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Abstract. Information-theoretic secret-key agreement between two par-
ties Alice and Bob is a well-studied problem that is provably impossible in
a plain model with public (authenticated) communication, but is known
to be possible in a model where the parties also have access to some cor-
related randomness. One particular type of such correlated randomness
is the so-called satellite setting, where uniform random bits (e.g., sent by
a satellite) are received by the parties and the adversary Eve over inher-
ently noisy channels. The antenna size determines the error probability,
and the antenna is the adversary’s limiting resource much as computing
power is the limiting resource in traditional complexity-based security.
The natural assumption about the adversary is that her antenna is at
most Q times larger than both Alice’s and Bob’s antenna, where, to be
realistic, Q can be very large.
The goal of this paper is to characterize the secret-key rate per trans-
mitted bit in terms of Q. Traditional results in this so-called satellite
setting are phrased in terms of the error probabilities εA, εB , and εE , of
the binary symmetric channels through which the parties receive the bits
and, quite surprisingly, the secret-key rate has been shown to be strictly
positive unless Eve’s channel is perfect (εE = 0) or either Alice’s or Bob’s
channel output is independent of the transmitted bit (i.e., εA = 0.5 or
εB = 0.5). However, the best proven lower bound, if interpreted in terms
of the channel quality ratio Q, is only exponentially small in Q. The
main result of this paper is that the secret-key rate decreases asymp-
totically only like 1/Q2 if the per-bit signal energy, affecting the quality
of all channels, is treated as a system parameter that can be optimized.
Moreover, this bound is tight if Alice and Bob have the same antenna
sizes.
Motivated by considering a fixed sending signal power, in which case the
per-bit energy is inversely proportional to the bit-rate, we also propose a
definition of the secret-key rate per second (rather than per transmitted
bit) and prove that it decreases asymptotically only like 1/Q.
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1 Introduction

1.1 Motivation for Information-theoretic Security

In cryptography, one generally considers two types of security of cryptographic
schemes. Unconditional or information-theoretic security means that not even
an adversary with unbounded computing power can cause a violation of the se-
curity property, whereas computational security means that the violation of the
security property is impossible for an adversary with (suitably) bounded com-
puting power, but is usually possible for a computationally unbounded adver-
sary. Information-theoretic security was first defined and considered in Shannon’s
ground-breaking paper [22].

While for the most part cryptographic research is focused on computational
security, actually the state of the art in complexity theory is that no crypto-
graphic scheme has been proven to be computationally secure for a general and
realistic model of computation. Instead, the term “provable security” is often
used for schemes for which a reduction from a commonly agreed conjectured
hard problem (such as factoring large integers) is known: Any adversary break-
ing the cryptographic scheme could be transformed (by the reduction), with
reasonable efficiency loss, into an algorithm solving the hard problem with no-
ticeable probability. Therefore, under the assumption that the problem is indeed
hard, the scheme is secure.

In summary, there are two main advantages of information-theoretic security:

– Information-theoretic security is stronger because, compared to computa-
tional security, the security holds against a larger class of adversaries.

– The security proof does not require an unproven computational assumption.

1.2 Circumventing Impossibility Results

Unfortunately, information-theoretic security is in many settings unachievable,
often provably so, at least for practical settings. For instance, Shannon’s famous
impossibility result [22] states that perfectly secure encryption is impossible
unless the secret key has at least as much entropy as the message. This result is
often quoted as showing that information-theoretic security is not practical since
exchanging a fresh truly random key for every message is generally completely
impractical.

The significance of such an impossibility result depends on the generality of
the conditions underlying the impossibility proof. For example, Shannon’s impos-
sibility result was stated (and proven) only under the restriction that the com-
munication between sender and receiver is one-way. That this result also holds
in the more realistic setting with interactive communication between sender and
receiver has been proven by Maurer only in 1993 [11]. It is therefore possible
that a careful re-examination of impossibility results allows to circumvent them
by a slight change of the model, where such a change should be as realistic as
possible and should not destroy the practicality of schemes proven secure in the
model.



The Relation Between the Secret-Key Rate and the Channel Quality Ratio 3

A prominent such modification is quantum key distribution (QKD), where
one assumes that the honest parties can exchange quantum information and
thereby achieves perfect security. Given that being able to exchange quantum
information is a very strong assumption for many practical scenarios, however,
classical settings are still of great interest. One such model, proposed by Mau-
rer [15] and investigated by many researchers in different contexts, is the so-
called bounded-storage model. Here one assumes that the adversary’s memory
resources are bounded, but no assumption about the adversary’s computing
power is needed. Unfortunately, it seems very hard to argue that schemes proven
secure in this model are practical for a reasonable bound on the adversary’s
memory capacity.

Other notable earlier attempts include the works of Wyner [25] and Csiszár
and Körner [4], where all parties are connected by noisy channels (and only one-
way communication between the two honest parties is allowed), and the work of
Ozarow and Wyner [19], where the adversary is allowed to observe a bounded
subset of the message’s encoding. In these models, perfectly secure encryption
is possible only when the adversary is at a disadvantage compared to the honest
parties, which is rarely the case in practice.

A more promising approach in the context of secret-key agreement is the
so-called secret-key agreement by public discussion model proposed by Mau-
rer [16,11]. In this model, two parties Alice and Bob wish to agree on a secret
key by communicating over a public authenticated channel perfectly accessible to
the adversary Eve. In this setting, without further assumptions, key agreement
is provably impossible. However, by a slight modification of the model, namely
by considering a setting where Alice, Bob, and Eve have access to correlated
random variables X, Y , and Z, respectively, with joint probability distribution
PXY Z , secret-key agreement becomes possible, even if X and Y are almost not
correlated and even if Z is strongly correlated with both X and Y .

Often one considers a setting where the experiment generating X, Y , and
Z is repeated many times (independently), and one then considers the secret-
key rate, the maximal rate (per realization of the random experiment) at which
Alice and Bob can generate secret-key bits. Surprisingly, in this model, secret-
key agreement (and thus perfectly secure encryption) is also possible in many
cases where Eve starts with an advantage over Alice and Bob.

1.3 The Satellite Setting

A setting of particular interest is the so-called satellite setting: A satellite (or for
instance a deep-space radio source) broadcasts a sequence of uniformly random
bits that Alice, Bob, and Eve receive via antennas of different sizes.

In order to achieve a meaningfully large secret-key rate in this setting, one
has to assume that the adversary’s resources are bounded. While in computa-
tionally secure cryptography the bounded resource is the computing power, in
the satellite model the natural bounded resource of the adversary is her antenna
quality, that closely corresponds to the antenna size. Given that for most prac-
tical settings the honest parties’ antenna sizes are more or less fixed, we specify
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in the following, for simplicity, this bound on Eve’s antenna size as the maximal
ratio Q between Eve’s antenna size and the size of the smaller one of either
Alice’s or Bob’s antennas. Analogously to the computational setting where the
ratio between the adversary’s and the honest parties’ computing power must be
assumed to be quite large, this antenna size ratio Q can be very large as well, in
realistic settings. If the honest parties use for instance mobile phones, then it is
very well imaginable that Q is in the order of magnitude of a million.

