
Upgrading to Functional Encryption

Saikrishna Badrinarayanan1?, Dakshita Khurana2??, Amit Sahai1? ? ?, and
Brent Waters3†

1 UCLA
{saikrishna, sahai}@cs.ucla.edu

2 MSR New England
dakshkhurana@gmail.com

3 UT Austin
bwaters@cs.utexas.edu

Abstract. The notion of Functional Encryption (FE) has recently emerged
as a strong primitive with several exciting applications. In this work,
we initiate the study of the following question: Can existing public key
encryption schemes be “upgraded” to Functional Encryption schemes
without changing their public keys or the encryption algorithm? We call
a public-key encryption scheme with this property to be FE-compatible.

Indeed, assuming ideal obfuscation, it is easy to see that every CCA-
secure public-key encryption scheme is FE-compatible. Despite the re-
cent success in using indistinguishability obfuscation to replace ideal ob-
fuscation for many applications, we show that this phenomenon most
likely will not apply here. We show that assuming fully homomorphic
encryption and the learning with errors (LWE) assumption, there exists
a CCA-secure encryption scheme that is provably not FE-compatible. We
also show that a large class of natural CCA-secure encryption schemes
proven secure in the random oracle model are not FE-compatible in the
random oracle model.

? Research supported in part by the IBM PhD Fellowship.
?? Research done while at UCLA, supported in part by the UCLA Dissertation Year

Fellowship.
? ? ? Research of first, second and third author supported in part from a DARPA/ARL

SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984,
1136174, and 1065276, BSF grant 2012378, a Xerox Faculty Research Award, a
Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foun-
dation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the ARL under Contract W911NF-15-
C-0205. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government.
† Research supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare,

Microsoft Faculty Fellowship, and Packard Foundation Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Department of Defense
or the U.S. Government.

Nevertheless, we identify a key structure that, if present, is sufficient
to provide FE-compatibility. Specifically, we show that assuming sub-
exponentially secure iO and sub-exponentially secure one way functions,
there exists a class of public key encryption schemes which we call
Special-CCA secure encryption schemes that are in fact, FE-compatible.

In particular, each of the following popular CCA secure encryption schemes
(some of which existed even before the notion of FE was introduced) fall
into the class of Special-CCA secure encryption schemes and are thus
FE-compatible:

1. [CHK04] when instantiated with the IBE scheme of [BB04].

2. [CHK04] when instantiated with any Hierarchical IBE scheme.

3. [PW08] when instantiated with any Lossy Trapdoor Function.

1 Introduction

Functional Encryption (FE) [SW05,SW08] is a powerful framework that signif-
icantly expands the scope of public-key encryption. In an ordinary public-key
encryption scheme, a user Alice first chooses a public key PK and a correspond-
ing secret key SK using a (master) setup algorithm Setup. Then, any other user
Bob can use Alice’s public key to encrypt a message m to obtain a ciphertext
c = Enc(PK,m). Alice can decrypt this ciphertext using her secret key, yielding
m = Dec(SK, c).

In a functional encryption scheme, we give Alice key delegation capabilities:
Alice can use a new key generation algorithm KeyGen to generate a functional
key SKf = FE.KeyGen(SK, f) for a function f that is, say, described by a circuit.
Then Alice can hand this functional key SKf to an associate Charlie, and Charlie
can use this functional key together with a new decryption algorithm to only
learn f(m) = FE.Dec(SKf , c) when given the ciphertext c. Intuitively speaking,
nothing4 beyond f(m) should be learned by Charlie when given SKf and c. This
notion was fully formalized by [BSW11] in the setting where many functional
keys and ciphertexts may be given to an adversary. The first work achieving
functional encryption for general functions was [GGH+13], using the power of
indistinguishability obfuscation.

The work of [BSW11] gave several compelling applications of functional en-
cryption. For instance, Alice may want to store her e-mail in encrypted form, but
she wants her cloud provider to be able to execute a phishing-detection circuit
C on her email prior to sending it to her for decryption. She could accomplish
this goal by providing her cloud provider with a functional key for SKC , and the
only thing the cloud provider would learn is whether any email received by Alice
satisfies the phishing-detection circuit.

Applications of functional encryption become even more compelling when
we think of Alice as representing a large organization or company. In such a

4 Slightly more formally, functional encryption requires that encryptions of two mes-
sages m0 and m1 should be indistinguishable when given functional keys correspond-
ing to any functions f that satisfy f(m0) = f(m1). See Section 3 for more details.

2

scenario, the threat that functional encryption helps to address cryptographically
is the insider threat. For example, consider an organization like a government
tax authority, that regularly handles extremely sensitive information, but where
individuals within the organization should only have access to limited digests
or snippets of this sensitive information. For example, an analyst Dave at the
tax authority may need only to compute statistical summaries of tax returns
filed by a large set of people. Functional encryption would allow Dave to obtain
a functional key SKT , where T is the description of a function that produces
statistical summaries of tax returns. The security of functional encryption would
guarantee that even if Dave goes rogue, Dave’s functional key would only allow
him to learn and exfiltrate statistical summaries, and not any more personal
information about individual tax returns beyond what could be deduced from
the statistical summary.

Contrast this to the case where only ordinary public-key encryption is used
to encrypt tax information. In this case, Dave would need the (master) secret key
SK in order to decrypt tax information before processing it to obtain statistical
summaries. And therefore a rogue Dave could exfiltrate the personal details
of any person’s tax return that was an input to the statistical summary he
was supposed to compute. This is just one example, illustrative of many such
scenarios where functional encryption could be beneficial for security.

Upgrading to Functional Encryption. Suppose that some time in the future,
an organization, upon hearing about the advantages of functional encryption,
wishes to “upgrade” to use functional encryption. Such an organization may
face many challenges. First, the organization may already have infrastructure in
place where partners and clients use an existing public-key encryption scheme to
communicate with the organization. As such, the organization may have already
amassed large amounts of encrypted data using a legacy public-key encryption
system. Second, the organization may face regulatory burdens like HIPAA or
other future regulations, that require the organization to use a particular en-
cryption algorithm. Third, it could be that, even in this future time, existing key
generation algorithms for general-purpose functional encryption (which typically
currently use indistinguishability obfuscation) are too slow, but the organization
wants to be ready for the day when such algorithms become practical.

In light of these concerns, what public-key encryption algorithm should the
organization use now? While these are mostly societal challenges, security must
exist in the context of human societies with traditions, rules, and regulations.
And in this case, these concerns give rise to an intriguing theoretical question:

What (existing) public-key encryption algorithms can be “upgraded” to become
functional encryption schemes, without changing the encryption algorithm or

the public keys?

Our paper initiates the systematic study of this question. To formalize this,
we say that a public-key encryption scheme E is FE-compatible if there exist new
key generation and decryption algorithms that, when combined with the original

3

setup and encryption algorithms of E, yield a (selectively) secure functional
encryption scheme. (See Section 3 for details.)

Necessary Conditions. The technical starting point for our work is the folklore
observation that any functional encryption scheme must satisfy a certain level
of non-malleability. To see why, consider a functional encryption scheme for
encrypting (n + 1)-bit messages m, and consider the function f1 that on input
m simply outputs the first n bits of m. Suppose that we obtain a functional key
SKf1 for this function. Then functional encryption guarantees that encryptions
of any two messages with identical n-bit prefixes should still be indistinguishable
from each other.

But suppose there was a way for an adversary to modify any encryption
FE.Enc(m) to obtain FE.Enc(m′) where m′ swapped the first and last bits of m.
This would, for example, easily be possible if one tried to encrypt the message bit-
by-bit. Then, by applying the functional key SKf1 to FE.Enc(m′), the adversary
would learn the last bit of m, and break the security that is supposed to be
guaranteed by functional encryption.

Indeed, it is not hard to see that the above argument generalizes to guar-
antee a type of security against chosen-ciphertext attacks. Thus, (a form of)
CCA-security is a necessary requirement for an encryption scheme to be FE-
compatible.

Universal Functional Encryption? At this point, it might be tempting to con-
sider the possibility that CCA-security is also a sufficient condition for being
FE-compatible. Indeed, this would be true if we had ideal obfuscation5 [Had00]
– that is, obfuscation that creates the equivalent of a virtual black box. It is
not difficult to see why: To create a functional key SKf , simply obfuscate the
function that uses SK as a hardwired constant to decrypt the input ciphertext
c to obtain the message m, and then simply output f(m). If the obfuscation
is ideal, then this functional key can easily be simulated as a black box just
by using the CCA-decryption oracle for decryption. Thus, given ideal obfusca-
tion, every CCA-secure public-key encryption scheme is FE-compatible. In this
sense, we could hope to have a kind of universal functional encryption (in the
sense of universal deniable encryption [SW14] or universal signature aggrega-
tors [HKW15]), where the key generation construction above could be applied
to any CCA-secure encryption scheme.

