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Abstract. Pseudorandom functions (PRFs) are one of the fundamental
building blocks in cryptography. Traditionally, there have been two main
approaches for PRF design: the “practitioner’s approach” of building
concretely-efficient constructions based on known heuristics and prior
experience, and the “theoretician’s approach” of proposing constructions
and reducing their security to a previously-studied hardness assumption.
While both approaches have their merits, the resulting PRF candidates
vary greatly in terms of concrete efficiency and design complexity.

In this work, we depart from these traditional approaches by explor-
ing a new space of plausible PRF candidates. Our guiding principle is to
maximize simplicity while optimizing complexity measures that are rele-
vant to cryptographic applications. Our primary focus is on weak PRFs
computable by very simple circuits—specifically, depth-2 ACC0 circuits.
Concretely, our main weak PRF candidate is a “piecewise-linear” func-
tion that first applies a secret mod-2 linear mapping to the input, and
then a public mod-3 linear mapping to the result. We also put forward
a similar depth-3 strong PRF candidate.

The advantage of our approach is twofold. On the theoretical side, the
simplicity of our candidates enables us to draw many natural connections
between their hardness and questions in complexity theory or learning
theory (e.g., learnability of ACC0 and width-3 branching programs, in-
terpolation and property testing for sparse polynomials, and new nat-
ural proof barriers for showing super-linear circuit lower bounds). On
the applied side, the piecewise-linear structure of our candidates lends
itself nicely to applications in secure multiparty computation (MPC).
Using our PRF candidates, we construct protocols for distributed PRF
evaluation that achieve better round complexity and/or communication
complexity (often both) compared to protocols obtained by combining
standard MPC protocols with PRFs like AES, LowMC, or Rasta (the
latter two are specialized MPC-friendly PRFs).

Finally, we introduce a new primitive we call an encoded-input PRF,
which can be viewed as an interpolation between weak PRFs and stan-
dard (strong) PRFs. As we demonstrate, an encoded-input PRF can
often be used as a drop-in replacement for a strong PRF, combining
the efficiency benefits of weak PRFs and the security benefits of strong
PRFs. We conclude by showing that our main weak PRF candidate can
plausibly be boosted to an encoded-input PRF by leveraging standard
error-correcting codes.
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1 Introduction

Today, there are two primary paradigms for designing cryptographic primitives.
The “theory-oriented” or “provable security” approach is to develop construc-
tions whose security can be provably reduced to the hardness of well-studied
computational problems (e.g., factoring, discrete log, or learning with errors).
The second and “practice-oriented” approach aims at obtaining efficient con-
structions for specific functionalities (e.g., block ciphers or hash functions). Here,
designers typically try to maximize concrete efficiency at the expense of relying
on heuristic arguments and prior experience to argue security. But ultimately,
confidence in the underlying security assumptions or cryptographic designs only
grows if they withstand the test of time.

There are several limitations to these approaches. On the one hand, both the
efficiency and the structure of provably-secure constructions are inherently lim-
ited by the underlying computational problems. This leads to constructions that
are far less efficient than those obtained from the practice-oriented approach. On
the other hand, despite the efficiency of practical constructions, their designs are
often complex, thereby complicating their analysis. Consequently, it is difficult
to argue whether the lack of cryptanalysis against practical constructions is due
to their actual security or due to the complexity of their design. The structure of
both types of constructions often makes them poorly suited as building blocks
for cryptographic applications that are different from the ones envisioned by
their designers (e.g., secure multiparty computation).

In this work, we depart from these traditional approaches and consider a
surprisingly unexplored space of cryptographic constructions. Our approach is
driven by simplicity, and aims at circumventing some of the limitations of the
existing approaches. Our hope is to obtain constructions that are (1) relatively
easy to describe and analyze, (2) concretely efficient, and (3) well-suited for
different applications. In particular, we aim at relying on assumptions that are
simple to state, and yet at the same time, breaking them would likely require
new techniques that may themselves have other applications. In a sense, the as-
sumptions we introduce have a win-win flavor and can be of independent interest
beyond the cryptographic community (e.g., to complexity theorists, learning the-
orists, or mathematicians). A notable example for prior work in this direction is
Goldreich’s proposal of a simple one-way function candidate [29], which had an
unexpected impact in different areas of cryptography and beyond (see [4] for a
survey).

What do we mean by simplicity? The concrete direction we take is exploring
whether the simple operation of changing moduli can be a source of hardness in
the context of secret-key cryptographic primitives. Our starting observation is
that computing the sum of m binary-valued variables modulo 3 is actually a high-
degree polynomial over Z2. More precisely, the mapping function map : {0, 1}n →
Z3 where map(x) :=

∑
i∈[m] xi (mod 3) is a polynomial of high-degree over the

binary field Z2 (but a simple linear function over Z3). Surprisingly, this simple
idea of mixing different moduli enables new constructions of “piecewise-linear”
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symmetric primitives that are conceptually simple to describe, can plausibly
achieve strong security guarantees, and are well-suited for many cryptographic
applications.

Our focus: pseudorandom functions. In this work, we focus specifically on
pseudorandom functions (PRFs) [31]—one of the most fundamental building
blocks of modern cryptography. Our primary focus is on weak pseudorandom
functions, namely, functions whose behavior looks indistinguishable from that of
a random function to any adversary who only observes the input-output behavior
of the function on random domain elements. Since weak PRFs cannot replace
standard (or strong) PRFs in all cryptographic applications, we then show how
our construction can be adapted to yield a new primitive we call an encoded-
input PRF. An encoded-input PRF is defined similarly to a standard (strong)
PRF, except that its input domain is restricted to an efficiently recognizable set.
Encoded-input PRFs can be viewed as an intermediate primitive between strong
PRFs and weak PRFs that combines the security advantages of the former and
efficiency advantages of the latter. Indeed, we show that in many cases they can
be used as a replacement for a strong PRF. At the same time, we exhibit simple
candidates of encoded-input PRFs in complexity classes where strong PRFs are
not known to exist. Finally, a unique feature of our new PRF candidates is
that they are very “MPC-friendly.” As we show in Section 5, our PRFs can
be computed more efficiently in a distributed fashion compared to standard
block ciphers like AES and even custom-built MPC-friendly block ciphers like
LowMC [2] or Rasta [23].

Previous work on simple PRFs. Before describing our contributions, it
is useful to survey some closely relevant previous works on low-depth PRFs
(see Sections 1.2 and 3.2 for a broader survey). We denote by AC0 the class of
polynomial-size, constant-depth circuits with unbounded fan-in AND, OR, and
NOT gates and by ACC0[m] the class of such circuits that can additionally have
unbounded fan-in MODm gates, which return 0 or 1 depending on whether the
sum of their inputs is divisible by m. We denote by ACC0 the union over all m
of ACC0[m].

With the goal of minimizing the depth complexity of weak PRFs, Akavia et al.
proposed in [1] the first candidate that can be computed by ACC0[2] circuits.
More precisely, their candidate construction can be computed by depth-3 circuits
where the first layer consists of MOD2 gates computing a matrix-vector product
Ax, where A ∈ Zn×n2 is the secret key and x ∈ Zn2 is the input. The second
and third layer define a public DNF formula. While the Akavia et al. candidate
could plausibly provide exponential security,1 Bogdanov and Rosen [17] recently
showed that this candidate (on n-bit inputs) can be approximated by a ratio-
nal function of degree O(log n), which in turn gives rise to a quasi-polynomial-
time attack. Applebaum and Raykov [6] show that low-complexity PRFs can be

1Roughly speaking, we say that a weak PRF is exponentially secure if the distinguishing
advantage of any adversary (modeled as a Boolean circuit) of size 2λ is bounded by
2−Ω(λ).
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based on one-wayness assumptions. In particular, under a variant of Goldreich’s
one-wayness assumption [29], they present a weak PRF with quasi-polynomial
security that can be implemented (on any fixed key) by depth-3 AC0 circuits.

These recent results leave several open questions regarding the complexity
of low-depth (weak) PRFs. First, even if one settles for quasi-polynomial time
security, there is no proposed PRF candidate of any kind that can be realized by
depth-2 circuits over any standard basis. When restricting attention to (weak)
PRFs that offer a better level of security, the situation is even worse. While it is
known that weak PRFs with better than quasi-polynomial security do not exist
in AC0,2 and that strong PRFs with similar security do not exist in ACC0[p] for
any prime p,3 it is plausible that weak PRFs with exponential security could
still exist in ACC0[2]. But to the best of our knowledge, there are currently no
weak PRF candidates in ACC0 with exponential (or even sub-exponential) se-
curity. Note that if we settle for quasi-polynomial security, then the result of
Kharitonov [36, Theorem 9] (resp., Viola [51, Theorem 11]) gives a weak PRF in
AC0 (resp., strong PRF in ACC0[p] for any p) based on the hardness of factoring.
This raises the question of whether it is possible to construct (weak or strong)
PRFs with exponential (or even sub-exponential) security in ACC0. In this work,
we propose a new candidate weak PRF that can be computed by depth-2 ACC0

circuits. Our candidate is conceptually simple and can plausibly satisfy expo-
nential security, thus addressing both of the above challenges simultaneously.
We also propose other variants of this candidate, including a candidate for an
exponentially secure strong PRF that can be computed by depth-3 ACC0 circuits.