The satellite setting is modeled as a sequence of uniform random bits be-
ing generated and Alice, Bob, and Eve receiving them over independent binary
symmetric channels with error probabilities εA, εB , and εE , respectively. Tradi-
tionally, the secret-key rate in the satellite model has then been specified in terms
of the error probabilities εA, εB , and εE , respectively, capturing the fact that
the antenna sizes clearly affect those error probabilities. However, it is natural to
consider the signal strength of the satellite, i.e., the amount of energy it uses to
broadcast each bit, as a design parameter we can control, implying that the error
probabilities are no longer a priori fixed. Moreover, this highlights an interest-
ing trade-off, as increasing the energy per bit means that the error probabilities
of Alice, Bob, and Eve all decrease simultaneously, which is at the same time
advantageous (Alice and Bob getting more information) and disadvantageous
(Eve getting more information). As a consequence, the essential question in the
satellite setting is: What is the best secret-key rate for given antenna sizes of
the honest parties if we are willing to assume an upper bound on Eve’s antenna
size, but consider the signal strength as a design parameter to maximize over?

1.4 Contributions

Quite surprisingly, it has been shown by Maurer and Wolf [11,14] that in the
satellite model secret-key agreement is possible even if Eve’s channel is almost
perfect, i.e., if εE is arbitrarily close to 0 but not exactly 0, and if Alice’s and
Bob’s channels have arbitrarily high error probability but still some information
(i.e., εA and εB are close to 0.5 but not exactly 0.5). However, the lower bound for
the secret-key rate obtained via the original repeater-code protocol in [11], when
interpreted in terms of the ratio Q, is only exponentially small in Q. In contrast,
the secret-key ratio as a function of Q has already been briefly considered by
Maurer and Gander [6], who conjectured based on numerical results that the
rate of the parity-check protocol (introduced in [16]) asymptotically decreases
like 1/Q2, for a setting where Alice’s and Bob’s antennas are assumed to be of
equal size.

As our main technical contribution, we prove that both the rate of the parity-
check protocol and the optimal secret-key rate are indeed inversely proportional
to Q2 in Section 4. This matches the numerical results and the conjecture by
Gander and Maurer. We point out that the lower bound on the secret-key rate
is proved by showing that the parity-check protocol, which is an explicit and
simple protocol, achieves this rate in the given setting, rather than providing a
pure existence proof of a protocol achieving this rate.
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In the full version [9], we also generalize the secret-key rate as a function
of the antenna ratio Q to the case where Alice and Bob can have antennas
of different sizes, by specifying well motivated and relevant quantities for both
lower and upper bounds.

In addition, we consider the setting where the power consumption of the
satellite is bounded; for instance, by the size of its solar panels. Nevertheless,
we can adjust the energy used to broadcast each bit by adjusting the bit-rate,
i.e., the number of bits broadcast per second, while maintaining a fixed power
consumption. Hence, the energy used to broadcast each bit is inversely propor-
tional to the bit-rate. This motivates the study of the secret-key rate per second
rather than the secret-key rate per bit. In order to investigate the secret-key rate
per second, we introduce a novel quantity that approximates it in Section 5. We
then show that this quantity decreases inversely proportional to Q, rather than
Q2, which makes a significant difference, since Q must be assumed to be very
large.

1.5 A Note on the Practicality of the Satellite Setting

While the satellite setting attempts to mimic a real-world scenario, it also ab-
stracts away many practical issues which affect its immediate applicability. For
instance, the satellite setting encodes some basic assumptions on the adversary
that might not necessarily hold in practice, such as the assumption that Eve
will quantize the signal she receives. Moreover, the setting basically assumes
a passive adversary, by assuming that the adversary can neither influence the
bits the honest parties receive from the satellite, nor tamper with their com-
munication. While the former restriction could be translated into some sort of
physical assumption, the authenticated communication is something that can
easily be obtained in a separate step. We can allow Alice and Bob to start with
a small shared secret-key, which they can then use to authenticate the channel
with information-theoretic security [23]. In this case, the goal of a protocol is to
amplify a short initial secret-key into a very long secret-key, like in quantum key
distribution.

As a consequence, even if one could imagine proving stronger results that
hold if the channels can be to a certain degree dependent, or consider a setting
where the adversary tries to get an advantage by considering the actual analog
signal she receives, we nevertheless believe that proving theoretical results in
our setting is meaningful. Showing that the secret-key rate under a channel
quality constraint is reasonably large, and that the rate of a simple protocol
asymptotically behaves like the secret-key rate in this setting can be seen as
a step towards showing that the satellite setting is practical. In short, we feel
that the problem studied in this paper is one of the most relevant and natural
scientific problems extractable from the general setting.
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1.6 Related Work

There have been considerable efforts to find good approximations for the secret-
key rate, both in the satellite setting and for more general probability distribu-
tions, and also for settings with more than three parties.

The first bounds on the secret-key rate were proved by Maurer [11,13], and
by Ahlswede and Csiszár [1], who studied the secret-key rate when only one-way
communication from Alice to Bob is allowed. Later, Maurer and Wolf [12] and
Renner, Skripsky, and Wolf [20] introduced improved upper bounds for general
distributions, called the intrinsic mutual information and the reduced intrinsic
mutual information, respectively. Csiszár and Narayan [5] extended the study of
the secret-key rate to settings with more than three parties, and exhibited con-
nections between information-theoretic secret-key agreement and the problem of
communication for omniscience. Then, Gohari and Anantharam [7] showcased
new lower and upper bounds on the secret-key rate for an arbitrary number of
parties, which in particular are strict improvements over the previously known
bounds for our setting.

There has been some recent interest in the secret-key rate in the finite block-
length setting, where the number of available realizations (X,Y, Z) is bounded.
Tyagi and Watanabe [24] showcase a connection between the secret-key rate in
this setting and binary hypothesis testing, and use it to obtain an upper bound
on the secret-key rate for a bounded number of realizations. Later, Hayashi,
Tyagi, and Watanabe [8] used this connection to better understand how the gap
between the secret-key rate in the finite blocklength and asymptotic settings de-
creases as the number of available realizations increases, for certain probability
distributions.

For the satellite setting, there exist better lower bounds on the secret-key
rate due to the study of several advantage distillation protocols. The first such
protocol, called the repeater-code protocol, was introduced and studied by Mau-
rer [16,11]. An improved version of this protocol, called the parity-check protocol,
was studied by Gander and Maurer [16,6]. Later, Liu, Van Tilborg, and Van Dijk
[10] proposed another protocol that seems to outperform the parity-check proto-
col. However, the rate achieved by the proposed protocol was only numerically
computed in a simulation where Eve follows a certain fixed strategy, which is
not known to be optimal. Furthermore, finding a clean expression for the rate
of this protocol that can be analyzed (as is done for the rate of the parity-check
protocol) appears infeasible, and so it is very difficult to extract tangible rate
lower bounds, even when assuming that the proposed strategy for Eve is optimal.