Recently our field has had remarkable success in achieving results using in-
distinguishability obfuscation that were previously known to be possible only
using ideal obfuscation, especially using the punctured programming paradigm
of [SW14]. Is this just a matter of applying enough “iO gymnastics” to make
this work?

Our Results. In our first result, somewhat surprisingly, we show that in this
case, the intuition based on ideal obfuscation is wrong. Specifically, we show the
following:

5 Note that ideal obfuscation is impossible to build.

4

Informal Theorem 1 Assuming CCA-secure public-key encryption, fully ho-
momorphic encryption (FHE) and LWE, there exists a CCA-secure public-key
encryption scheme that is provably not FE-compatible.

The construction we give in the impossibility result above is quite contrived,
like most impossibility results of this type. Could it be that all “natural” CCA-
secure public-key encryption schemes are FE-compatible? Sadly, we do not know
how to answer, or even formally define, this question. Nevertheless, one natu-
ral setting in which to consider this question is the well-studied random oracle
model; this model allows for very simple and intuitive proofs of CCA-security,
via the popular Fujisaki-Okamoto [FO99] transformation. In the random ora-
cle model, however, we show an even stronger negative result: Every public-key
encryption scheme, when converted into a CCA-secure encryption scheme in
the random oracle model via the Fujisaki-Okamoto transformation, is provably
not FE-compatible in the random oracle model. Thus, in the random oracle
model, we obtain a large family of natural CCA-secure schemes 6 that are not
FE-compatible. 7

In light of the impossibility results above, we believe that a systematic study
of FE-compatibility will need to proceed in a “bottom-up” manner, by looking at
existing classes of CCA-secure encryption schemes and seeing if they can indeed
be FE-compatible. We initiate this line of study by identifying a key structure
that, if present, is sufficient to provide FE-compatibility. Specifically, we show
the following:

Informal Theorem 2 Assuming sub-exponentially secure one way functions
and sub-exponentially secure iO, there exists a class of public key encryption
schemes which we call Special-CCA secure encryption schemes that are FE-
compatible.

We then note that several existing CCA-secure encryption schemes fall into
the class of Special-CCA secure encryption schemes. As a result, we get the
following theorem:

Informal Theorem 3 Assuming sub-exponentially secure indistinguishability
obfuscation and sub-exponentially secure one way functions, each of the following
existing CCA-secure encryption schemes are FE-compatible:

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.

6 We believe similarly structured transformation such as RSA-OAEP [BR94] will have
the same issues.

7 Interestingly, if the scheme is instantiated with a particular hash function family it
might actually be FE-compatible. This is somewhat the opposite of a typical RO
infeasibility results where one usually finds a scheme is provably secure in the RO
model, but is insecure under any concrete instantiation. Unfortunately, it is unclear
how to argue positive security of any such concrete FO instantiations as the usual
RO heuristic is now off limits.

5

It is interesting to note that the above CCA-secure encryption schemes are
each at least 9 years old, and yet they can be used to build functional encryption
schemes without changing the encryption mechanism. Contrast this to existing
functional encryption schemes before our work, most of which have specifically
designed encryption methods using “iO-friendly” tools.

Finally, we also consider a weaker notion called key-only FE-compatibility
where we retain only the public key and secret key of the public key encryption
scheme and design new encryption, function secret key generation and decryp-
tion algorithms to “upgrade” it to a FE scheme. In the common random string
model, we show that assuming polynomially hard iO, every public key encryption
scheme is key-only FE compatible - that is, it can be upgraded to a selectively
secure FE scheme for any function family. We refer the reader to the full version
for details regarding this notion and the corresponding results we achieve.

Open problems and future work. It would be interesting to understand if there
exists other classes of encryption schemes that are FE-compatible. More gener-
ally, an interesting open problem would be to study what is the exact type of
CCA-security needed for an encryption scheme to be FE-compatible.

While it is known that general purpose functional encryption implies indis-
tinguishability obfuscation, another interesting direction would be to weaken the
security requirement of functional encryption (for example, bounded-key secure
FE) and understand what class of encryption schemes can be upgraded without
the use of indistinguishability obfuscation. A solution in this setting might also
be practical in today’s world. Going in the other direction, an interesting feasi-
bility question is whether we can upgrade existing encryption schemes to achieve
general purpose multi-input functional encryption [GGG+14,BGJS15].

Finally, we observe that in our positive result, on upgrading the CCA secure
encryption schemes into an FE scheme, it may potentially lose the CCA property.
It is an interesting open problem to define and achieve FE-CCA compatibility8.

2 Technical Overview

The question at the core of this paper is: what kinds of public-key encryption
schemes can be “upgraded” to yield functional encryption schemes? Informally
speaking, we say that a public-key encryption scheme PKE is FE-compatible
if a functional encryption scheme can be generated where the setup and en-
cryption algorithms of the functional encryption scheme are the same as the
public-key encryption scheme. Namely, we have FE.Setup = PKE.Setup and
FE.Enc = PKE.Enc. Thus, only the functional encryption key generation and
decryption algorithms are allowed to be newly specified.

As already noted, the technical starting point for our work is the folklore
observation that any functional encryption scheme must satisfy a certain level
of non-malleability. To remind ourselves why, consider a functional encryption

8 Note that our negative result would still hold in this stronger model of FE-CCA
compatibility.

6

scheme for encrypting (n + 1)-bit messages m, and consider the function f1
that on input m simply outputs the first n bits of m. Suppose that we obtain
a functional key SKf1 for this function. Then functional encryption guarantees
that encryptions of any two messages with identical n-bit prefixes should still be
indistinguishable from each other.

But suppose there was a way for an adversary to modify any encryption
FE.Enc(m) to obtain FE.Enc(m′) where m′ swapped the first and last bits of m.
This would, for example, easily be possible if one tried to encrypt the message bit-
by-bit. Then, by applying the functional key SKf1 to FE.Enc(m′), the adversary
would learn the last bit of m, and break the security that is supposed to be
guaranteed by functional encryption.

An impossibility result. The most natural question to ask, then, is whether
CCA-security is also a sufficient condition for FE-compatibility. In our first re-
sult, we prove that this is indeed not the case: we construct a counterexample
public-key encryption scheme that satisfies CCA-security, but provably is not
FE-compatible.

Let us build some intuition for how our impossibility result will proceed.
The main difference between the CCA security game and the FE security game
is that in the CCA security game, there is a decryption oracle, whereas in the
FE security game, the adversary can actually obtain a circuit that will (at least
partially) decrypt ciphertexts. This is reminiscent of the situation underlying the
impossibility result of Barak et al. [BGI+01] for virtual black-box obfuscation:
There, the ideal model gave oracle access to the function to be obfuscated,
whereas the real model gave the adversary an actual circuit implementing that
function. Indeed, we draw inspiration from [BGI+01] in devising our negative
result, although we differ from it in almost every technical respect.

The idea behind our negative result will be to take an arbitrary CCA-
secure encryption scheme (SetupCCA,EncCCA,DecCCA) and somehow “damage”
it to make it FE-incompatible, without disturbing its CCA security. This “dam-
aged scheme” must somehow make use of the fact that an FE-adversary will be
able to ask for and obtain a functional key SKf1 , let us say for the same prefix-
revealing function f1 that we defined above. This functional key SKf1 enables
the FE-adversary to compute a prefix-decryption circuit D that outputs the first
n bits of the message corresponding to any ciphertext.

Our first idea (which conceptually dates back to [BGI+01]) is to use fully
homomorphic encryption (FHE) to help us take advantage of this situation. We
first choose a random n-bit string α, and encrypt it c = EncCCA(α||0) using the
CCA-secure encryption scheme. But then we re-encrypt this c′ = FHE(c) using
the fully homomorphic encryption scheme. We reveal c′ as part of the public key
of the “damaged scheme,” but crucially both α and c are kept hidden.

Why does this help? Because now an FE-adversary that obtains the prefix-
decryption circuit D can compute FHE.Eval(D, c′) = FHE(α). While it is not yet
clear that this is useful for any attack, we observe that, at least intuitively, a
CCA-attacker has no obvious way to obtaining FHE(α) from the public key and
the decryption oracle (though formally proving this will be the main technical

7

challenge of our impossibility result, as we will discuss shortly). This is because
the only information that the CCA-attacker has about α is contained in c′, but c′

is an encryption under FHE and the decryption oracle only decrypts ciphertexts
validly encrypted using EncCCA.

To enable a real attack, then, we also add to the public key an obfuscation
of a program P that takes as input an FHE ciphertext e, decrypts it, and checks
whether this decryption is equal to α. If so, it outputs the secret key needed for
executing DecCCA, otherwise it outputs ⊥. Because the FE-attacker can obtain
FHE(α) as noted above, it can then use the obfuscated program to obtain the
full secret key for executing DecCCA, breaking the security of the FE scheme.

