibility argument breaks down. Informally speaking, the random oracle acts
as an additional conduit of information which the simulator can program even
after ct appears. For instance, if the decryption algorithm makes RO queries,
then the simulator could program such queries when adversary tries to decrypt ct

3 A weak pseudorandom function family provides security only against attackers that
do not get to choose the points at the which the PRF is evaluated. These points are
chosen randomly by the challenger.

4

with the secret keys issued earlier. Indeed, Boneh et al. show that their (0, poly, 1)
impossibility for IBE can be circumvented by employing RO in the encryption
and decryption algorithms.

Thus we need a very different approach. We would like to build an adversary
A? that “cuts off” RO in the decryption process, and is able to work without
it. This involves a delicate balancing act between cutting off too early and too
late. In one extreme case, if A? does not invoke RO at all and makes up its
own responses, then these would not match with the actual RO responses in
encryption and key generation. Thus decryption would always fail in both the
real and ideal worlds, and there will be no distinction between them. On the
other extreme, if A? just used the RO all the way through, it would provide
the simulator enough opportunity to program in the desired information. (As a
result, we will not be able to use the incompressibility of wPRF.)

At a high level, our approach is similar to the Impagliazzo-Rudich “heavy-
query” algorithm [23]. First, there is an initial learning phase where A? will build
a list of “high frequency” random oracle queries and responses associated with
each secret key and the challenge ciphertext. Later the attacker will be able to
use this list to replace the use of the actual random oracle during decryption. If
some query is not found in the list, then A? will choose a random value for it on
its own. Informally, we get the following result:

Theorem 1 (Main Theorem, informal). There does not exist a (poly, 1, 0)-
simulation secure FE scheme for the class of (weak) pseudo-random functions
in the random oracle model.

Related work. This bears a resemblance to the work of Canetti, Kalai and
Paneth [15] who show impossibility of VBB obfuscation even with ROs. In their
case they show that any obfuscated program that uses the RO can be translated
into one that does not need it. They do this by collecting the frequently used
RO queries and bundling this with the core obfuscated code. On one hand, these
queries do not give any information about the program, but on the other, result
in an obfuscation that is only approximately correct. Such imperfect correctness,
however, is enough to invoke the impossibility of Bitansky and Paneth [9].

One might ask if we can show whether RO can be dispensed with in any
simulation secure FE in a similar way. If we could establish this, then prior im-
possibility results [12, 5, 2] would imply RO impossibility as well. The answer to
this is negative as we recall that Boneh, Sahai and Waters [12] showed specific
functionalities that were impossible to simulate in the standard model, but pos-
sible to be simulation secure using random oracle. Therefore we cannot always
remove the random oracle and must develop a more nuanced approach: we need
to build a specific adversary for which simulation does not work.

In a recent work [27], Mahmoody et al. show that there is no fully black-box
construction of indistinguishability obfuscation (iO) from any primitive implied
by a random oracle in a black-box way. In light of recent FE to iO transformations
[3, 10], one might wonder if this rules out FE schemes in the RO model. However,
these transformations are non-black box.

5

High level description of impossibility Recall that we want to design an
adversary A? that will build a list of “high frequency” random oracle queries
and responses associated with each secret key and the challenge ciphertext. It
will use this list later in the decryption phase to “cut-off” the random oracle at
an appropriate time.

A? starts off by querying the key-generation oracle at random points x1, . . . , xq
in the domain of wPRF, and gets sk1, . . . , skq in return. The RO queries made
by the key-generation oracle are hidden from the adversary, so A? tries to find
them by encrypting several randomly chosen seeds using the master public key,
and then decrypting them with sk1, . . . , skq.

4 The RO queries made during the
decryption process are recorded in a list Γ . The hope is that Γ will capture the
RO queries that were made in generating a key ski.

Note that one cannot hope to capture all RO queries required for decryption:
Suppose a polynomial number Y of high frequency queries associated with ski
is collected, but there is an RO call that is made during key-generation which
is used during 1/2Y fraction of the decryptions. Then it will be the case that
with some non-negligible probability, Γ will fail to aid in the decryption of the
challenge ciphertext with ski. Instead of trying to solve this issue, we make
our analysis work with a decryption that might fail some of the time. For this
purpose, we extend the incompressibility argument of Agrawal et al. to work
even for approximate compression.

We are not quite done yet. Even though we have captured most of the hidden
RO queries involved in key-generation that are also needed for decryption, we
still need to capture those that are involved in the encryption of the challenge
message, as they are also hidden and may be required during decryption.5 Sup-
pose A? outputs a randomly chosen seed s? as the challenge message, and gets
ct? in return. In order to find out RO queries associated with ct?, A? cannot
generate secret keys on its own (like in the pre-challenge phase when it gener-
ated ciphertexts); it must make-do with the secret keys sk1, . . . , skq that were
issued earlier. Thus, the idea is to decrypt ct? with some fraction δ of the keys
using RO, recording the queries in the list Γ . It then cuts off the random or-
acle, and decrypts ct? with the remaining keys using the list Γ . If a query is
not found in Γ , then a random value is used for it (as well as recorded in Γ for
consistent responses in future). The adversary outputs 1 if a large fraction of
these decryptions are correct; that is, if the decryption of ct? using ski outputs
wPRF(s?, xi).

In the real world, as we will see, the adversary outputs 1 with noticeable
probability. On the other hand, we show that in the ideal world, the adversary
outputs 1 only with negligible probability. For the adversary to output 1 in
the ideal world, the simulator needs to somehow program the ciphertext and

4 It is important that this is done before the challenge message is put out, otherwise
simulator will get an opportunity to program in additional information through the
random oracle.

5 The RO queries made while setting up the FE system are also hidden from the
adversary, but we ignore them here for simplicity.

6

the post-challenge random oracle queries so that a large number of decryptions
succeed. The only opportunity a simulator has of programming post-challenge
RO responses is when δ fraction of the keys are used for decrypting ct?. By
choosing δ appropriately, we can ensure that the simulator is not able to program
the RO queries to the extent that most of the remaining decryptions succeed.

Looking back. A simulator’s success in the RO model depends on when it
comes to know what to program and how much can it program. When deal-
ing with the attacker A? described above, it gets a large amount of information,
wPRF(s?, x1), . . . ,wPRF(s?, xq), only in the challenge phase. Since all the key
queries come before that, programming the secret keys is ruled out. If there was
no random oracle, then the only possible avenue to program is the challenge
ciphertext, but AGVW shows that it is not possible to compress so much in-
formation into a small ciphertext. Now with the random oracle, it might have
been possible to program this information if there were many RO queries after
the challenge phase. However, our adversary makes only a bounded number of
post-challenge RO queries, and as a result, it is not possible to program all of
{wPRF(s?, xi)} in these RO responses.

An alternative approach to proving impossibility Concurrent to our work,
Bitansky, Lin and Paneth [7] showed an alternate approach for removing ran-
dom oracles. Unlike our current impossibility, their approach requires multiple
ciphertexts. We sketch the main ideas here.

This approach uses a notion of obfuscation called ‘exponentially-efficient ob-
fuscation’, introduced by Lin et al. [26]. An exponentially-efficient obfuscator
is allowed to run in subexponential time, and the obfuscated program is also
allowed to be subexponential in the input length. For security, Lin et al. con-
sidered the iO equivalent, where the obfuscation of two functionally identical
programs should be computationally indistinguishable. However, one can even
consider simulation based notions where the output of the obfuscator can be
simulated by a simulator having only black box access to the program.

In a recent work, Bitansky et al. [8] showed that IND-secure functional en-
cryption can be used to construct exponentially-efficient indistinguishability ob-
fuscation [26] in a black-box manner. While there exist other transformations
from FE to obfuscation [3, 10], the BNPW transformation is the only known
black-box transformation, and this is important when studying FE or obfus-
cation in the random oracle model. Using the BNPW transformation, one can
argue that simulation secure FE in the random oracle model implies simulation-
secure exponentially-efficient obfuscation in the random oracle model. Therefore,
to rule out FE in the random oracle model, it suffices to show that there exist cer-
tain functionalities for which we cannot obtain simulation-secure exponentially-
efficient obfuscation in the random oracle model.

This can be achieved using the techniques of Canetti et al. [15], who showed
an impossibility result for VBB obfuscation in the random oracle model. Canetti
et al. showed that if there exists a VBB obfuscator in the random oracle model,

7

then there exists an ‘approximate’ VBB obfuscator in the standard model. A
similar argument can be used to show that if there exists simulation-secure
exponentially efficient obfuscation in the random oracle model, then there exists
approximately correct simulation-secure exponentially-efficient obfuscator in the
standard model.