The scenario where Alice, Bob, and Eve receive the random bits in the satel-
lite setting through Gaussian channels, instead of binary symmetric channels,
was first considered by Maurer and Wolf [12]. Later, Naito et al. [18] showed
that Alice and Bob can extract more secret-key rate in the Gaussian scenario
than in the BSC scenario, as they are able to make use of soft-decoding.
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2 Preliminaries

2.1 Notation

We denote random variables by uppercase letters such as X, Y , and Z. We
may denote sequences of random variables X1, X2, . . . , XN as XN . We say that
X1, X2, . . . , XN are i.i.d. if all the Xi are independent random variables and they
all have the same distribution. Most sets are denoted by uppercase calligraphic
letters such as S. The set of real numbers is denoted by R and for a natural
number n ∈ N, [n] denotes the set {1, . . . , n}. Given a set S, the size of S
is denoted by |S|. For a string x ∈ {0, 1}∗, |x| denotes the length of x. The
(Hamming) weight of a string x ∈ {0, 1}∗ is defined as w(x) := |{i : xi = 1}|,
where xi is the i-th entry of x. We denote the logarithm to the base 2 by log and
the natural logarithm by ln. The closed interval in R between two real numbers
a and b is denoted by [a, b].

Given an event A, we denote the probability that A happens by Pr[A], which
is the sum of the probabilities of all outcomes in event A. Given two events
A and B, the probability that A and B happen simultaneously is denoted by
Pr[A,B]. The conditional probability of A given B, provided Pr[B] > 0, is
Pr[A|B] := Pr[A,B]

Pr[B] .
The probability distribution of a finite random variable X is denoted by PX ,

and so PX(x) denotes the probability that X takes the value x. Given an event
A, PX|A denotes the conditional probability distribution of X conditioned on
A. For two finite random variables X and Y , PX|Y (·, y) denotes the probability
distribution of X conditioned on the event Y = y.

2.2 Information Theory

Throughout this paper we will make use of some fundamental concepts from
information theory. We briefly define the required notions in this section; a more
detailed exposition of this field can be found in [3].

Fix a finite random variable X with range X . The entropy of X, denoted by
H(X), is defined as

H(X) := −
∑
x∈X

PX(x) logPX(x).

Intuitively, the entropy measures the uncertainty about a given random variable.
In fact, a finite random variable X with range X satisfies 0 ≤ H(X) ≤ log|X |
with equality in the lower bound if and only if PX(x) = 1 for some x ∈ X , and
with equality in the upper bound if and only if X is uniform over X . We call

h(p) := −p log(p)− (1− p) log(1− p)

the binary entropy function and note that for a binary random variable X with
PX(1) = p we have that H(X) = h(p).
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Given two finite random variables X and Y with ranges X and Y, respec-
tively, we define the conditional entropy of X given Y , denoted by H(X|Y ),
as

H(X|Y ) :=
∑
y∈Y

PY (y)H(X|Y = y).

Given an event A, H(X|Y,A) is defined as

H(X|Y,A) :=
∑
y∈Y

PY |A(y)H(X|Y = y,A).

We define the mutual information between X and Y , denoted by I(X;Y ), as

I(X;Y ) := H(X)−H(X|Y ).

Intuitively, the mutual information measures how independent two random vari-
ables are, and we have I(X;Y ) = 0 if and only if X and Y are independent.
Given an event A, I(X;Y |A) is defined as

I(X;Y |A) := H(X|A)−H(X|Y,A).

Finally, if additionally Z is a finite random variable with range Z, the conditional
mutual information between X and Y given Z, denoted by I(X;Y |Z), is defined
as

I(X;Y |Z) :=
∑
z∈Z

PZ(z)I(X;Y |Z = z).

We will be dealing with a simple instance of a discrete memoryless channel.
A discrete memoryless channel with input X and output W is characterized
by a conditional probability distribution PW |X . The term memoryless stems
from the fact that the channel’s output depends only on the current input,
and so is independent of previous channel utilizations. The binary symmetric
channel with error probability ε is the discrete memoryless channel with input
X ∈ {0, 1} and conditional probability distribution such that PW |X(b, b) = 1− ε
and PW |X(1− b, b) = ε for b ∈ {0, 1}. Intuitively, the binary symmetric channel
receives a bit as input and flips it with a certain error probability.

The capacity is a fundamental quantity associated to every channel. Infor-
mally, the capacity of a channel is the optimal rate at which one can communicate
through the channel while ensuring that the decoding error probability goes to
zero as the number of channel uses increases. Shannon [21] proved that the ca-
pacity of a channel PW |X is given by maxPX

I(X;W ). In particular, it is easily
shown that the capacity of the binary symmetric channel with error probability
ε is 1− h(ε), where h is the binary entropy function.

3 Secret-Key Agreement by Public Discussion

In the following section, we revisit the basic models of information-theoretically
secure secret-key agreement on which we will build in Sections 4 and 5.
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3.1 The Source Model and the Secret-Key Rate

We study information-theoretic secret-key agreement, in which Alice and Bob
want to agree on a shared secret-key, about which Eve has (almost) no infor-
mation. To circumvent the trivial impossibility results, we consider the model
introduced by Maurer [16,11], called secret-key agreement by public discussion
from common information. In this model, we assume that in addition to a bidi-
rectional authenticated noiseless channel, which Eve can listen in to but not
tamper with, the parties also share some form of correlated randomness. More
specifically, we will look at the setting where the correlated randomness of Al-
ice, Bob, and Eve consists of several independent and identically distributed
realizations of discrete random variables X, Y , and Z, respectively, distributed
according to some joint probability distribution PXY Z .

Remark 1. As already mentioned, the assumption that an authenticated channel
exists between Alice and Bob is not a significant drawback in the model. We can
allow Alice and Bob to start with a small shared secret-key, which they can then
use to authenticate the channel with information-theoretic security [23]. In this
case, the goal of a protocol is to amplify a short initial secret-key into a very
long secret-key, analogous to quantum key distribution.

In this setting, the main quantity of interest is the maximal rate (per number
of realizations of X, Y , and Z received) at which Alice and Bob can generate
secret-key bits, about which Eve has almost no information, as a function of the
probability distribution PXY Z . We first define what we mean by a secret-key
agreement protocol. The following definition is taken from [17], and we show
in the full version [9] that it is actually a composable definition, and hence the
obtained key can be securely used in any context.

