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Abstract. We introduce a new notion of one-message zero-knowledge (1ZK) ar-
guments that satisfy aweak soundness guarantee— the number of false statements
that a polynomial-time non-uniform adversary can convince the verifier to accept
is not much larger than the size of its non-uniform advice. The zero-knowledge
guarantee is given by a simulator that runs in (mildly) super-polynomial time.
We construct such 1ZK arguments based on the notion of multi-collision-resistant
keyless hash functions, recently introduced by Bitansky, Kalai, and Paneth (STOC
2018). Relying on the constructed 1ZK arguments, subexponentially-secure time-
lock puzzles, and other standard assumptions, we construct one-message fully-
concurrent non-malleable commitments. This is the first construction that is based
on assumptions that do not already incorporate non-malleability, as well as the
first based on (subexponentially) falsifiable assumptions.

1 Introduction

Zero-knowledge proofs [GMR89] are a cornerstone of modern cryptography.
Their birth was enabled by introducing two new concepts to classical proofs —
interaction and randomness. Indeed, both were shown [GO94] to be essential
— for non-trivial languages, zero-knowledge proofs (or their computationally-
sound counterparts known as arguments) require a randomized verifier that
exchanges at least three messages with the prover. In particular, unlike classical
proofs, zero-knowledge proofs cannot be transferred, published, nor stored.

One setting in which this barrier can be circumvented is when a trusted setup
(such as a common random string) is available [BFM88]. In the absence of a
trusted setup, a natural approach to the problem is to relax the requirements of
zero-knowledge protocols. Along this vein, Dwork and Naor [DN07] showed
that for witness-indistinguishable (WI) proofs, two messages suffice, and by
now, we know how to achieve them with no interaction at all [BOV07, GOS12].
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Pass [Pas03] considered a stronger notion — zero-knowledge with a super-
polynomial simulator (SPS). Indeed, WI proofs stand at the extreme of this
notion, as they admit an exponential-time simulator (that can find a witness for
the underlying statement by brute force). In contrast, based on subexponential
hardness assumptions, Pass constructed two-message arguments where the zero-
knowledge simulator runs in subexponential, or even quasi-polynomial time
(without violating the hardness of the underlying language). Such SPS zero-
knowledge has proven instrumental for central applications such as concurrent
computation [Pas03, PS04, BS05, MMY06, CLP16, GGJS12, GKP17, BGI+17,
BGJ+17] and non-malleable commitments [KS17].

While Pass’ proofs break the three-message barrier, they still consist of two
messages and do not enjoy the merits of completely non-interactive proofs.
Following the introduction of non-interactive WI (NIWI) proofs, Barak and
Pass [BP04] investigated the possibility that SPS zero-knowledge can also be
made non-interactive (with no trusted setup). They observed that non-interactive
proofs (or arguments) that satisfy the usual notion of soundness and have a
TSPS-time simulator are impossible to achieve against non-uniform adversaries,
except for languages L decidable in time TSPS. Indeed, if the simulator cannot
decideL, there must exist proofs π for false statements x /∈ L, and a non-uniform
prover can have such proofs hardwired in its code. Accordingly, Barak and Pass
define a notion of SPS zero-knowledge protocols satisfying a weak notion of
soundness that only holds against efficient uniform provers. They show how
to construct such protocols based on keyless hash functions that are collision-
resistant against subexponential uniform adversaries (or more general uniform
sampling problems).

This Work: Weak Soundness against Non-Uniform Provers. We introduce a
new notion of weak soundness for one-message zero-knowledge (1ZK) that also
captures non-uniform adversaries.

The notion is inspired by the notion of multi-collision resistance for keyless
hash functions, introduced recently in [BKP18]. Roughly speaking, it requires
that an efficient non-uniform adversary cannot do more than hardwire false
statements with their accepting proofs in its code. That is, any non-uniform ad-
versary, with description of polynomial size S and arbitrary polynomial running
time T � S, should not be able to find (i.e., output in one shot) more thanK(S)
false statements x /∈ L together with an accepting proof π, where K is some
blowup function (for concreteness, the reader may think ofK(S) = S2 through-
out this introduction). In other words, false statements with their accepting proofs
cannot be significantly compressed.

The zero-knowledge requirement is the same SPS requirement as before —
the simulator is allowed to be mildly super-polynomial (and in particular, cannot
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decide the underlying languageL). We note that even with such weak soundness,
the SPS relaxation is essential — languages L that are hard on average cannot
have an efficient simulator.3

1.1 Results and Discussion

We construct 1ZK arguments satisfying the new notion of weak soundness based
on the notion ofmulti-collision resistance and generalizations thereof. Then, rely-
ing on such arguments, we construct one-message (concurrently) non-malleable
commitments, which has been a long standing problem. We now elaborate on
each of these results.

Constructing 1ZK Arguments We show how to construct 1ZK arguments
from keyless hash functions that satisfy the notion of multi-collision resistance
recently introduced in [BKP18]. Such a hash function H : {0, 1}λ → {0, 1}λ/2
guarantees that no relatively-efficient adversary with non-uniform description of
polynomial size S can find more than K(S) collisions in the underlying func-
tion.4Here,K is again a fixed polynomial (e.g., quadratic) and relatively-efficient
means mildly superpolynomial-time (e.g. quasipolynomial or subexponential).

Theorem 1 (Informal). Assuming multi-collision-resistant keyless hash func-
tions, injective one-way functions, and non-interactive witness-indistinguishable
proofs, all subexponentially-secure, there exist 1ZK arguments for NP with weak
soundness and a subexponential-time simulator.

As noted in [BKP18], while non-standard, multi-collision resistance is a
falsifiable and relatively simple assumption. As candidates they suggest existing
keyless hash functions such as SHA, or AES-based hashing, and point out
directions for investigating additional candidates. We can, in fact, rely on a more
general notion of incompressible problems, for which additional candidates may
be found. At high-level, a (T,K,∆)-incompressible problem is a collection
W = {Wλ}λ of efficiently recognizable sets (one set for each security parameter
λ) satisfying the following. On one hand, no T -time adversary with non-uniform
description of polynomial size S can find more than K(S) solutions w ∈ Wλ.

3If there were such a simulator, then due to weak soundness, the simulator should fail to find
accepting proofs for no-instances x̄ /∈ L sampled from any efficiently samplable distribution. In
contrast, for yes-instance x ∈ L, it should succeed by the zero-knowledge guarantee. Thus, such
a simulator would violate the average-case hardness of L.

4To be exact, in [BKP18], they call this notion strong multi-collision resistance. They define
(weak) multi-collision resistance as the problem of finding multiple inputs that all map to the
same image. Throughout the introduction, we ignore this difference. In the body, we show that we
can rely on either one, relying in addition on standard derandomization assumptions.
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On the other hand,Wλ is relatively dense in {0, 1}λ, in the sense that a random
w ← {0, 1}λ is in Wλ with relatively high probability ∆ = 2−o(λ).5 For
concreteness, the reader may think of T = 2λ

.01 � 2λ
.99

= ∆−1.