Finally, one needs to show that it is impossible to construct approximately
correct simulation-secure exponentially-efficient obfuscators for certain function
classes. This argument is similar to the incompressibility argument that we use.
Let C be a circuit that performs PRF evaluation, and consider the obfuscation
of C. A simulator must output an obfuscation given only black box access to
the PRF function, which in turn is indistinguishable from a truly random func-
tion. Therefore, the simulator must output a subexponential sized string that
approximately explains a truly random function, which is impossible.

1.2 A New Possibility Result in the Random Oracle Model

Now that we know that simulation security is impossible for unbounded queries
even in the random oracle model, we turn to asking whether this model can be
leveraged to support simulation security in any situations where it is impossible
in the standard model. We already have one such example from the work of
Boneh et al. [12] which gives both a standard model impossibility and a random
oracle feasibility result for public index schemes. Thus, we are interested in new
examples that go beyond the public index class. In this paper, we show the
following possibility result:

Theorem 2 (Possibility, informal). There exists a simulation secure FE scheme
for the class of all polynomial-depth circuits in the random oracle model secure
against any poly-time attacker who makes an unbounded number of messages
queries, but an a-priori bounded number of key queries, based on semantically-
secure public-key encryption and pseudo-random generators computable by low-
depth circuits.

Recall that such a security notion cannot be achieved even for the simple func-
tionality of IBE in the standard model [12].

One-bounded FE. Our starting point is a one-bounded simulation-secure FE
scheme for all circuits, i.e., a scheme where the attacker can only make one key
query, based just on the semantic security of public-key encryption. Our scheme
is a variant of the Sahai-Seyalioglu [31]. Let C be a family of circuits wherein
each circuit can be represented using t bits. Suppose Ux is a universal circuit
that takes a C ∈ C as input, and outputs C(x). The set-up algorithm of our
FE scheme generates 2t key pairs of a semantically-secure public-key encryption
scheme. The 2t public keys (pk1,0, pk1,1), . . . , (pkt,0, pkt,1) form the master public
key, and the 2t private keys (sk1,0, sk1,1) . . . , (skt,0, skt,1) are kept secret. In order
to encrypt a message x, a garbled circuit for Ux is generated. Suppose wi,b for
i = 1, . . . , t and b = 0, 1 are the wire-labels of Ux for its t input bits. Then
the (i, b)th component of the ciphertext consists of two parts: an encryption of

8

a random value ri,b under pki,b, and wi,b blinded with the hash of ri,b. The
key for a circuit C represented using bits β1, . . . , βt is simply the private keys
corresponding to those bits, i.e., skβ1 , . . . , skβt .

It is easy to see that the one-bounded FE scheme is correct. Specifically,
the secret key for C will allow one to recover ri,βi for i = 1, . . . , t. Then by
running the hash function on these values, the wi,βi can be unblinded and used
to evaluate the garbled circuit.

Let us now see how a simulator S can generate ciphertexts and a key from the
right distribution in the ideal world. If the only allowed key query is made before
the challenge phase for a circuit C, then S just runs the normal key generation
algorithm, and later when adversary outputs a challenge message x?, it can
generate a garbled circuit using just C(x?).6 When the adversary’s key query
is after the challenge message, however, S does not get any information in the
challenge phase. In particular, it does not know which universal circuit to garble.
Here the random oracle allows the simulator to defer making a decision until
after the key query is made. It can set the second part of the (i, b)th ciphertext
component to be a random number zi,b because, intuitively, adversary does not
know ri,b (it is encrypted) so a hash of it is completely random. When adversary
queries with a circuit C afterwards, simulator can program the random oracle’s
response on ri,b to be zi,b ⊕ wi,b, so that decryption works out properly.

Bounded collusion FE. Using the one-bounded scheme in a black-box way, we can
design an FE scheme secure against any a-priori bounded collusions for the class
NC1, using Gorbunov et al.’s [20] transformation. While their transformation
was proved secure for only one challenge message, we show that the same ideas
also work for unbounded number of challenge messages. If the underlying one-
bounded scheme is secure against any number of challenge messages, then so is
the scheme obtained after applying their transformation.

Related work. Sahai and Seyalioglu [31] were the first to use randomized encod-
ings to design an FE system. Their scheme can issue one key non-adaptively for
any function. Our one-bounded scheme can be seen as an extension of theirs to
additionally support post-challenge key query. The random oracle allows a sim-
ulator to not commit to any value in the ciphertext until the function evaluation
is made available.

Goldwasser et al. [19] also designed an FE system that can issue one pre-
challenge key. Their scheme has succinct ciphertexts (independent of circuit size)
but security is proved under stronger assumptions.

Iovino and Zebroski [24] present two results on simulation-secure FE in the
public-key setting. First, they have a construction for a bounded number of chal-
lenge ciphertexts and pre-challenge key queries (and unbounded post-challenge
queries), where key size grows with number of challenge ciphertexts but the ci-
phertext size is constant. The encryption/decryption time grows with the number

6 In fact, if we just want pre-challenge key query security, then there is no need for
random oracle.

9

of pre-challenge key queries. The second construction is for bounded key queries
and challenge ciphertexts, but with constant size keys and ciphertexts. Here the
encryption/decryption times depend on the bound on number of key queries and
challenge ciphertexts. Both these results use extractability obfuscation. Our pos-
itive result presents a construction where the number of challenge ciphertexts is
unbounded, but key queries are bounded. Therefore, our positive result and the
results of Iovino and Zebroski are incomparable. Moreover, our construction only
requires PKE and low-depth PRGs, whereas their constructions require stronger
assumptions.

1.3 Another Impossibility Result

A natural question to ask is whether we can construct a simulation secure
FE scheme in the random oracle model that can handle unbounded ciphertext
queries, followed by an unbounded number of post-challenge key queries. We
show that this is also impossible, assuming the existence of weak pseudorandom
functions.

Theorem 3. There does not exist a (0, poly, poly)-simulation secure FE scheme
for the class of (weak) pseudo-random functions in the random oracle model.

Once again we interpret messages as seeds to a weak PRF family wPRF and
secret keys as points in the domain of the PRF. A very different way to attack
an FE scheme is needed though because no key query can be made before the
challenge phase.

The new attackerA? starts off by outputting randomly chosen seeds s1, . . . , sk
for wPRF, and gets ciphertexts ct1, . . . , ctk in return. The RO queries made in
the encryption process are hidden from A?, and it might need some of them
later during decryption. So, it requests secret keys for randomly chosen points
x1, . . . , xq, and gets sk1, . . . , skq in return. Then it decrypts every cti with skj
and records the RO queries made in a list Γ . An important point to note here
is that the simulator gets some information about the seeds chosen earlier when
key-queries are made. Specifically, it gets wPRF(s1, xj), . . . ,wPRF(sk, xj) when
xj is the query.
A? now picks a random point x∗ and requests a secret key for it. The goal is

to use the key obtained, say sk∗, to decrypt the challenge ciphertexts ct1, . . . , ctk
later. But, in order to do so, A? also needs to find out the RO queries made
during key-generation that may also be required for decryption. To solve this
problem, we use the same idea as in the previous impossibility result: encrypt
some random seeds on your own and decrypt them with sk∗, while adding the
RO queries made to Γ .

Finally, A? decrypts ct1, . . . , ctk with sk∗ without invoking the random or-
acle, using the list Γ instead. In the real world, at least a constant fraction of
the decryptions succeed. The analysis is similar to that of the previous impos-
sibility result, but with the role of ciphertext and key reversed. The ideal world
analysis, on the other hand, need more care because of two reasons. First, as
pointed out earlier, some information about the seeds s1, . . . , sk is leaked when

10

post-challenge key queries are made. Second, the simulator needs to compress
the evaluation of wPRF on seeds s1, . . . , sk and a common point x∗, instead of
one seed and multiple points as in the (poly, 1, 0) impossibility. At the same
time, however, the only opportunity a simulator has of programming RO re-
sponses after learning wPRF(s1, x

∗), . . . ,wPRF(sk, x
∗) is when ciphertexts for

random seeds are decrypted with sk∗ with the help of RO. So, it is conceivable
that one can exploit the security of wPRF to argue that it is impossible to com-
press wPRF(s1, x

∗), . . . ,wPRF(sk, x
∗) into a small key and a small number of RO

responses. We show that this is indeed the case in the full version [1].

1.4 Relation to De Caro et al. and Functional Encryption for
Circuits with Random Oracle Gates

At the time of the initial posting of our work, De Caro et al. [16] stated (The-
orem 3) that indistinguishability security for FE schemes in the random oracle
model implied simulation security, resulting in an apparent discrepancy with
our results. After our work was posted we contacted the authors to point out
this dissonance. The authors informed us that they had earlier become aware
of an issue with the theorem statement, but had not yet prepared an update to
their posting. They stated that they intended to update it to a statement that
indistinguishability-based definition of “functional encryption for circuits with
random oracle gates” implied simulation security.