Why these changes preserve CCA security. The changes above – adding the FHE
ciphertext c′ and the obfuscated program P to the public key – only provide an
impossibility result if CCA security is preserved even after these two objects are
added to the public key. While it is not obvious how a CCA-attacker could use
these objects to break security, in order to prove CCA security, intuitively we will
need to remove the dependence of c′ on α. But c′ = FHE(EncCCA(α||0)), and the
obfuscated program P contains the secret key for FHE. But in order to remove
these secret keys from P , intuitively we need to remove the “trigger” point
FHE(α) from the code of P , for which we first need to remove the dependence
of c′ on α. This chicken-and-egg situation is the primary technical obstacle that
we need to overcome to finish the proof.

To deal with this problem, we draw inspiration from the work of Myers and
Shelat [MS09] and Hohenberger, Lewko and Waters [HLW12] that considered
the seemingly very different problem of converting any CCA-secure encryption
scheme for single-bit messages into a CCA-secure encryption scheme for multi-
bit messages. However, to implement our inspiration, we will need to make a
technical change to the encryption system. Instead of using EncCCA to encrypt
the entire n+ 1-bit message, we will use the CCA-secure encryption schemes to
encrypt the first n bits of the message, and use a separate encryption scheme
EncCPA to encrypt the last bit of the message. (In fact, we will use EncCCA
to jointly encrypt the first n bits of the message and the ciphertext produced
by EncCPA. But we will ignore this detail for the purpose of this overview.)
Finally, we will change our obfuscated program P to output just the secret
key for executing DecCPA to decrypt the last bit. This way, the secret key for
executing DecCCA is independent of the program P . Now, we will define a Bad
Event to be when a CCA-attacker queries its decryption oracle on the ciphertext
c = EncCCA(α). Looking ahead, we will first consider the situation when this Bad
Event does not happen. Then, we will show that indeed the Bad Event can only
occur with negligible probability.

Suppose that we know that the Bad Event cannot happen. Then, the de-
cryption oracle given to the CCA-attacker is equivalent to a decryption oracle
that would be given to a CCA-attacker if c = EncCCA(α) was the “challenge”
ciphertext on which the attacker is not allowed to query. Note that in this case,
the CCA security of EncCCA already guarantees that c = EncCCA(α) is indistin-
guishable from c = EncCCA(0n), even to an adversary that is given the obfuscated

8

program P as auxiliary information about α. Thus, we can already remove the
dependence of c′ on α.

Now, the only part of the public key that depends on α is the obfuscated
program P , and we just need to get rid of it. This could be accomplished via
iO using the fact that α is a uniformly random string, but in fact our job is
made even easier due to the recent works on “lockable obfuscation” of Goyal
et al. [GKW17] and Wichs and Zirdelis [WZ17]. These works consider obfuscat-
ing programs C(x) whose structure is exactly such that, for some circuit Test
if Test(x) = α, then some secret β is revealed, and otherwise the output is ⊥.
Lockable obfuscation states that if α is chosen uniformly (and, for our setting,
no auxiliary information about α is revealed), then such obfuscated programs
are indistinguishable from obfuscated programs that always output ⊥ and have
no secrets within them whatsoever. Furthermore, such lockable obfuscation is
possible to construct just assuming LWE for suitable parameters. Thus, apply-
ing the security of lockable obfuscation, we are able to replace the obfuscated
program P with a program that always outputs ⊥, thereby completely removing
any information about the secret keys of any encryption scheme and about α.
This shows that the new scheme is CCA-secure, under the assumption that the
Bad Event does not occur.

All that remains to be done is to prove that the Bad Event does not occur.
Counterintuitively, we first observe that the lockable obfuscation argument above
already shows that the Bad Event cannot occur if the ciphertext c had been
c = EncCCA(0n) instead of c = EncCCA(α). In other words, if c = EncCCA(0n),
then the adversary never queries the decryption oracle with c. Now, suppose for
sake of contradiction, that the adversary does query c with noticeable probability
if c = EncCCA(α). Then, we can use this to break CCA-security of EncCCA; take
as a challenge ciphertext c that is either c = EncCCA(α) or c = EncCCA(0n).
Then run the adversary until it attempts to query the oracle on c. If it ever does
this, we can conclude that c = EncCCA(α). If it doesn’t, then we can output a
random guess. This will give us an nontrivial advantage in determining whether
c = EncCCA(α) or c = EncCCA(0n).

This completes the impossibility proof. Full details can be found in Section 4.

For the impossibility result that applies to CCA secure encryption schemes built
using the Fujisaki-Okamoto transformation in the random oracle model, we refer
the reader to the full version of the paper.

Positive Results for FE-compatibility. Our impossibility result shows that CCA
security is not a sufficient condition for an encryption scheme to be FE-compatible.
On the other hand, unfortunately positive results on FE in the literature (e.g.
[GGH+13,Wat14]) typically construct special-purpose encryption methods that
are atypical for achieving CCA security. For instance, even though the original
general-purpose FE scheme of [GGH+13] follows the Naor-Yung paradigm
[NY90,Sah99], instead of using a simulation-sound NIZK in the encryption, it
uses a special object introduced in [GGH+13] called a statistically simulation-
sound NIZK. Recall that our goal is to find existing CCA-secure encryption

9

schemes that are already FE-compatible, rather than design special-purpose
(sometimes called “iO friendly”) primitives that would enable FE.

How can we go about this? Let us try to see if there are encryption mecha-
nisms that were useful in achieving CCA-security that can also be sufficient for
achieving FE.

Our key observation is that the notion of a punctured decryption key, which
has implicitly been used for building CCA-security for over a decade, since (at
least) the work of [CHK04], can also be useful for building FE functional keys.
Roughly speaking, we consider the notion of a tag-based encryption, where every
ciphertext is associated with a tag. Then, a punctured decryption key SKtag∗

should allow a user to decrypt every ciphertext with tag 6= tag∗, but messages
encrypted under tag tag∗ should still be semantically secure. Intuitively, such
punctured keys have been useful for building CCA-secure encryption because
a punctured decryption key would allow the implementation of a decryption
oracle that would still not be able to decrypt a challenge message that was
encrypted under tag tag∗. In the literature, such schemes are combined with
one-time signature schemes, where the tag is set to be the verification key of
such a one-time signature scheme, and then the ciphertext is signed in a way
that verifies with this key.

How can we use this idea for building FE functional keys? At a high level,
we start with the most basic idea for building a functional key for a function
f . We can simply obfuscate a program that has the decryption key built in,
uses this decryption key to decrypt the message m, and then outputs f(m).
Now, we need to argue that the encryption of m0 and the encryption of m1

should be indistinguishable as long as f(m0) = f(m1) = y. The first idea is
to fix the verification key VK∗ in advance that will be used as the tag for the
challenge ciphertext c∗. Now, we can reformulate the obfuscated program to first
check whether the input ciphertext is equal to c∗, in which case the program
should output y, but otherwise it should just use the decryption key to decrypt
the message m, and then output f(m) as before. This program is functionally
equivalent to the previous one, and therefore indistinguishability of obfuscated
programs follows from iO.

Now, our goal will be to replace the decryption key within the program
with the punctured decryption key SKVK∗ . However, note that we cannot do
that immediately, because there are many valid ciphertexts for various messages
m that could be signed under verification key VK∗, on which the program is
supposed to output f(m). However, we know that it should be hard for the
adversary to actually find such valid ciphertexts, because of the security of the
one-time signature scheme. Here, we can use sub-exponentially secure iO to
complete the argument: Roughly speaking, the work of [BCP14] shows that if an
iO scheme is secure against time T ·poly(n) adversaries, then iO(P1) and iO(P2)
are indistinguishable as long as: (1) they only differ on at most T inputs, and
(2) these inputs are hard to find even if given the code of both P1 and P2, even
for machines whose running time far exceed T . By using this, assuming also sub-
exponentially secure one-time signatures (which follow from sub-exponentially

10

strong one-way functions), we can replace the program with one that first checks
whether the input ciphertext is equal to c∗, in which case the program outputs y,
but otherwise it uses the punctured decryption key SKVK∗ to decrypt the message
m, and then output f(m) as before.

Now, since only this punctured decryption key SKVK∗ is used, we can argue
that an encryption of m0 under tag VK∗ is indistinguishable from an encryption
of m1 under tag VK∗. Thus, we show how to bootstrap punctured decryption
keys as an existing method for building CCA-secure encryption, into a method
for constructing functional keys without needing to change the underlying en-
cryption scheme. Interestingly, the security of the encryption given a punctured
decryption key needs to hold only against polynomial-time adversaries, as in
standard proofs of CCA-security.

We observe that at least three different existing CCA-secure schemes from
the literature, some dating back over a decade, already follow the punctured key
approach to building CCA-secure encryption, and therefore are FE-compatible.
Full details can be found in Section 5.