Theorem 2 (Informal). Assuming (T,K,∆)-incompressible problems, where
K � T � ∆−1 � 2λ

.99 , and subexponentially-secure injective one-way
functions and non-interactive witness-indistinguishable proofs, there exist 1ZK
arguments for NP with (T,K)-weak soundness and a poly(∆−1)-time simula-
tor.6

We also define and construct, under the same assumptions, a more general
notion that we call ϕ-tuned 1ZK that admits a more flexible tradeoff between the
level of soundness and simulation time, and will be useful when applying these
arguments. We defer the details to the technical overview below.
One-Message Non-Malleable Commitments The question of the round com-
plexity of non-malleable commitments [DDN03] has been long pursued. The past
two decades have seen impressive progress [Bar02, PR05a, PR05b, LPV08a,
LP09, PPV08, PW10, Wee10, Goy11, LP11, GLOV12, GRRV14, GPR16,
COSV16, COSV17, Khu17], culminating in two recent constructions of two-
message non-malleable commitments [KS17, LPS17] based on subexponential
Decision-Diffie-Hellman or Quadratic Residousity in the first, and subexponen-
tial time-lock puzzles [RSW00] in the second (which achieves also full concur-
rency).

Yet, one-message non-malleable commitments have remained somewhat
elusive. So far, they have only been constructed starting from a non-falsifiable
assumption that already incorporates non-malleability called adaptive injective
one-way functions, against uniform adversaries [LPS17], or for a restricted class
of algebraic mauling functions and entropic plaintexts [KY18]. Indeed, one-
message non-malleable commitments would give rise to powerful features that
cannot be achieved with interaction, such as the ability to publish them on public
ledgers, transfer them from one hand to another, or store them for future use.

Relying on 1ZK arguments with weak soundness, we construct one-message
fully-concurrent non-malleable commitments against non-uniform adversaries.

Theorem 3 (Informal). Under the same assumptions as in Theorem 2 (or 1),
as well as subexponential time-lock puzzles, there exist fully-concurrent one-

5To get subexponential density, we need to multi-collision-resistant hash functions with
polynomial, rather than linear, shrinkage. In [BKP18], it is shown how polynomial compression
can be achieved form linear compression.

6Here (T,K)-weak soundness refers to the expected generalization of the weak soundness
notion discussed above where the prover may run in time at most poly(T ), and T may be
superpolynomial and the blowup function isK.
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message non-malleable commitments against all efficient non-uniform adver-
saries.

We actually prove a more general theorem that transforms commitments sat-
isfying a notion of four-tag non-malleability into full-fledge non-malleable com-
mitments as stated in the above theorem. (More specifically, the former refers to
non-malleability w.r.t. four tags, whereas full-fledged non-malleability can han-
dle an exponential number of tags.) Such four-tag (or constant-tag) commitments
are constructed in [LPS17] based on sub-exponentially secure time-lock puzzles
and injective one-way functions. In addition, we present new candidate four-tag
(or constant-tag) non-malleable commitments from a new assumption regarding
injective one-way functions that are amenable to hardness amplification, which
can replace time-lock puzzles in the above theorem. This yields new candidates
from natural one-way functions such as discrete logarithms, RSA, or Rabin. See
further details in the technical overview below.
On theUnderlyingAssumptionsThe assumptions that we rely on, most notably
incompressible problems, are not standard. Nevertheless, we do find them simple
and plausible. Bitansky, Kalai, and Paneth give evidence that multi-collision
resistance may hold for existing cryptographic hash functions and in particular
does not require any special algebraic structure — they show that this property
is satisfied by random oracles, even in the auxiliary-input model [Unr07] (where
the adversary may first store arbitrary polynomial information about the oracle).

We also note that all of our assumptions are subexponentially-falsifiable
(i.e., falsifiable w.r.t. sub-exponential time adversaries). Here we note that Pass
[Pas13] showed that non-malleable commitments in less than threemessages can-
not be shown secure based on black-box reductions to polynomially-falsifiable
assumptions.

Amore conservative viewof our resultswould be that to rule out the existence
of one-message non-malleable commitments, onemust show that incompressible
problems do not exist. That is, any efficiently recognizable, somewhat dense, set
must have a non-trivial sampler (where by non-trivial we mean that it can output
more samples then its non-uniform size). In particular, one would have to show
that for any keyless hash function, it is possible to compress collisions. This
would also constitute a strong (and non-contrived) separation between random
oracles and any keyless hash function.
Using Weak Soundness Weak soundness is the best one could hope for when
considering one-message zero-knowledgewithout trusted setup and non-uniform
cheating provers, but when is it useful? Generally speaking, weak soundness
could be leveraged in settings where a prover does not fully determine proven
statements, namely, statements have some non-trivial entropy.
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This gives some intuition on whyweak soundness is useful in our application
of non-malleable commitments. Roughly speaking, to maul a commitment c to
a value v, the attacker is required to generate a new commitment c′ to a related
value v′, and prove that the new commitment is well-formed. As long as the
attacker does not always produce a fixed commitment c′, or rather a commitment
c′ from some fixed polynomial-size set Z , proven statements are sufficiently
entropic and weak soundness kicks in. In contrast, mauling c into c′ from such a
set Z would not constitute a meaningful attack — the distribution of the value
v′ in the commitment c′ cannot depend on the committed value v in c, or a
reduction that has the set Z hardcoded could break the hiding of c. See more
details in the technical overview below.

It is plausible that weak soundness will be found useful in other settings with
entropic statements or in different man-in-the-middle attack models.
Robustness beyond Human Ignorance When considering the possibility of
integrating non-interactive zero-knowledge in real-world systems, the need for
a trusted common reference string may present a serious hurdle (certainly in
decentralized applications whose essence is to avoid central trust). The system
of Barak and Pass [BP04], when instantiated, say, with SHA256, already avoids
the need for central trust and suggests a meaningful guarantee of soundness in the
face of human ignorance (a term coined by Rogaway [Rog06]). Namely, as long
as humanity fails to find collisions in SHA256, it will also fail to find accepting
proofs for false statements. However, the moment even a single collision in
SHA256 is found, the Barak and Pass system would completely lose soundness
— it will be possible to easily prove any false statement.

Our system has a more robust guarantee — finding a few collisions only
allows finding a few false statements with accepting proofs, and the mapping
from collisions to false statements is deterministic and efficiently computable.

1.2 Technical Overview

We now give an overview of the main ideas and techniques behind our results.
Throughout this overview, it will be convenient to consider a slight variant

of incompressible problems requiring that for any efficient adversary A with a
non-uniform description of polynomial size S, there exists a setZ of size at most
K(S), such that A cannot find solutions w ∈ W \ Z . In the body, we show that
this variant is indeed equivalent to requiring that the adversary fails to find more
than K solutions w. We consider a similar variant for the definition of weak
soundness, where the adversary cannot output a false statement and accepting
proof (x, π), except for statements x from some size-K set.
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One-Message Zero-Knowledge
The starting point for our construction is the Barak-Pass [BP04] construction

against uniform provers. They follow the common [FLS99] paradigm in which
the prover provides a WI proof that

“Either x ∈ L or the prover knows some trapdoor".

The trapdoor should be such that it is too hard for an efficient prover to compute,
but only mildly hard, so that a super-polynomial simulator can obtain it relatively
fast in time Ttd � 2o(|x|). The hardness of obtaining the trapdoor, and the
soundness of the proof, guarantee the soundness of the argument, whereas as
the WI property, along with the simulator’s ability to find the trapdoor, give rise
to SPS simulation. To realize this idea, the prover sends a commitment c and
proves that x ∈ L or c is a commitment to the trapdoor. The commitment is only
mildly hard — the committed value could be extracted by brute force in time
Tcom � Ttd, which does not suffice to find the trapdoor. Therefore, violating
soundness requires violating the hardness of finding a trapdoor in Ttd.

