
Continuous NMC Secure Against Permutations
and Overwrites, with Applications to CCA

Secure Commitments

Ivan Damg̊ard1?, Tomasz Kazana2??, Maciej Obremski1?, Varun Raj3, Luisa
Siniscalchi4? ? ?

1 Aarhus University
2 University of Warsaw, Institute of Informatics

3 Oracle America Inc., Redwood City
4 University of Salerno

Abstract. Non-Malleable Codes (NMC) were introduced by Dziem-
bowski, Pietrzak and Wichs in ICS 2010 as a relaxation of error correcting
codes and error detecting codes. Faust, Mukherjee, Nielsen, and Venturi
in TCC 2014 introduced an even stronger notion of non-malleable codes
called continuous non-malleable codes where security is achieved against
continuous tampering of a single codeword without re-encoding.
We construct information theoretically secure CNMC resilient to bit per-
mutations and overwrites, this is the first Continuous NMC constructed
outside of the split-state model.
In this work we also study relations between the CNMC and parallel
CCA commitments. We show that the CNMC can be used to bootstrap
a self-destruct parallel CCA bit commitment to a self-destruct parallel
CCA string commitment, where self-destruct parallel CCA is a weak
form of parallel CCA security. Then we can get rid of the self-destruct
limitation obtaining a parallel CCA commitment, requiring only one-way
functions.

1 Introduction

In this paper, we study the interesting relationship between the notions of non-
malleable codes and non-malleable commitments, and advance state of art for
both of them. Before giving our results, we introduce the notions.

1.1 Introduction to Non-Malleable Codes

Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [27] as a relaxation of error correcting codes and error detecting codes.

? This work was supported by MPCPRO, ERC project nr. 669255.
?? Supported by Polish National Science Centre (NCN) SONATA GRANT UMO-

2014/13/D/ST6/03252.
? ? ? This research received funding from: COST Action IC1306; GNCS - INdAM. The

work of 5th author has been done in part while visiting Aarhus University, Denmark.

2 CNMC Against Permutations and Overwrites, and its Applications

An NMC takes a message m and encodes it as a possibly longer and randomized
codeword c← Enc(m). The adversary chooses and submits a tampering function
Tamper, that is applied to the code word to yield c′ = Tamper(c). Applying the
decoding algorithm yields a message m′ = Dec(c′). The security guarantee for
an NMC now is that the decoded message m′ is either identical to the original
message m or, in case of a decoding error, a message unrelated to m. Corre-
spondingly, the adversary is given either m′ or a symbol “same” indicating that
decoding was successful. Technically, we require that if m′ 6= m, then m′ can
be simulated using just the tampering function Tamper, but without knowing
anything about the tampered codeword c′.

It is generally impossible to give any meaningful guarantees if the tampering
function is unrestricted (the tamper function could decode, and then encode a
modified message). Therefore, the tampering function Tamper is always assumed
to come from some class T of functions. An immediate example application of
NM codes is for tamper resilient cryptography: if a secret key is stored in a
hardware device, the adversary could try to tamper with the device and observe
its behavior after the modification. But if the key is encoded with an NM code,
the security guarantees immediately imply that either the tampering had no
effect or the effect can be simulated without the device.

Continuous Non-Malleable Codes (CNMC). As mentioned in [37], non-malleable
codes can provide protection against these kind of attacks if the device is allowed
to freshly re-encode its state after each invocation to make sure that the tam-
pering is applied to a fresh codeword at each step. After each execution the
entire content of the memory is erased. While such perfect erasures may be
feasible in some settings, they are rather problematic in the presence of tam-
pering. Due to this reason, Faust et al. [28] introduced an even stronger notion
of non-malleable codes called continuous non-malleable codes where security is
achieved against continuous tampering of a single codeword without re-encoding.
In this model the adversary can iteratively submit tampering functions Tamperi
and learn mi = Dec(Tamperi(c)). We call this the continuous tampering model.
This stronger security notion is needed in many setting, for instance when using
NMCs to make tamper resilient computations on von Neumann architectures
[29].

Some additional restrictions are, however, necessary in the continuous tam-
pering model. If the adversary was given an unlimited budget of tampering
queries, then, given that the class of tampering functions is sufficiently expres-
sive (e.g. it allows to overwrite single bits of the codeword), the adversary can
efficiently learn the entire message just by observing whether tampering queries
leave the codeword unmodified or lead to decoding errors, see e.g. [31].