1.1 Our Contributions

In this section, we give a more detailed overview of the main results of this paper.

New weak PRF candidates. We put forward several new (weak) PRF can-
didates that mix linear functions over different moduli. We start by describing
our most useful candidate, and will discuss other variants later. Our primary
weak PRF candidate follows a very similar design philosophy as that taken by
Akavia et al. [1]. Recall first that in the Akavia et al. construction, the secret key
is a matrix A ∈ Zm×n2 and the input is a vector x ∈ Zn2 . The output of the PRF is
defined as FA(x) := g(Ax), where the function g is a non-linear mapping (in the
case of the Akavia et al. construction, the function g is a “tribes” function and
can be expressed as a DNF formula). In our setting, we adopt the same high-level
structure, but substitute a different and conceptually simpler non-linear function
g. In our candidate, we define the non-linear function to be the function that
interprets the binary outputs of Ax as 0/1 values over Z3, and the output of the

2Specifically, the classic learning result of Linial et al. [38] showed that AC0 circuits
can be learned from random examples in quasi-polynomial time.

3The recent learning result by Carmosino et al. [19] showed that for any prime p,
ACC0[p] circuits can be learned using membership queries in quasi-polynomial time.
Extending this result to the setting of learning from uniformly random examples
(without membership queries) or to composite moduli seems challenging.

4



function is simply the sum of the input values over Z3. Specifically, we define
the mapping function map : {0, 1}m → Z3 that maps y ∈ {0, 1}m 7→

∑
i∈[m] yi

(mod 3). Our weak PRF candidate (with key A) is then defined as

FA(x) := map(Ax) where map(y) =
∑
i∈[m]

yi (mod 3). (1)

We formally introduce our candidate (and discuss several generalizations4) in
Section 3. We state our formal conjectures regarding the hardness of our can-
didate in Section 3.1. There are several properties of our weak PRF candidate
that we want to highlight:

– Conceptual simplicity. Our candidate is conceptually very simple to de-
scribe. It reduces to computing a matrix-vector product over Z2, reinter-
preting the output vector as a 0/1 vector mod-3 and then computing their
sum. The simplicity of our construction is fairly apparent compared to block
cipher candidates likes AES or number-theoretic constructions of PRFs. In
spite of its simplicity, to the best of our knowledge, such a candidate has not
previously been proposed, let alone studied.

– Low complexity. Our candidate can be computed by depth-2 ACC0[2, 3]
circuits. More precisely, the first layer consists entirely of MOD2 gates to
compute the matrix-vector product Ax, and the second layer consists of two
MOD3 gates that computes the binary representation of the output. We refer
to Remark 3.9 for a more precise definition.

– MPC friendliness. The simplicity of our candidate also lends itself nicely
for use in MPC protocols. In Section 5, we give an efficient protocol that
enables distributed evaluation of our PRF in a setting where both the key
and the input are secret-shared. We discuss this further in the sequel. As
we show in Table 1, the round complexity and communication complexity
of our distributed evaluation protocol outperform existing MPC protocols
for distributed evaluation of not only AES, but even those for MPC-friendly
block ciphers like LowMC [2] and Rasta [23].

Cryptanalysis. In Section 4, we consider several classic cryptanalytic tech-
niques on our weak PRF candidate. While our analysis is by no means ex-
haustive, we are able to rule out several classes of attacks, thereby providing
some confidence into the security of our new candidate. Following the work of
Akavia et al. [1], we focus on two primary classes of attacks:

– Lack of correlation with fixed function families. First, we rule out
the learning-type attacks of Linial et al. [38] by showing that there are no
fixed function families of exponential size that are noticeably correlated with

4An immediate generalization is replacing 2 and 3 by different numbers. However, the
particular choice of 2 and 3 turns out to be the most useful for our purposes. A more
useful generalization replaces the above choice of map by a suitable compressive mod-3
linear mapping, which yields a weak PRF with a longer output.
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our PRF candidate. (Previously, Linial et al. showed that for all AC0 func-
tions, there exists a quasi-polynomial-size function family such that any AC0

function is noticeably correlated with a function in that class; this implies a
quasi-polynomial time learning algorithm for AC0.)

– Inapproximability by low-degree polynomials. Next, we show that
there does not exist a low-degree polynomial approximation to our PRF can-
didate. Our argument here follows from the well known Razborov-Smolensky
lower bounds [46, 48] for ACC0 circuits, which say that for distinct primes
p, q, the MODp function is not computable by a polynomial-size circuit in
ACC0[q]. We conjecture that the Razborov-Smolensky lower bounds also gen-
eralize to rule out low-degree rational approximations: namely, for distinct
primes p, q, there does not exist a low-degree rational function that approx-
imates MODp gates over GF(q`) for any ` (Conjecture 4.3). We believe that
this question is of independent interest from a complexity-theoretic perspec-
tive, and leave it as an interesting challenge.

Given the above, we conjecture that our main weak PRF candidate is exponen-
tially secure. We hope that our exploratory analysis will encourage further study
and refinement of our conjectures.

Theoretical implications. We next turn to studying the implications and
applications of our new PRF candidates. We first describe several theoretical
implications related to complexity theory and learning theory that are implied
by our conjectures:

– Hardness of learning for depth-2 ACC0 and width-3 branching pro-
grams. As mentioned earlier, one of the key structural properties of our
weak PRF candidate is that it can be computed by a depth-2 ACC0 cir-
cuit. Another low-complexity feature, which crucially depends on the choice
of the moduli 2 and 3, is that it can be computed by (polynomial-length)
width-3 permutation branching programs [11]. The existence of a weak PRF
in any complexity class rules out learning algorithms for that class even with
uniformly random examples. This means that, assuming the exponential se-
curity of our weak PRF candidate in Eq. (1), the classes of depth-2 ACC0

circuits and width-3 permutation branching programs are not learnable (in
the standard sense of PAC-learnability [49] without membership queries),
even under the uniform distribution and even when allowing sub-exponential
time learning algorithms. We explore these connections in greater detail in
the full version. We note that efficient learning algorithms for the above
classes would imply an efficient learning algorithm for DNF formulas [25].
While there are quasi-polynomial time learning algorithms for DNF formulas
(in fact, even for AC0 circuits) under the uniform distribution [38, 50], no
such learning algorithm (even a sub-exponential one) is known for depth-2
ACC0 or width-3 branching programs.

– Hardness of interpolating and property-testing sparse polynomi-
als. In the full version, we give an alternative characterization of Eq. (1) as
essentially implementing a sparse multilinear polynomial over Z3, where the
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monomials are determined by the key A. We then show that the conjectured
hardness of our weak PRF candidate implies that sparse polynomials over
Z3 (with sufficient degree and sparsity) are hard to interpolate given random
evaluations drawn from a subset of the domain, namely from {1, 2}n. Similar
to the previous connections to hardness of learning, if it is easy to interpo-
late the polynomial corresponding to the operation of the PRF (on random
inputs), then the interpolation algorithm gives a trivial distinguisher for the
scheme. While the problem of sparse polynomial interpolation has been the
subject of extensive study [56, 13, 35, 57, 52, 27, 8], much less is known when
the interpolation algorithm only sees random evaluations from a subset of
the domain. Our conjectures imply hardness results for this variant of the
sparse interpolation problem. In fact, as we show in the full version, our con-
jectures even rule out property-testing algorithms [44, 3, 34, 22] for sparse
polynomials.

– Natural proofs barrier for super-linear circuit lower bounds. Our
work also has relevance to minimizing the sequential time complexity or cir-
cuit size of strong PRFs. We consider the problem of constructing “asymp-
totically optimal” strong PRFs, namely ones that have exponential security
in the input length and can be computed by linear-size circuits. This problem
is motivated by the goal of ruling out natural proofs of super-linear circuit
lower bounds, in the sense of Razborov and Rudich [47]. While previous
works constructed PRFs that can be evaluated by linear-size circuits [33]
or in linear time on a RAM machine [6], these PRFs fail to achieve full ex-
ponential security. The work of Miles and Viola [39] presented a simplified
abstraction of existing block cipher designs and proved their security under
a class of natural attacks. One of their constructions can be implemented by
quasi-linear size circuits and is shown to have exponential security against a
wide class of attacks, thus falling a bit short of the asymptotic optimality
goal. In Section 6.3, we present a depth-3 variant of our main weak PRF
candidate that can plausibly meet this goal (Remark 6.7). Thus, we give
the first candidate construction for an asymptotically optimal strong PRF,
which in turn rules out natural proofs of super-linear circuit lower bounds.

Applications to MPC and distributed PRF evaluation. A particularly
appealing property of our weak PRF candidate is that it is very MPC-friendly.
Protocols for PRF evaluation in a distributed setting (where the secret key and
input are distributed or secret-shared between two or more parties) have received
a significant amount of attention recently, and new block ciphers have been
proposed specifically to be MPC-friendly [2, 23]. The structure of our weak PRF
lends itself nicely to an efficient MPC protocol (with semi-honest security) for
evaluating the PRF with a secret-shared key and a secret-shared input. Consider
a scenario where the PRF key and input are secret-shared across multiple servers.
Our protocol proceeds roughly as follows:

– If we use a linear secret-sharing scheme to share the keys and the inputs over
Z2 (alternatively, a field or characteristic 2), then the matrix-vector product
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Ax can be computed non-interactively: each party simply operates locally
on their shares (of the key and input).5

– Next, the servers engage in a simple interactive protocol to convert their
secret-shared values (over Z2) to a linear secret-sharing of the same value
over Z3 (effectively implementing the non-linear step in our PRF). Working
in the 3-server setting (in a semi-honest model tolerating at most one cor-
ruption), we can implement this protocol very efficiently using the protocol
of Araki et al. [7]. Here, the “share conversion” procedure essentially requires
13 bits of communication for each bit of Ax.