The question is what could be the trapdoor. Focusing on uniform provers,
Barak and Pass rely on problems that are hard for uniform algorithms. For in-
stance finding collisions of certain keyless hash functions is conjectured to be
hard for uniform algorithms (or more generally, algorithms whose description is
smaller than the function’s input), even in time poly(Tcom). This of course mis-
erably fails against non-uniform provers who could simply have such a trapdoor
(e.g., a collision) hardwired in their code and use it to cheat.
Leveraging Incompressible Problems Recall that we are only interested in a
weak notion of soundness—wewish to guarantee that there is only a small set of
false statements for which the prover may give false proofs (where small is some
polynomialK(S) in the prover’s non-uniform description size S). A first natural
idea is to simply replace the trapdoor problem with an incompressible problem
W (for instance, replace collision-resistance against uniform adversaries with
multi-collision resistance against non-uniform ones).

This first attempt, however, fails. The problem is that any single solution in
W allows to efficiently generate accepting proofs for all statements x. Thus, a
non-uniform attacker with one such hardwired solution, can convince the verifier
of accepting any number of false statement, thereby violating theweak soundness
requirement. The problem stems from the fact that in such a protocol, the concept
of a useful trapdoor is completely detached from the proven statement x. We
solve this by binding trapdoors and statements, so that, finding accepting proofs
for different false statements requires finding different solutions inW . Thus, an
attacker who can only find a small set of solutions, can only generate proofs for
a small number of corresponding false statements.
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More specifically, we aim to achieve two goals. First, every trapdoor w ∈ W
is associated with a specific statement x = f(w) determined by some efficiently
computable function f — this would ensure that the prover could only provide
accepting proofs for false statements from a small set X = f(Z) determined by
the small set Z of trapdoors it may be able to find. Second, we would like to
guarantee that for any x ∈ L, the simulator would be able to reverse sample a
trapdoor w ∈ W such that x = f(w), and it should do so relatively fast.

We achieve the above combinatorial properties as follows. For instances x
of size `, we choose f to be a two-source extractor 2Ext : {0, 1}n × {0, 1}n →
{0, 1}`, where n is a parameter dictated by the quality of the extractor (in
our actual construction n = 4`). We then choose our incompressible problem
to be pairs of solutions W × W ⊆ {0, 1}n × {0, 1}n for some underlying
incompressible problemW . It is easy to see that the product of incompressible
problems is itself an incompressible problem, and so weak soundness is obtained
according to the above reasoning. Furthermore, by choosing an appropriate
extractor, we can guarantee that as long asW has density ∆ ≥ 2−o(`), for any
x ∈ {0, 1}`, it is possible to sample (w,w′) ∈ W such that 2Ext(w,w′) = x in
time O(∆−2), as required.

The above is satisfied by any extractor with the following two properties.
First, it has an exponentially small error — for independent sources with min-
entropy n − o(`), the output is 2−`−Ω(1)-close to uniform. Second, it admits
efficient reverse sampling — for any x, it is possible to efficiently sample from
the uniform distribution on Un × U ′n conditioned on 2Ext(U,U ′) = x. These
properties are both satisfied by the classical Hadamard extractor [CG88, Vaz85].
See further details in the full version of this paper.

To recap, the final proof (c, π) consists of a commitment c to a string of
length 2n, and a NIWI that

“Either x ∈ L or c is a commitment to (w,w′) ∈ W ×W such that
2Ext(w,w′) = x".

Starting from a (TW ,K,∆)-incompressible problem, we choose a mildly-hard
commitment so that it is extractable in time Tcom � TW . The resulting system
is then (TW ,K)-weakly-sound and has a ∆−2-time simulator. In particular,
for the discussed setting of parameters K � T � ∆−1 � 2`

.99 , we get a
subexponential-time simulator.

ϕ-Tuned 1ZK We also consider a generalization of the 1ZK definition that
admits a more flexible soundness vs. simulation-time tradeoff. Specifically, we
parameterize our system by a projection function ϕ(x) and obtain the following
augmented guarantees:
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– Weaker Soundness: we are only guaranteed that the prover produces accept-
ing proofs for false statements xwhose projection ϕ(x) is taken from a small
set Z (but x itself is not restricted to any small set).

– Faster Simulation: simulation time is only subexponential in |ϕ(x)| and not
in ` = |x|. Furthermore, fixing any projection y, there is a corresponding
trapdoor state sty that allows simulating any x ∈ ϕ−1(y) in polynomial time.
A bit more formally, simulation for x can be split into a long preprocess-
ing step Spre, subexponential in |ϕ(x)|, that produces stϕ(x), and a short
postprocessing step Spos that takes polynomial time given the trapdoor state
stϕ(x).

Note that the above is indeed a generalization of the previous notion when con-
sidering the identity as the projectionϕ. As we shall see later on, the flexibility of
choosing ϕ differently, with the above tradeoff, will be useful in our application
to non-malleable commitments. The construction of such ϕ-tuned 1ZK is iden-
tical to the construction described above only that we require that the trapdoor
(w,w′) fixes ϕ(x) rather than x. See further details in the full version.

One-Message Non-Malleable Commitments
We now give an overview of how to use our 1ZK arguments to construct

one-message non-malleable commitments. We adopt a standard formulation of
non-malleable commitments where players have identities, and the commitment
protocol depends on the identity of the committer, which is referred to as the tag
of the interaction. Non-malleability [DDN03] ensures that noman-in-the-middle
attacker can “maul” a commitment it receives on the left into a commitment of
a related value it gives on the right, as long as the tags of the left and right
commitments are different. More formally, for any two values u and w, the
values the man-in-the-middle commits to after receiving left commitments to u
or w, along with the commitments it sees on the left, are indistinguishable. The
notion of concurrent non-malleability [DDN03, PR05a] further requires that no
attacker can “maul” a set of left commitments into a set of right commitments
so that the joint distribution of right committed values depends on the left
committed values.

The number γ of tags a scheme supports can be viewed as a quantitative
measure of how non-malleable it is: A γ-tag non-malleable commitment gives
a family of γ commitment schemes — each with a hardwired tag — that are
“mutually non-malleable” to each other. Therefore, the fewer tags, the easier it
is to construct a corresponding non-malleable commitment. Indeed, as shown
by [LPS17], non-interactive non-malleable commitments for a constant num-
ber of tags can be constructed from subexponentially-secure injective one-way
functions and time-lock puzzles [RSW00]. Full-fledged non-malleable commit-
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ments, in contrast, have an exponential number of tags γ = 2λ. Thus, the main
challenge lies in increasing the number of tags from a constant to exponential.