2.1 Preliminaries and Organization.

We refer the reader to the full version for definitions of the following primitives:
public key encryption, indistinguishability obfuscation, differing inputs obfusca-
tion, lockable obfuscation and fully homomorphic encryption.

In Section 3, we define the notion of FE-compatibility. In Section 4 we show
the impossibility result. Finally, in Section 5, we show the constructions of FE-
compatible CCA secure encryption schemes.

3 Defining Functional Encryption Compatibility

Throughout, let the security parameter be denoted by n. Let X = {Xn}n∈N
and Y = {Yn}n∈N denote ensembles where each Xn and Yn is a finite set.
Let F = {Fn}n∈N denote an ensemble where each Fn is a finite collection of
functions, and each function f ∈ Fn takes as input a string x ∈ Xn and outputs
f(x) ∈ Yn.

We first define the notion of functional encryption(FE) in the next subsection
and then, we define what it means for a public key encryption scheme to be
FE-Compatible.

3.1 Functional Encryption

A functional encryption scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) for
a family of message spaces {Xn}, a family of output spaces {Yn} and a family
of functions F consists of the following polynomial time algorithms:

– FE.Setup(1n). The setup algorithm takes as input the security parameter n
and outputs a master public key-secret key pair (MPK,MSK).

11

– FE.Enc(MPK, x)→ CT. The encryption algorithm takes as input a message
x ∈ Xn and the master public key MPK. It outputs a ciphertext CT.

– FE.Keygen(MSK, f) → SKf . The key generation algorithm takes as input a
function f ∈ Fn and the master secret key MSK. It outputs a function secret
key SKf .

– FE.Dec(SKf ,CT) → y. The decryption algorithm takes as input a secret key
SKf and a ciphertext CT. It outputs a string y ∈ Yn or ⊥.

Definition 1. (Correctness) A functional encryption scheme FE for F is correct
if for all f ∈ Fn and all x ∈ Xn

Pr

 (MPK,MSK)← FE.Setup(1n)
SKf ← FE.Keygen(MSK, f)

FE.Dec(SKf ,FE.Enc(MPK, x)) = f(x)

 = 1

where the probability is over the random coins of FE.Setup,FE.Enc,FE.Keygen
and FE.Dec.

Security We define the security notion for a functional encryption scheme us-
ing the following game (Adaptive− IND) between a challenger and an adversary.

Setup Phase: The challenger generates (MPK,MSK)← FE.Setup(1n) and then
hands over the master public key MPK to the adversary.
Key Query Phase 1: The adversary makes function secret key queries by sub-
mitting functions f ∈ Fn. The challenger responds by giving the adversary the
corresponding function secret key SKf ← FE.KeyGen(MSK, f).
Challenge Phase: The adversary chooses two messages (m0,m1) of the same
size (each in Xn) such that for all queried functions f in the key query phase,
it holds that f(m0) = f(m1). The challenger selects a random bit b ∈ {0, 1} and
sends a ciphertext CT← FE.Enc(MPK,mb) to the adversary.
Key Query Phase 2: The adversary may submit additional key queries f ∈Fn

as long as they do not violate the constraint described above. That is, for all
queries f , it must hold that f(m0) = f(m1).
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s

advantage in this game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (Selective− IND) where
the adversary outputs the challenge message pair even before seeing the master
public key.

Definition 2. A functional encryption scheme FE is selective/adaptive secure if
all PPT adversaries have at most a negligible advantage in the Selective− IND/
Adaptive− IND security game.

We can also parameterize by the number of function secret key queries the
adversary can make in the security game.
Compactness[AJ15] : A functional encryption scheme is said to be com-
pact if the size of the ciphertext does not depend on the size of the functions

12

that the scheme can handle. That is, let p(·) be a polynomial. Now, any func-
tional encryption scheme FE for a class of functions F is said to be compact if
|FE.Enc(MPK, x)| = p(n, |x|) where n is the security parameter.

3.2 FE-Compatibility

In this section, we define a property called FE-Compatibility for any public key
encryption scheme.

Definition 3. A public key encryption scheme PKE = (PKE.Setup,PKE.Enc,
PKE.Dec) is said to be selective/adaptive FE-Compatible relative to a family of
functions F if there exists two algorithms (FE.Keygen,FE.Dec) such that (FE.Setup,
FE.Enc,FE.Keygen,FE.Dec) is a selectively/adaptively secure functional encryp-
tion scheme for the family F where:

– FE.Setup(n) = PKE.Setup(n). In particular, if PKE.Setup(n) outputs (PK,SK),
the output of FE.Setup(n) is (MPK = PK,MSK = SK).

– FE.Enc(MPK,m) = PKE.Enc(PK,m).

Remark: Moreover, any such FE scheme is also compact because the size of the
ciphertext is determined by the scheme PKE and doesn’t depend on the size of
the functions being queried.

4 An Impossibility Result

In this section, we will construct an IND-CCA secure encryption scheme that
is not FE-Compatible according to Definition 3. Consider a function f1 that on
any input x of length (n + 1) bits, outputs the first n bits of x. Formally, we
prove the following theorem:

Theorem 1. Assuming the existence of lockable obfuscation, fully homomor-
phic encryption and IND-CCA secure public key encryption, the scheme PKE =
(PKE.Setup,PKE.Enc,PKE.Dec) described below is an IND-CCA secure public
key encryption scheme that is not selective FE-Compatible even for a single
function secret key query for any function family F such that f1 ∈ F .

We know how to construct lockable obfuscation with perfect correctness from
the learning with errors (LWE) assumption[GKW17,WZ17]. As a result, we get
the following corollary:

Corollary 2 Assuming LWE, fully homomorphic encryption and the existence
of IND-CCA secure public key encryption, the scheme PKE = (PKE.Setup,PKE
.Enc,PKE.Dec) described below is an IND-CCA secure public key encryption
scheme that is not selective FE-Compatible even for a single function secret
key query for any function family F such that f1 ∈ F .

13

Notation: Let the security parameter be n. Let (SetupCPA,EncCPA,DecCPA) be an
IND-CPA secure encryption scheme that encrypts 1 bit messages and produces
ciphertexts of length l1(n), (SetupCCA,EncCCA,DecCCA) be a CCA secure encryp-
tion scheme that encrypts messages of length (n+1+l1(n)) and produces cipher-
texts of size l2(n). Let FHE = (FHE.Setup,FHE.Enc,FHE.DecFHE.Eval) be a fully
homomorphic encryption scheme that encrypts messages of length (l1(n)+l2(n))
and can evaluate any Poly(n)-sized circuit. Let (O,Eval) be a secure lockable ob-
fuscator for all Poly(n)-sized circuits that take inputs of size l2(n) and produce
outputs of size n. Our scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) that en-
crypts messages of length (n+ 1) is as follows:

– PKE.Setup(1n):
1. Compute (PKCPA,SKCPA)← SetupCPA(1n), (PKCCA,SKCCA)← SetupCCA(

1n) and (PKFHE,SKFHE)← FHE.Setup(1n).
2. Choose a random string α ∈ {0, 1}n.
3. Compute CT′CPA = EncCPA(PKCPA, 0) and CT′CCA = EncCCA(PKCCA, α||0||

CT′CPA). Let CT′ = (CT′CCA,CT
′
CPA). (In fact, CT′ is an encryption of

(α||0) using the encryption algorithm PKE.Enc described next).
4. Compute CT′FHE = FHE.Enc(PKFHE,CT

′).
5. Generate P̃ = O(n, P, SKCPA, α) using the tester program P described

in Figure 1 where n is the security parameter, P is the program, SKCPA

is the message and α is the lock value. In particular, the functionality of
the obfuscated program P̃ is described in Figure 2. Note that Figure 2
is just for intuition and does not correspond to a formal specification.

6. Output the public key as PK = (PKCPA,PKCCA,PKFHE,CT
′
FHE, P̃). The

secret key of the scheme is SK = SKCCA.
– PKE.Enc(PK,m):

1. Given an (n+ 1) bit message m, let p be the last bit of m.
2. Compute CTCPA = EncCPA(PKCPA, p).
3. Compute CTCCA = EncCCA(PKCCA,m||CTCPA).
4. Output the ciphertext CT = (CTCCA,CTCPA).

– PKE.Dec(SK,CT):
1. Parse CT = (CTCCA,CTCPA). Recall that SK = SKCCA.
2. Let (m||y) = DecCCA(SKCCA,CTCCA).
3. If the above decryption outputs ⊥ or if y 6= CTCPA, output ⊥.
4. Else, output the message m.