Definition 1. Given a finite probability distribution PXY Z , an (N,R, ε)-secret-
key agreement protocol for PXY Z is an interactive protocol for Alice and Bob,
who receive XN = (X1, . . . , XN ) and Y N = (Y1, . . . , YN ), respecitvely, as input.
Then they generate a communication transcript CM = (C1, . . . , CM ) (where M
is also a random variable) by sending messages over authenticated channels in
an alternating manner. After the interaction is finished, Alice and Bob produce
outputs SA and SB over the finite range S, respectively.

We require that if for i ∈ [N ],3 the random variables (Xi, Yi, Zi) are i.i.d.
according to PXY Z , then the following properties must hold:

1. H(SA) ≥ N(R− ε);
2. H(SA) ≥ log|S| − ε;
3. Pr[SA = SB ] ≥ 1− ε;
4. I(SA;ZNCM ) ≤ ε.
3 We denote by [n] the set {1, 2, . . . , n}, see Section 2 for an exhaustive introduction
on the notation we use.
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Intuitively, property 1 in Definition 1 states that, on average, Alice and Bob
extract at least R − ε secret bits per realization of (X,Y, Z), i.e., the rate is
at least R − ε. Property 2 enforces that SA is almost uniform over S, property
3 implies that SA and SB should coincide with high probability, and property
4 means that Eve’s information, which consists of ZN and the transcript CM ,
gives almost no information about the secret keys SA and SB . We are now ready
to define the secret-key rate.

Definition 2. Given a finite probability distribution PXY Z , the secret-key rate
for PXY Z (abbreviated as the secret-key rate when the context is clear), denoted
by S(X;Y ‖Z), is the supremum of all real numbers R such that for all ε > 0
and large enough N there exists an (N,R, ε)-secret-key agreement protocol for
PXY Z .

The secret-key rate was first studied by Maurer [16,11], while Csiszár and
Körner [1] studied the one-way secret-key rate, where only one-way communi-
cation from Alice to Bob is allowed.

The following theorem states basic bounds for the secret-key rate. The lower
bound was proved by Maurer [11,13] and Csiszár and Körner [1], while the upper
bound was proved by Maurer [11].

Lemma 1 ([11, Theorem 2] and [13, Theorem 4]). For all finite probability
distributions PXY Z , we have

I(X;Y )−min(I(X;Z), I(Y ;Z)) ≤ S(X;Y ‖Z) ≤ min(I(X;Y ), I(X;Y |Z)).

Note that our definition of the secret-key rate corresponds to the so-called
strong secret-key rate, which Maurer and Wolf [17] have proven to be equivalent
to the weak one initially considered in the lower bounds.

3.2 A Special Case: The Satellite Setting

Our focus will lie on the secret-key rate of a conceptually simple, but realistic
and interesting, class of distributions PXY Z , named the satellite setting.

Fix real numbers εA, εB , εE ∈ [0, 1/2] and consider the following experiment:

1. Sample a bit R ∈ {0, 1} uniformly at random;
2. Send R to Alice, Bob, and Eve through independent binary symmetric chan-

nels with error probabilities εA, εB , and εE , respectively. The random vari-
ables X, Y , and Z are the output of these three channels.

This class of distributions was introduced by Maurer [16,11]. The satellite setting
earned its name because a realistic implementation of such a scenario would
consist of having a satellite orbiting the Earth which broadcasts random bits.
On the ground, Alice, Bob, and Eve would be in possession of their own antennas,
which they can use to listen to the satellite broadcasts. The quality of a party’s
antenna would then dictate how reliably they receive the random bits from the
satellite. For instance, a better antenna leads to a smaller error probability.
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An additional surprising benefit of this model is that secret-key agreement is
possible whenever it is not trivially impossible, as stated in the following theorem
of Maurer and Wolf [11,14].

Theorem 1 ([14, Theorem 2, adapted]). We have S(X;Y ‖Z) > 0 if and
only if εE > 0 and εA, εB < 1/2.

This stands in stark contrast to the well-known fact that secret-key agreement
with one-way communication from Alice to Bob (in the sense of [1]) is impossible
whenever Eve’s antenna is better than both Alice’s and Bob’s antennas, i.e.,
whenever εE < εA and εE < εB .

While Theorem 1 assures that the secret-key rate is positive in all non-trivial
settings, computing (or even approximating) it has proven to be a surprisingly
difficult problem for most parameters εA, εB , and εE .

3.3 Advantage Distillation Protocols

In the following section, we present some required background to understand
the proofs in Sections 4 and 5, and in particular we introduce the parity-check
protocol that we use to lower bound the secret-key rate.

The parity-check protocol is an example of a so-called advantage-distillation
protocol, which is a type of protocol introduced in [11,14] to prove Theorem 1 in
the satellite setting.

Definition 3. Let PXY Z denote a finite probability distribution. An advantage-
distillation protocol for PXY Z is then an interactive protocol for Alice and Bob,
who receive XN = (X1, . . . , XN ) and Y N = (Y1, . . . , YN ), respectively, as input
for some N . Then they generate a communication transcript CM = (C1, . . . , CM )
by sending messages over authenticated channels in an alternating manner. Af-
terwards, Alice and Bob produce outputs X̂ and Ŷ , respectively.

For all large enough N , if the random variables (Xi, Yi, Zi) are i.i.d. according
to PXY Z , we require that

I(X̂; Ŷ )− I(X̂; Ẑ) > 0,

where Ẑ = (ZN , CM ) denotes Eve’s total information at the end of the protocol.

Intuitively, Bob ends up with more information about Alice than Eve does,
and so the protocol “distills” an advantage for Alice and Bob over Eve.

Note that such an advantage-distillation protocol itself is not a secret-key
agreement protocol according to Definition 1, as it neither guarantees that Alice
and Bob output the same key, nor guarantees that Eve has arbitrary small in-
formation about Alice’s output. However, for any probability distribution PXY Z
and advantage-distillation protocol, we can consider the induced probability dis-
tribution PX̂Ŷ Ẑ from running the protocol on N i.i.d. realizations of PXY Z ,
and then simply apply a secret-key agreement protocol for this distribution.
Along this line, we can then also introduce the secret-key rate of an advantage-
distillation protocol.
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Definition 4. Given a finite probability distribution PXY Z and an advantage-
distillation protocol, the secret-key rate of the advantage-distillation protocol for
PXY Z is the supremum of all real numbers R such that for all ε > 0 and large
enough N there exists a secret-key agreement protocol for PX̂Ŷ Ẑ , such that the
composed protocol is an (N,R, ε)-secret-key agreement protocol for PXY Z .

The existence of an advantage-distillation protocol implies S(X;Y ‖Z) > 0,
since we have

S(X;Y ‖Z) ≥ S(X̂; Ŷ ‖Ẑ)
N

≥ I(X̂; Ŷ )− I(X̂; Ẑ)

N
> 0,

where the second inequality follows from Lemma 1.