– Once the parties have a linear secret-sharing of Ax over Z3, computing the
output can again be done non-interactively. Note that to extend our weak
PRF candidate to output multiple bits, we replace the summation over Z3

with a matrix-vector product. Namely if y ← Ax ∈ {0, 1}m, then we define
the PRF output to be Gy (mod 3), where G here is a fixed public matrix in
Zt×m3 (Remark 3.3). Even with this extension, computing the output (given
a Z3 secret-sharing of the values Ax) still corresponds to computing a linear
function over Z3. Again, this is possible non-interactively.

The takeaway is that even though our weak PRF candidate is highly nonlinear
(due to the mixing of mod-2 and mod-3 operations), the piecewise-linear struc-
ture means that it can be securely computed by a constant-round information-
theoretic MPC protocol with O(|x|) bits of communication. In Table 1, we pro-
vide some concrete comparisons of our protocol for distributed evaluation of our
PRF candidate to some of the existing candidates. As the baseline for our com-
parisons, we use the protocol of Araki et al. [7] as the representative for 3-party
secret-sharing-based MPC protocols, and optimized garbled circuit construc-
tions [37, 55] for 2-party protocols. We compare against both the AES block
cipher as well as several settings of LowMC [2] and Rasta [23], two custom-
designed block ciphers tailored for MPC applications. We describe our precise
methodology for deriving these estimates in Section 5.2.

From Table 1, we see that using an optimistic setting of parameters for our
candidate, the communication and round complexity of our 3-server protocol for
distributed (weak) PRF evaluation is better than the generic MPC protocols
applied to existing (strong) PRF candidates in terms of both round complexity
and communication complexity in almost all cases. The only case where an-
other protocol has smaller communication complexity is the case of evaluating
the AND-gate-optimized variant of LowMC (using the Araki et al. protocol);
however, evaluating this variant of LowMC requires over 250 rounds of commu-
nication compared to the 2 rounds needed for our protocol.

Compared to the communication-intensive protocols based on garbled cir-
cuits, the communication complexity of our protocol is roughly two orders of
magnitude smaller than garbled circuit evaluation of LowMC and Rasta, and
three orders of magnitude smaller than garbled circuit evaluation of AES. The

5More precisely, one needs here a linear secret-sharing scheme that supports multipli-
cation. In our 3-server implementation we use replicated additive shares (also known
as “CNF secret-sharing”) to achieve this. We refer to Section 5.1 for the full details.
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Construction
Number Round Communication
of Servers Complexity Complexity

Araki et al. (AES) 3 40 ≈ 1.6 · 104

Araki et al. (LowMC, min-depth) 3 14 ≈ 7.9 · 103

Araki et al. (LowMC, min-gates) 3 252 ≈ 2.3 · 103

Araki et al. (Rasta, min-depth) 3 2 ≈ 2.6 · 1010

Araki et al. (Rasta, min-gates) 3 6 ≈ 6.3 · 103

Garbled Circuit (AES) 2 2 ≈ 1.4 · 106

Garbled Circuit (LowMC, min-gates) 2 2 ≈ 1.9 · 105

Garbled Circuit (Rasta, min-gates) 2 2 ≈ 5.4 · 105

Our Protocol (Optimistic) 3 2 ≈ 3.8 · 103

Our Protocol (Conservative) 3 2 ≈ 5.5 · 103

Our Protocol (General) 3 2 13n+ 4t

Table 1. Comparison of semi-honest oblivious PRF evaluation protocols. In all cases,
we assume that the keys and inputs have been secret-shared between the (2 or 3)
servers. We estimate the round complexity and the total communication complexity (in
bits) needed to evaluate the PRF on the shared key and input. All of our comparisons
assume semi-honest servers with up to one corruption and assuming a concrete security
parameter of λ = 128. When comparing to the LowMC block cipher [2] and the Rasta
block cipher [23], we compare against two variants: a depth-optimized variant (min-
depth) that minimizes the multiplicative depth of the circuit implementing the block
cipher, and a gates-optimized variant (min-gates) that minimizes the number of AND
gates. We refer to Section 5.2 for the parameter settings we use for our estimates. For
our protocol, we set the dimensions m,n according to our concrete parameter estimates
from Table 2 (in particular we let m = n), and set the output dimension to be t = 128
(for output space Z128

3 ).

secret-sharing-based protocols are much more competitive in terms of communi-
cation, but these protocols generally have much larger round complexities, which
can be problematic in high-latency networks. To summarize, our new PRFs have
the advantage that they are very friendly to compute in a distributed MPC set-
ting when both the key and the input are secret-shared. We note that even weak
PRFs are still useful in a variety of application scenarios. In the full version we
describe a concrete application of MPC-friendly weak PRFs for implementing
distributed flavors of secure keyword search and searchable symmetric encryp-
tion. Moreover, for applications that require strong PRFs, one can apply the
encoded-input variant of our weak PRF with a modest loss of efficiency.

Alternative weak PRF candidate with better garbling efficiency. The
structure of our main weak PRF candidate makes it well-suited for three-party
distributed evaluation. In a two-party setting, it is natural to rely on a “garbling
scheme” such as that of Yao [53] or its optimized variants. However, the cost of
this approach will be high because of the super-linear number of multiplications
needed for computing the matrix-vector product. In Section 5.3, we introduce a
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variant of our weak PRF candidate (Construction 5.3) that is more suitable for
two-party distributed evaluation. The core ingredient in our two-party evaluation
protocol is a lightweight information-theoretic garbling scheme using arithmetic
randomized encoding techniques (cf. [5]). The full two-party distributed evalua-
tion protocol additionally relies on a single (parallel) invocation of a 1-out-of-6
oblivious transfer (OT) protocol; the overall two-party distributed evaluation
protocol for this alternative candidate is thus 4 rounds (rather than the usual
2 rounds with Yao’s protocol). The output size of this garbling scheme (as well
as the total communication complexity of the distributed evaluation protocol) is
linear in the input size times the output size of the PRF. Thus, this candidate
is particularly attractive when the PRF output is short. As we show in the full
version, the garbling size of our alternative candidate (which constitutes the bulk
of the protocol’s communication complexity) with 40 bits of output is smaller
than that of an optimized Yao-style garbling applied to LowMC, Rasta, and
AES. Thus, for applications that only require such a short PRF output (e.g.,
using a PRF to compute tags for a set of keywords), the better garbling com-
plexity of our alternative candidate implies a secure two-party protocol for PRF
evaluation that is better than that of protocols for evaluating AES, LowMC, or
Rasta.6 While this alternative candidate seems better suited for distributed two-
party evaluation than our main weak PRF candidate given in Eq. (1), it also has
several limitations; most notably, it can at best provide (slightly) sub-exponential
security. In contrast, our main candidate can plausibly provide exponential se-
curity. We give a more thorough discussion of the alternative candidate and its
security in Section 5.3.

Towards strong pseudorandomness. Turning now to strong pseudorandom-
ness, we show in the full version that our candidate is not a strong PRF, and in
fact, can be learned in polynomial time given adaptive queries. Specifically, we
can recast our PRF as an automaton with multiplicity, and then apply known
learning results for these function families [14]. However, this attack is unlikely
to extend to the setting of weak pseudorandomness. Here, we show that if the
learning attack in [14] can be generalized to the weak pseudorandomness setting
(where the learning algorithm is only provided function evaluations on a random
subset of the domain), then the same algorithm implies a polynomial-time at-
tack on the learning with rounding (LWR) [10] assumption with any polynomial
moduli p and q.

Encoded-input PRFs and strong PRFs. Motivated by the fact that many
applications of PRFs (e.g., message authentication codes (MACs)) do not natu-
rally follow from weak pseudorandomness, we introduce an intermediate notion
between weak PRFs and strong PRFs we refer to as encoded-input PRFs. Our
new notion suffices for instantiating most applications of strong PRFs, and at

6It is not clear whether LowMC or Rasta can be further optimized in settings where
few output bits are needed, or when only weak PRF security is required. If longer
outputs are needed for the particular application, then the garbling complexities of
LowMC and Rasta will be better than that of our construction.
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the same time, still admits simple constructions (and circumvents known lower
bounds on the existence of strong PRFs in various complexity classes). At a
high-level, an encoded-input PRF is a function that behaves like a PRF on some
(possibly sparse) subset of its domain. Moreover, this subset is specific to the
PRF family, and in particular, independent of the key. For instance, a suitable
subset might be the set of valid codewords in a linear error-correcting code. In
Section 6, we formally define this notion, and then show that many standard
applications of PRFs (e.g., MACs, CCA-secure encryption) can be instantiated
from encoded-input PRFs by incorporating an additional validity check for the
encoded input. The validity check can be made more efficient by using an ad-
ditional proof provided by the evaluator. We then propose an efficient candi-
date construction of encoded-input PRFs by combining our weak PRFs with
error-correcting codes. The resulting construction resists the adaptive attacks
we describe in the full version and can remain MPC-friendly. Using our candi-
date encoded-input PRFs, we are able to construct MACs with low-complexity
verification and CCA-secure encryption with low-complexity decryption (that is,
both operations can be computed by a depth-3 ACC0 circuit). In fact, for a suit-
able instantiation of our encoding function (e.g., using a linear error-correcting
code), we obtain a candidate strong PRF that can be computed by a depth-3
ACC0 circuit (Remark 6.6). Concretely, our depth-3 strong PRF candidate is
obtained from our main weak PRF candidate by first applying a mod-3 linear
encoding to the input. We also propose a variant of this candidate that can
be implemented by linear-size circuits. This variant is used for the new natural
proofs barrier discussed above.