To overcome this general issue, [28] assume a self-destruct mechanism which
is triggered by decoding errors. In particular, once the decoder outputs a special
symbol ⊥ the device self-destructs and the adversary loses access to his tamper-
ing oracle. This model still allows an adversary many tamper attempts, as long
as his attack remains covert. Jafargholi and Wichs [37] considered four variants
of continuous non-malleable codes depending on

DKORS 3

– Whether tampering is persistent in the sense that the tampering is always
applied to the current version of the tampered codeword, and all previous
versions of the codeword are lost. The alternative definition considers non-
persistent tampering where the device resets after each tampering, and the
tampering always occurs on the original codeword.

– Whether tampering to an invalid codeword (i.e., when the decoder outputs
⊥) causes a “self-destruct” and the experiment stops and the attacker cannot
gain any additional information, or alternatively whether the attacker can
always continue to tamper and gain information.

A long line of research has tried to optimize the performance of NM codes
with respect to the number of allowed tampering queries and the class of allowed
tampering functions (see the related work section for details). In this paper we
will be concerned with the case of CNMCs where there is no a priori bound on the
number of queries. This model must include a self-destruct mechanism. Further
we will be concerned with information theoretic NM codes where security holds
for an unbounded adversary, and we will look at the single state model, where the
tampering function is allowed to access the entire codeword. This is in contrast
to the split-state model where the tamper function must consider disjoint parts
of the codeword separately.

1.2 NMC- Our result

We give a construction of a self-destruct, non-persistent continuous NMC (see
Corollary 1 of Theorem 1) unconditionally secure against bit permutations com-
posed with bit overwrites.

[5] gives a one time Non-Malleable Code resilient against bit permutations
composed with bit-wise tampering. In [22] they construct a CNMC secure against
bitwise tampering (but permutations are not allowed).

Unconditionally secure Continuous Non-Malleable Codes are notoriously hard
to construct. Very little progress was made since CNMC were proposed in 2015:

– [22] authors construct a CNMC secure against bitwise tampering which is
the variant of split-state model.

– [14] authors achieve a so-called many-many non-malleable code in the 2-
split state model. Their construction achieves non-malleability as long as
the number of rounds of tampering is at most nγ for some constant γ < 1,
where n is the length of the codeword.

– [4] authors give the persistent continuous NMC construction for 2−split
state.

– [3] gives Continuous NMC against 8−split state tampering (optimal number
of states would be 3).

This makes our result the first known unconditionally secure construction of
CNMC outside of split-state model.

4 CNMC Against Permutations and Overwrites, and its Applications

1.3 NMC- Related work

In [27] the authors construct an efficient code which is non-malleable with respect
to bit-wise tampering, i.e., tampering functions that modify each bit of the
codeword arbitrarily but independently of the value of the other bits of the
codeword. Later works [26, 2, 15, 17, 42] provided stronger results by considering
a model where the codeword is split into s parts called states, which can each be
tampered arbitrarily but independently of the other states. explicit constructions
were later given in [30, 16]. Other works considered tampering via permutations
and perturbations [6], which are not captured in the split-state model. In [7]
authors show how to construct efficient, unconditionally secure non-malleable
codes for bounded output locality (i.e. when every bit of tampering output can
depend on at most some nδ bits of input for δ < 1).

The definition in [27] allows the adversary to be computationally unbounded.
We call this an information theoretic NMC. Later works considered a notion of
computational NMC where the adversary and tampering functions are restricted
to efficient computations, see for instance [18, 46, 1, 8]. The definition in [27]
allows the adversary to tamper the codeword only once. We call this one-shot
tampering. Faust et al. [28] consider a stronger model where the adversary can it-
eratively submit tampering functions Tamperi and learn mi = Dec(Tamperi(c)).
We call this the continuous tampering model. This stronger security notion is
needed in many setting, for instance when using NMCs to make tamper resilient
computations on von Neumann architectures [29]. Some additional restrictions
are, however, necessary in the continuous tampering model. If the adversary was
given an unlimited budget of tampering queries, then, given that the class of
tampering functions is sufficiently expressive (e.g. it allows to overwrite single
bits of the codeword), the adversary can efficiently learn the entire message just
by observing whether tampering queries leave the codeword unmodified or lead
to decoding errors, see e.g. [31].