The Repeater-Code Protocol The first advantage distillation protocol was
the repeater-code protocol [16,11]. It works as follows:

1. Alice samples R ∈ {0, 1} uniformly at random and sends R ⊕ XN = (R ⊕
X1, . . . , R⊕XN ) to Bob over the authenticated channel;

2. Bob computes R ⊕XN ⊕ Y N = (R ⊕X1 ⊕ Y1, . . . , R ⊕XN ⊕ YN ) and sets
A = 1 if R ⊕XN ⊕ Y N = 0N or R ⊕XN ⊕ Y N = 1N . Otherwise, Bob sets
A = 0. Then, Bob sends A to Alice through the authenticated channel;

3. If A = 1, then Alice sets X̂ = R and Bob sets Ŷ = R⊕X1 ⊕ Y1. Otherwise,
if A = 0, then Alice and Bob set X̂ = Ŷ = ⊥.

Maurer and Wolf [14] proved that, in the satellite setting, for all triples
(εA, εB , εE) with εA < 1/2, εB < 1/2, and εE > 0 and for N large enough we
have

I(X̂; Ŷ )− I(X̂; Ẑ) > 0,

where Ẑ := (ZN , R⊕XN , A) denotes Eve’s total information.
While the repeater-code protocol is good enough to prove that secret-key

agreement is possible in the satellite setting, it guarantees only a very small lower
bound on the secret-key rate, especially when εA and εB are much larger than
εE . This issue motivated the search for better advantage distillation protocols in
the satellite setting.

The Parity-Check Protocol Gander and Maurer [16,6] studied an improved
protocol, called the parity-check protocol. The parity-check protocol with ` rounds
works as follows:

1. Alice and Bob start with initially empty strings UA and UB , respectively;
2. Alice and Bob divide XN and Y N into pairs (X2i−1, X2i) and (Y2i−1, Y2i),

respectively, for i = 1, . . . , bN/2c;
3. For each i, Alice sends X2i−1 ⊕X2i to Bob via the authenticated channel;
4. Bob sets Ai = 1 if X2i−1 ⊕X2i = Y2i−1 ⊕ Y2i. Otherwise, Bob sets Ai = 0.

Then, he sends Ai to Alice;



The Relation Between the Secret-Key Rate and the Channel Quality Ratio 13

5. If Ai = 1, Alice adds X2i−1 to her string UA and Bob adds Y2i−1 to his
string UB , and they discard X2i and Y2i, respectively (i.e., these bits are not
added to UA and UB , respectively). If Ai = 0, Alice and Bob discard the
bits (X2i−1, X2i) and (Y2i−1, Y2i), respectively;

6. If ` = 1, then Alice and Bob stop the protocol. Alice sets X̂ = UA and Bob
sets Ŷ = UB ;

7. If ` > 1 and |UA| ≥ 2`−1, Alice and Bob run the parity-check protocol with
`−1 rounds on the strings UA and UB . Otherwise, if |UA| < 2`−1, then Alice
and Bob set X̂ = ⊥ and Ŷ = ⊥, respectively.

If X̂ and Ŷ are the outputs of the parity-check protocol with ` rounds, then
each pair of bits (X̂i, Ŷi) behaves like the output of a successful run of the
repeater-code protocol with N := 2`. Furthermore, all pairs (X̂i, Ŷi) are identi-
cally distributed and independent of each other.

Again, consider the satellite setting and assume, without loss of generality,
that εA ≥ εB . Analogous to [6], let us now introduce a couple of useful quantities
in the setting of running the parity-check protocol.

Definition 5. Consider the satellite setting with error probabilities εA, εB, and
εE respectively. Let (X,Y, Z) be distributed according to the thereby induced dis-
tribution PXY Z .Then we define

β := Pr[X 6= Y ] = εA(1− εB) + (1− εA)εB

and for r, s ∈ {0, 1}

αrs := Pr[X ⊕ Y = r,X ⊕ Z = s],

which satisfy

α00 = εAεBεE + (1− εA)(1− εB)(1− εE)
α01 = εAεB(1− εE) + (1− εA)(1− εB)εE
α10 = εA(1− εB)εE + (1− εA)εB(1− εE)
α11 = εA(1− εB)(1− εE) + (1− εA)εBεE .

Moreover, considering L independent draws from PXY Z , and let

βL := Pr[XL ⊕ Y L = 1L|XL ⊕ Y L ∈ {0L, 1L}] = βL

βL + (1− β)L
,

and pL,w denote the probability that XL ⊕ Y L ∈ {0L, 1L} and XL ⊕ ZL is a
specific codeword of Hamming weight w, i.e.,

pL,w := αL−w00 αw01 + αL−w10 αw11.

Using those quantities, we can now express the secret-key rate of the parity-
check protocol.
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Theorem 2 (rephrased form [6]). Let R(`, εA, εB , εE) denote the secret-key
rate of the parity-check protocol when using ` rounds, and Alice, Bob, and Eve
having error probabilities εA, εB, and εE, respectively. We then have

R(`, εA, εB , εE) ≥ 2−` Φ(2`, εA, εB , εE)

`−1∏
i=0

(
β2
2i + (1− β2i)2

)
,

where

Φ(L, εA, εB , εE) :=

L∑
w=0

(
L

w

)
pL,w

βL + (1− β)L
h

(
pL,w

pL,w + pL,L−w

)
− h(βL),

and β, βL, and pL,w are according to Definition 5.

The intuition behind Theorem 2 is the following: Suppose there are Ni bits
left after i rounds of the parity-check protocol. These Ni bits are partitioned into
bNi/2c pairs (if Ni is even, Alice and Bob discard a bit), and, in round i + 1,
Alice and Bob keep a bit from a given pair with probability β2

2i + (1 − β2i)2.
Therefore, we have

E[Ni+1 | Ni bits after i rounds] ≈
β2
2i + (1− β2i)2

2
·Ni,

where Ni+1 is the random variable denoting the number of bits after i+1 rounds
of the parity-check protocol.

The lower bound on the secret-key rate obtained through the parity-check
protocol is, for most choices of error probabilities in the satellite setting, much
better than the lower bound given by the repeater-code protocol. Note that the
parity-check protocol consists of the iterative application of the repeater-code
protocol with length 2 to pairs of bits of XN and Y N . This protocol can be fur-
ther improved in a natural way for some interesting choices of error probabilities
in the satellite setting by modifying the length of the repeater-code protocol
that is applied iteratively, and reutilizing discarded bits from failed runs of the
repeater-code protocol which are “almost” successful. We do not expand on this,
since the original parity-check protocol suffices for our needs.