1.2 Related Work

There is a large body of work on minimizing different complexity measures of
(weak or strong) PRFs. Most relevant to the present work are works proposing
PRF constructions that can be evaluated by different classes of low-depth cir-
cuits such as AC0, ACC0, TC0 [15, 41, 42, 43, 10, 18, 51, 1, 9, 54, 6]. Of these
candidates, those in AC0 [6] and in ACC0 [1, 51] are either vulnerable to quasi-
polynomial time attacks [6, 1] or can only be shown to have quasi-polynomial
time security [51]. In more detail, the result of Viola [51, Theorem 11] says that
assuming hardness of factoring against 2n

ε

-time adversaries (for some constant
ε), there is a strong PRF in ACC0 with security against quasi-polynomial time
adversaries. We discuss these candidates and their cryptanalysis in greater detail
in Section 3.2.

2 Preliminaries

We begin by defining some basic notation that we will use throughout this work.
For a positive integer n, we write [n] to denote the set of integers {1, . . . , n}. We
use bold uppercase letters (e.g., A, B) to denote matrices.
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For a finite set S, we write x
r←− S to denote that x is drawn uniformly

at random from S. For a distribution D, we write x ← D to denote a draw
from a distribution D. Unless otherwise noted, we write λ to denote the security
parameter. We say that a function f(λ) is negligible in λ if f(λ) = o(1/λc) for
all c ∈ N. We write f(λ) = poly(λ) to denote that f is bounded by some (fixed)
polynomial in λ. We say that an algorithm is efficient if it runs in probabilistic
polynomial time in the length of its input.

For two sets X and Y, we write Funs[X ,Y] to denote the set of all func-
tions from X to Y. For two functions f and g on a common domain X , we
say that f is ε-close to g if Prx [f(x) 6= g(x)] ≤ ε and that it is ε-far from g if
Prx [f(x) 6= g(x)] > ε. Next, we review the definition of a pseudorandom function
(PRF) [30].

Definition 2.1 (Pseudorandom Function). Denote by K = {Kλ}λ∈N, X =
{Xλ}λ∈N, and Y = {Yλ}λ∈N three ensembles of finite sets indexed by a security
parameter λ. Let {Fλ}λ∈N be an efficiently-computable collection of functions
Fλ : Kλ × Xλ → Yλ. Then, we say that the function family {Fλ}λ∈N is a (t, ε)-
strong pseudorandom function if for all adversaries A running in time t(λ), and

taking k
r←− Kλ and fλ

r←− Funs[Xλ,Yλ], we have that∣∣∣Pr[AFλ(k,·)(1λ) = 1]− Pr[Afλ(·)(1λ) = 1]
∣∣∣ ≤ ε(λ).

We say that the function family {Fλ}λ∈N is an (`, t, ε)-weak pseudorandom

function if for all adversaries A running in time t(λ) and taking k
r←− Kλ,

fλ
r←− Funs[Xλ,Yλ], x1, . . . , x`

r←− Xλ, we have that∣∣Pr
[
A
(
1λ, {(xi,Fλ(k, xi))}i∈[`]

)]
− Pr

[
A
(
1λ, {(xi, fλ(xi))}i∈[`]

)]∣∣ ≤ ε(λ).

To simplify the notation, we will often drop the index λ on F. We will also write
Fk to denote F(k, ·).

Domains and their representations. The key-space, domain, and range of
all of the PRF candidates we consider in this work consist of vector spaces
over finite fields (i.e., Zkp for some p and k). For notational convenience, we write
everything using vector space notation. However, when measuring the complexity
of evaluating the PRF, we measure everything in terms of Boolean operations
(as opposed to arithmetic or finite field operations). Specifically, we view the
keys, inputs, and outputs of our PRF candidates as vectors of bit-strings, where
each bit-string encodes the binary representation of its respective field element.
For example, a vector v ∈ Zkp would be represented by a binary string of length
k · dlog pe, where each block of dlog pe bits represents a single component of v.
This way, we can discuss the Boolean circuit complexity of evaluating a PRF
over a key-space Zm×np , domain Znp , and range Ztq.

Circuit classes. We also recall the definition of several basic complexity classes.
First, the circuit class AC0 consists of all circuits with constant depth, polyno-
mial size, and unbounded fan-in (containing only AND,OR, and NOT gates).
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The circuit class TC0 (resp., TC1) consists of all circuits with constant (resp.,
logarithmic) depth, polynomial size, unbounded fan-in and threshold gates.

Definition 2.2 (Modular Gates). For any integer m, the MODm gate outputs
1 if m divides the sum of its inputs, and 0 otherwise.

Definition 2.3 (Circuit Class ACC0). For integers m1, . . . ,mk > 1, we say
that a language L is in ACC0[m1, . . . ,mk] if there exists a circuit family {Cn}n∈N
with constant depth, polynomial size, and consisting of unbounded fan-in AND,
OR, NOT, and MODm1

, . . . ,MODmk gates that decides L. We write ACC0 to
denote the class of all languages that is in ACC0[m1, . . . ,mk] for some k ≥ 0
and integers m1, . . . ,mk > 0.

3 Candidate Weak Pseudorandom Functions

In this section, we introduce our candidate weak pseudorandom function families.
We begin with a basic candidate below (Construction 3.1), and then describe
several generalizations and extensions. When describing our applications in the
subsequent sections, we will focus primarily on our basic construction.

Construction 3.1 (Mod-2/Mod-3 Weak PRF Candidate). Let λ be a
security parameter, and define parameters m = m(λ) and n = n(λ). The weak
PRF candidate is a function Fλ : Zm×n2 × Zn2 → Z3 with key-space Kλ = Zm×n2 ,
domain Xλ = Zn2 and output space Yλ = Z3. For a key A ∈ Zm×n2 , we write
FA(x) to denote the function Fλ(A, x). We define FA as follows:

– On input x ∈ Zn2 , compute y′ = Ax ∈ Zm2 .
– The output is defined by applying a non-linear mapping to y′. In this case,

we take our non-linear mapping to be the function map : {0, 1}m → Z3 that
outputs the sum of the inputs values modulo 3. Specifically, for y′ ∈ {0, 1}m,
we write map(y′) :=

∑
i∈[m] y

′
i (mod 3).

We define FA(x) := map(Ax). Note that we compute the matrix-vector product
Ax over Z2, and then re-interpret the values as their integer values 0 and 1.

Remark 3.2 (Weak PRF Candidate for Arbitrary p and q). The weak PRF can-
didate in Construction 3.1 can be generalized to work over two arbitrary fields
Zp and Zq where p 6= q. In particular, we define the key-space to be Kλ = Zm×np ,
the domain to be Xλ = Znp , and the range to be Yλ = Zq. We define the non-
linear mapping mapp,q : {0, 1, . . . , p− 1}m → Zq that computes the sum of input
values modulo q:

mapp,q(y
′) :=

∑
i∈[m]

y′i (mod q).

Putting all the pieces together, the PRF is defined to be FA(x) := mapp,q(Ax).
In this case, Construction 3.1 corresponds to the special case where p = 2 and
q = 3. Note that for certain choices of p, q, the output of this mapping might not
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be balanced (this is not the case for p = 2 and q = 3), and pseudorandomness
is then defined with respect to the corresponding distribution. We now describe
several variations on our general candidate:

– We can consider a binary input space Xλ = Zn′

2 rather than a mod-p input.
In this case, we require that the key A to be compressing so that the product
Ax for a random x ∈ Zn′

2 is statistically close to the uniform distribution
over Zmp . For instance, this holds by the leftover hash lemma [32] if we take
n′(λ) = Ω(m log p).

– We can consider more complex input spaces and non-linear mappings. As
a concrete example, we can define a PRF where the input domain is an
elliptic curve group E(Zq) of prime order p. That is, we take the domain
to be Xλ = E(Zq)n; the key-space and range are unchanged: Kλ = Zm×np

and Yλ = Zq. In this case, the linear mapping Ax corresponds to computing
a linear combination of elliptic curve points. We can define the non-linear
mapping mapp,q from E(Zq) into Zq to be the mapping that returns the
x-coordinate of the curve point (recall that each element in E(Zq) can be
represented by a pair of (x, y)-coordinates in Zq).