Techniques for amplifying the number of tags have been explored in the liter-
ature [DDN03, LP11, KS17, LPS17]. They show that a non-malleable commit-
ment scheme for γ tags can be transformed into one for 2Ω̃(γ) tags. Thus, starting
from constant-tag non-malleable commitments, applying the transformation iter-
atively forO(log∗ λ) times yields non-malleable commitments for exponentially
many tags. However, all existing tag-amplification techniques crucially rely on
interaction — even if the initial constant-tag non-malleable commitments are
non-interactive, the transformation increases the message-complexity to at least
two. For instance, the tag-amplification technique of Khurana and Sahai makes
use of 2-message SPS zero-knowledge arguments. In this work, we show how
to replace the 2-message SPS ZK arguments with our 1ZK arguments, which
gives a non-interactive tag-amplification technique, and hence non-interactive
non-malleable commitments.
Two-Message Tag-Amplification We start with reviewing the Khurana and
Sahai (KS) 2-message tag-amplification technique, which transforms a non-
interactive input scheme iNM for γ tags into a 2-message output scheme oNM
for
( γ
γ/2

)
= 2Ω(γ) tags. Each tg′ of oNM consists of a subset of γ/2 tags

tg′ = (tg1, · · · , tgγ/2) of iNM. To commit to a value v, oNM computes γ/2
commitments to v using iNM with respect to tags tg1, · · · , tgγ/2, followed by a
2-message SPS argument that all commitments are consistent. More precisely,

KS 2-message tag-amplification—oNM:
– The receiver R sends the first message π1 of a 2-message SPS argument.
– To commit to v using tg′ = (tg1, · · · , tgγ/2), the committer C generates
{nmj ← iNM(tgj , v)}j∈[γ/2] and the second message π2 of a 2-message
SPS argument that all iNM commitments commit to the same value.
The committed value is defined to be the value committed in nm1.

To see that oNM is non-malleable, consider a man-in-the-middle receiving a left
commitment using tg′ = (tg1, · · · , tgγ/2) and giving a right commitment using
t̃g
′
= (t̃g1, · · · , t̃gγ/2). If tg′ 6= t̃g

′, there must exist i?, such that, t̃gi? 6= tgi for
all i— the i?’th right iNM commitment uses a tag different from all left tags.

Then, they reduce the non-malleability of oNM to the non-malleability of
iNM. To do so, they rely on the soundness of the 2-message SPS argument to
argue that in left-honest man-in-the-middle executions, the attacker must send
consistent iNM commitments {ñmj} on the right, or else it would fail in the
SPS argument. (Here by left-honest, we mean the proofs on the left are honestly
generated and not simulated.) Thus, to show that the right committed values do
not change in two left-honest executions with different left committed values u or
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w, it suffices to show that the value committed in any right iNM commitment —
in particular, the i?’th one ñmi? —does not change (in a distinguishablemanner).
To show this, they gradually simulate components in the left commitment in a
sequence of hybrids, while maintaining that ṽi? committed in ñmi? does not
change throughout hybrids.

In the first hybrid, the left SPS argument (π1, π2) is simulated. To ensure
that ṽi? does not change, they rely on complexity leveraging to make simulated
proofs “harder to distinguish” than extracting from the commitment iNM; that
is, the indistinguishability of SPS simulation holds even when ṽi? is extracted by
brute force. Once the left SPS argument is simulated, the left iNM commitments
are switched to committing to 0 in following hybrids. By the non-malleability
of iNM and the fact that ñmi? uses a tag t̃gi? different from all left tags, its
committed value ṽi? does not change through these hybrids. Note that this
requires the non-malleability of iNM to hold against TiNM-time attackers for
TiNM � TSPS. Using SPS ZK where simulation-time only depends on the
underlying security parameter (and not the size of the instance), the above can
be satisfied by appropriately choosing the relation between the iNM security
parameter n and the SPS security parameter n̄.

Non-InteractiveTag-AmplificationToobtain non-interactive tag-amplification,
a natural idea is replacing the 2-message SPS in the KS transformation with our
1ZK argument. However, two challenges arise:

– Challenge 1: Our 1ZK is only weakly sound. Thus, the man-in-the-middle
attacker is able to generate an accepting 1ZK argument π̃ even when the
right iNM commitments {ñmj} are inconsistent (i.e., committing to different
values).

– Challenge 2: In our basic 1ZK, the simulation time is subexponential in
the length of the statement |x| (and the security parameter). This makes
it difficult to guarantee that the simulator cannot break the underling non-
malleable commitment, i.e. TiNM � TSPS.
Specifically, the statement x concerns the consistency of γ/2 iNM com-
mitments, and thus the simulation time is at least TSPS = 2(γ×`nm/2)

ε ,
where `nm = `nm(n) is the length of iNM commitments and could scale
polynomially with the security parameter n of iNM. It could well be that
TiNM � TSPS.

In a nutshell, to solve the first problem, we rely on the weak soundness of 1ZK
to argue that whenever the right iNM commitments are not consistent (that is,
the statement is false), the right commitments are taken from a small “apriori
known” set, and their underlying values can be non-uniformly hardcoded into the
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reduction. To solve the second problem, we make the security of iNM indepen-
dent of the simulation time, by introducing an extra commitment under another
scheme Com and using theϕ-tuned version of 1ZK to reduce the simulation time
to only depend on the length of commitments in Com, instead of commitments
in iNM.

The Actual Tag-Amplification and Resulting Scheme oNM:
To commit to v using tg′ = (tg1, · · · , tgγ/2), the committer C generates
c← Com(v), {nmj ← iNM(tgj , v)}j∈[γ/2], and a 1ZK argument π showing
that c and all iNM commitments commit to the same value. The 1ZK state-
ment is given by x = (c,nm1, · · · ,nmγ/2) and we consider its projection
ϕ(x) = c that only fixes the Com commitment c.
The committed value is defined to be the value committed in c.

Let us see how the above two problems are resolved.
Resolving Challenge 1: The weak soundness of ϕ-tuned 1ZK guarantees that for
any attacker A of polynomial size S, there is a set Z consisting of a polynomial
number K(S) of Com commitments c (the so called projections) such that A
cannot prove a false statement x where the corresponding commitment c is
not in Z . This means that in left-honest man-in-the-middle executions, one of
the following two cases occurs: Either the right Com commitment c̃ and the
iNM commitments are all consistent, or the commitment c̃ belongs to Z . In
the latter case, the right committed value must belong to the polynomial-sized
set {ṽ : ṽ is the value in c̃ ∈ Z}, which can be hardwired non-uniformly into
the reduction. In the first case, showing the indistinguishability of the right
committed values again reduces to showing that of ṽi? committed in ñmi? .
Resolving Challenge 2: Recall that ϕ-tuned 1ZK enjoys a simulation speedup.
Specifically, simulation consists of i) a 2|c|

δ -time preprocessing phase that de-
pends only on the projection c and computes a trapdoor state st ← Spre(c),
and ii) a polynomial poly(|x|, n̄)-time postprocessing phase that generates the
simulated proof π̂ ← Spos(x, st). With this speed-up, let us examine again the
sequence of hybrids where the left Com and iNM commitments are gradually
switched to committing to 0, while the 1ZK argument on the left is simulated.
We need to ensure that ṽi? does not change.

To change the Com commitment, we require that its hiding holds even in the
presence of 1ZK simulation and (brute-force) extraction from ṽi? :

TCom � TSPS = 2|c|
δ

+ poly(|x|, n̄) and TCom � TiNM.E

The latter can be satisfied by setting the security parameter n̄ of Com to be
sufficiently larger than the security parameter n of iNM. The former is more
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subtle as it requires Com to be at least 2|c|
δ -secure, where |c| is the length of

Com commitments. Such a commitment scheme for strings of length `, can
be instantiated by the classical Blum-Micali bit commitment scheme [BM84]
(recall that a commitment to b is f(r), hc(r)⊕b, where hc is a hardcore bit of an
injective one-way function f ), instantiated with any 2k

ρ-hard injective one-way
function, and sufficiently large security parameter k > Ω(`δ/ρ−δ).