At the time, the notion of functional encryption for circuits with random
oracle gates had not previously appeared in the literature and we were unable
to deduce the intended definition from the phrase. Subsequently, the authors
provided a revision which defined the concept and provided a transformation in
the random oracle model which showed this new notion implies (regular) simu-
lation security [17]. However, since our work shows such a notion is impossible
to achieve, this must imply that this indistinguishability notion of “functional
encryption for circuits with random oracle gates” was impossible to realize to
begin with.

Despite sharing the term random oracle the new concept proposed in their
revision is quite different than how the random oracle model was proposed [6].
Recall, that a cryptographic system built in the random oracle model will have
the same algorithms and definitions as the standard model counterpart with the
exception that each algorithm is allowed oracle access to a random function. We
emphasize that the random oracle model in of itself is not impossible, it is just
simply a different model.7 Prior works would typically first establish provable
security in the random oracle model and then apply the heuristic of replacing
the random oracle calls with those to a hash function. It is this last step where
security can actually be lost; in some cases no matter what the hash function

7 We note that in practice one could actually instantiate this model with a trusted
third party that dynamically builds a random table. However, this is not done since
presumably one does not want to require online communication and introduce such
a trusted third party.

11

is [14]. The concept of IND-FE in the random oracle model is not impossible
to achieve (as far as we know), but we show that it is still insufficient to get
simulation security. This impossibility holds for the random oracle model itself
and is completely independent of the hash function replacement heuristic.

In the concept of functional encryption with random oracle gates as defined
in the revision of [17] the random oracle is not just used as a tool to help
augment functional encryption, but actually incorporated into a definition of
functional encryption as the descriptions of a functionality f will depend on
the random oracle. (Due to space limitations we refer the reader to [17] for a
detailed description of the new definition.) As a simple argument will show, this
new indistinguishability notion, unlike standard FE in the random oracle model,
is impossible to begin with. So the addition of random oracle gates to FE circuits
moves one to a primitive that is unachievable.

The combination of our simulation impossibility results with the implications
from [17] imply this new notion of indistinguishability FE with random oracle
gates is impossible to achieve. However, there is a much simpler and direct
argument, which we provide in the full version of our paper [1].

1.5 Interpreting our Impossibility Results

Impossibility results for simulation secure functional encryption in the standard
model were already known before our work. If we take any FE system secure in
the Random Oracle Model and then take the heuristic of replacing the oracle
calls with some hash function family, then we have a standard model FE scheme.
We know this new system to be impossible to be simulation secure from prior
work. So a natural question to ask is what new interpretations does our result
provide. We believe there are two main points here.

First, an interpretation of our result is understanding FE in idealized mod-
els. While the random oracle model is closely associated with the random oracle
heuristic (i.e. replacing oracle calls with hash functions), there are different pos-
sible ways to try to “instantiate” a cryptosystem described in the random oracle
model. One possibility is to replace calls to the random oracle with secure hard-
ware tokens. Another could be a use of a blockchain.

In addition, in the interest of getting a better and deeper scientific under-
standing it is useful to map out cryptography in both the standard and random
oracle models. There has been precedent for this in our community. For example,
the Boneh et al. [12] paper which gave some examples of schemes (simulation
secure FE schemes where the adversary sends unbounded challenge messages,
followed by one key query) that were possible in the random oracle model, but
impossible otherwise. Going further out, to best understand non-committing en-
cryption it is useful to know both that it is impossible in the standard model
and that it is possible in the RO model.

Secondly, we also posit that there may be some forms of security that lie in
between simulation security and indistinguishability security, but that are hard
for us to understand or formally define. Suppose there did exist an FE scheme
that was simulation secure in the RO model, and one did apply the random

12

oracle heuristic to it. It is possible that even if this new scheme is not simulation
secure, the transformation could result in some gain of security. Perhaps this gain
in security might even be what is right or needed for a particular application.
One example is that while the Fiat-Shamir heuristic applied to zero knowledge
protocol does not give a simulation secure NIZK, but might give the right form of
security needed for a particular application (e.g. its use in some cryptocurrency).

2 Preliminaries

We use λ to denote the security parameter. Let [n] denote the set {1, 2, . . . , n}.
If A is an algorithm, then a ← A(·) or A(·) → a denote that a is the output of
running A on the specified inputs. If D is a distribution, then s ← D denotes

that s is a sample drawn according to it. Also, x
R← X denotes drawing a value

x uniformly at random from the set X.
For two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we use

X
c

≈ Y to denote that X is computationally indistinguishable from Y. Lastly,
for two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), their Hamming distance
HD(u, v) is defined to be the number of points where they don’t match, i.e., the
size of set {i ∈ [n] |ui 6= vi}.

2.1 Weak Pseudo-random Functions

Our impossibility results rely on the existence of circuit families whose output
cannot be compressed by a significant amount. In Section 4, we will show that
a specific circuit family built from pseudo-random functions (PRFs) is not com-
pressible. In fact, like Gorbunov et al. [20], a weaker type of PRF where adversary
only gets evaluation at random points suffices for our purpose.

Definition 1 (Weak PRFs). Let n,m, p be polynomials in λ. Let wPRF =
{wPRFλ}λ∈N be a family of efficiently computable functions such that wPRFλ :
{0, 1}n(λ) × {0, 1}m(λ) → {0, 1}p(λ), where the first input is called the seed. Pick

a seed s
R← {0, 1}n(λ) and ` + 1 points x1, . . . , x`, x

? R← {0, 1}m(λ). Let D` be
the `-tuple of values (x1,wPRFλ(s, x1)), . . . , (x`,wPRFλ(s, x`)). Then the wPRF
family is a weak pseudo-random function family if for every ` polynomial in λ,

{D`, x
?,wPRFλ(s, x?)}λ∈N

c

≈ {D`, x
?, r}λ∈N,

where r is a random string of length p(λ).

Below we present two alternate definitions of security for a weak pseudoran-
dom family. The first one is a standard definition for PRFs/weak PRFs, while
the second one is introduced for our final impossibility result. They both follow
from Definition 1 above through simple hybrid arguments.

Definition 2 (Weak PRFs, many points). Let wPRF = {wPRFλ}λ∈N be

a family as in Definition 1. Pick s
R← {0, 1}n(λ), x1, . . . , x`

R← {0, 1}m(λ), and

13

r1, . . . , r`
R← {0, 1}p(λ). Then the wPRF family is a weak PRF family for many

points if for every ` polynomial in λ,

{(x1,wPRFλ(s, x1)), . . . , (x`,wPRFλ(s, x`))}λ∈N
c

≈ {(x1, r1), . . . , (x`, r`)λ∈N.

Definition 3 (Weak PRFs, many seeds with aux). Let wPRF = {wPRFλ}λ∈N
be a family as in Definition 1. Pick k seeds s1, . . . , sk

R← {0, 1}n(λ) and `+1 points

x1, . . . , x`, x
? R← {0, 1}m(λ). Let Dk,` be the k·`-tuple of values (x1,wPRFλ(s1, x1)),

. . . , (x`,wPRFλ(s1, x`)), . . . , (x1,wPRFλ(sk, x1)), . . . , (x`,wPRFλ(sk, x`)). Then
the wPRF family is a weak PRF family for many seeds with auxiliary information
if for every k, ` polynomial in λ,

{Dk,`, x
?,wPRFλ(s1, x

?), . . . ,wPRFλ(sk, x
?)}λ∈N

c

≈ {Dk,`, x
?, r1, . . . , rk}λ∈N,

where r1, . . . , rk are random strings of length p(λ).

2.2 Randomized Encodings

We use decomposable randomized encodings [20] to simplify the description of
our FE schemes. They are known to exist for all circuits due to the works of [34,
4].

Definition 4 (Randomized Encodings). Let C = {Cλ}λ be a family of cir-
cuits, where each circuit C ∈ Cλ takes an n(λ) bit input and produces an m(λ)
bit output. A decomposable randomized encoding RE of C consists of two PPT
algorithms:

– RE.Encode(1λ, C) : It takes a circuit C ∈ Cλ as input, and outputs a ran-
domized encoding ((w1,0, w1,1), . . . , (wn(λ),0, wn(λ),1)).

– RE.Decode(1λ, (w̃1, . . . , w̃n(λ))) : It takes an encoding (w̃1, . . . , w̃n(λ)) and

outputs y ∈ {0, 1}m(λ) ∪ {⊥}.

Correctness Let C ∈ Cλ be any circuit, and let ((w1,0, w1,1), . . . , (wn,0, wn,1))←
RE.Encode(1λ, C). For any input x ∈ {0, 1}n(λ), RE.Decode(1λ, (w1,x1 , . . . , wn(λ),xn(λ)

)) =
C(x).