Remark 3.3 (Multiple Output Bits). The output of our weak PRF candidate from
Construction 3.1 consists of a single element in Z3. In many scenarios (such as the
ones we describe in Section 5), we require a PRF with longer output. One way to
extend Construction 3.1 to provide longer outputs is to take the vector Ax ∈ Zm2 ,
reinterpret it as a 0/1 vector y′ ∈ Zm3 , and output Gy′ ∈ Zt3, where G ∈ Zt×m3

is a fixed public matrix. Formally, we define the mapping mapG : {0, 1}m → Zt3
that maps y′ 7→ Gy′, and define the PRF candidate F : Zm×n2 × Zn2 → Zt3 to
be FA(x) := mapG(Ax). Construction 3.1 then corresponds to the special case
where G = 11×m, where 11×m denotes the all-ones matrix of dimension 1-
by-m. In our constructions, we propose taking G to be the generator matrix
of a linear error-correcting code over Z3. This choice is motivated by the fact
that the generator matrix of a linear code with sufficient distance implements
a good extractor for a bit-fixing source [20]. As a concrete candidate for our
constructions, we propose taking G to be the generator matrix of a BCH code
over Z3. Note that we require t < m. Otherwise, if t ≥ m, then we can use
linear algebra (over Z3) to recover y′ = Ax from the output Gy′ (since G is
public). Given multiple pairs (x, y′), we can recover the secret key A (over Z2).
In particular, in our concrete parameter settings, we require m− t ≥ λ.

Remark 3.4 (Using Structured Matrices as the PRF Key). We can improve the
asymptotic (and concrete) efficiency of our weak PRF candidate (Construc-
tion 3.1) by taking the key to be a structured matrix rather than a random
matrix. For example, we can take A to be a uniformly random Toeplitz matrix
rather than a uniformly random matrix. In particular, if A ∈ Zm×n2 is Toeplitz,
then computing the matrix-vector product Ax can be done in time that is quasi-
linear rather than quadratic in the input dimension. A similar optimization of
using a random Toeplitz matrix in place of a random matrix was previously
proposed to improve the concrete efficiency of authentication schemes based on
the learning parity with noise (LPN) problem [28, 45].
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3.1 Conjectures on the Security of Weak PRF Candidates

We now state three conjectures on our new family of weak PRF candidates,
sorted in order from the weakest to the strongest:

Conjecture 3.5 (General Mod-p/Mod-q Weak PRF Candidate). Let λ be a se-
curity parameter. Then, there exist fixed primes p and q and m,n = poly(λ)
such that for all `, t = poly(λ), there exists a function ε = negl(λ) such that the
family {Fλ}λ∈N from Remark 3.2 is an (`, t, ε)-weak PRF.

Conjecture 3.6 (Mod-2/Mod-3 Weak PRF Candidate). Let λ be a security pa-
rameter. Then, there exist m,n = poly(λ) such that for all `, t = poly(λ), there
exists ε = negl(λ) such that the function family {Fλ}λ∈N from Construction 3.1
is an (`, t, ε)-weak PRF.

Conjecture 3.7 (Exponential Hardness of Mod-2/Mod-3 Weak PRF Candidate).
Let λ be a security parameter. Then, there exist m,n = O(λ) such that for all
` = poly(λ) and t = 2λ, there exists ε = 2−Ω(λ) such that the function family
{Fλ}λ∈N from Construction 3.1 is an (`, t, ε)-weak PRF.

Remark 3.8 (Further Generalizations). As stated, Conjectures 3.6 and 3.7 are
specific to the security of our mod-2/mod-3 weak PRF candidate from Construc-
tion 3.1. But more generally, we can consider an analogous pair of conjectures
for any fixed mod-p/mod-q candidate (where p and q are distinct primes). Going
further, we can even conjecture that the analogous claims hold for all choices
of p and q. In this work however, we focus on the security of the mod-2/mod-3
candidate, since that candidate is most well-suited for our MPC applications.

Remark 3.9 (Weak PRF in ACC0). An appealing property of the mod-2/mod-3
PRF candidate from Construction 3.1 is that the PRF can be computed by a
depth-2 ACC0 circuit (in fact, a depth-2 ACC0[2, 3] circuit suffices). Specifically, if
A ∈ Zm×n2 is the secret key to the PRF, then the function FA can be computed by
a depth-2 circuit where the first layer consists of m MOD2 gates, one associated
with each row of A (concretely, each MOD2 gate takes as input the subset of
input bits on which the corresponding row of A depends). All of the MOD2 gates
feed into two MOD3 gates, each computing one bit of the binary encoding of the
output value (more precisely, the MOD3 gate computing the most significant bit
of the output outputs 1 if the sum of the inputs is 2 mod 3 and the MOD3 gate
computing the least significant bit of the outputs outputs 1 if the sum of its input
bits is 1 mod 3). Note that we can also implement the PRF in depth-2 ACC0[6],
that is, ACC0 with MOD6 gates only (using essentially the same construction).
In either case, we conclude that under Conjecture 3.6, there exists a weak-PRF
candidate in depth-2 ACC0. Intuitively, this means that under Conjecture 3.6,
the complexity class ACC0 should be hard to learn. We formalize this intuition
in the full version.
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3.2 Comparison with Other Weak PRF Candidates

In the full version, we compare our weak PRF candidate (Construction 3.1) to
previous candidate low-complexity PRFs, and in particular to the Akavia et al.
construction [1], candidates based on hard learning problems or on expander
graphs by Blum et al. [15] and by Applebaum and Raykov [6], and to number-
theoretic [41, 42, 43, 51] and lattice-based candidates [10, 18, 9]. Here, we also
discuss several advantages of our construction.

Advantages of our construction. We now describe two appealing properties
of our new weak PRF candidate compared to the existing ones:

– Low complexity: Our weak PRF candidate is the first that can be com-
puted by an ACC0 circuit and plausibly satisfy exponential security (Conjec-
ture 3.7). Previous PRF candidates in ACC0 (or AC0) only provided quasi-
polynomial [1, 6] or sub-exponential security [51]. In fact, our candidates are
computable by a depth-2 ACC0 circuit, which is the minimal depth possible
for any PRF candidate. To our knowledge, there are no other candidates
that can be computed by a depth-2 AC0 or ACC0 circuit (even if we just
require polynomial hardness).

– MPC-friendliness: Another advantage of our construction is that our PRF
is very MPC-friendly. Specifically, we consider scenarios where multiple par-
ties hold shares of the PRF key as well as the PRF input, and the goal is for
the parties to compute the PRF output on their joint inputs. The structure
of our PRF is very amenable for use in MPC protocols. Notably, much of
the computation is linear (over Z2 and Z3). Using (standard) MPC protocols
based on linear secret-sharing, computing linear functions on secret-shared
values can be done non-interactively. Communication is only needed to han-
dle the non-linear transformation from values over Z2 to values over Z3. In
Section 5, we show that this step can be done very efficiently using the re-
cent protocol of Araki et al. [7]. In contrast, evaluating the tribes function
(in the case of Akavia et al. [1]) or the majority function (in the case of
Blum et al. [15]) over secret-shared values will either incur additional over-
head in either round complexity or communication complexity (or both).

4 Rationales for Security

In this section, we provide a brief overview of several rationales to support the
conjectured security of our candidate. The detailed analysis (including proofs and
further discussions) is available in the full version. First, we follow the security
analysis of the weak-PRF candidate proposed by Akavia et al. [1] and show that
(1) standard learning algorithms cannot break the security of our construction,
and (2) our candidate cannot be approximated by low-degree polynomials over
finite fields. In addition, we conjecture that it is difficult to approximate our
construction with low-degree rational functions. Finally, we suggest concrete
parameters for our candidate weak PRF.
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4.1 Lack of Correlation with Fixed Function Families

The most natural way to rule out the existence of pseudorandom functions in a
complexity class is to provide a learning algorithm for the class. In the the full
version, we show that a randomly chosen function in our PRF family does not
have a noticeable correlation with any sufficiently small (but still exponential-
size) collection of functions H = {h : {0, 1}n → {0,±1}}. Our analysis relies on
techniques similar to those used by Akavia et al. [1, Proposition 16]. This rules
out distinguishers based on learning algorithms of the form of the one by Linial
et al. [38]. Specifically, in the the full version, we show the following lemma.

Lemma 4.1 (No Correlation with Fixed Function Families). Let H =
{h : {0, 1}n → {0,±1}} be a collection of functions of size s. Then,

PrA

[
∃h ∈ H | Prx [map(Ax) = h(x)] >

1

3
+

1

2n−1
+ ε

]
≤ 5s

2n · ε2
,

where A
r←− {0, 1}n×n.

4.2 Inapproximability by Low-Degree Polynomials and Rational
Functions

Another necessary condition for a PRF family is that the family should be hard
to approximate by low-degree polynomials (resp. rational functions). Specifically,
assume there exists a degree-d multivariate polynomial f (resp. f, g) over GF(2)
such that Fk(x) = f(x) (resp. Fk(x)·g(x) = f(x)) for all x ∈ {0, 1}n. Then, given
(sufficiently many) PRF evaluations (xi,Fk(xi)) on uniformly random values xi,
an adversary can set up a linear system where the unknowns corresponds to the
coefficients of f (resp. f, g). Since f (resp. f, g) has degree d, the resulting system

has N =
∑d
k=0

(
n
k

)
(resp. 2N) variables. Thus, given O(2d ·N) random samples,

the adversary can solve the linear system and recover the coefficients of f (resp.
f, g) (and therefore, a complete description of Fk). We note that this attack still
applies even if Fk is 1/O(2d · N)-close to a degree-d polynomial (resp. rational
function). In this case, the solution to the system will be 1/O(2d · N)-close to
Fk with constant probability (which still suffices to break pseudorandomness).
Thus, for a candidate PRF family to be secure, the family should not admit a
low-degree polynomial (resp. rational function) approximation.