Program P

Input : FHE ciphertext CTFHE

Constants : SKFHE

1. Output FHE.Dec(SKFHE,CTFHE).

Fig. 1: Tester Program (as in lockable obfuscation notation)

14

Program P̃

Input : FHE ciphertext CTFHE

Constants : SKFHE, α,SKCPA

1. Compute y← FHE.Dec(SKFHE,CTFHE).
2. If y = α, output SKCPA. Else, output ⊥.

Fig. 2: Functionality of lockable obfuscated tester program

We now prove Theorem 1.

Correctness: It can be observed that if the schemes (SetupCPA,EncCPA,DecCPA)
and (SetupCCA,EncCCA,DecCCA) are correct except with negligible probability,
then PKE is correct except with negligible probability. That is, PKE.Dec(PKE.Enc
(PK,m),SK) = m for any message m ∈ {0, 1}(n+1).

To prove our theorem we need to show two things. First, we will show that
any candidate functional encryption scheme that includes a “all but last bit
reveal” functionality which shares the setup and encrypt algorithms with the
above public key encryption scheme must be insecure. Second, we show that the
scheme PKE actually does have IND-CCA security under certain assumptions.
Putting these together will yield our theorem.

4.1 An Attack

In this section, assuming the correctness of the encryption schemes used and
correctness of the obfuscator, we show that the above scheme PKE is not FE-
Compatible. Suppose it is indeed FE-Compatible. We will arrive at a contradic-
tion. Formally, we prove the following lemma.

Lemma 1. Any scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) where FE
.Setup(.) = PKE.Setup(.) and FE.Enc(.) = PKE.Enc(.) is not selectively secure
even for just 1 function secret key query for any function family F such that
f1 ∈ F .

Proof. Consider a FE adversary A who interacts with a FE challenger in the
selective IND-security game as follows:

1. In the first round, A submits two messages m0 = (0n||0) and m1 = (0n||1).
2. A asks for a function secret key corresponding to the following function f1:

on input x of length (n + 1) bits, f1(x) outputs the first n bits of x. Note
that since the first n bits of m0 and m1 are equal, this is a valid function
secret key query.

15

3. The challenger runs the setup algorithm and generates PK,SK. He gives PK
to the adversary along with the function secret key SKf1 . Also, the challenger
picks a bit b at random and sends CT∗ = PKE.Enc(PK,mb).

4. Let the challenge ciphertext be CT∗ = (CT∗CCA,CT
∗
CPA). The adversary com-

putes a FHE ciphertext CTFHE = FHE.Eval(FE.Dec(SKf , ·),CT′FHE) using the
ciphertext CT′FHE in the public key and the function secret key SKf . A then

runs the obfuscated program P̃ on input CTFHE. That is, run Eval(P̃ ,CTFHE)
to receive output SK′CPA. It then computes b′ = DecCPA(SK′CPA,CT

∗
CPA) and

outputs b′ to the challenger.

Analysis: We now show why the adversary’s guess b′ is equal to the challenger’s
random bit b except with negligible probability. From the correctness of the FE
scheme, SKf1 must be a correct function secret key for the function f1. First, from
the correctness of the FHE scheme, observe that CTFHE = FHE.Eval(SKf ,CT

′
FHE)

is an encryption of the random string α using the algorithm FHE.Enc. Now,
notice that when this ciphertext CTFHE is a correct encryption of α. So, when it
is fed as input to the program P̃ , from the correctness of lockable obfuscation,
the program outputs the secret key of the IND-CPA secure encryption scheme
- SKCPA (which we denoted as SK′CPA). Therefore, now the adversary’s strategy
easily follows. A uses SKCPA to decrypt CT∗CPA and from the correctness of the
IND-CPA secure encryption scheme, this decrypts to give the value b correctly,
which is the adversary’s output.

Hence, the adversary can break the selective IND-security of the FE scheme
which is a contradiction. Note that the negligible error comes from the fact that
the IND-CPA secure encryption scheme, the FE scheme, the lockable obfuscation
scheme and the FHE scheme are all correct except with negligible probability.

4.2 IND-CCA Security

We now prove that the scheme is IND-CCA secure. Our proof strategy is or-
ganized along the lines around detecting a bad query event which follows the
work of Myers and Shelat[MS09] and Hohenberger, Lewko and Waters[HLW12]
who proved multibit CCA security from the existence of 1-bit CCA security.
Formally, we prove the following lemma:

Lemma 2. Assuming the hardness of learning with errors (LWE), (SetupCPA,
EncCPA,DecCPA) is an IND-CPA secure public key encryption scheme and (SetupCCA,
EncCCA,DecCCA) is an IND-CCA secure public key encryption scheme, PKE =
(PKE.Setup,PKE.Enc,PKE.Dec) is an IND-CCA secure public key encryption
scheme.

Proof. We begin our proof by defining a “Bad-Query” event that is defined
within the context of the attacker playing the IND-CCA security game on the
encryption scheme PKE.

Definition 4. (Bad Query Event): Let PK be the public key of the scheme
PKE that is given to the adversary. We say that a bad query event has occurred

16

during an execution of the IND-CCA security game between the adversary A and
the challenger if A makes a decryption query of the form CT = (CT1,CT2) such
that CT1 = CT′CCA, where CT′CCA was created by the setup algorithm PKE.Setup.

In order to prove IND-CCA security of our scheme, we will rely on the following
claim :

Claim. A Bad Query Event does not take place except with negligible probability
in n, where the probability is taken over the coins of the adversary and the
challenger playing the IND-CCA security game.

We defer the proof of this claim to the next section. Here, we show that our
scheme is IND-CCA secure assuming the claim holds true. We will prove this
via a series of hybrid experiments where we show that every successive pair of
hybrids is computationally indistinguishable and the final hybrid is independent
of the challenge bit b and hence the attacker’s advantage will be 0 in the final
hybrid.

– Hyb1: This is the real world experiment with challenge bit b chosen randomly.
The challenge ciphertext is CT∗ = (CT∗CCA,CT

∗
CPA).

– Hyb2: This hybrid is identical to the previous hybrid except that now, the
decryption oracle rejects9 for any ciphertext query CT = (CT1,CT2) if CT1 =
CT′CCA. Note that the oracle also continues to reject the challenge ciphertext
as before.

– Hyb3: This hybrid is identical to the previous hybrid except that during
setup, CT′CCA is now computed as CT′CCA = EncCCA(PKCCA, 0

n+1||CT′CPA).
– Hyb4: This hybrid is identical to the previous hybrid except that in the public

key, P̃ is replaced with the simulated obfuscated program - i.e Sim(n, 1|P |,
1|SKCPA|) where Sim is the simulator of the lockable obfuscation scheme.

– Hyb5: This hybrid is identical to the previous hybrid except that in the
challenge ciphertext CT∗ = (CT∗CCA,CT

∗
CPA), CT∗CPA is now computed inde-

pendent of the bit b as follows: CT∗CPA = EncCPA(PKCPA, 0).
– Hyb6: This hybrid is identical to the previous hybrid except that now, the

decryption oracle also rejects any ciphertext query CT = (CT1,CT2) if CT1 =
CT∗CCA.

– Hyb7: This hybrid is identical to the previous hybrid except that in the
challenge ciphertext, CT∗CCA is now computed independent of the bit b as
follows: CT∗CCA = EncCPA(PKCCA, 0

n+1||CT∗CPA).

Observe that in this last hybrid, the challenge ciphertext is created independent
of the bit b. Hence, the attacker’s advantage in this hybrid is negligible.

We will now show the indistinguishability of every successive pair of hybrids.

Claim. Assuming Claim 4.2 holds, Hyb1 is computationally indistinguishable
from Hyb2.

9 Throughout the paper, we use rejecting an input and producing output ⊥ for the
input interchangeably.

17

Proof. The only difference between the two hybrids is that in Hyb2, the decryp-
tion oracle rejects queries of the form CT = (CT1,CT2) where CT1 = CT′CCA
while such queries are not rejected by the oracle in Hyb1. However, Claim 4.2
essentially proves that such queries (which we have defined as the occurrence of
a bad query event) are never made by the adversary except with negligible prob-
ability. Therefore, if Claim 4.2 holds, Hyb1 is computationally indistinguishable
from Hyb2.

Claim. Assuming that (SetupCCA,EncCCA,DecCCA) is an IND-CCA secure en-
cryption scheme, Hyb2 is computationally indistinguishable from Hyb3.

Proof. The only difference is that in Hyb2, CT′CCA = EncCCA(PKCCA, α||0||CT′CPA)
while in Hyb3, CT′CCA = EncCCA(PKCCA, 0

n+1||CT′CPA). We can show that if there
exists an adversary A that can distinguish between these two hybrids, there
exists an adversary B that can break the CCA security of the encryption scheme
(SetupCCA,EncCCA,DecCCA). We defer the details of the proof to the full version.