Security To define the security of such a scheme, consider the following two
distributions:

– RealREA (λ). Run A(1λ) to get a C ∈ Cλ and an x ∈ {0, 1}n(λ). Then run
RE.Encode on input C to get an encoding ((w1,0, w1,1), . . . , (wn(λ),0, wn(λ),1)).
Output {wi,xi}i∈[n(λ)].

– IdealRES (λ). Run A(1λ) to get a C ∈ Cλ and an x ∈ {0, 1}n(λ). Output
S(1λ, C, C(x)).

A randomized encoding scheme RE is secure if for every PPT adversary A, there
exists a PPT simulator S such that

RealREA (λ)
c

≈ IdealRES (λ).

14

3 Functional Encryption in the Random Oracle Model

A functional encryption scheme for a function space F = {Fλ}λ∈N and a message
space X = {Xλ}λ∈N in the random oracle model consists of four PPT algorithms
that have access to a random oracle O : {0, 1}`(λ) → {0, 1}m(λ), where ` and m
are polynomials. The algorithms are described as follows:

– SetupO(1λ) : It takes the security parameter (in unary representation) as
input and outputs a public key pk and a master secret key msk.

– KeyGenO(msk, f) : It takes the master secret key msk and a circuit f ∈ Fλ
as inputs, and outputs a secret key skf for the circuit.

– EncryptO(pk, x) : It takes the public key pk and a value x ∈ Xλ as inputs,
and outputs a ciphertext ctx.

– DecryptO(pk, sk, ct) : It takes the public key pk, a secret key sk, and a ci-
phertext ct as inputs, and outputs a value y or ⊥.

Correctness. The four algorithms defined above must satisfy the following cor-
rectness property. For all values of the security parameter λ, for every f ∈ Fλ
and x ∈ Xλ, all random oracles O, and all (pk,msk) output by SetupO(1λ),

DecryptO(pk,KeyGenO(msk, f),EncryptO(pk, x)) = f(x).

Without loss of generality, we can assume Decrypt to be deterministic.
One could consider weaker notions of correctness where a negligible proba-

bility of error is allowed.

Statistical Correctness. For all values of the security parameter λ, for every
f ∈ Fλ and x ∈ Xλ, all random oracles O,

Pr

DecryptO (pk, sk, ct) = f(x) :

(pk,msk)← SetupO(1λ)

sk← KeyGenO (msk, f)

ct← EncryptO (pk, x)

 ≥ 1− negl(λ)

3.1 Simulation-based Security

Definition 5 (Experiments). Let FE = (Setup,KeyGen,Encrypt,Decrypt) be
a functional encryption scheme. For any PPT algorithms A = (A1,A2) and
S = (S1,S2,S3,S4), Figure 1 defines two experiments RealFEA (λ) and IdealFEA,S(λ).
In the figure, qc denotes the length of challenge message vector x output by A1

and q1 denotes the number of key generation queries made before that.

Definition 6 (Admissibility). An adversary A = (A1,A2) is (qpre(λ), qchal(λ),
qpost(λ))-admissible if in any run of the experiments RealA(1λ) and IdealA,S(1λ),
A1 and A2 make at most qpre(λ) and qpost(λ) key generation queries, respectively,
and A1 outputs at most qchal(λ) challenge messages.

15

Experiment RealFEA (λ):
1. (pk,msk)← SetupO(1λ)

2. (x, stA)← AKeyGen-RO1(msk,·,·)
1 (pk)

3. cti ← EncryptO(mpk, xi) for i ∈ [qc]

4. α← AKeyGen-RO2(msk,·,·)
2 ({cti}i∈[qc], stA)

5. Output α

Experiment IdealFEA,S(λ):
1. (pk, st1)← S1(1λ)

2. (x, stA)← AKeyGen-RO1(st1,·,·)
1 (pk)

3. ({cti}i, st3) ← S3(st2, {fj(xi)}i,j)
where f1, . . . , fq1 are key queries
made by A1

4. α← AKeyGen-RO2(st3,·,·)
2 ({cti}i∈[qc], stA)

5. Output α

In the Real-world experiment, the setup algorithm, using the random oracle O,
outputs public key pk and master secret key msk. The adversary A1 gets pk and
has oracle access to KeyGen-RO1. This oracle responds to random oracle queries
and key generation queries. It has msk hardwired and takes two inputs inp1 and
inp2, where inp1 specifies whether the query is a key generation query or a random
oracle query. In the former case, KeyGen-RO1 outputs KeyGenO(msk, inp2), while
in the latter case, it outputs O(inp2). After polynomially many oracle queries to
KeyGen-RO1, A1 outputs a vector x of ciphertext queries and a state stA. The ad-
versary A2 gets encryptions of all elements in x (note that xi denotes the ith entry
in x) and the state stA. It also has oracle access to KeyGen-RO2, which is identi-
cal to KeyGen-RO1. After making polynomially many oracle queries, A2 outputs α.

In the Ideal-world experiment, the simulator S1 first computes the public key pk,
and simulator state st1. The adversaryA1 gets pk and oracle access to KeyGen-RO1,
which is simulator S2 in the ideal-world. The simulator S2 is stateful. It maintains
an internal state st2, gets S1’s state st1 and takes tuple inputs (inp1, inp2), which
indicate whether it is a key generation query or a random oracle query. After
polynomially many queries, adversary A1 outputs x and state stA. The simulator
S3 must give out encryptions of x, using S ′2s final state st2 and {fj(xi)}i∈[qc],j∈[q1].
The simulator outputs the ciphertexts as well as state st3. Adversary A2 gets these
ciphertexts, state stA and oracle access to KeyGen-RO2. In the ideal world, this
oracle is SKeyIdeal(·)

4 (st3, ·, ·). Here, KeyIdeal takes as input a function f and outputs
(f(x1), . . . , f(xqc)). Also, simulator S4 is stateful and has an internal state st4.
Finally, after polynomially many queries, A outputs α.

Fig. 1: Real and ideal experiments.

16

An adversary A is (poly, qchal(λ), qpost(λ))-admissible if in any run of the
experiments RealA(1λ) and IdealA,S(1λ), A1 is allowed to make an unbounded
(but polynomial) number of pre-challenge key queries, A2 makes at most qpost(λ)
key generation queries, and A1 outputs at most qchal(λ) challenge messages. We
can similarly define admissible adversaries where the number of challenge mes-
sages/post challenge key queries are unbounded.

On the other hand, a simulator S = (S1,S2,S3,S4) is admissible if whenever
A2 makes a key query f , S4 queries KeyIdeal on f only.

Definition 7 (Simulation security). A functional encryption scheme FE =
(Setup,KeyGen,Encrypt,Decrypt) is (qpre(λ), qchal(λ), qpost(λ))-Sim-secure for some
polynomials qpre, qchal, and qpost, if there exists an admissible PPT simulator
S = (S1,S2,S3,S4) such that for all (qpre(λ), qchal(λ), qpost(λ))-admissible PPT
adversaries A = (A1,A2),

{RealFEA (λ)}λ∈N
c

≈ {IdealFEA,S(λ)}λ∈N.

We also consider adversaries that make an unbounded (but polynomial) num-
ber of pre-challenge key queries/challenge messages/post-challenge key queries.

Definition 8 (Simulation security, unbounded queries). A functional en-
cryption scheme FE = (Setup,KeyGen,Encrypt,Decrypt) is (poly, qchal(λ), qpost(λ))-
Sim-secure for some polynomials qchal, and qpost, if there exists an admissible PPT
simulator S = (S1,S2,S3,S4) such that for all (poly, qchal(λ), qpost(λ))-admissible
PPT adversaries A = (A1,A2),

{RealFEA (λ)}λ∈N
c

≈ {IdealFEA,S(λ)}λ∈N.

We can similarly define simulation security when qchal and qpost are unbounded.

Note that in the real world an adversary has explicit access to the random
oracle. In the ideal world, both the key generation and random oracles are sim-
ulated by S throughout the experiment.

Discussion on previous definitions of Sim-secure FE There are a number of
definitions of simulation secure functional encryption [12, 30, 5, 2]. While these
definitions are similar in spirit, there are minor differences. For instance, in the se-
curity game of [12, 2], the adversary makes pre-challenge key queries, followed by
a challenge phase (where it queries for ciphertexts), followed by a post-challenge
key query phase. The definition of [5] is more general as it allows arbitrary inter-
leaving of encryption and key-generation queries. We use the AGVW definition
[2] in this work, although we believe our impossibility result can also be extended
to work for the definitions in [5].