4 The Secret-Key Rate Under a Fixed Channel Quality
Ratio

4.1 Modeling a Fixed Channel Quality Ratio

In this section, we formally define the main quantity used in this work. Recall
that we want to consider a setting where we assume that the antenna sizes of the
honest parties are fixed, but where the energy the satellite uses to send a bit is
a design parameter that we can adjust in order to achieve an optimal secret-key
rate. To obtain a meaningful lower bound on the secret-key rate in this setup,
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however, we need to make an assumption about Eve’s capabilities, which in the
satellite setting correspond to her antenna size. In order to simplify the model,
we moreover do not consider the actual antenna sizes, but the ratio between
Eve’s antenna size and Alice’s and Bob’s. Therefore, in the following we want
to assume that Eve’s antenna is exactly Q times larger than both Alice’s and
Bob’s antennas. For ease of exposition, we will also assume that Alice and Bob
have antennas of the same size. This was the setting considered by Gander and
Maurer [6]. In the full version [9], we analyze the general setting where Alice’s
and Bob’s antennas may differ in size, and also where Eve’s antenna is only
known to be at most, or at least, Q times larger than Alice’s and Bob’s, instead
of exactly Q times larger.

To model the antenna size ratio, we choose the ratio of the channel capaci-
ties, which reflect the qualities of the respective channels. Recall that the satellite
model with BSC’s is a simplification of the more realistic analog model with Ad-
ditive White Gaussian Noise (AWGN) channels (if the channel input is X, then
the output is X + Z, where Z is distributed according to a normal distribution
with mean zero and variance N , where N is also called the noise power). It is
well-known that the capacity (in bits per second) of an AWGN channel is given
by CAWGN = B log(1 + S/N), where B is the bandwidth (in the spectrum), S
is the signal power, and N is the noise power (see [3, Chapter 9]). The signal
power is proportional to the total antenna surface, independently of whether the
antenna consists of several independent small antennas or one large one. In the
low-signal regime, i.e., if S/N � 1, we have that C is essentially proportional
to S (for fixed noise power N), and hence to the antenna size too. In short, in
such a regime the channel capacity is essentially proportional to the product of
the surface of the receiver’s antenna and the energy used to transmit the bits.
Hence, when considering two of the antennas, the ratio of their capacity stays
approximately constant when adjusting the energy that is used to transmit each
bit and, therefore, this ratio is a good approximation of the ratio of the antenna
sizes.

While this justification is based on the AWGN model, we assume that it
essentially carries over to the BSC model of the satellite setting. Observe that
the satellite setting using BSC’s can be interpreted in a natural way as a version
of the satellite setting with AWGN channels where Alice, Bob, and Eve quantize
the signals they receive.

This leads us to the following definition of the channel quality ratio between
two binary symmetric channels.

Definition 6. The channel quality ratio between the BSC with error probability
α and the BSC with error probability γ, denoted ρ(α, γ), is defined as

ρ(α, γ) :=
1− h(γ)
1− h(α)

.

Assume a fixed antenna size ratio Q between Eve’s and Alice’s antennas, and
hence between Eve’s and Bob’s antennas, since Alice and Bob are assumed to
have antennas of the same size. Considering the energy spent per bit as a design
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parameter then corresponds to freely choosing α = εA = εB and γ = εE under
the constraint that ρ(α, γ) = Q. This leads to the following definition, where the
supremum corresponds to choosing the energy per bit in an optimal manner.

Definition 7. The secret-key rate for an adversary with an exactly Q times
better channel, denoted by S(Q), is defined as

S(Q) := sup
α,γ

ρ(α,γ)=Q

S(α, α, γ).

In the following sections, we will give an exact characterization (up to a
multiplicative constant) of the asymptotic behavior of S(Q) when Q increases. In
particular, we settle the conjecture of Gander and Maurer [6] in the affirmative.

4.2 A Lower Bound on S(Q)

Our first main result is that S(Q) decreases at most inversely proportional to Q2.
We omit or shorten most proofs of intermediate results in this section. Detailed
proofs can be found in the full version [9].

Theorem 3. There exist a constant c > 0 such that
c

Q2
≤ S(Q)

for all Q ≥ 1.

To prove this result, we actually show that the parity-check protocol [16] (c.f.
Section 3.3) achieves this rate, which was first conjectured to be true by Gander
and Maurer [6], based on numerical evidence.

Definition 8. The secret-key rate of the parity-check protocol for an adversary
with an exactly Q times better channel, denoted by R(Q), is defined as

R(Q) := sup
`,α,γ

ρ(α,γ)=Q

R(`, α, α, γ),

where R(`, εA, εB , εE) denotes the rate per random bit achieved by the parity-
check protocol using ` rounds when Alice, Bob, and Eve have error probabilities
εA, εB, and εE, respectively.

Since the secret-key rate S(εA, εB , εE) is defined as the secret-key rate of the
best possible protocol, we trivially get the following lower bound.

Lemma 2. Let Q ≥ 1. Then, we have R(Q) ≤ S(Q).

We now proceed by proving that there exists a constant c > 0 such that
c
Q2 ≤ R(Q) for all Q ≥ 1, which will eventually conclude the proof. In order
to prove such a lower bound, we need to lower bound the supremum in the
definition of R(Q). We achieve this by carefully choosing a sequence of triples
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(`k, αk, γk) such that R
(

1−h(γk)
1−h(αk)

)
does not decrease too quickly when compared

to 1−h(γk)
1−h(αk)

. Namely, in the first step we will show that

R

(
1− h(γk)
1− h(αk)

)
≥ c1
k4

for some constant c > 0, and then in a second step use that 1−h(γk)
1−h(αk)

increases
like k2, in order to derive the desired result.

Lower bounding the secret-key rate of the parity-check protocol with
concrete parameters. In this section we show that for `k = 2 log(k) rounds,
in the satellite setting with εA = εB = αk = 1/2− 1/k, and εE = γk = 2/5, the
secret-key rate of the parity-check protocol R(`k, αk, αk, γk) decreases inversely
proportional to k4. For simplicity, we drop the subscript k in most terms from
now on.

Before deriving the actual lower bound on R(`, α, α, γ), we introduce an aux-
iliary quantity and prove some properties about it. Recall the definition of αrs
for r, s ∈ {0, 1} and pL,w from Definition 5 in Section 3.3. In the following, let

p′L,w := αL−w00 αw01. (1)

We now present a few lemmas about pL,w, p′L,w, and their relation.

Lemma 3. Let α = εA = εB = 1/2− 1/k. Then we have

pL,w = αL−w00 αw01 + (α(1− α))L = p′L,w + (α(1− α))L > p′L,w.

Lemma 4. Let p′L,w as defined in (1). Then p′L,w is equal to the probability
that XL ⊕ ZL is a particular codeword of weight w and XL = Y L, i.e. for any
c ∈ {0, 1}L with w(c) = w, where w(c) denotes the Hamming weight of c, we
have

Pr[XL ⊕ ZL = c,XL = Y L] = p′L,w.

Lemma 5. We have

h

(
pL,w

pL,w + pL,L−w

)
≥ h

(
p′L,w

p′L,w + p′L,L−w

)

for all L and w.