Claim. Assuming that (O,Eval) is a secure lockable obfuscator, Hyb3 is compu-
tationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is that in Hyb3, the public
key contains O(n, P, SKCPA, α) while in Hyb4, it contains the simulated program
- Sim(n, 1|P |, 1|SKCPA|). Since α is picked uniformly at random and is used only as
the lock value in the obfuscated program and nowhere else, from the security of
lockable obfuscation, the two hybrids will be computationally indistinguishable.
We now describe the reduction.

Consider an adversary A that can distinguish between these two hybrids. We
will now design a reduction Alock that uses A to break the security of the lockable
obfuscation scheme. Alock interacts with A and runs the experiment exactly as in
Hyb3 except generating the obfuscated program. Alock interacts with a challenger
C for the lockable obfuscation scheme.Alock sends the program P and the message
SKCPA to the challenger C. C sends back eitherO(n, P,SKCPA, α) where α is picked
uniformly at random or a simulated obfuscated circuit Sim(n, 1|P |, 1|SKCPA|).
Alock sets this as the obfuscated circuit P̃ and continues with the experiment as
in Hyb3. Now, it easily follows that if A can distinguish between the two hybrids,
Alock can use the same distinguishing guess to break the security of the lockable
obfuscation scheme which is a contradiction.

Claim. Assuming that (SetupCPA,EncCPA,DecCPA) is an IND-CPA secure encryp-
tion scheme, Hyb4 is computationally indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is in the challenge cipher-
texts. In Hyb4, CT∗CPA = EncCPA(PKCPA, pb) while in Hyb5, CT∗CPA = EncCCA(PKCPA,
0). Here, p is the last bit of the message mb. We can show that if there ex-
ists an adversary A that can distinguish between these two hybrids, there ex-
ists an adversary B that can break the CPA security of the encryption scheme
(SetupCPA,EncCPA,DecCPA). We defer the details of the proof to the full version.

18

Claim. Hyb5 is identical to Hyb6.

Proof. The only difference between the two hybrids is that in Hyb6, the de-
cryption oracle rejects any ciphertext query CT = (CT1,CT2) if CT1 = CT∗CCA.
First, observe that if CT2 = CT∗CPA, then CT is in fact the challenge ciphertext
CT∗ itself and hence even Hyb6 would reject the query. On the other hand, if
CT2 6= CT∗CPA but CT1 = CT∗CCA, then, DecCCA(SKCCA,CT1) produces (m∗, y∗)
such that y∗ 6= CT2. This is because y∗ would in fact be equal to CT∗CPA. Hence,
even Hyb5 would reject these queries and so the two hybrids are identical.

Claim. Assuming that (SetupCCA,EncCCA,DecCCA) is an IND-CCA secure en-
cryption scheme, Hyb6 is computationally indistinguishable from Hyb7.

Proof. The only difference between the two hybrids is in the challenge cipher-
text CT∗ = (CT∗CCA,CT

∗
CPA). In Hyb6, CT∗CCA = EncCCA(PKCCA,mb||CT∗CPA) while

in Hyb7, CT∗CCA = EncCCA(PKCCA, 0
n+1||CT∗CPA). We can show that if there ex-

ists an adversary A that can distinguish between these two hybrids, there ex-
ists an adversary B that can break the CCA security of the encryption scheme
(SetupCCA,EncCCA,DecCCA). We defer the details of the proof to the full version.

4.3 Proof of Claim 4.2

Instead of proving the claim directly, we first prove it for an alternate IND-CCA
security game and then show how it holds even in the actual IND-CCA security
game.

Alternate IND-CCA Game. This is same as the original game except that the
Challenger now computes CT′CCA during setup as follows: CT′CCA = EncCCA(PKCCA,
0n+1||CT′CPA). That is, α is no longer part of the message being encrypted. For
this alternate IND-CCA game, the Bad Query Event remains the same: i.e, the
event occurs if the adversary makes a query CT = (CT1,CT2) to the decryp-
tion oracle where CT1 = CT′CCA. Now, via a sequence of hybrids, we show that
Claim 4.2 holds for this alternate IND-CCA game. That is, we show that the
Bad Query Event happens with negligible probability.

– Hyb1: This hybrid corresponds to the alternate IND-CCA game as described
above.

– Hyb2: This hybrid is identical to the previous hybrid except that in the public
key, P̃ is replaced with the simulated obfuscated program - i.e Sim(n, 1|P |,
1|SKCPA|) where Sim is the simulator of the lockable obfuscation scheme.

– Hyb3: This hybrid is identical to the previous hybrid except that the cipher-
text CT′FHE is now computed as CT′FHE = FHE.Enc(PKFHE, 0

l1(n)+l2(n)).

We now show that every successive pair of hybrids is computationally indis-
tinguishable. This proves that the probability that the Bad Query Event occurs
is the same for every pair of successive hybrids. Finally, we show that in the last
hybrid Hyb4, the probability that the Bad Query Event occurs is negligible.

19

Claim. Assuming that (O,Eval) is a secure lockable obfuscator, Hyb1 is compu-
tationally indistinguishable from Hyb2.

Proof. The proof is same as the proof of Claim 4.2.

Claim. Assuming that (FHE.setup,FHE.enc,FHE.dec) is an IND-CPA secure
fully homomorphic encryption scheme, Hyb2 is computationally indistinguish-
able from Hyb3.

Proof. The proof is same as the proof of Claim 4.2.

Claim. Pr[Bad Query Event occurs in Hyb3] = negligible(n).

Proof. This is because the ciphertext CT′CCA does not appear at all in the pub-
lic key anymore! Even if the adversary knew the value of (CT′CPA), the only
information that the adversary has about CT′CCA is that it is an encryption of
(0n+1||CT′CPA) using public key PKCCA.

First, observe that the number of possible ciphertexts for the message (0n+1||
CT′CPA) must be at least super-polynomial in n. This follows from the CPA secu-
rity of the encryption scheme (SetupCCA,EncCCA,DecCCA) because if this wasn’t
true, a polynomial time adversary can break the CPA security by generating all
possible ciphertexts for (0n+1||CT′CPA) and testing it with the challenge cipher-
text.

Now, notice that to make the Bad Query Event occur, the adversary will
just have to guess the value of CT′CCA (or the randomness that was used in
the encryption to generate CT′CCA) and this can be done only with negligible
probability.

Original IND-CCA Game. We show that the Bad Query Event happens only
with negligible probability even in the original IND-CCA game. Formally, we
prove the following lemma:

Lemma 3. Assuming (SetupCCA,EncCCA,DecCCA) is a CCA secure encryption
scheme and that the Bad Query Event does not occur in the Alternate CCA
game described above except with negligible probability, the Bad Query Event
does not occur in the original CCA security game for the encryption scheme
PKE except with negligible probability.

Proof. Suppose there exists an adversary A that makes the Bad Query Event
occur with non-negligible probability. We now construct an algorithm B that
breaks the IND-CCA security of (SetupCCA,EncCCA,DecCCA). B acts as the chal-
lenger of the IND-CCA security game for the scheme PKE in its interaction with
A. First, B interacts with its challenger and receives the public key PKCCA. B then
runs the setup algorithm PKE.Setup,(except the SetupCCA part) to compute the
public keys PKCPA,PKFHE. It computes CT′CPA as done by the setup algorithm.
B then sends the pair (α||0||CT′CPA, 0n+1||CT′CPA) as the two challenge messages
to the challenger and sets the response as CT′CCA. B continues with the rest of
the game acting as the challenger to A. Whenever A makes a decryption query

20

(CT1,CT2), if CT1 6= CT′CCA, it queries the decryption oracle of its challenger
with CT1 and uses this to respond to A as done in the original game. Similarly,
B also creates the challenge ciphertext. If B ever receives a query (CT1,CT2)
from A to the decryption oracle such that CT1 = CT′CCA, it immediately halts
the game with A and outputs the guess 0 to its challenger. If such a query never
happens, it outputs 1 to the challenger after completing the game with A.

We now analyze why this works. The algorithm B knows that if its challenger
gave an encryption of 0n+1, then its interaction with A corresponds to the al-
ternate IND-CCA game described earlier. Here, we know that the adversary A
can not make the Bad Query Event occur. Therefore, if the adversary A makes
the Bad Query Event occur, then it must occur in the case that CT′CCA is an
encryption of (α||0||CT′CPA). Hence, B guesses 0 in that case. On the other hand,
if the adversary A does not make the Bad Query Event occur, then it must
be the case that 0n+1 was encrypted. This is because we assumed that A can
make the Bad Query Event occur with non-negligible probability in the original
IND-CCA security game. This completes the proof.

Note that the reduction is actually not interested in completing the game
with A in the event that B halts. That is, B does not care whether A wins the
IND-CCA game but is rather more interested in whether A makes a Bad Query
Event occur.