4 Hardness of Approximate Compression

In this section, we will first define the notion of approximate compression, and
then show that there are certain circuit families which are hard to approximately

17

compress. This section closely follows the work of Agrawal et al. [2], who defined
the notion of (exact) compressibility of circuit evaluations, and showed that there
exist certain circuit families that are (exact) incompressible.

Definition 9. Let `, t be polynomials and ε a non-negligible function. A class of
circuits C = {Cλ}λ with domain D = {Dλ}λ and range R = {Rλ}λ is said to be
(`, t, ε)-approximately compressible if there exists a family of compression circuits
Cmp = {Cmpλ}λ, a family of decompression circuits DeCmp = {DeCmpλ}λ, a
polynomial poly, and a non-negligible function η, such that for all large enough
λ the following properties hold:

– The circuits Cmpλ and DeCmpλ have size bounded by poly(λ).
– (compression) For all input s ∈ Dλ and circuits C1, C2, . . . , C`(λ) ∈ Cλ,∣∣∣Cmpλ

(
{Ci, Ci(s)}i∈[`(λ)]

)∣∣∣ ≤ t(λ).

– (approximate decompression) If s is chosen at random from Dλ, C1, C2, . . . , C`(λ)
are chosen uniformly and independently from Cλ, then

Pr

[
HD

(
DeCmpλ

(
{Ci}i∈[`(λ)] ,Cmpλ

(
{Ci, Ci(s)}i∈[`(λ)]

))
,
(
C1(s), . . . , C`(λ)(s)

))
≤ ε(λ) · t(λ)

]
≥ η(λ)

We will now show that weak PRFs can be used to construct a class of circuits
that are not approximate compressible. We will then use the more general notion
of approximate incompressibility, rather than the specific case of weak PRFs, in
proving our impossibility results. For simplicity of presentation, in the lemma
statement below, we use specific constants which will be sufficient for our main
result. However, the lemma can be easily extended to work for general `, t and
ε. We assume that the weak PRF outputs a single bit.

Lemma 1. Let wPRF = {wPRFλ}λ be a family of weak pseudorandom functions
(for many points), where wPRFλ : {0, 1}n(λ)×{0, 1}m(λ) → {0, 1}. Consider the
family of circuits C = {Cλ}λ, where Cλ = {wPRFλ(·, x)}x∈{0,1}m(λ) . Let t = t(λ)

be any polynomial such that t(λ) ≥ λ for all λ ∈ N. Then C is not (16t, t, 1/8)
approximate compressible.

The proof of this lemma is given in the full version of our paper [1].

5 Impossibility of Simulation Secure FE

In this section we show that there does not exist a functional encryption scheme
for the family of all polynomial-sized circuits that is (poly, 1, 0)-Sim secure in
the random oracle model. Specifically, we show that a simulation secure FE
scheme cannot be constructed for any family of circuits that is not approximately

18

compressible (Definition 9). We exhibit an adversary A = (A1,A2) such that
for any efficient simulator S, the output of the real experiment, RealFEA (1λ), is
distinguishable from the output of the ideal experiment, IdealFEA,S(1λ) (Definition
8).

High level description of adversary. Let C be an approximate incompressible
circuit family. The adversary A1 first asks for secret keys for a large number of
randomly chosen circuits from C, and receives {sk1, . . . , skq} in return. Next, it
generates encryptions of many random messages. It then decrypts each of these
ciphertexts using the q secret keys. The purpose of these encryptions followed by
the decryptions is to capture the random oracle queries that would have occurred
while computing the q secret keys, which may also be required when these keys
are used again for decryption later. Let Skeys denote the set of random oracle
queries that occur during these decryptions.
A1 chooses a random message x∗, and outputs it as the challenge (along

with a state that consists of its view so far). A2 then receives a ciphertext
ct∗. It decrypts ct∗ using sk1, . . . , skt, for some small t. Let Sct∗ denote the set
of random oracle queries during these t decryptions. The purpose of these t
decryptions is to capture the random oracle queries that would have occurred
during the encryption of x∗, which may also be required when ct∗ is decrypted
again in the next step.

Finally, A2 decrypts ct∗ using the remaining q− t secret keys. An important
thing to note here is that A2 turns off the random oracle, and instead uses the
queries that it has already recorded. If a new random oracle query is required,
then it uses a randomly chosen string. It compares the decrypted values to the
correct function evaluations, and outputs 1 if most decryptions are correct.

First, we show that in the real world, A2 outputs 1 with probability at least
3/4. Let us focus on one of the q − t decryptions, using a secret key skj . At a
high level, this decryption can go wrong if a random oracle query is made on z,
and z /∈ Skeys ∪Sct∗ , but z was used during the computation of either skj or ct∗.
We show that this event happens with low probability.

To complete the argument, we show that in the ideal world, A2 outputs
1 with probability around 1/2. In this world, the simulator receives q circuit
evaluations on x∗, and must compress most of this information in the short
challenge ciphertext and the random oracle queries made during the t post-
challenge decryption operations. By choosing parameters carefully and appealing
to the (approximate) incompressibility of the circuit family, we show that this is
not possible.

5.1 Formal Description of Adversary

Let C = {Cλ}λ be a family of circuits such that each circuit in Cλ takes an n(λ)-
bit input and is not (16t, t, 1/8) approximately compressible for all polynomials
t such that t(λ) ≥ λ. Let FE be a functional encryption scheme for this family in
the random oracle model. We now formally define the adversary A = (A1,A2).

19

Adversary A1. Let nkey and nenc be polynomials in λ whose values will be fixed
later. Let Γ be a list of (query, response) pairs that is empty at the beginning.
A1 has four phases: setup, key query, random oracle query collection, and an
output phase.

1. Setup. A1 receives the public key pk.
2. Key query. For i ∈ [nkey], it picks a circuit Ci at random from Cλ, requests

a secret key for Ci, and obtains ski in return.

3. RO query collection 1. A1 picks nenc inputs x1, x2, . . . , xnenc

R← {0, 1}n(λ).
For j ∈ [nenc], it runs EncryptO(pk, xj) to obtain a ciphertext ctj . The RO
queries made during the encryption process are forwarded to the random
oracle.
Now each of the ciphertexts ct1, . . . , ctnenc are decrypted with key ski for
every i ∈ [nkey]. If an oracle query β is made by the Decrypt algorithm, A1

queries the random oracle with the same. The response, say γ, is given to
the algorithm, and (β, γ) is added to Γ (if it is not already present).

4. Output. A1 picks an input x∗
R← {0, 1}n(λ). It sets the state st to consist of

pk, C1, . . . , Cnkey
, sk1, . . . , sknkey

, x∗, and Γ . Then it outputs (x∗, st).

Adversary A2. Let neval and ntest be polynomials in λ s.t. neval(λ) + ntest(λ) =
nkey(λ) for all λ. (Their values will be fixed later.) A2 gets ct∗ and st as input,
and parses the latter to get pk, C1, . . . , Cnkey

, sk1, . . . , sknkey
, x∗, and Γ . A2 has

three phases: random oracle query collection, test, and an output phase.

1. RO query collection 2. For every i ∈ [neval], ct
∗ is decrypted with ski. If

an RO query β is made by the Decrypt algorithm, A2 queries the random
oracle with the same. The response, say γ, is given to the algorithm, and
(β, γ) is added to Γ (if it is not already present).

2. Test. In this phase, ct∗ is decrypted with rest of the keys but without invok-
ing the random oracle. In order to do so, a new list ∆ is initialized first, then
the following steps are executed for every neval + 1 ≤ i ≤ neval + ntest. The
decryption algorithm is run with inputs pk, ski, and ct∗. When it makes an
RO query β, A2 checks whether there is an entry of the form (β, γ) in Γ or
∆ (in that order) or not. If yes, then γ is given to Decrypt and it continues
to run. Otherwise, a random bit-string γ′ of length m(λ) (the output length
of the random oracle) is generated, (β, γ′) is added to ∆, and γ′ is given to
Decrypt. This process of providing responses to the RO queries of Decrypt
continues till it terminates. Let outi denote the output of Decrypt, which
could be ⊥.

3. Output. For every neval+1 ≤ i ≤ neval+ntest, check if outi is equal to Ci(x
∗)

(where x∗ and Ci are part of the state transferred to A2). Let num be the
number of keys for which this check succeeds. Output 1 if num/ntest ≥ 7/8,
else output 0.

To complete the description of A, we need to define the polynomials nenc,
neval and ntest (recall that nkey = neval + ntest). Let qSetup, qEnc, qKeyGen and qDec

20

be upper-bounds on the number of RO queries made by Setup, Encrypt, KeyGen
and Decrypt, respectively, as a function of λ. Also, let `ct be an upper-bound on
the length of ciphertexts generated by Encrypt. Then set

– nenc = 4λ · nkey · qKeyGen,
– neval = 32λ (qSetup + qEnc),
– ntest = 16(`ct + neval · qDec ·m).