Lemma 6. Let 0 ≤ δ ≤ L/2. Then

p′L,L/2+δ

p′L,L/2−δ
=

(
α01

α00

)2δ

.

Lemma 7. For all L/2 ≥ x ≥ y ≥ 0 the following two properties hold
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1. h

(
p′L,L/2−x

p′L,L/2−x + p′L,L/2+x

)
≤ h

(
p′L,L/2−y

p′L,L/2−y + p′L,L/2+y

)

2. h

(
p′L,L/2−x

p′L,L/2−x + p′L,L/2+x

)
= h

(
p′L,L/2+x

p′L,L/2+x + p′L,L/2−x

)
.

Next, we lower bound R(`, α, α, γ), i.e., the rate of the parity-check protocol
when using ` rounds, Alice and Bob have the same error probability α, and Eve
has error probability γ, in a sequence of lemmas.

Lemma 8. For all k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. We then have

R(`k, αk, αk, γk) ≥
1

k4
Φ(k2, αk, αk, γk),

where Φ is defined as in Theorem 2.

Lemma 9. For k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. Then there exists a positive constant c > 0 such that

Φ(k2, αk, αk, γk) ≥ c

for large enough k ∈ {2j : j ∈ N}, where Φ is defined as in Theorem 2.

Proof. We present a sketch of the proof. The complete proof can be found in the
full version [9]. First, it holds that

lim
k→∞

h (βk2) = h

(
lim
k→∞

1

1 + (1 + 8/k2)k2

)
= h

(
1

1 + e8

)
< 5 · 10−3. (2)

Furthermore, using Lemmas 3 and 5 to 7 it can be seen that

k2∑
w=0

(
k2

w

)
pk2,w

βk2 + (1− β)k2
· h
(

pk2,w
pk2,w + pk2,k2−w

)

≥ 1

2

k2(1/2+2/k)∑
w=k2(1/2−2/k)

(
k2

w

)
p′k2,w

(1− β)k2
· h

 1

1 +
(
α01

α00

)4k
 (3)

for large enough k.
In order to lower bound the binary entropy term in (3), we can use the

definition of αrs (recall Definition 5) to show that

lim
k→∞

h

 1

1 +
(
α01

α00

)4k
 = h

(
1

1 + e−32/5

)
> 1.7 · 10−2. (4)
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We now define W := (w(Xk2 ⊕ Zk
2

) | Xk2 = Y k
2

) as the random variable
denoting the Hamming weight of Xk2 ⊕ Zk2 conditioned on Xk2 = Y k

2

, i.e.,
W is defined in the modified random experiment obtained by conditioning on
Xk2 = Y k

2

. Through Lemma 4, we have
k2(1/2+2/k)∑

w=k2(1/2−2/k)

(
k2

w

)
p′k2,w

(1− β)k2
= Pr[|W − k2/2| ≤ 2k]. (5)

It suffices now to find a suitable lower bound for Pr[|W − k2/2| ≤ 2k]. In order
to do that, we will apply Chebyshev’s inequality. It can be shown that

k2

2
− 2k ≤ E[W ]− k ≤ E[W ] + k ≤ k2

2
+ 2k,

and hence

Pr[|W − k2/2| ≤ 2k] ≥ Pr[|W − E[W ]| ≤ k] ≥ 1− Var[W ]

k2
≥ 3

4
, (6)

where the second inequality follows from Chebyshev’s inequality, and the third
inequality follows from the fact that Var[W ] ≤ k2/4.

Combining (3), (4), (5), and (6) yields

k2∑
w=0

(
k2

w

)
pk2,w

βk2 + (1− β)k2
· h
(

pk2,w
pk2,w + pk2,k2−w

)
>

1

2
· 3
4
· 1.7 · 10−2 > 5 · 10−3 > h(βk2)

for large enough k ∈ {2j : j ∈ N}, which concludes the proof. ut
Combining Lemmas 8 and 9 yields the main result of this subsection.

Lemma 10. For all k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. Then there exists a constant c > 0 such that we have

R(`k, αk, αk, γk) ≥
c

k4

for large enough k ∈ {2j : j ∈ N}.

Deriving a lower bound in Q. It now remains to show that Lemma 10
actually implies the desired lower bound in Q. We can prove this by using the
fact that 1−h(γk)

1−h(αk)
increases like k2, and then substituting this term by Q.

Lemma 11. For all k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. We then have

R

(
k2

200

)
≥ R(`k, αk, αk, γk).

We are now ready to prove Theorem 3 by substituting k2/200 in place of Q.
Proof (Theorem 3). Follows by combining Lemmas 10 and 11, and extending
the result to all Q ≥ 1. ut
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4.3 An Upper Bound on S(Q)

As a second main result, we show that S(Q) decreases at least inversely propor-
tional to Q2.

Theorem 4. We have

S(Q) ≤ 4 ln(2)2

Q2
<

2

Q2

for all Q ≥ 1.

Before we can prove Theorem 4, we need the following auxiliary result.

Lemma 12 ([2, Theorem 2.2]). If p = 1/2− ε, we have

2ε2

ln(2)
≤ 1− h(p) ≤ 4ε2.

We now proceed by showing two lemmas that we will reuse later.

Lemma 13. Let Q ≥ 1, α, γ ∈ [0, 1/2] such that 1−h(γ)
1−h(α) = Q, and δ := 1/2−α.

We then have
S(α, α, γ) ≤ 16δ4.

Proof. Note that
S(α, α, γ) ≤ I(X;Y ) = 1− h(β),

where X and Y are Alice’s and Bob’s random variables in the satellite setting
with εA = εB = α, and, as before, β := Pr[X 6= Y ] = 2α(1 − α). Since β =
2α(1− α) = 1/2− 2δ2, using ε := 2δ2, it follows by Lemma 12 that

1− h(β) ≤ 16δ4,

concluding the proof. ut

It remains to bound δ4 by a function of Q.

Lemma 14. Let Q ≥ 1, α, γ ∈ [0, 1/2] such that 1−h(γ)
1−h(α) = Q, and δ := 1/2−α.

We then have
2δ2 ≤ ln(2)

Q
.

Proof. Using Lemma 12 we obtain

2δ2

ln(2)
≤ 1− h(α) = 1− h(γ)

Q
≤ 1

Q
.

ut

We are now ready to conclude the overall proof of Theorem 4.

Proof (Theorem 4). Combining Lemmas 13 and 14 yields

S(Q) = sup
α,γ

ρ(α,γ)=Q

S(α, α, γ) ≤ 16δ4 ≤ 4 ln(2)2

Q2
<

2

Q2

for all Q ≥ 1. ut
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4.4 Combining all bounds

Recall that, by Definition 7, S(Q) denotes the secret-key rate in the setting
where Alice’s and Bob’s channels are identical (i.e., εA = εB always), and Eve’s
channel is exactly Q times better than both of Alice’s and Bob’s. Moreover, by
Definition 8, R(Q) denotes the secret-key rate of the parity-check protocol in
the same setting. In Sections 4.2 and 4.3, we have overall proven the following
bounds on S(Q) and R(Q):

c

Q2
≤ R(Q) ≤ S(Q) ≤ 2

Q2

for some c > 0. Thus, in this setting we have determined the secret-key rate
S(Q) up to a multiplicative constant, and on the way proved the conjecture by
Gander and Maurer.