Next, when changing the left iNM commitments, we can circumvent the re-
quirement that TiNM � TSPS by leveraging the efficient postprocessing of 1ZK
simulation. Recall that given a trapdoor state st ← Spre(c) that depends only
on the projection c, simulating the proof π̂ ← Spos(x, st) takes only polynomial
time. When changing the values committed in left iNM commitments, the left
Com commitment c is independent — it is by now a commitment to 0. If in two
neighboring hybrids, the value ṽi? on the right changes, there must exist a com-
mitment c (committing to 0) such that conditioned on c occurring in the hybrids
the value ṽi? still changes. With respect to this specific c, 1ZK simulation can
now be done in polynomial time, given as non-uniform advice the preprocessed
state st ← Spre(c) depending on c. This suffices for the security reduction, as
now, the non-malleability of iNM is detached from the 1ZK simulation time.

A Subtle Issue The above description captures the main idea, but misses a subtle
issue. Roughly speaking, in order to apply our tag-amplification iteratively, across
different iterations, we need to increase the level of security of the Com schemes
used in each iteration. In particular, the security parameter k for the one-way
functions underlying Com needs to grow polynomially in each iteration. If we
start with k > `δ/(ρ−δ) = `Ω(1), after a super-constant number of iterations (out
of the log∗ n iterations needed), k would grow to be super-polynomial in `.

To avoid this, we modify the scheme oNM to have a separate 1ZK argument
for each bit commitment cj (committing to a bit vj of the committed value),
proving that all iNM commitments are consistent with it, in the sense that, the
j’th bit of their committed strings equals to the bit committed in cj . By doing so,
cj only needs to be 2|cj |

δ -secure, independent of the length ` of committed values.
Thus, we no longer need to set k to be k = `Ω(1), but instead to k = `o(1). Though
k still increases through O(log∗ n) iterations, it is always kept polynomial in `.
See Section for a formal description of the final transformation.

AchievingConcurrencyApplying our non-interactive tag amplification to the 4-
tag non-malleable commitments of [LPS17] gives a full-fledged non-interactive
non-malleable commitment, which however, is only stand-alone (i.e., one-one)
but not concurrently non-malleable. This is because the basic commitments
of [LPS17] are not concurrently non-malleable.

13



To obtain concurrent non-malleability, we give another transformation from
non-malleable commitments in a restricted concurrent setting, called same-
tag concurrency into fully concurrent ones. Roughly speaking, in the same-tag
concurrent setting, we require non-malleability to hold with respect to attackers
who always use the same tag in all commitments on the right. We observe that
the 4-tag commitments of [LPS17] actually are same-tag non-malleable, and our
tag amplification preserves this property. Therefore, by applying the same-tag
to full-concurrency transformation after tag amplification, we obtain concurrent
non-malleability.

Our transformation is inspired by the 2-round non-malleability strengthening
transformation in [LPS17], but works in one message and is simpler and more
modular; in particular, the transformation of [LPS17] relies directly on time-lock
puzzles, whereas we work with any non-malleable commitment satisfying the
intermediate notion of same-tag non-malleability.

At a high level, starting from a same-tag non-malleable input scheme iNM,
our transformation follows the Naor-Yung paradigm for constructing CCA en-
cryption, producing an output scheme oNM as follows. oNM fixes two arbitrary
tags tg?0, tg?1 of iNM for special use, and commitments are computed using to
other tags tg 6= tg?0, tg

?
1.

TheSame-Tag toFully-ConcurrentTransformation andResultingScheme
oNM (Simplified):

– On input v and tag tg, the committer C commits to v using iNM with the
two special tags:

nm0 ← iNM(tg?0, v) nm1 ← iNM(tg?1, v) ,

and proves that both iNM commitments commit to the same value v. The
proof is computed using a simulation-sound variant of our 1ZK argument
relative to the tag tg.

To argue the concurrent non-malleability of oNM, it suffices to argue one-many
non-malleability [LPV08b] (that is, the man-in-the-middle receives a single
commitment on the left and gives many commitments on the right.)

The two commitments of iNM using special tags tg?0 and tg?1 are the coun-
terparts of the as two public-key encryptions in the Naor-Yung paradigm, and
the proof of non-malleability follows similarly to the proof of CCA security. The
simulation soundness of 1ZK ensures that the man-in-the-middle attacker can
only send consistent ñm0,j and ñm1,j in every right commitment j, even when
the left 1ZK argument is simulated. Therefore, as the left commitment nm0 is
simulated (by committing to 0), one can argue that the right committed values
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do not change by showing that values in {ñm1,j} do not change. Similarly, as
the left commitment nm1 is simulated, one can switch to showing that values in
{ñm0,j} do not change. Here same-tag non-malleability is essential for arguing
that the joint distribution of all right committed values does not change (in a
distinguishable manner).

To achieve simulation-soundness, we open the construction of our 1ZK
arguments. Recall that these arguments rely on a basic commitment scheme, a
NIWI, and an incompressible language. We show that by replacing the basic
commitment scheme with a non-malleable one (such as the input scheme iNM),
our 1ZK arguments become simulation-sound. For this approach to work, we
additionally need “mutual non-malleability” between the commitment in our
simulation-sound 1ZK arguments and the iNM commitments using tg?0, tg

?
1.

That is, i) simulating the 1ZK argument on the left does not change the values
that the attacker commits to in iNM commitments {ñm0,j , ñm1,j} on the right,
and ii) changing the values committed in the iNM commitments on the left does
not allow the attacker to break (weak) soundness on the right. Such “mutual non-
malleability” is achieved again relying on the same-tag non-malleability of iNM
and the fact that the iNM commitments use two special tags tg?0, tg?1 different
from the tags we use for iNM commitments in 1ZK arguments.

The above discussion is overly-simplified. Indeed, this transformation also
has to deal with the challenges presented before in the tag-amplification trans-
formation. They are dealt with using similar techniques. See Section ?? for
details.

New Candidate Constant-Tag Non-Malleable Commitments As explained
above, our transformations start from non-malleable commitments for a con-
stant number of tags, which were previously known based on time-lock puzzles
[LPS17]. We also provide new candidate constant-tag non-malleable commit-
ments, based on a new assumption on hardness amplification of (injective)
one-way functions.

Known results on hardness amplification have shown ways of strengthening
weak one-way functions to strong ones, via direct product lemmas or XOR
lemmas. However, these results have a common weakness — hardness does not
amplify beyond negligible. Concretely, starting from a function f that is δ-hard
against T -time attackers, the k-fold combined function f ′ is (poly(T

′

T ) + (1 −
δ)k))-hard for (T ′ � T )-time attackers. As the number k of copies increases,
the hardness approaches the limit of poly(T

′

T ).
The work of [DJMW12] showed that this limit is inherent for certain con-

trived one-way functions, but there is no evidence that this limit should bound
natural one-way functions, such as, discrete logarithm, RSA, or Rabin. We put
forward the notion of amplifiable one-way functions and hardcore bits: Roughly
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speaking, we say that a one-way function f is amplifiable, if there is a way to
combine (e.g. XOR), say `, hardcore bits, corresponding to ` independent images
f(x1), . . . , f(x`), so that the combined bit is 2`

ε-unpredicatable; that is, the level
of unpredicatbility increases at least subexponentially as more hardcore bits are
combined and beyond the limit poly(T

′

T ).
We show that amplifiable one-way functions are useful for constructing non-

malleable commitments. They essentially allow us to construct commitment
schemes (Com,Com′), such that, Com is “harder” than Com′ in the time axis
— Com remains hiding in time needed for extracting from Com′, whereas Com′
is “harder” than Com in the distinguishing axis — the maximum distinguishing
advantage of Com′ is smaller than the probability that one can guess a decom-
mitment of Com. As shown in [LPS17], commitments that are harder than each
other under different measures are essentially non-malleable. This yields new
candidate constant-tag non-malleable commitments with one-way functions that
are believed to have amenable hardness amplification behavior, such as, discrete
logarithm, RSA, or Rabin.