5.2 Real World Analysis

First, we will show that the adversary A = (A1,A2) described above outputs 1
with probability at least 3/4 in the real world experiment, as long as the scheme
FE is correct. To begin with, we classify the random oracle queries made during
a run of A into different sets as follows:

– S-ROCi for i ∈ [nkey]: random oracle queries made by KeyGen while generat-
ing secret key for Ci.

– S-ROkeys =
⋃
i∈[nkey]

S-ROCi : all random oracle queries during the key query
phase of A1.

– S-ROx∗ : random oracle queries made while encrypting x∗ using pk.
– S-RODec-i for i ∈ [ntest]: random oracle queries made during the decryption

of ct∗ using skneval+i.
– S-ROΓ -b: random oracle queries recorded during ‘RO Collection Phase b’ for
b ∈ {1, 2}. Let S-ROΓ = S-ROΓ -1

⋃
S-ROΓ -2.

– S-ROSetup: random oracle queries made during setup phase.

Lemma 2. For any functional encryption scheme FE for the circuit family
C = {Cλ}λ, the adversary A = (A1,A2) described in Section 5.1 outputs 1 in

RealFEA (1λ) with probability at least 3/4− negl(λ).

Proof. We will use the correctness property of FE to prove this claim. We assume
statistical correctness, i.e., for all random oracles O : {0, 1}`(λ) → {0, 1}m(λ),
x ∈ {0, 1}n(λ), C ∈ Cλ

Pr

DecryptO (pk, sk, ct) = C(x) :

(pk,msk)← SetupO(1λ)

sk← KeyGenO (msk, C)

ct← EncryptO (pk, x)

 ≥ 1− negl(λ)

In particular, we do not assume the decryption to be deterministic.
Let Bad denote the event that the adversary outputs 0 at the end of the

real world experiment. This event happens if at least 1/8th fraction of the ntest
decryptions fail in the test phase. If I-Deci is an indicator variable that takes the
value 1 in case the ith decryption fails, then Bad happens iff

∑
i∈[ntest]

I-Deci >

1/8 · ntest. To analyze the probability of this event, we need to consider the
random oracle queries required for decryption in the test phase. In this phase,
A2 does not query the random oracle, but instead uses the list Γ . If some query

21

β is not present in Γ , then A2 tries to find it in ∆. If β is not found in ∆ either,
then a random value is chosen and recorded in ∆ against β.

Now there are two ways in which the ith decryption can fail. The first is if
there is some entry (β, γ) in ∆ such that β is also among the RO queries hidden
from the adversary (and its response is not γ), i.e., the queries made during the
setup phase, key query phase or challenge ciphertext generation. The second case
is when the RO query responses are consistent, but the decryption is incorrect
due to ‘bad’ decryption coins. The second failure happens with negligible proba-
bility (due to correctness of the FE scheme). In other words, the ith decryption
succeeds with overwhelming probability if all the needed hidden RO responses
are captured in either of the two RO collection phases. This is formalized in the
following observation.

Observation 1 Let Bad-Dec be the following event:

∃i ∈ [ntest] s.t.
(S-RODec-i

⋂
(S-ROSetup

⋃
S-ROkeys

⋃
S-ROx∗) ⊆ S-ROΓ)

∧
A′2s decryption of ct∗ using skneval+i does not output Cneval+i(x

∗)

There exists a negligible function negl(·) s.t. Pr [Bad-Dec] ≤ negl(λ) where the
probability is over the random coins used by setup, key generation, encryption,
decryption and the adversary’s choice of inputs.

Proof. This observation follows from the statistical correctness of the scheme. Fix
any index i ∈ [neval]. Since (S-RODec-i

⋂
(S-ROSetup

⋃
S-ROkeys

⋃
S-ROx∗) ⊆ S-ROΓ),

the oracle queries are consistent. Hence, we can use the correctness guarantee of
the scheme to bound the probability of Bad-Dec.

Let I-Dec-1i and I-Dec-2i be indicator variables that are 1 iff S-RODec-i

⋂
(S-ROx∗

⋃
S-ROSetup) 6⊆ S-ROΓ and S-RODec-i

⋂
S-ROkeys 6⊆ S-ROΓ , respec-

tively. Then, I-Deci = 1 iff either I-Dec-1i = 1 or I-Dec-2i = 1 (or both). Let
Bad-1 and Bad-2 be events that happen iff

∑
i∈[ntest]

I-Dec-1i > 1/16 · ntest and∑
i∈[ntest]

I-Dec-2i > 1/16 · ntest, respectively. It is easy to see that

Pr [Bad] ≤ Pr [Bad-1] + Pr [Bad-2] + Pr [Bad-Dec]

Below we show that Pr [Bad-1] ≤ negl(λ) and Pr [Bad-2] ≤ 1/4. Thus the lemma
follows.

Claim 1 Pr [Bad-1] ≤ negl(λ).

Proof. Fix any random oracle O, the randomness used in SetupO(1λ), challenge
message x∗, and the randomness used in EncryptO(pk, x∗). This also fixes the
sets S-ROSetup and S-ROx∗ . Suppose a circuit C is picked at random from Cλ, and

a key, sk, is generated for it by running KeyGenO (msk, C). For z ∈ S-ROSetup ∪
S-ROx∗ , let ρz be the probability that z is an RO query in the decryption of ct∗

22

(the challenge ciphertext) with sk, where the probability is over the choice of C,
the randomness used in KeyGen and the random coins used in decryption.

Let Xi,z be an indicator variable that is 1 if an RO query on z is made
during the ith decryption in post-challenge phase (either in the RO collection
2 or test phase). Note that the keys sk1, . . . , sknkey

are generated independently
by choosing circuits C1, . . . , Cnkey

uniformly at random, and the random coins
used in each key generation and decryption are independently chosen. Thus
for any z, the variables X1,z, . . . , Xnkey,z are independent of each other, and
Pr [Xi,z = 1] = ρz for every i.

We are interested in the probability that
∑
i∈[ntest]

I-Dec-1i > ntest/16, i.e., in

at least 1/16th fraction of the decryptions in the test phase, an RO query q is
made s.t. q was also an RO query in either set-up or encryption of x∗, but it
was not captured in either of the collection phases. Thus, there must exist a z
s.t. z /∈ S-ROΓ (in particular, z /∈ S-ROΓ -2) but an RO query on z is made in at
least ntest/16|Q| of the decryptions, where Q = S-ROSetup ∪ S-ROx∗ . (If Q = φ
then Bad-1 cannot happen, and we are done.) Therefore,

Pr

 ∑
i∈[ntest]

I-Dec-1i >
ntest
16

 ≤
∑
z∈Q

Pr

z /∈ S-ROΓ -2 ∧
∑

i∈[ntest]

Xi,z >
ntest
16|Q|

Based on the value of ρz, we can divide the rest of the analysis into two

parts. Intuitively, if ρz is large, then the probability that z is not captured
during RO collection phase is negligible. And when it is small, the probability
that z causes too many decryptions to fail in the test phase is negligible. Since
Q is polynomial in the security parameter, this will prove that the probability
of Bad-1 is negligible as well. So now,

– If ρz ≥ 1/32|Q| then

Pr [z /∈ S-ROΓ -2] = Pr [X1,z = 0 ∧ . . . ∧Xneval,z = 0]

=
∏

i∈[neval]

Pr [Xi,z = 0]

= (1− ρz)neval ≤ e−neval/32|Q|,

where the second equality follows from the independence of Xi,z. Recall that
we set neval to be 32λ(qSetup + qEnc), where qSetup and qEnc are upper-bounds
on the number of RO queries made during Setup and Encrypt, respectively.
Thus, e−neval/32|Q| is at most e−λ.

– If ρz < 1/32|Q| then expected value of
∑
i∈[ntest]

Xi,z is at most ntest/32|Q|.
Using Chernoff bounds we can argue that,

Pr

 ∑
i∈[ntest]

Xi,z >
ntest
16|Q|

 < e−
1
3 ·

ntest
32|Q| .

We know that ntest ≥ neval. Thus, e−
1
3 ·

ntest
32|Q| is at most e−λ as well.

23

Claim 2 Pr [Bad-2] ≤ 1/4.

Proof. Fix any random oracle O, the randomness used in SetupO(1λ), the cir-
cuits C1, . . . , Cnkey

chosen in the key query phase, and the randomness used in

KeyGenO(msk, Ci) for i ∈ [nkey]. This, in particular, fixes secret keys sk1, . . . , sknkey

and the set S-ROkeys. Consider the following experiment: x
R← {0, 1}n(λ), ct ←

EncryptO(pk, x), and decrypt ct using ski for i ∈ [neval + 1, nkey]. Let ρ̂z be the

probability that at least ntest/16|Q̂| of the decryptions make an RO query on z,
where Q̂ = S-ROkeys.