Corollary 1. We have S(Q) = Θ(1/Q2). Moreover, the parity-check protocol
from [6] achieves rate Ω(1/Q2) in this setting.

5 The Secret-Key Rate per Second Under a Fixed
Channel Quality Ratio

In this section, we consider the scenario where the power consumption of the
satellite is bounded; for instance, due to the size of its solar panels. Nevertheless,
we can adjust the energy used to broadcast each bit by adjusting the bit-rate,
i.e., the number of bits broadcast per second, while maintaining a fixed power
consumption. In this setting, the natural quantity to optimize for is clearly the
secret-key rate per second, rather than the secret-key rate per random bit.

5.1 Defining the Secret-Key Rate per Second

When defining the secret-key rate per second in the satellite model, there is one
inherent issue: the abstraction using BSC’s instead of AWGN channels actually
abstracted away any notion of time. Hence, to nevertheless devise a quantity
that can serve as a heuristic of the secret-key rate per second, expressed as a
function of the error probabilities, we once again consider the AWGN setting.
In contrast to the capacity of the BSC, which is measured as the number of bits
that can be reliably transmitted per bit sent, the capacity of an AWGN channel
is measured in bits that can be reliably transmitted per second.

As mentioned in Section 4.1, the capacity of an AWGN channel is CAWGN =
B log(1 + S/N), where B is the bandwidth (in the spectrum), S is the signal
power, and N is the noise power. Importantly, the capacity of the AWGN chan-
nel is a physical property of the channel that is not influenced by the way we
encode and decode. A BSC can be seen as an AWGN channel where all parties
perform hard decoding, i.e., measure the signal over a given interval in time and
output a 1 if the average value in this time is above a certain threshold and 0
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otherwise. Hence, we can also look at the capacity per bit in the AWGN model
by normalizing by the “bit-rate”, meaning the number of bits the parties output
per second when applying their hard decoding. If we now double this bit-rate,
the capacity per second has to remain constant, hence the capacity per bit must
decrease by a factor of two. Therefore, the capacity per bit is inversely propor-
tional to the bit-rate. Moreover, this capacity per bit of the AWGN channel
roughly corresponds to the capacity of the BSC, as long as hard decoding is not
too far from an optimal encoding scheme, which is the case in a regime with
small signal to noise ratio. Thus, for a BSC with significant error probabilities,
the capacity is inversely proportional to the bit-rate. This implies that, asymp-
totically, the secret-key rate per second, which is equal to the secret-key rate
per bit times the bit-rate, behaves like the secret-key rate per bit divided by the
capacity of the binary symmetric channel.

As a consequence, we can define the secret-key rate per second by dividing the
secret-key rate per bit by the capacity of the honest parties’ channel, which we
assume to have larger error probabilities than Eve’s channel, and hence deliver
the better approximation.

Definition 9. The secret-key rate per second for an adversary with an exactly
Q times better channel, denoted by S∗(Q), is defined as

S∗(Q) := sup
α,γ

ρ(α,γ)=Q

S(α, α, γ)

1− h(α)
.

where S(εA, εB , εE) is the secret-key rate of the satellite setting with error prob-
abilities εA, εB, and εE for Alice, Bob, and Eve, respectively.

5.2 Bounds on the Secret-Key Rate per Second

In this section, we establish the exact asymptotic behavior of S∗(Q) as a function
of Q, up to a multiplicative constant. For the lower bound, we will, analogously
to Section 4.2, make use of the fact that the secret-key rate achieved by the
parity-check protocol is a lower bound of the secret-key rate. Therefore, we also
introduce the secret-key rate per second of the parity-check protocol.

Definition 10. The secret-key rate per second of the parity-check protocol for
an adversary with an exactly Q times better channel, denoted by R∗(Q), is
defined as

R∗(Q) := sup
`,α,γ

ρ(α,γ)=Q

R(`, α, α, γ)

1− h(α)
.

where R(`, εA, εB , εE) denotes the rate per random bit achieved by the parity-
check protocol using ` rounds.

We then obtain the following asymptotically exact characterization of the
secret-key rate per second.
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Theorem 5. There exist constants c1, c2 > 0 such that

c1
Q
≤ R∗(Q) ≤ S∗(Q) ≤ c2

Q

for all Q ≥ 1.

6 Conclusions and Open Problems

In this paper we investigated the secret-key rate in the satellite setting with
the additional property that the satellite can freely choose the energy spent
when transmitting a bit. In order to study this setting, we assumed there is a
“quality ratio” Q between Eve’s and the honest parties’ antennas, which is an
intrinsic property of the system that must stay fixed over all possible choices
for the satellite. We model this quality ratio as the ratio of the capacities of
the BSC’s associated to Eve and the honest parties. Therefore, in our model,
the extra degree of freedom for the satellite means that he can choose the error
probabilities for Eve and the honest parties as long as the BSC’s induced by
them have capacity ratio Q. This setting was briefly considered for the first time
by Gander and Maurer [6].

We motivated and introduced the quantity S(Q) as a secret-key rate measure
for the modified satellite setting just described. While even approximating the
secret-key rate of the original satellite setting appears to be very complex, we
are actually able to show that S(Q) = Θ(1/Q2) when Q grows. This proves a
conjecture of Gander and Maurer [6]. The mild decrease of the secret-key rate
as a function of Q, coupled with the fact that our lower bound is obtained by
considering a simple, explicit advantage distillation protocol, can be interpreted
as a first step towards showing that information-theoretic secret-key agreement
may be more practical than what is usually believed. We also propose a heuristic
definition of the secret-key rate per second, instead of “per random bit”, and
show that this quantity behaves like Θ(1/Q). In the full version of this paper [9],
we generalize our results to the more general setting where Alice’s and Bob’s
antennas may have different sizes, and furthermore one does not know the exact
ratio between Eve’s and the honest parties’ antennas – only whether it is at
most, or at least, some value.

In terms of future work, we envision several main problems. First, one should
extend our analysis to settings where Alice and Bob have antennas of vastly
different sizes, addressing the typical client-server scenarios. Second, there is a
need for a better model of the secret-key rate per second, which should be built
on an abstraction level that does not abstract away time, thereby allowing one
to verify our conjecture that the secret-key rate per second behaves like 1/Q in
practice. Finally, and most importantly, one should address the issues that still
prevent the satellite model from being used in practice, for instance by studying
the secret-key rate in a similar setting to ours when the adversary does not
quantize her analog signal, or by investigating the potential effect of an active
adversary jamming the signal.
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