1.3 Concurrent Work

In concurrent and independent work, Holmgren and Lombardi [HL18] study
one-way product functions, which are related to our notion of amplifiable one-
way functions. Their notion requires that ` independent images f(x1), . . . , f(x`)
cannot be inverted simultaneously by efficient algorithms, except with exponen-
tially small probability in the input size. They show how to use such func-
tions in different parameter regimes to obtain several applications ranging form
collision-resistant hashing to correlation intractability (when combined with
indistinguishability obfuscation). (The exact inversion probability and choice
of ` depends on the specific application. Most of their applications are in the
regime where ` is small, e.g. constant, and the inversion probability is at most
2−n−ω(logn).)

While their one-way product functions and our amplifiable one-way func-
tions are very related, there are some notable differences. For once, we make
a stronger requirement than the hardness of inversion, namely, the hardness of
predicting a combined hardcore bit. (Note that this gap cannot be bridged by the
classic Goldreich-Levin theorem, where the adversary’s distinguishing advan-
tage ε translates to a reduction running in time at least poly(ε−1) to invert the
underlying function.) On the other hand, since we allow ` to grow polynomially,
our notion could potentially hold for one-way functions where a single copy is
only mildly hard to invert, whereas for many of their applications (like collision-
resistant hashing), ` is required to be small, and accordingly the one-way function
has to be hard to invert except with exponentially small probability.
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Organization. The rest of this extended abstract is organized as follows. In
Section 2, we give some of the basic definitions used in the paper, including the
definition of non-malleable commitments that we achieve. In Section 3, we define
the notion of incompressible problems. In Section 4, we define and construct our
new notion of one-message zero knowledge. Our constructions of non-malleable
commitments, as well as all proofs, can be found in the full version of the paper.

2 Preliminaries

We rely on the following standard computational concepts:

– Wemodel algorithms as (possibly probabilistic and possibly interactive) Tur-
ing machines. A non-uniform algorithmM is given by a family of algorithms
M = {Mλ}λ∈N, where λ is a security parameter, and each Mλ corresponds
to an input size n(λ) and has description-size related to λ.
• M is T -time, if for every λ ∈ N,Mλ performs at most T (λ) steps.
• M is S-size if for every λ ∈ N,Mλ has description size at most S(λ).

Throughout, we assume w.l.o.g. that the description-size of a non-uniform
algorithm is bounded by its running time S(λ) ≤ T (λ) for all λ.
A uniform algorithm M is a special-case of a non-uniform algorithm where
for all λ ∈ N, Mλ = M is a single, constant-size, algorithm. A PPT is a
probabilistic polynomial-time uniform algorithm. By default, algorithms in
cryptographic schemes are PPTs.

– We model T -time adversaries as arbitrary non-uniform T -time algorithms
A = {Aλ}λ∈N. Efficient adversaries have polynomial time. Throughout this
work, we consider polynomial-size adversaries, and assumew.l.o.g. that their
sizes are at least λ, i.e., |Aλ| ≥ λ (via padding).

– We say that a function f : N → R is negligible if for all constants c > 0,
there exists N ∈ N such that for all n > N , f(n) < n−c. We sometimes
denote negligible functions by negl.

– We say that a function f : N → R is noticeable if there exists a constant
c > 0 and N ∈ N such that for all n > N , f(n) ≥ n−c.

– For two functions T (λ), T ′(λ), we write that T ′ � T if T ′ = T o(1), when
λ→∞.

In this paper, we will sometimes consider security of primitives against gen-
eralpoly(T )-time adversaries, as illustrated in the definition ofT -indistinguishability
below.

Definition 1 ((T, µ)-Indistinguishability). Let X (b) = {X(b)
λ }λ∈N for b ∈

{0, 1} be two ensembles of random variables indexed by λ ∈ N. We say thatX (0)
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and X (1) are (T, µ)-indistinguishable for functions T, µ, if for all poly(T )-time
distinguishers D, and all large enough λ,∣∣∣Pr[D(X

(0)
λ ) = 1]− Pr[D(X

(1)
λ ) = 1]

∣∣∣ ≤ µ(λ)Ω(1).

Wesay thatX (0) andX (1) areT -indistinguishable if it is (T, µ)-indistinguishable
for some negligible function µ. We say that they are computational indistinguish-
able if they are T -indistinguishable for every polynomial T .

Wedenote the above notions of indistinguishability byX (0) ≈T,µ X (1),X (0) ≈T
X (1), and X (0) ≈ X (1), respectively.

2.1 Commitments

We define non-interactive commitments.

Definition 2 (Commitment Scheme). A non-interactive commitment scheme
consists of two polynomial-time algorithms (Com,Open), with the following
syntax:

– (c, d) ← Com(v, 1λ): Given 1λ and v ∈ {0, 1}∗, Com samples a commit-
ment c and a decommitment string d.

– b = Open(c, v, d): Given a commitment c, value v, and decommitment
string d, Open outputs a bit b, where b = 1 indicates acceptance. We say
that a commitment c is valid, if there exists a decommitment (v, d), such that
Open(c, v, d) = 1.

We make the following requirements:
Correctness: For any λ ∈ N, v ∈ {0, 1}∗,

Pr[Open(c, v, d) : (c, d)← Com(v, 1λ)] = 1 .

Binding: For any string c, values v, v′, and decommitment strings d, d′,

if Open(c, v, d) = Open(c, v′, d′) = 1 then v = v′ .

T -hiding: For any polynomial n = n(λ),

{
Com(v, 1λ)

}
λ∈N,v,v′∈{0,1}n×2

≈T
{
Com(v′, 1λ)

}
λ∈N,v,v′∈{0,1}n×2

.

Tag-based CommitmentsWe consider “tag-based” commitment schemes.
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Definition 3 (Tag-based commitment scheme).Acommitment scheme (Com,Open)
is a tag-based scheme with t-bit tags if, in addition to 1λ, Com also receive a
“tag” (a.k.a. identity) tg ∈ {0, 1}t(λ) as input, c ← Com(tg, v, 1λ). We as-
sume w.l.o.g that commitments generated by Com contains the tag used for
generating them. For any sequence of fixed tags tg = {tgλ}λ, the correspond-
ing (Comtg,Opentg) =

{
(Comtgλ ,Opentgλ)

}
λ
satisfy correctness, binding,

and hiding as defined for plain commitment schemes. By default, a tag-based
commitment scheme has t-bit tags for some polynomial t.