Let Yj,z be an indicator variable that is 1 iff an RO query on z is made

in at least ntest/16|Q̂| of the decryptions of ctj with keys skneval+1, . . . , sknkey
in

the first phase of RO query collection. Note that the ciphertexts ct1, . . . , ctnenc

are generated independently by choosing x1, . . . , xnkey
uniformly at random, and

the decryption coins are also chosen independently for each decryption. Thus
for any z, the variables Y1,z, . . . , Ynenc,z are independent of each other, and
Pr [Yj,z = 1] = ρ̂z for every j. In a similar way, we can also define a random vari-

able Y ∗z that indicates whether an RO query on z is made in at least ntest/16|Q̂|
of the decryptions of ct∗ with keys skneval+1, . . . , sknkey

in the test phase. Y ∗z is
independent of Y1,z, . . . , Ynenc,z and Pr [Y ∗z = 1] = ρ̂z.

In a manner similar to the previous claim, we can argue that

Pr

 ∑
i∈[ntest]

I-Dec-2i >
ntest
16

 ≤
∑
z∈Q̂

Pr [z /∈ S-ROΓ -1 ∧ Y ∗z = 1]

If z /∈ S-ROΓ -1, then none of the decryptions in the first phase of RO collection
make a query on z. In particular, the variables Y1,z, . . . , Ynenc,z are all zero in
such a case. Therefore,

Pr [z /∈ S-ROΓ -1 ∧ Y ∗z = 1] ≤ Pr [Y1,z = 0 ∧ . . . ∧ Ynenc,z = 0 ∧ Y ∗z = 1]

= Pr [Y ∗z = 1] ·
∏

j∈[nenc]

Pr [Yj,z = 0]

= ρ̂z(1− ρ̂z)nenc

Once again we have two cases. If ρ̂z ≤ 1/4|Q̂|, then ρ̂z(1− ρ̂z)nenc is at most

1/4|Q̂| as well. Otherwise, (1 − ρ̂z)nenc ≤ e−nenc/4|Q̂| ≤ e−λ because, recall that,
nenc is set to be 4λ ·nkey ·qKeyGen, where qKeyGen is an upper-bound on the number
of RO queries made during KeyGen. As a result,

∑
z∈Q̂ ρ̂z(1− ρ̂z)nenc is at most

1/4.

5.3 Ideal world analysis

Next, we will show that any for PPT simulator, our adversary A = (A1,A2)
outputs 1 in the ideal world with negligible probability. Let t be a polynomial in
λ such that t = `ct + neval · qDec ·m (so that ntest = 16t) where, recall that, `ct is

24

the maximum length of any ciphertext generated by Encrypt. Note that qDec ·m
is the maximum number of bits obtained through the random oracle during any
decryption, neval · qDec ·m is the maximum number of bits sent to the adversary
during the second RO query collection phase, and `ct +neval · qDec ·m is the total
number of bits the adversary receives after sending the challenge message.

Lemma 3. If C = {Cλ}λ is an (16t, t, 1/8) approximately incompressible circuit
family, then for any PPT simulator S, the adversary A = (A1,A2) outputs 1
with probability at most negl(λ).

Proof. Suppose there exists a simulator S such that our adversary A outputs 1
with a non-negligible probability η. We will use S to show that C is (16t, t, 1/8)
approximately compressible. In particular, we will use S and A = (A1,A2) to
construct Cmp and DeCmp circuits satisfying the three properties of an approx-
imately compressible circuit family.

Note that A1 picks Cneval+1, . . . , Cneval+ntest and x∗ uniformly at random and
independent of its other choices. Let rS and rA denote the randomness used by
the simulator S and adversary A (in choosing circuits C1, . . . , Cneval

, and in RO
query collection 1 and test phases), respectively. The compression circuit takes
as input (C1, . . ., C16t, y1, . . ., y16t), has a randomly chosen string for rS and
rA hardwired, and works as follows:

– Use S to generate a public key pk. Give pk to A1.
– Use S to generate secrets keys sk1, . . ., sknkey

for C ′1, . . ., C ′neval
, C1, . . ., C16t,

where C ′1, . . ., C ′neval
are sampled using rA. Give the secret keys to A1.

– Run the first phase of RO query collection. When A1 makes an RO query
in this phase, forward it to S. Give S’s response back to A1.

– Provide y1, . . . , y16t to S. It generates a ciphertext ct∗.
– Run the second phase of RO query collection. Respond to A2’s RO queries

in the same way as before. Let z1, . . . , zv be the responses in order, where
zi ∈ {0, 1}m.

– Output ct∗ and z1, . . . , zv.

The decompression circuit takes C1, . . . , C16t and the compressed string str-cmp
as inputs, which can be parsed as str-cmp = (ct∗, {zi}). It also has the random
value chosen before for rS and rA hardwired, and works as follows:

– Use S to generate pk and secret keys sk1, . . . , sknkey
as before. Give both to

A1.
– Run the first phase of RO query collection. Respond to A1’s RO queries

in the same way as before. Let Γ be the list of RO queries and responses
recorded in this phase.

– Run the second phase of RO query collection, where sk1, . . . , skneval
are used

to decrypt ct∗. The RO responses required in this step are available as part
of the input (z1, . . . , zv). They are also added to Γ .

– Run the test phase with the help of Γ . Let y′i denote the outcome of de-
crypting ct∗ with skneval+i for i ∈ [ntest].

– Output y′1, . . . , y
′
16t.

25

First, note that the size of both compression and decompression circuit is
bounded by a polynomial in λ. Next, the output length of the compression
circuit is at most `ct + v ·m, but v is no more than neval · qDec. Thus the output
length is bounded by t.

Finally, we need to show that the decompression property works with prob-
ability η. When C1, . . . , C16t are chosen uniformly at random and y1, . . . , y16t is
the evaluation of these circuits on a randomly chosen point, then it is easy to see
that the decompression circuit emulates the ideal world experiment perfectly.
We know that A2 outputs 1 if and only if for at least 7/8th of the decryptions,
y′i = yi. Hence, if 1 is output with probability η, then the hamming distance
of DeCmp({Ci} ,Cmp({Ci} , {yi})) and {yi} is at most 1/8 with probability at
least η.

6 Simulation Secure FE for Bounded Collusions

In this section, we will show an FE scheme that is (q1, poly, q2) simulation secure
in the random oracle model, where q1, q2 are a-priori fixed polynomials. Since
both the pre-challenge and post-challenge queries are bounded, we will simply
refer to the total number of key queries. An FE scheme is q-key poly-ciphertext
secure if it is (q1, poly, q2) simulation secure as in Definition 8 for all non-negative
integers q1, q2 s.t. q1+q2 = q. We first show a scheme that can handle 1 key query
in Section 6.1. Then, in Section 6.2 (and the full version of our paper [1]), we
show how to transform a 1-key poly-ciphertext scheme to one that is q-key poly-
ciphertext simulation secure for an a-priori fixed q, by first building a scheme
for log-depth circuits and then for all poly-size circuits. This transformation is
very similar to the one showed by Gorbunov et al. [21], except that they dealt
with only one ciphertext.

6.1 Simulation Secure FE for One Key Query

We will now describe our 1-key poly-ciphertext scheme. Recall that in the stan-
dard model, it is impossible to have simulation security even for IBE if the
adversary is allowed to query for an unbounded number of ciphertexts, followed
by one adaptive key query [12, 5]. Here, we show how the random oracle can
be used to bypass this impossibility result. At a high-level, the construction is
similar to the Sahai-Seyalioglu [31] construction of single-key secure FE from
PKE.

Let C = {Cλ}λ be a class of circuits, where each circuit C ∈ Cλ takes an
n(λ) bit input and produces an m(λ) bit output, and can be represented us-

ing t(λ) bits. For x ∈ {0, 1}n(λ), let U
(λ)
x be a universal circuit that takes

any C ∈ Cλ as input and outputs C(x). Let U = {Uλ}λ be a circuit family

such that Uλ = {U (λ)
x |x ∈ {0, 1}n(λ)}. Our one-bounded FE scheme One-FE =

(Setup,Encrypt,KeyGen,Decrypt) uses a decomposable randomized encoding scheme
(RE.Encode,RE.Decode) for U and a public key encryption scheme PKE = (SetupPKE,

26

EncPKE,DecPKE) that can operate on messages of length λ. For simplicity of pre-
sentation, we will skip the dependence on λ.