In our setting, we are able to rule out low-degree polynomial approximations
by appealing to the classic lower bounds for ACC0 by Razborov and Smolen-
sky [46, 48], which essentially says that for distinct primes p and q, MODp gates
cannot be computed in ACC0[q`] for any ` > 1. We show the following lemma in
the full version.

Lemma 4.2 (Inapproximability by Low-Degree Polynomials). For n >

0 and d < n/2, let B(n, d) = 1
2n ·

∑n/2−d−1
i=0

(
n
i

)
. Then, for all primes p 6= q, the

function mapp : {0, 1}n → Zq on n-bit inputs that maps x 7→
∑
i∈[n] xi (mod p)

is B(n, d)-far from all degree-d polynomials over GF(q`) for all ` ≥ 1.
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The low-degree polynomial approximation attack described above directly
generalizes to the setting where the PRF Fk can be approximated by a low-degree
rational function. For instance, suppose there exist multivariate polynomials
f, g over GF(2) of degree at most d such that f(x) = Fk(x) · g(x) for all x ∈
{0, 1}n. Then, a similar attack can be mounted, as any random input-output pair

corresponds to an equation in the 2N variables (with N =
∑d
k=0

(
n
k

)
) defining

polynomials f and g. Thus, if our PRF candidate is 1/O(2d · N)-close to a
degree-d rational function, then there is an O(2d ·N)-time attack given O(2d ·N)
evaluations of the PRF.

While the Akavia et al. weak PRF candidate [1] cannot be approximated by
a low-degree polynomial, Bogdanov and Rosen [17] showed that the function can
be approximated by a degree O(log(n)) rational function, where n is the length
of the key. This gives a quasi-polynomial distinguisher against the Akavia et al.
candidate.

In our case, we conjecture that the mapp function (respectively, the mapp,q
function for our more general candidates from Remark 3.2) cannot by approxi-
mated by a low-degree rational function over GF(q`), for any q 6= p and ` ≥ 1.
While the Razborov-Smolensky argument used to argue hardness of approxi-
mation of mapp by low-degree polynomials over GF(q`) does not generalize to
rational functions, we still believe that this is a very plausible conjecture.

Conjecture 4.3 (Inapproximability by Rational Functions). For any primes p 6= q,
any integer ` ≥ 1, and any d = o(n), there exists a constant α < 1 such that the
function mapp : {0, 1}n → Zp that maps x 7→

∑
i∈[n] xi (mod p) is 1/(2d ·N)α-far

from all degree-d rational functions over GF(q`).

We believe that studying this conjecture is a natural and well-motivated
complexity problem. Proving or disproving this conjecture would lead to a better
understanding of ACC0.

4.3 Resilience to Standard Cryptanalysis Techniques

In this section, we survey several other relevant cryptanalytic techniques and
their impact on the conjectured security of our weak PRF candidate.

Pairwise independence. First, we note that our candidate is pairwise inde-
pendent. This is immediate as for any pair of distinct inputs, the value of Ax will
be uniformly random and independent over Zm2 . Pairwise-independence is suffi-
cient to argue that basic versions of differential and linear cryptanalysis (in the
sense of the definitions proposed in [39]) do not apply to our candidate. We note
that these linear and differential cryptanalysis are particularly relevant when
evaluating the security of our encoded-input PRF (Section 6.3), since there, the
adversary can make adaptive queries (over a restricted subset of the domain).

Blum-Kalai-Wasserman attacks. Due to the structural similarities between
our candidate and the learning parity with noise (LPN) assumption, the Blum-
Kalai-Wasserman (BKW) attack [16] seems particularly relevant.
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We do not see a way to adapt such attacks to our candidate as it does not seem
possible to create “fresh” samples given a collection of samples. In particular, the
mixing of the mod-2 and the mod-3 operations in our basic candidate destroys
the linear structure exploited by BKW.

Other classical techniques. Several other classical techniques used in crypt-
analysis, such as algebraic or correlation attacks, are closely related to the degree
of approximation by polynomials or by rational functions. Thus, we can appeal
to our previous analysis and conjectures (Sections 4.1 to 4.2) to argue that our
weak PRF candidate plausibly resists those attacks.

Further cryptanalysis. To conclude, we emphasize that the analysis we have
done is not intended to be exhaustive, and we invite the community to further
evaluate the security of our candidate. We believe though that the initial ex-
ploratory study we have conducted provides evidence to support the security of
our candidate.

4.4 Concrete Parameters

We now propose some concrete parameters for our candidate. Our proposals
(summarized in Table 2) are based on our exploration of possible attacks as well
as concrete parameters for LPN with constant noise rate. Specifically, we use
the parameters suggested by [26, Table 4] based on the estimated runtime on a
machine with 260 bits of memory and assuming a constant noise rate τ = 1/4.7

We propose optimistic and conservative parameters. Our optimistic choice of
parameters (n = m = 2λ, where λ is the security parameter) suggests better
parameters than those for LPN, which is in part justified by the fact that the
most efficient attacks against LPN (e.g., BKW) do not seem to apply to our
candidate. Our conservative parameters are the same as those suggested for
LPN. We further conjecture that choosing a structured key (e.g., a Toeplitz
matrix) does not significantly affect the parameters. Based on our exploratory
analysis, we see no need to use larger parameters to instantiate our candidate.
We encourage further cryptanalysis to support or disprove the validity of our
proposals.

5 Applications to Multiparty Computation

An attractive feature of our candidate is that it supports efficient evaluation
in a fully distributed setting, where both the PRF key and the PRF input are
secret-shared between multiple parties. We highlight one such application of
this primitive to distributed searchable symmetric encryption (SSE) in the full
version.

7Better algorithms for LPN are possible if we allow for machines with even larger
memory, but as noted in [26], a machine with 260 bits of memory is already significantly
larger than the largest existing supercomputers today.
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Assumption λ = 80 λ = 128

LPN 300 384

Construction 3.1 (Optimistic) 160 256
Construction 3.1 (Conservative) 300 384

Table 2. Proposed parameters (for Construction 3.1, we set m = n) and comparison
with parameters for LPN.

5.1 Fully-Distributed Weak PRF Evaluation

In this section, we describe a 3-party protocol with security against one passive
corruption for secure evaluation of our weak PRF candidate (Construction 3.1).8

At the beginning of the protocol, we assume that the servers hold a secret-sharing
of both the input x and the PRF key k. At the end of the protocol execution,
each server should hold a fresh secret-sharing of the output.

We assume the parties use an additive secret sharing scheme (over a ring), so
additions on secret-shared values are free. For multiplications, we use the multi-
plication protocol from [7] that allows 3 servers to take shares of ring elements
a and b and compute a share of the product ab where each server only needs to
broadcast a single ring element. In particular, if we work over the binary field
Z2, computing XOR is free while computing an AND requires 1-bit of commu-
nication. The protocol relies on pseudorandom secret sharing (PRSS) [21] and
requires a one-time setup of replicated PRF keys. We note that we can achieve
information-theoretic security without the need for the (trusted) setup at twice
the cost of the basic protocol.

We now describe our protocol πfde for distributed evaluation of our mod-
2/mod-3 candidate (Construction 3.1). We assume a structured key (e.g., a
Toeplitz matrix), so the key can be compactly represented by a single vector
k ∈ Zn2 . This assumption is only needed to simplify the protocol description.
Our protocol naturally generalizes to the setting with an unstructured (i.e., fully
random) key with no overhead (in either communication or round complexity).
To recall, to evaluate our PRF, we first evaluate the matrix-vector product be-
tween the key and the input: k, x 7→ h ∈ Zm2 . We then reinterpret h as an
m-dimensional vector over Z3. The output mapG(h) ∈ Zt3 can then be computed
as a linear function mapG on h. We begin by defining the fully-distribution
evaluation functionality that we seek to instantiate.

Definition 5.1 (Fully-Distributed Evaluation Functionality). The ideal
fully-distributed PRF evaluation functionality is defined as follows:

– Inputs: The servers hold replicated additive shares of the input and the key
over Z2. Concretely, let k1, k2, k3 be vectors in Zn2 such that k1⊕k2⊕k3 = k

8The protocol uses two rounds of interaction between the servers.
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and similarly x1, x2, x3 vectors in Zn2 such that x1 ⊕ x2 ⊕ x3 = x. Server i
holds kj , xj with j 6= i.

– Outputs: The first two servers hold random y1, y2 ∈ Zt3 such that y1 + y2 =
Fk(x).

We write [h]p to denote an additive sharing of h over Zp—that is, a tuple of
values whose sum is h mod p. Depending on the context, this will sometimes
be a triple of shares held by the 3 servers and sometimes a pair of shares held
by the first 2 servers. Our protocol uses a sub-protocol π2,3 that transforms an
additive sharing [h]2 (i.e., a mod-2 secret-sharing of h) held by the 3 servers into
an additive sharing [h]3 (i.e., a mod-3 secret-sharing of h) held by the first two
servers. We define this functionality f23 below.

Definition 5.2 (Share Conversion Functionality). The share-conversion
functionality f23 converts a 3-party mod-2 secret sharing of a value h ∈ {0, 1}
into a 2-party mod-3 secret sharing of the same value h. Specifically, the func-
tionality’s input/output behavior is as follows:

– Inputs: Every server i ∈ [3] has an input bi ∈ {0, 1}. Server 1 has an
additional input c ∈ Z3.