2.2 Non-Malleable Commitments

The Man-in-the-Middle (MIM) Execution: Let NM = (Com,Open) be a
commitment scheme for t-bit tags, andA = {Aλ}λ∈N an arbitrary non-uniform
adversary. For a security parameter λ, andm = m(λ),Aλ on input 1λ, receives
m commitments from an honest committerC to values v1, . . . , vm ∈ {0, 1}λ, and
sends m commitments to R to values ṽ1, . . . , ṽm ∈ {0, 1}λ. The commitments
received by the adversary are called the left commitments and those sent are
called the right commitments. The left and right commitments use t = t(λ)-bit
tags tg1, tg2, . . . , tgm and t̃g1, t̃g2, . . . , t̃gm chosen adaptively by Aλ for each
commitment. The values ṽj in the j’th right commitment c̃j is defined as

ṽj =

{
⊥ if ∃i, tgi = t̃gj
val(c̃j) otherwise

.

That is, ṽj is either the unique committed value if the commitment c̃j is valid and
uses a tag different from all left tags, or⊥ otherwise. (Recall that by binding, ṽj
is uniquely defined whenever c̃j is valid.)

We denote by MIMANM(v1, . . . , vm, 1
λ) the above described man-in-the-

middle experiment.
Non-Malleability with respect to Commitment Let mimANM(v1, . . . , vm, 1

λ)
denote the random variable that describes the view of Aλ (consisting of all left
commitments) and the values ṽ1, . . . , ṽm it commits to on the right in the above
man-in-the-middle experiment.

Definition 4 (Non-Malleability). A commitment scheme NM for t-bit tags is
concurrent T -non-malleable if for any non-uniform poly(T )-time adversary
A = {Aλ}λ∈N and for every polynomialm = m(λ), it holds that:{

mimANM(v1, . . . , vm, 1
λ)
}
λ∈N,v1,...,vm,v′1,...,v′m∈{0,1}λ

≈c
{
mimANM(v′1, . . . , v

′
m, 1

λ)
}
λ∈N,v1,...,vm,v′1,...,v′m∈{0,1}λ

.
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2.3 Non-Interactive Witness-Indistinguishable Proofs

We define non-interactive witness-indistinguishable proofs (NIWIs).

Definition 5 (NIWI). A non-interactive witness-indistinguishable proof system
(P,V) for an NP relationR(x,w) consists of two polynomial-time algorithms:

– π ← P(x,w, 1λ): Given an instance x, witness w, and security parameter
1λ, P produces a proof π.

– b = V(x, π): Given a proof π for instance x, V outputs a bit b, where b = 1
indicates acceptance.

We make the following requirements:

Completeness: For every λ ∈ N, (x,w) ∈ R,

Pr
P

[V(x, π) = 1 : π ← P(x,w, 1λ)] = 1 .

Soundness: For every x /∈ L(R) and π ∈ {0, 1}∗:

V(x, π) 6= 1 .

T -Witness-Indistinguishability: For any sequence

I =

{
(λ, x, w0, w1) :

λ ∈ N, x, w0, w1 ∈ {0, 1}poly(λ),
(x,w0), (x,w1) ∈ R

}
It holds that{
π0 ← P(x,w0, 1

λ)
}
(λ,x,w0,w1)∈I

≈T
{
π1 ← P(x,w1, 1

λ)
}
(λ,x,w0,w1)∈I

.

Barak, Ong, and Vadhan [BOV07] constructed NIWIs based on NIZK and
the worst-case assumption that there exists a problem solvable in deterministic
time 2O(n) with non-deterministic circuit complexity 2Ω(n) (or more generally
the existence of hitting set generators that fool non-deterministic distinguishers).
Groth, Ostrovsky, and Sahai [GOS12] then constructed NIWIs based on standard
assumptions on bilinear maps such as the Decision Linear Assumption, the Sym-
metric External Diffie Hellman assumption, or the Subgroup Decision Assump-
tion. Bitansky and Paneth [BP15] constructed NIWIs from indistinguishability
obfuscation and one-way permutations.
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2.4 Two-Source Extractors

We rely on the standard notion of two-source extractors.

Definition 6 (Two-Source Extractor). A polynomial-time computable function
2Ext : {0, 1}n × {0, 1}n → {0, 1}m is a (k1, k2, ε)-two-source extractor, if
for any two independent sources X1, X2 with min-entropies at least k1 and k2,
respectively, it holds that

‖2Ext(X1, X2)− Um‖1 ≤ ε ,

where Um is the uniform distribution over {0, 1}m.

We also require efficient reverse sampling, which says that given any y in
the image of the extractor 2Ext we can efficiently sample uniformly random and
independent sources X1 and X2 conditioned on 2Ext(X1, X2) = y.

Definition 7 (EfficientReverse Sampling).A function2Ext : {0, 1}n×{0, 1}n →
{0, 1}m is efficiently reverse-samplable if there exists a PPT that given y ∈
Image(2Ext) outputs a uniformly randompairx1, x2 such that 2Ext(x1, x2) = y.

Two source extractors with efficient reverse sampling and an exponentially
small error are known based on the Hadamard code over an appropriate field.

3 Incompressible Problems

Following [BKP18], we consider a notion of incompressible problems. Here
every security parameterλ, defines a search problemWλwith superpolynomially
many solutions w ∈ Wλ. Since the problem is fixed, a non-uniform adversary
A = {Aλ} may always have hardwired solutions w ∈ Wλ in its code. We
require, however, that it is impossible to significantly compress solutions — an
adversary with description size at most S and bounded running time T , larger
than S, should fail to produce more than S solutions (or K(S) solutions for
some polynomial blowup functionK(·)).

Definition 8 (Incompressible Problem). An incompressible problemW is as-
sociated with a polynomial-time verifier algorithm V and a collection of sets
{Wλ}λ, such that Wλ ⊆ {0, 1}` for some polynomial ` = `(λ), and for any
w ∈ {0, 1}`, V(w) = 1 if and only if w ∈ Wλ. For any function T = T (λ) ≥ λ
and polynomialK, we make the following incompressibility requirement.
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(T,K)-Incompressibility: for any non-uniform poly(T )-time, polynomial-size,
probabilistic adversary A = {Aλ}, there is a negligible function µ, such that
for any λ ∈ N, lettingK = K(|Aλ|),

Pr
Aλ

[
W ⊆ Wλ

|W | ≥ K

∣∣∣∣W ← Aλ] ≤ µ(λ) .

We say that W has density ∆ = ∆(λ), if for every sufficiently large λ ∈ N,
letting ` = `(λ), it holds that |Wλ| ≥ ∆2`. We say thatW has subexponential
density if it has density∆ = 2−`

ε for some constant ε.

Remark 1 (Parameters). The parameters T,K,∆ that we consider will always
be such that

K ≤ T � K∆−1 .

Indeed,whenT < K the requirement trivializes andwhenT ≥ poly(K∆−1)
the requirement becomes impossible.

CandidatesCandidates for incompressible problemswere introduced in [BKP18].
The problems addressed there come from keyless (shrinking) hash functions
where collisions are incompressible in some sense. We can rely on more gen-
eral incompressible problems, which may give rise to additional candidates.
The problems considered in [BKP18] and a discussion of additional possible
candidates can be found in the full version of the paper.

4 One-Message Zero Knowledge

In this section, we give a new definition of a one-message zero-knowledge
(1ZK) system, and construct such a system based on incompressible problems.
The definition relaxes both the zero knowledge requirement and soundness. Here
the zero knowledge definition is the standard super-polynomial simulation (SPS)
definition [Pas03]. The soundness definition is new and roughly says that a
(relatively) efficient adversary of description size S shouldn’t be able to sample
more than S (or K(S) for some polynomial blowup K) false statements x
together with an accepting proof π. As discussed in the introduction, both of
these relaxations are necessary.