– Setup(1λ)→ (mpk,msk): The setup algorithm chooses 2t PKE public key/secret
key pairs (pki,b, ski,b) ← SetupPKE(1λ) for i ∈ [t], b ∈ {0, 1}. It sets mpk ={
pki,b

}
i∈[t],b∈{0,1} and msk = {ski,b}i∈[t],b∈{0,1}.

– Enc(mpk, x)→ ct: The encryption algorithm first chooses 2t random strings
ri,b ← {0, 1}λ for all i ∈ [t], b ∈ {0, 1}. Next, it computes a randomized en-
coding for the universal circuit Ux, i.e., {wi,b}i∈[t],b∈{0,1} ← RE.Encode(1λ, Ux).

Now, let cti,b = EncPKE(pki,b, ri,b) and c̃ti,b = wi,b ⊕ O(ri,b) for all i ∈ [t],

b ∈ {0, 1}. The algorithm outputs ct =
{
cti,b, c̃ti,b

}
i∈[t],b∈{0,1}.

– KeyGen(msk, C)→ skC : Let (β1, . . . , βt) be the bit representation of circuit
C. The key generation algorithm outputs {ski,βi}i∈[t] as the secret key for
C.

– Dec(mpk, skC , ct): Let skC = {ski,βi}i∈[t] and ct =
{
cti,b, c̃ti,b

}
i∈[t],b∈{0,1}.

The decryption algorithm first decrypts the relevant randomized encoding
components, i.e., for each i ∈ [t], it computes ri,βi = DecPKE(ski,βi , cti,βi)
and wi,βi = c̃ti,βi ⊕O(ri,βi). Finally, it outputs RE.Decode({wi,βi}i∈[t]).

The correctness of our scheme follows directly from the correctness of the
randomized encoding scheme and the public key encryption scheme.

The simulator description and proof of security is given in the full version of
our paper [1].

6.2 Simulation Secure FE with Bounded Key Queries for NC1

In this section, we will show how to transform a scheme that handles one key
query to one that handles a bounded number of key queries for the class of
log-depth circuits. This transformation is identical to the one in [21]. However,
the proof is slightly different because we handle unbounded challenge ciphertext
queries.

Formal Description Let C = {Cλ}λ be a class of circuits, where each circuit
C ∈ Cλ takes n(λ) bit inputs, outputs a single bit and can be represented us-
ing an n(λ) variate polynomial of degree D(λ) over a (large enough) field F.
Let q denote a bound on the number of secret key queries. Our FE scheme
FE = (Setup,Enc,KeyGen,Dec) uses a 1-key poly-ciphertext simulation secure
FE scheme (Setupone, Encryptone, KeyGenone, Decryptone) as a building block.
Our scheme is parameterized by four polynomials: N , S, v and t, whose values
depend on D and q. As in GVW, we set t(λ) = Θ(q2λ), N(λ) = Θ(N2q2t) and
v(λ) = Θ(λ) and S(λ) = Θ(vq2). We will skip the dependence on λ when it is
clear from the context.

For any circuit C ∈ Cλ and set ∆ ⊂ [S], we define a circuit GC,∆ which takes
n+ S bit inputs and works as follows:

GC,∆(x1, . . . , xn, y1, . . . , yS) = C(x1, . . . , xn) +
∑
h∈∆

yh

27

Let O = O1 × . . .ON be a hash function, where each Oi : {0, 1}` → {0, 1}m.
Each of these hash functions Oi will be modeled as a random oracle in our
security proof.

– SetupO(1λ)→ (MPK,MSK): The setup algorithm runs the one-key FE scheme’s
setupN times. Let (mpki,mski)← SetupOione(1

λ). The master public key MPK
is set to be {mpki}i∈[N], and the master secret key MSK is {mski}i∈[N].

– EncO(MPK, x) → ct: Let MPK = {mpki}i∈[N] and x = (x1, . . . , xn). The
encryption algorithm works as follows:

• It chooses n uniformly random polynomials µ1, . . . , µn of degree t over
field F subject to the constraint that the constant term of µi is xi.

• It chooses S uniformly random polynomials ζ1, . . ., ζS of degree Dt over
field F and constant term 0.

• It computes N ciphertexts using the Encryptone algorithm. For i ∈ [N],
it computes cti ← EncryptOione(mpki, (µ1(i), . . . , µn(i), ζ1(i), . . . , ζS(i))).

The encryption algorithm outputs (ct1, . . . , ctN) as the final ciphertext.

– KeyGenO(MSK, C): Let MSK = {mski}i∈[N]. The key generation algorithm
works as follows:

• It chooses a uniformly random set Γ ⊂ [N] of size Dt+ 1.

• It chooses a uniformly random set ∆ ⊂ [S] of size v.

• It uses the KeyGenone algorithm to generate Dt + 1 secret keys for the
function GC,∆. For i ∈ Γ , it computes ski ← KeyGenOione(mski, GC,∆).

The key generation algorithm outputs (Γ,∆, {ski}i∈Γ) as the secret key for
C.

– DecO(sk, ct): Let sk = (Γ,∆, {ski}i∈Γ) and ct = (ct1, . . . , ctN). The decryp-
tion algorithm works as follows:

• For each i ∈ Γ , let αi = DecryptOione(ski, cti).

• It computes a polynomial η of degree Dt over field F such that for all
i ∈ Γ , η(i) = αi.

The decryption algorithm outputs η(0n+S) as the final decryption.

Correctness The correctness proof is identical to the one in [21]. Let µ1, . . ., µn,
ζ1, . . ., ζS be the polynomials chosen during encryption, and let Γ,∆ be the sets
chosen during key generation. From the correctness of the one-key FE scheme,
it follows that the decryption algorithm computes αi = C(µ1(i), . . . , µn(i)) +∑
j∈∆ ζj(i) for all i ∈ Γ . Now, since the polynomial η = C(µ1, . . . , µn) +∑
j∈Γ ζj has degree Dt and |Γ | = Dt + 1, the decryption algorithm can com-

pute the polynomial η using the set {αi}i∈[N]. Finally, note that η(0n+S) =

C(µ1(0), . . . , µn(0)) +
∑
j ζj(0) = C(x1, . . . , xn).

In the full version of our paper [1], we prove security of our scheme for NC1
and describe how this scheme can be bootstrapped to all poly-size circuits.

28

References

1. Agrawal, S., Koppula, V., Waters, B.: Impossibility of simulation secure functional
encryption even with random oracles. Cryptology ePrint Archive, Report 2016/959
(2016), https://eprint.iacr.org/2016/959

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: CRYPTO (2013)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: CRYPTO (2015)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115–162
(2006)

5. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility re-
sults, impossibility results and the quest for a general definition. In: CANS (2013)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security. pp. 62–73 (1993)

7. Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings from functional
encryption. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part II. pp. 3–29 (2017)

8. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to ob-
fustopia through secret-key functional encryption. In: Theory of Cryptography -
14th International Conference, TCC 2016-B, Beijing, China, October 31 - Novem-
ber 3, 2016, Proceedings, Part II. pp. 391–418 (2016)

9. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: STOC (2013)

10. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil Pairing. In:
CRYPTO (2001)

12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: TCC (2011)

13. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: TCC (2007)

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. of the ACM 51(4), 557–594 (2004)

15. Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In: TCC
(2015)

16. Caro, A.D., Jain, V.I.A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability
of simulation-based security for functional encryption. In: CRYPTO (2013)

17. Caro, A.D., Jain, V.I.A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability
of simulation-based security for functional encryption. Cryptology ePrint Archive,
Report 2013/364 (2013)

18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: FOCS. pp. 464–479 (1984)

19. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Succinct
functional encryption and applications: Reusable garbled circuits and beyond. In:
STOC (2013)

29

20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: CRYPTO (2012)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC (2013)

22. Hubácek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015.
pp. 163–172 (2015), http://doi.acm.org/10.1145/2688073.2688105

23. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA. pp. 44–61 (1989)

24. Iovino, V., Zebroski, K.: Simulation-based secure functional encryption in the ran-
dom oracle model. In: LATINCRYPT (2015)

25. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: EUROCRYPT (2008)

26. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Public-Key Cryptography - PKC 2016 - 19th IACR Interna-
tional Conference on Practice and Theory in Public-Key Cryptography, Taipei,
Taiwan, March 6-9, 2016, Proceedings, Part II. pp. 447–462 (2016)

27. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower bounds
on assumptions behind indistinguishability obfuscation. In: TCC (2016)

28. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: CRYPTO (2002)

29. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010), http://eprint.iacr.org/2010/556

30. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

31. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS (2010)

32. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. pp.
457–473 (2005)

33. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO
(1984)

34. Yao, A.: How to generate and exchange secrets. In: FOCS. pp. 162–167 (1986)

30