– Outputs: Servers 1 and 3 receive no output. Server 2 receives an output
d ∈ Z3 such that c+ d = b1 ⊕ b2 ⊕ b3 (mod 3).

It is straightforward to design a Boolean circuit that implements the ideal share-
conversion functionality from Definition 5.2. We give the circuit in Figure 5.2
below. The circuit consists of 3 AND gates and 10 XOR gates. To obtain our final
share-conversion protocol, we use the PRSS-based protocol by Araki et al. [7] to
evaluate the circuit in Figure 1.

Simple Circuit that Implements f23

– Input: ((c0c1, b1), b2, b3) ∈ {0, 1}5, where c0c1 is the 2-bit repre-
sentation of c ∈ Z3.

– Output: d0d1 ∈ {0, 1}2, representing d ∈ Z3.
– Computation:
d0 = c1 · (1⊕ b1 ⊕ b2 ⊕ b3)⊕ c0 · (b1 ⊕ b2 ⊕ b3)
d1 = c0 ⊕ (1⊕ c1) · (b1 ⊕ b2 ⊕ b3).

Fig. 1. A simple circuit that implements the share-conversion functionality f23 (Defi-
nition 5.2).

The protocol πfde. We now describe our protocol πfde for fully-distributed eval-
uation of our mod-2/mod-3 weak PRF candidate. Recall that at the beginning
of the protocol, we assume that the three servers have a replicated additive
secret-sharing of the input and the key. The protocol πfde then consists of three
phases:
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– During the first phase, each server Si computes an additive share hi ∈ Zm2
of the linear mapping (k, x) 7→ h defined by the key. This can be done
locally using the replicated additive shares of the input and the key. This
follows from the fact that for any two secret-shared values a, b split into 3
shares (i.e., a = a1 + a2 + a3 and b = b1 + b2 + b3), we have that ab =
(a1 + a2 + a3)(b1 + b2 + b3) =

∑
1≤i,j≤3 aibj . In a replicated secret-sharing

scheme, server Si knows aj , bj for j 6= i. This means that every term aibj in
the sum can be computed by at least 1 of the servers.

– In the second step of the protocol, the three servers evaluate the share-
conversion protocol π2,3 to their secret-shared values. For each component
of their additive share, the servers runs the interactive protocol π2,3 to trans-
form additive shares (held by the 3 servers) modulo 2 into additive shares
(held by the first 2 servers) modulo 3. At the end of this phase, servers S1

and S2 hold a share [h]3 of the linear mapping.
– In the final step of the protocol, the two parties evaluate mapG on their

share. Since the matrix G is public, this is a linear operation, and can be
done non-interactively. The output is the output of the protocol.

Observe that by construction, only the second step of the protocol is interactive.
Moreover, the protocol requires just two rounds of interaction. We give the full
protocol in the full version.

5.2 Concrete Efficiency of Distributed PRF Evaluation

In this section, we compare the concrete efficiency of secure evaluation of our
PRF to alternative constructions. Here, we assume that both the input x and
the key k to the PRF are secret-shared across multiple servers. We measure the
concrete cost in terms of the round complexity and the communication complex-
ity needed for joint evaluation of the PRF. For all of our estimates, we use a
concrete security parameter of λ = 128.

In Table 1, we provide a concrete comparison of the communication com-
plexity and round complexity for oblivious evaluation of our PRF candidate.
We compare them to the corresponding costs of using the Araki et al. protocol
or an optimized garbled-circuit protocol to evaluate standard block ciphers like
AES and MPC-optimized block ciphers like LowMC and Rasta. We describe the
methodology we used to derive these estimates in the full version.

5.3 An Alternative Candidate with Better Garbling Complexity

While our weak PRF candidate in Construction 3.1 can be computed efficiently
when the input and key are secret shared across 3 servers, the large number
of multiplications makes it less amenable for garbled circuit evaluation. In this
section, we introduce a variant of our weak PRF candidate that is well-suited
for garbling (even compared to MPC-friendly block ciphers like LowMC and
Rasta), and yet, is still plausibly secure. We give the candidate below, but defer
the description of the efficient information-theoretic garbling of the candidate
(based on [5]) to the full version.
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Construction 5.3 (Alternative Mod-2/Mod-3 Weak PRF Candidate).
Let λ be a security parameter, and let n = n(λ) be the key length (and input
length). The weak PRF candidate is a function Fλ : {0, 1}n×{0, 1}n → Z3 with
key-space Kλ = {0, 1}n, domain Xλ = {0, 1}n and output space Yλ = Z3. For
a key k ∈ Zn2 , we write Fk(x) to denote the function Fλ(k, x). We define Fk as
follows:

– On input x ∈ {0, 1}n,

Fk(x) =
∑
i∈[n]

kixi mod 2 +
∑
i∈[n]

kixi mod 3 (mod 2).

– In other words, the PRF evaluation consists of computing the inner product
between the key k and the input x modulo 2 and modulo 3, and then com-
bining the results modulo 2, Alternatively, it can be viewed as a variant of
LPN with noise rate 1/3 where the noise is derived deterministically from
the input and key (with the noise being 1 if and only if 〈k, x〉 = 1 (mod 3)).

Security of Construction 5.3. In the full version, we provide additional dis-
cussion on the security of our construction. In particular, while many of the
rationales we discussed in Section 4 for security of our main candidate (e.g., lack
of correlation with fixed function families and inapproximability by low-degree
rational functions) also apply to the alternative candidate, there are two key
limitations of this new candidate compared to Construction 3.1: (1) the BKW
attack now applies to this candidate due to its structural similarity with the LWE
or LPN problems, and (2) there exist non-adaptive attacks on this candidate.

6 Encoded-Input Pseudorandom Functions

In this section, we examine the security of our weak PRF candidate against
adaptive attacks. In fact, we show in the full version that strong PRFs do not
exist in a large class of depth-2 circuits (including our weak PRF candidate
(Construction 3.1), thus ruling out adaptive security of our candidate). Our
lower bound relies on a learning algorithm for automata with multiplicity by
Bergadano and Varricchio [14].

There are many scenarios where a weak PRF does not suffice for security.
For instance, if we consider the distributed SSE application described in the
full version and impose the additional requirements of security against mali-
cious clients, then a weak PRF no longer suffices. To address this limitation, we
introduce a new notion we call an encoded-input pseudorandom function that
can often be used as a drop-in replacement for strong PRFs. At a high-level,
an encoded-input PRF is a function that behaves like a PRF on some (possibly
sparse) subset of the domain. As a concrete example, a suitable subset might be
the set of codewords under a linear error-correcting code.

In this section, we describe several natural applications of encoded-input
PRFs, and then describe a candidate encoded-input PRF whose efficiency is
comparable to that of our weak PRF candidate. This candidate remains MPC-
friendly, and can thus be useful for MPC applications that require a strong PRF.
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6.1 Definitions of (P)EI-PRFs

We define two versions of our notion: encoded-input pseudorandom function (EI-
PRF) and protected encoded-input pseudorandom function (PEI-PRF).

Definition 6.1 (Encoded-Input PRF). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N,
X ′ = {X ′λ}λ∈N, and Y = {Yλ}λ∈N be ensembles of finite sets indexed by a
security parameter λ. Let {F′λ}λ∈N = {(Eλ,Fλ)}λ∈N be an efficiently-computable
collection of functions where Eλ : X ′λ → Xλ is an encoding function and Fλ : Kλ×
Xλ → Yλ is a keyed evaluation function. Then, we say that {F′λ}λ∈N is a (t, ε)-
encoded-input PRF (EI-PRF) if the function Kλ×X ′λ → Yλ defined via (k, x′) 7→
Fλ(k,Eλ(x′)) is a (t, ε)-strong pseudorandom function. Moreover, we say that F′λ
is computable in C if Fλ is computable in C.

While the definition of an encoded-input PRF may seem equivalent to that
of a standard PRF, the important point is that the encoding function is a keyless
procedure. This means that an honest user can evaluate for itself the encoding
algorithm on an input to obtain a valid encoded input, and then ask for the
PRF value on the encoded input. The holder of the PRF secret key only needs
to evaluate F. This is the reason we define the complexity of an EI-PRF to be
the complexity of its evaluation function (rather than the composition of its
evaluation and encoding functions). Furthermore, we note that even though the
overall function F(·,E(·)) is a strong PRF, the function F itself may live in a
complexity class where strong PRFs do not exist.

One of the main reasons we are interested in EI-PRFs is that we can po-
tentially use them as a drop-in replacement for strong PRFs in concrete appli-
cations. In many of these scenarios, however, it does not make sense to assume
that the evaluator behaves honestly and will only evaluate the F on properly-
encoded inputs. This motivates our stronger notion of a protected encoded-input
PRF (PEI-PRF), which augments an EI-PRF with an additional verification al-
gorithm. The inputs to a PEI-PRF consists of a point x as well as a proof w that
x is a proper encoding (with respect to the encoding function of the underlying
EI-PRF). The guarantee is that the output of the PEI-PRF are pseudorandom
on all properly-encoded inputs, and ⊥ on improperly-encoded inputs.