Remark: At first glance, there seems to be a circularity issue in trying to prove
IND-CCA security of our scheme. That is, in order to prove indistinguishability
of the main hybrids, we require to first erase α which depends on no queries
being made to the decryption oracle that contain CT′CCA. On the other hand, it
seems difficult to directly argue that no such queries are made because of the
presence of α in CT′CCA. This causes a circularity. We get around this issue using
the alternate IND-CCA game where α is erased. In this game, we show that
the bad query event can’t occur and then using a reduction to the underlying
encryption scheme’s security, we can eventually show that the bad query event
does not occur even in the original CCA security game.

This technique is very similar to [MS09,HLW12]. In these works, they con-
struct CCA secure encryption and in the process, they run into a similar circu-
larity issue. The analog of α was the randomness used for encryption and this
randomness is in fact encrypted by an inner encryption scheme.

This completes the proof of Theorem 1.

5 Building FE-Compatible Encryption Schemes

We first define a new notion called puncturable tag based encryption10. In the
next subsection, we show how to construct a selective IND-CCA secure public
key encryption scheme from any puncturable tag based encryption scheme. We

10 Previously, [MH14] also introduced a primitive called puncturable tag based encryp-
tion which is completely different from the one we define here.

21

call such a selective IND-CCA secure public key encryption scheme as “Special-
CCA”. In the following subsection, we show how to instantiate a “Special-CCA”
secure encryption scheme with several existing popular encryption schemes in
literature. Finally, we show that this “Special-CCA” secure public key encryption
scheme is FE-Compatible.

5.1 Puncturable Tag Based Encryption

In this section, we define a new primitive called puncturable tag based encryption
(PTBE) that is a modification of tag based encryption schemes [Kil06] but with
two more algorithms. We then show how several well known encryption schemes
in literature (based on various assumptions) do in fact fit into the framework of
puncturable tag based encryption.

Let n denote the security parameter and X = {Xn}n∈N, T = {Tn}n∈N denote
ensembles where each Xn and Tn is a finite set. Formally, a puncturable tag based
encryption scheme PTBE = (PTBE.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,
PTBE.Setup-Alt-1,PTBE.Dec-Alt) consists of the following algorithms:

– PTBE.Setup(1n):
Given the security parameter n, it generates a public key PK and a secret
key SK.

– PTBE.Enc(PK, t,m):
Given a message m ∈ Xn, a tag t ∈ Tn and the public key PK as input, the
encryption algorithm outputs a ciphertext CT.

– PTBE.Dec(SK, t,CT):
Given a ciphertext CT, a tag t ∈ Tn and the secret key SK as input, the
decryption algorithm outputs a string y ∈ Xn or ⊥.

– PTBE.Setup-Alt(1n, t∗,m∗):
Given the security parameter n, a tag t∗ ∈ Tn and a message m∗ ∈ Xn, it
generates a public key PK, a secret key SK, an alternate secret key SK-Alt
and a ciphertext CT∗.

– PTBE.Setup-Alt-1(1n, t∗,m∗):
Given the security parameter n, a tag t∗ ∈ Tn and a message m∗ ∈ Xn, it
generates a public key PK, a secret key SK, an alternate secret key SK-Alt
and a ciphertext CT∗.

– PTBE.Dec-Alt(SK-Alt, t,CT):
Given a ciphertext CT, a tag t ∈ Tn and an alternate secret key SK-Alt as
input, the alternate decryption algorithm outputs a string y ∈ Xn or ⊥.

Remark: For technical reasons, to make our proofs simpler while instantiating
our “Special-CCA” secure encryption schemes, we use two setup-alt algorithms
(that albeit perform a very similar role). We provide more details about this in
a remark at the end of Section ??. Alternatively, we could just use one setup-alt
algorithm in the abstraction and make the proof a bit more complicated. We
choose the former option in this writeup.

22

Correctness: A puncturable tag based encryption scheme PTBE is correct if for
all messages m ∈ Xn and all tags t ∈ Tn

Pr

[
(PK,SK)← PTBE.Setup(1n)

PTBE.Dec(SK, t,PTBE.Enc(PK, t,m)) = m

]
= 1

The probability is over the randomness used in the setup, encryption and de-
cryption algorithms.

For security, we require the following four properties:

1. Equivalent on all but challenge tag: For any message m∗ ∈ Xn, any
tag t∗ ∈ Tn, for all ciphertexts CT and all tags t ∈ Tn such that t 6= t∗, we
require that:

Pr

[
(PK,SK,SK-Alt,CT∗)← PTBE.Setup-Alt(1n, t∗,m∗)
PTBE.Dec(SK, t,CT) = PTBE.Dec-Alt(SK-Alt, t,CT)

]
= 1

The probability is over the randomness used in all the above algorithms.

2. Indistinguishability of parameters: The output of the following two
experiments must be computationally indistinguishable for all messages m∗

and tags t∗:

(a) Experiment 1:
Run PTBE.Setup(1n) to generate (PK,SK). Compute CT∗ = PTBE.Enc(
PK, t∗,m∗) and output (PK,SK,CT∗).

(b) Experiment 2:
Run PTBE.Setup-Alt(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and
output (PK,SK,CT∗).

3. Indistinguishability of alternate setups: The output of the following
two experiments must be indistinguishable for all messages m∗ and tags t∗:

(a) Experiment 1:
Run PTBE.Setup-Alt(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and
output (PK,SK-Alt,CT∗).

(b) Experiment 2:
Run PTBE.Setup-Alt-1(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and
output (PK,SK-Alt,CT∗).

4. Indistinguishability of messages: For this property to hold, we require
the adversary’s advantage to be negligible in the following game between an
adversary A and a challenger Ch:

(a) A sends (t∗,m∗0,m
∗
1) to the challenger.

(b) Ch chooses a random bit b and runs PTBE.Setup-Alt-1(1n, t∗,m∗b) to gen-
erate (PK,SK-Alt,CT∗) and gives the adversary (PK,SK-Alt,CT∗).

(c) A submits a guess b
′

and wins if b
′

= b. The adversary’s advantage in
this game is defined to be 2 ∗ |Pr[b = b

′
]− 1/2|.

23

5.2 Special-CCA secure encryption scheme

In this section, we show how to build a selective CCA secure encryption scheme
from any PTBE with the addition of one time signatures. Recall that we define
selective CCA secure encryption schemes in the full version. We call such a CCA
secure encryption scheme as “Special-CCA”. Formally, we prove the following
theorem:

Theorem 3. Given a puncturable tag based encryption scheme PTBE = (PTBE
.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,PTBE.Setup-Alt-1,PTBE.Dec-Alt)
and a strongly secure one time signature scheme OTS = (OTS.Setup,OTS.Sign,
OTS.Verify), the scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) described below
is a selective CCA secure encryption scheme.

According to our notation, scheme PKE is a Special-CCA secure encryption
scheme.

Notation: Let PTBE = (PTBE.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,
PTBE.Setup-Alt-1,PTBE.Dec-Alt) be a puncturable tag based encryption scheme
with message space Xn, tag space Tn that outputs ciphertexts of size l(n). Let
OTS = (OTS.Setup,OTS.Sign,OTS.Verify) be a one time signature scheme that
signs messages of length l(n) and the space of verification keys is Tn. Our new
scheme PKE has message space Xn.

We now describe the template for building Special-CCA secure encryption
schemes from any puncturable tag based encryption. This template can be in-
stantiated by several existing CCA secure encryption schemes in the literature
[CHK04,Kil06,PW08].

Construction:

– PKE.Setup(1n):

1. Generate the public key and secret key as (PK,SK)← PTBE.Setup(1n).

– PKE.Enc(PK,m):

1. Generate (VK,SigK)← OTS.Setup(1n).

2. Compute CT1 = PTBE.Enc(PK,VK,m) and σ = OTS.Sign(CT1,SigK).

3. Output CT = (VK,CT1, σ) as the ciphertext.

– PKE.Dec(SK,CT):

1. Parse CT = (VK,CT1, σ).

2. Output ⊥ if OTS.Verify(VK,CT1, σ) = 0.

3. Output m = PTBE.Dec(SK,VK,CT1).

We prove that the above scheme is CCA-secure in the full version of the
paper.

24

5.3 Instantiating Special-CCA encryption

We show that several popular and well-studied CCA-secure encryption schemes
are in fact Special-CCA. That is, they satisfy this property that they can be con-
structed using PTBE and one-time signatures as shown in the above construction.
We now list the encryption schemes below and prove in the full version of the
paper that they satisfy the necessary conditions. Formally,

Theorem 4. The selective CCA-secure encryption schemes in the following
popular works are in fact Special-CCA secure encryption schemes:

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.

5.4 Building selectively secure FE

In this section, we show that the “Special-CCA” secure encryption scheme
PKE = (PKE.Setup,
PKE.Enc,PKE.Dec) from the previous section is FE-Compatible. We prove the
security of our construction in two different ways - the first is based on the
assumption of sub-exponentially secure indistinguishability obfuscation. Addi-
tionally, it requires the one time signature scheme used in the construction of
PKE to be a sub-exponentially secure unique signature scheme. On the other
hand, the second proof is based on the existence of polynomially secure differing
inputs obfuscation and just polynomially secure one time signatures.