We proceed to the formal definition.

Definition 9 (1ZK). A one-message zero-knowledge argument system (P,V) for
an NP relationR(x,w) consists of two polynomial-time algorithms:

– π ← P(x,w, 1λ): Given an instance x, witness w, and security parameter
1λ, P produces a proof π.
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– b = V(x, π, 1λ): Given a proof π for instance x, V outputs a bit b, where
b = 1 indicates acceptance.

The system is parameterized by functions TD(·), TS(·), TP(·),K(·).

We make the following requirements:

Completeness: For every λ ∈ N, (x,w) ∈ R,

Pr
P

[V(x, π, 1λ) = 1 : π ← P(x,w, 1λ)] = 1 .

(TD, TS)-Zero-Knowledge: There exists a uniform poly(TS)-time simulator S,
such that,{

π ← P(x,w, 1λ)
}
(x,w)∈R
λ∈N

≈TD
{
π̂ ← S(x, 1λ)

}
(x,w)∈R
λ∈N

.

(TP,K)-Weak-Soundness: For any non-uniform poly(TP)-time, polynomial-
size, probabilistic adversary A = {Aλ}λ there exists a negligible µ and a
collection of sets Z = {Zλ}λ, where |Zλ| ≤ K(|Aλ|), such that for any λ ∈ N,

Pr
Aλ

[
x /∈ L(R) ∪ Zλ
V(x, π, 1λ) = 1

∣∣∣∣ (x, π)← Aλ
]
≤ µ(λ) .

ϕ-Tuning: Relaxed Soundness and Speeding-up Simulation We in fact con-
sider a more general definition that allows to get faster simulators on the account
of relaxing soundness. Here the argument system is associated with a non-
expanding (typically, shrinking) projection function ϕ(·) defined over instances
x. Soundness is relaxed and guarantees that the adversary could only output
accepting pairs (x, π) for false statements whose projection ϕ(x) falls in a set of
size at mostK(S). Simulation is performed in two steps — a first preprocessing
step that depends only on ϕ(x), and a postprocessing step that depends on the
instance x itself and the state produced in the preprocessing phase. The prepro-
cessing phase takes superpolynomial time, but only depends on ` := |ϕ(x)| and
not on |x|; the postprocessing phase takes polynomial time.

Note that the previous basic definition is indeed a special case of this defini-
tion by considering the identity projection (in this case the entire simulation is
done in the preprocessing phase, and takes superpolynomial time in |x|).We gain
from this definitions in scenarios where ϕ : {0, 1}>` → {0, 1}` is a shrinking
projection — here when ` � |x|, simulation can become significantly faster;
furthermore, in settings where ϕ(x), and its preprocessing are known ahead of
time (but x isn’t), we can get efficient simulation. On the other hand, we will only
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get the above relaxed soundness guarantee. In our application to non-malleable
commitments, relaxed soundness will be enough, and we’ll indeed benefit from
the above simulation speedup.

We proceed with the definition.

Definition 10 (ϕ-tuned 1ZK).A one-message zero-knowledge argument system
(P,V) for an NP relation R(x,w) is ϕ-tuned for a polynomial-time projection
function ϕ =

{
ϕλ : {0, 1}≥`(λ) → {0, 1}`(λ)

}
λ
if it satisfies:

Simulation Speedup: The system is (TD, TS)-zero-knowledge with a uniform sim-
ulator S = (Spre,Spos) such that S(x, 1λ) consists of two phases:

– st← Spre(ϕλ(x), 1λ) is a preprocessing phasewhose running timeTSpre(`(λ))
depends on `(λ) = |ϕλ(x)|, but not on |x|.

– π̂ ← Spos(x, st) is a postprocessing phase that takes time poly(|x|+ λ).

Overall, TS(|x|, λ) = poly(TSpre(`(λ)), |x|) depends only polynomially on |x|
(and superpolynomially on |ϕλ(x)|).
(TP,K, ϕ)-Weak-Soundness: For any non-uniform poly(TP)-time, polynomial-
size, probabilistic adversary A = {Aλ}λ there exists a negligible µ and a
collection of sets Z = {Zλ}λ, where |Zλ| ≤ K(|Aλ|), such that for any λ ∈ N,

Pr
Aλ

[
x /∈ L(R), ϕλ(x) /∈ Zλ
V(x, π, 1λ) = 1

∣∣∣∣ (x, π)← Aλ
]
≤ µ(λ) .

4.1 Construction

We now construct a ϕ-tuned 1ZK based on incompressible problems and other
standard primitives. The parameters of the construction are derived from those
of the underlying building blocks, and in particular on the density and incom-
pressability of the incompressible problem.
Building Blocks In what follows, let ϕ =

{
ϕλ : {0, 1}≥`(λ) → {0, 1}`(λ)

}
λ
be

a polynomial-time projection. Our transformation will make use the following
building blocks:

– An incompressible problem W =
{
Wλ ⊆ {0, 1}4`(λ)

}
λ
with associated

verifier V , density ∆, and (TW ,KW) incompressability, where KW �
TW � ∆−1.

– Acommitment scheme (Com,Open) that isTR-hiding andTCom.E-extractable
where TR � TCom.E � TW .

– A T niwi
D -indistinguishable NIWI system for an NP language, specified in the

construction below.
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– Atwo-source extractor2Ext =
{
2Ext : {0, 1}4`(λ) × {0, 1}4`(λ) → {0, 1}`(λ)

}
λ

with error ε(λ) = 2−`(λ)−2 for sources of min-entropies k1 = k2 >
4`(λ)− log∆−1, and efficient reverse sampling.

The Proof SystemWe now describe the system (P,V) for an NP relationR.

– The prover P(x,w, 1λ):
• Computes a commitment c← Com(08`).
• Computes a NIWI proof π for the statement

ψx,c :=

“Either x ∈ L(R) or
c is a commitment to (td1, td2) ∈ Wλ ×Wλ such that 2Ext(td1, td2) = ϕλ(x).”
The prover uses the witness w to compute π.
• Overall the proof consists of (c, π).

– The verifier V(x, (c, π), 1λ):
• Applies the NIWI verifier to verify the statement ψx,c.

Theorem 4. The above is a ϕ-tuned 1ZK forR that is (TS, TD)-zero-knowledge
and (TP,K, ϕ)-weakly sound for

TS = ∆−1, TD = min
{
TR, T

niwi
D

}
, TP = TW ,K = O(KW) .

A Concrete Setting of Parameters. A natural setting of parameters that will be
considered throughout this paper is subexponential ∆(`) = 2−`

δ . We can ac-
cordingly set TR, TCom.E, TW , T niwi

D to be super-polynomial functions satisfying:

TR � TCom.E � TW � ∆−1 = 2`(λ)
δ

.

Indeed, themain tradeoff is between the simulation timeTS and the density∆
of the incompressible problemW . On one hand, we aim for a short as possible
simulation time TS � 2`(λ). 7 On the other hand, shorter simulation time
requires higher density, which strengthens the corresponding incompressibility
assumption. (In terms of existing candidates for incompressible problems based
on fixed hash functions, subexponential density corresponds to polynomially-
compressing hash functions.)

7Note that when ϕ is the identity, a witness for x ∈ {0, 1}`(λ) can already be found by
brute force in time 2O(`(λ)), in which case the zero-knowledge requirement collapses to witness
indistinguishability.
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