Definition 6.2 (Protected EI-PRF). Let {F′λ}λ∈N = {(Eλ,Vλ,Fλ)}λ∈N be
an efficiently-computable collection of functions where Eλ : X ′λ → Xλ × Wλ

is a protected encoding function whose range is polynomial-time checkable by
Vλ : Xλ × Wλ → {0, 1}. That is, Vλ(x,w) = 1 if and only if (x,w) is a valid
encoding. Finally, Fλ : Kλ × Xλ × Wλ → Yλ is a keyed evaluation function.
Denote by ⊥ a special element of Yλ. For a function f ∈ Funs[Xλ,Yλ], define

Evalfλ : Xλ ×Wλ → Yλ as:

Evalfλ(x,w) =

{
f(x) if Vλ(x,w) = 1

⊥ otherwise.
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Then, we say that {F′λ}λ∈N is a (t, ε)-PEI-PRF if for all adversaries A running

in time t(λ), and taking k
r←− Kλ and f

r←− Funs[Xλ,Yλ], we have that∣∣∣Pr[AFλ(k,·,·)(1λ) = 1]− Pr[AEvalfλ(·,·)(1λ) = 1]
∣∣∣ ≤ ε(λ).

We say that F′λ is computable in a circuit class C if the mapping (k, x, w) 7→
Fλ(k, x, w) is computable in C. Finally, we say that a PEI-PRF is systematic
if the witness w has the form x′‖w′ such that Vλ(x, (x′‖w′)) = 1 if and only if
(x,w) = Eλ(x′).

Remark 6.3 (Relation between EI-PRFs and PEI-PRFs). PEI-PRFs are more
powerful objects than EI-PRFs: If (E,V,F) is a PEI-PRF, then (E,F) is an EI-
PRF.

We first show that that PEI-PRFs can be generically constructed from EI-PRFs.

Lemma 6.4 (PEI-PRFs from EI-PRFs). Let {(E∗λ,F∗λ)}λ be an EI-PRF.
Then, assuming Fλ and CNF formulas can be computed by depth-d circuits in
a class C, there exists a systematic PEI-PRF {(Eλ,Vλ,Fλ)}λ computable by a
depth-(d+ 1) circuit.

Proof. The lemma follows from the fact that we can check the correctness of
any Boolean circuit computation using a CNF formula. In particular, we define
a variable associated with each wire in the circuit, and construct a constant-size
CNF associated with each gate in the circuit (checking that the gate is im-
plemented correctly). The conjunction of all of these gate-by-gate CNFs gives a
CNF for the overall circuit. For notational convenience, we drop the λ subscripts
in the description below. We now define a systematic PEI-PRF (Eλ,Vλ,Fλ) as
follows:

– E(x′) → (x,w): On input a point x′ ∈ X ′, output (E∗(x′), w), where w is
the set of all of the wire values for the Boolean circuit computing E∗(x′).
Specifically, we can write w = x′‖w′, where x′ is the input to E∗ and w′

contain the internal (and output) wire values of E∗(x′).
– V(x,w) → {0, 1}: On input an encoded input x ∈ X and a witness w ∈ W,

the verification algorithm interprets w = x′‖w′. Then, it invokes the CNF
verification procedure (for checking correct computation of E∗) to check that
E∗(x′) = (x,w).

– F(k, x, w) → y: On input the key k ∈ K, an encoded input x ∈ X , and a
witness w ∈ W, the evaluation algorithm outputs y ← F∗(k, x) if V (x,w) =
1, and ⊥ otherwise. This can be implemented by computing an AND between
the output of V(x,w) and F∗(k, x).

Since the verification algorithm V can be expressed as a CNF formula, and
moreover, both F∗ and CNFs can be computed by a circuit of depth d > 2, the
evaluation algorithm F can be implemented by a circuit of depth d+ 1.
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6.2 Applications of (P)EI-PRFs

Certainly, we can instantiate any application of strong PRFs using an EI-PRF,
since EI-PRFs are PRFs if we consider the combination of the encoding and the
evaluation functions. However, we note here that our notions of EI-PRFs and
PEI-PRFs allow us to obtain interesting alternative instantiations of many of
the classic applications of PRFs. We provide details on the constructions and
proofs in the full version.

Theorem 6.5 (Symmetric Low-Depth Primitives). Let C be a class of cir-
cuits. Then, if there exists an EI-PRF computable in C, there exists a symmetric
encryption scheme with decryption in C (assuming C is closed under composition
with 2-bit XOR). Similarly, if there exists a systematic PEI-PRF computable in
C, there exists a MAC with verification in C (assuming C is closed under com-
position with equality testing). Together, this yields a CCA-secure symmetric
encryption scheme (in fact, an authenticated encryption scheme [12]) with de-
cryption in C.

6.3 Candidate Constructions of (P)EI-PRFs

In the full version, we give a heuristic construction of PEI-PRFs from weak-PRFs
in the random oracle model. This construction is primarily of conceptual interest
and follows from some basic observations on the connection between weak PRFs
and strong PRFs [40]. We also propose a candidate PEI-PRF based on our mod-
2/mod-3 weak PRF candidate (Construction 3.1) that remains MPC-friendly.
We briefly describe our candidate below.

(P)EI-PRF from our candidate. At a high level, the adaptive attack on
our weak PRF candidate (based on [14], see the full version) relies on querying
inputs that are close (in terms of Hamming distance) and on the fact that each
component of the input of the second mapping (i.e. the components of Ax) can
be computed by a read-once computation (by some automaton to be precise).
This suggests that using a code with large minimal distance to encode the input
x should prevent this attack. For MPC-friendliness, we would like to use a linear
code, as verifying that an input is a valid codeword can be done efficiently (by
multiplying by the parity-check matrix for the code).

A natural candidate is to use a linear code (G,H) over Z2: the encoding of
an input x′ is the codeword G · x′. Unfortunately, the same attack still applies
since we can always view the PRF evaluation as A · (G · x′) = (A ·G) · x′ and
interpret (A ·G) as the key. To defend against this, we instead use a linear code
over Z3 and define the encoded bitstring x to be the binary representation of the
codeword obtained by applying the code to x′ (where we interpret x′ ∈ {0, 1}n′

as a vector over Z3). By mixing mod-2 and mod-3 operations, the encoding
procedure becomes non-linear, but verification can still be expressed as a linear
function. At the same time, the use of the linear code ensures that (1) encoded
inputs are far from each other, (2) verification is MPC-friendly as the code is
linear, and (3) the input of the second mapping cannot be expressed as a read-
once computation. We give the full description in the the full version.
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Remark 6.6 (Candidate Strong PRF in Depth-3 ACC0[2, 3]). Our candidate EI-
PRF gives a strong PRF candidate if we consider the composition of the encoding
function E with the evaluation function F. In fact, since the encoding function
E computes a linear function over Z3, it can be computed by a depth-1 ACC0[3]
circuit. As noted in Remark 3.9, the PRF evaluation function F can be com-
puted by a depth-2 ACC0[2, 3] circuit. Thus, the composition of E and F can be
computed by a depth-3 ACC0 circuit (note that the binary decomposition in the
encoding function is easily handled via fan-in and does not increase the depth
of the circuit). Thus, our construction gives a candidate strong PRF in depth-3
ACC0[2, 3].

Remark 6.7 (Asymptotically-Optimal PRFs and Natural Proof Barriers). As we
note in Remark 6.6, our candidate EI-PRF gives a strong PRF candidate if we
consider the composition of the encoding function E with the evaluation function
F. If both E and F can be computed by a circuit of linear size (in the length of
the key and input), then we obtain a candidate strong PRF with exponential
security that can be computed by linear-size circuits. This gives an “asymptot-
ically optimal” PRF that rules out natural proofs of super-linear circuit lower
bounds in the sense of Razborov and Rudich [47]. We now describe a variant
of our EI-PRF that gives the first candidate instantiation of an asymptotically-
optimal PRF, and correspondingly, the first natural proof barrier for proving
super-linear circuit lower bounds.

Evaluating our EI-PRF candidate consists of three main steps: encoding the
input over Z3, computing the binary decomposition of the encoded vector, and
then multiplying the encoded input with the secret key A over Z2. If we in-
stantiate the Z3-encoding with a linear-time encodable code over Z3 and then
replace the key A with the generator matrix of a linear-time encodable code over
Z2, then the resulting construction can be computed by a linear-size circuit. For
instance, we can instantiate the code with the linear-time encodable code family
proposed by Druk and Ishai [24] (building on the hash function from [33]). This
family gives a randomized construction of a linear-time encodable code that has
many of the combinatorial properties of a random linear code. Thus, we conjec-
ture that sampling the key to be the generator matrix of a Druk-Ishai code does
not compromise the security of our candidate. Putting these pieces together,
we obtain a plausible candidate of a strong PRF with exponential security and
which can be computed by a linear-size circuit. As far as we know, this is the
first candidate instantiation of such an asymptotically-optimal strong PRF. As-
suming it is indeed exponentially secure, natural proof techniques cannot prove
super-linear circuit lower bounds.

Conclusions. We believe that the conjectures we have made in this section are
strong and a healthy dose of skepticism is warranted. We hope that the applica-
tions and implications we point out will motivate further study and constructions
of (P)EI-PRFs, as well as additional cryptanalysis of our concrete candidates.
We also leave open the question of setting concrete parameters for our new
PEI-PRF and strong PRF candidates (Remark 6.6).
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