Formally, we prove the following two theorems:

Theorem 5. Any “Special-CCA” secure encryption scheme is selective FE-
Compatible for any function family Fn and poly(n) function key queries as-
suming:

– Sub-exponentially secure indistinguishability obfuscation. (AND)
– Sub-exponentially secure unique one time signatures.

Moreover, the resulting FE scheme is also compact.

Theorem 6. Any “Special-CCA” secure encryption scheme is selective FE-
Compatible for any function family Fn and poly(n) function key queries as-
suming:

– Polynomially secure differing inputs obfuscation. (AND)
– Polynomially secure strong one time signatures.

Moreover, the resulting FE scheme is also compact.

One example of a one time signature scheme is the Lamport signature scheme[Lam79].
Observe that it is in fact a unique one time signature scheme if we rely on injec-
tive one way functions. Instantiating the Special-CCA scheme with the various
schemes in Section 5.3, we get the following two corollaries:

25

Corollary 7 Let X denote the CCA secure encryption scheme in any of the
following popular works :

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.

Assuming the existence of sub-exponentially secure indistinguishability obfusca-
tion and sub-exponentially secure injective one way functions, scheme X is selec-
tive FE-Compatible for any function family Fn and poly(n) function key queries.
Moreover, the resulting FE scheme is also compact.

Corollary 8 Let X denote the CCA secure encryption scheme in any of the
following popular works :

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.

Assuming polynomially secure differing inputs obfuscation and polynomially se-
cure one way functions, scheme X is selective FE-Compatible for any function
family Fn and poly(n) function key queries. Moreover, the resulting FE scheme
is also compact.

Construction: Let (O,Eval) be a secure obfuscator (note that we will use indis-
tinguishability obfuscation in one proof and differing inputs obfuscation in the
other). The functional encryption FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec)
built from the Special-CCA scheme PKE is as follows. Recall that from the
definition of FE-Compatibility, FE.Setup(·) = PKE.Setup(·) and FE.Enc(·) =
PKE.Enc(·).
– FE.Setup(1n): Run PKE.Setup(1n) to generate (PK,SK).
– FE.Enc(PK,m): Run PKE.Enc(PK,m) to generate the ciphertext CT = (VK,

CT1, σ).
– FE.Keygen(SK, f): Output SKf = O(Gf) where the program Gf is described

below.
– FE.Dec(SKf ,CT) Run the program SKf on input CT to output a string y.

Program Gf

Input : ciphertext CT
Constants : SK

1. Compute m = PKE.Dec(SK,CT).
2. Output ⊥ if the decryption aborts.
3. Else, output f(m).

Fig. 3: Program for generating function secret key

26

Security Proof We will prove this via a series of hybrid experiments where we
show that every successive pair of hybrids is computationally indistinguishable
and the final hybrid is independent of the challenge bit b and hence the attacker’s
advantage will be 0 in the final hybrid. We will show the indistinguishability of
the hybrids using two different proofs in some cases to prove both Theorem 5
and Theorem 6.

– Hyb1: This is the real world experiment with challenge bit b chosen randomly.
The challenge ciphertext as CT∗ = (VK∗,CT∗1, σ

∗).

– Hyb2: This hybrid is identical to the previous hybrid except that now,
FE.Setup(1n) and the challenge ciphertext are computed differently. Instead
of running the setup algorithm PTBE.Setup(1n), we now run PTBE.Setup-Alt
(1n,VK∗,m∗b) to generate (PK,SK,SK-Alt,CT∗1). The FE scheme’s public
key is PK, secret key is SK. Now, the challenge ciphertext is computed
as follows: generate (SigK∗,VK∗) ← OTS.Setup(1n) and compute σ∗ =
OTS.Sign(SigK∗,CT∗1). The challenge ciphertext is (VK∗,CT∗1, σ

∗). Note that
the alternate secret key SK-Alt is not used at all.

– For each i in {0, 1, . . . , q}, Hyb3,i: This hybrid is identical to the previous

hybrid except that now, the function secret key SKf for the ith function key
query f is computed as O(G1

f) for the following program G1
f .

Program G1
f

Input : ciphertext CT
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)
1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).
2. Compute m = PKE.Dec(SK,CT).
3. Output ⊥ if the decryption aborts.
4. Else, output f(m).

Fig. 4: Program for generating function secret key

Note that Hyb3,0 corresponds to Hyb2.

– For each i in {0, 1, . . . , q}, Hyb4,i: This hybrid is identical to the previous

hybrid except that now, the function secret key SKf for the ith function key
query f is computed as O(G2

f) for the following program G2
f .

27

Program G2
f

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)
1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).
2. If VK = VK∗, output ⊥.
3. Compute m = PKE.Dec(SK,CT).
4. Output ⊥ if the decryption aborts.
5. Else, output f(m).

Fig. 5: Program for generating function secret key

Note that Hyb4,0 corresponds to Hyb3,q.
– For each i in {0, 1, . . . , q}, Hyb5,i: This hybrid is identical to the previous

hybrid except that now, the function secret key SKf for the ith function key
query f is computed as O(G3

f) for the following program G3
f .

Program G3
f

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗1, σ

∗)
1. If CT = CT∗, output y where y = f(m∗0) = f(m∗1).
2. If VK = VK∗, output ⊥.
3. Check if OTS.Verify(VK,CT1, σ) = 1.
4. Compute m = PTBE.Dec-Alt(SK-Alt,VK,CT1).
5. Output ⊥ if the decryption aborts or if the signature doesn’t verify.
6. Else, output f(m).

Fig. 6: Program for generating function secret key

Note that Hyb5,0 corresponds to Hyb4,q.
– Hyb6: This hybrid is identical to the previous hybrid except that we now run

PTBE.Setup-Alt-1 (1n,VK∗,m∗b) to generate (PK,SK,SK-Alt,CT∗).
– Hyb7: This hybrid is identical to the previous hybrid except that we now run

PTBE.Setup-Alt-1(1n,VK∗, m∗0) to generate (PK,SK,SK-Alt,CT∗)

Observe that in this last hybrid, the challenge ciphertext is created indepen-
dent of the bit b. Hence, the attacker’s advantage in this hybrid is 0.

We refer the reader to the full version for the indistinguishability of every
successive pair of hybrids.

28

References

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
308–326. Springer, 2015.

BB04. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based
encryption without random oracles. In Eurocrypt, 2004.

BCP14. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfusca-
tion. In Theory of Cryptography - 11th Theory of Cryptography Conference,
TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages
52–73, 2014.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO, 2001.

BGJS15. Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai.
Multi-input functional encryption for unbounded arity functions. In Tetsu
Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part I, volume 9452 of Lecture Notes
in Computer Science, pages 27–51. Springer, 2015.

BR94. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory and
Application of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994,
Proceedings, pages 92–111, 1994.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defini-
tions and challenges. In TCC, 2011.

CHK04. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. In Eurocrypt, 2004.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In CRYPTO, 1999.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan
Katz, Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-
input functional encryption. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 578–602. Springer, 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In FOCS, 2013.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation.
IACR Cryptology ePrint Archive, 2017.

Had00. Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT,
2000.

HKW15. Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signa-
ture aggregators. In EUROCRYPT, 2015.

29

HLW12. Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dan-
gerous queries: A new approach for chosen ciphertext security. In EURO-
CRYPT, 2012.

Kil06. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC,
2006.

Lam79. Lamport. Constructing digital signatures from a one-way function. Tech-
nical Report SRI-CSL-98, SRI International Computer Science Laboratory,
1979.

MH14. Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via
UCE. In Hugo Krawczyk, editor, Public-Key Cryptography - PKC 2014 -
17th International Conference on Practice and Theory in Public-Key Cryp-
tography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, volume
8383 of Lecture Notes in Computer Science, pages 56–76. Springer, 2014.

MS09. Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, 2009.
NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure

against chosen ciphertext attacks. In STOC, 1990.
PW08. Chris Peikert and Brent Waters. Lossy trapdoor functions and their appli-

cations. In STOC, 2008.
Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive

chosen-ciphertext security. In FOCS, 1999.
SW05. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EURO-

CRYPT, 2005.
SW08. Amit Sahai and Brent Waters. Slides on functional encryption, powerpoint

presentation. 2008.
SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:

deniable encryption, and more. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484,
2014.

Wat14. Brent Waters. A punctured programming approach to adaptively secure
functional encryption. IACR Cryptology ePrint Archive, 2014:588, 2014.

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare pro-
grams under LWE. IACR Cryptology ePrint Archive, 2017.

30

	Upgrading to Functional Encryption