To overcome this general issue, [28] assume a self-destruct mechanism which
is triggered by decoding errors. In particular, once the decoder outputs a special
symbol ⊥ the device self-destructs and the adversary loses access to his tamper-
ing oracle. This model still allows an adversary many tamper attempts, as long
as his attack remains covert. Jafargholi and Wichs [37] provide a general study
of when CNMCs can be built assuming a self-destruct mechanism.

Faust et al. [28] constructed a CNMC in the 2-state model which is secure
against computationally bounded adversaries. It was shown in the same work
that it is impossible to construct an information theoretic CNMC for the 2-state
model.

Information-theoretic results for CNMC. In [22] authors construct a CNMC
secure against bitwise tampering which is the simplest variant of split-state
model. In [4] authors give the first information theoretic persistent continuous
NMC construction for 2−split state. Finally in [3] authors give the first infor-
mation theoretic construction of CNMC in 8− split state. Before [3] the only
known result that achieves some sort of non-malleable codes secure against non-
persistent continuous tampering was the result by Chattopadhyay, Goyal, and

DKORS 5

Li [14]. They achieve this by constructing a so-called many-many non-malleable
code in the 2-split state model. Their construction achieves non-malleability as
long as the number of rounds of tampering is at most nγ for some constant
γ < 1, where n is the length of the codeword.

1.4 Application to Commitment Schemes

Commitment schemes. The notion of commitment is perhaps the most funda-
mental concept in cryptographic protocol design. The idea is that a sender binds
herself to a choice of a message m by exchanging some information with a re-
ceiver. The commitment should be hiding, i.e., the verifier does not learn the
committed message. Later, the sender can choose to open the commitment, i.e.,
release more information allowing the receiver to determine m. The commitment
should be binding, i.e., the sender cannot make the receiver output a message
different from the one she had in mind at commit time.

The strongest possible security notion for commitment schemes is UC secu-
rity, which intuitively asks that using the scheme is equivalent to giving m to
a trusted party who will only release it on request from the committer. This is
much stronger than simply asking for hiding and binding, e.g., we get security
under general composition. But unfortunately, we know that UC security can-
not be achieved without set-up assumptions. So a long line of research has been
aimed at achieving weaker but meaningful security guarantees without set-up.

An important example of this is the notion of non-malleable (NM) commit-
ments [24]. Here we consider an adversarial Man-in-the-middle (MiM), who on
side receives a commitment from an honest sender to message m (the “left ses-
sion”) and on the other side sends a commitment to an honest receiver (the
“right session”), containing m′. The MiM wins if he succeeds in forming a new
commitment on the right such that m′ has some non-trivial relation to m. The
NM property does not follow from hiding and binding and is very important, for
instance in making auctions where committed bid is fair, or towards implement-
ing secure coin-flipping. Technically the NM property is captured by requiring
a simulator that will simulate the left session without knowing m and still the
MiM wins with essentially the same probability.

The strongest form of NM commitment security is concurrent NM commit-
ments. Here, the MiM is allowed to start any number of left sessions and right
sessions and can schedule them as he likes. One can also consider restricted ver-
sions of this, for instance a 1-1 NM commitment is secure if only 1 left and 1 right
session is allowed. A restriction that we want to consider is self-destruct (SD)
concurrent non-malleable commitment. In this version, once the MiM makes a
invalid commitment in a right session, all commitment computed after that ses-
sion are considered invalid and cannot be used to win the game. This notion
is close in spirit to the one of the weak non-malleable commitments, which has
been applied in multiple works.

An even stronger notion of commitment security is CCA security([12]): we
consider again a MiM, but he is now given an oracle that he can query on input
a commitment from (one of) the right session(s), as long as it is not a copy of

6 CNMC Against Permutations and Overwrites, and its Applications

something from a left session. The requirement is that hiding holds for the left
session(s), even in presence of the oracle. Intuitively, a CCA secure commitment
is also NM secure, all other things being equal: if the MiM could break NM
security and come up with a new commitment on the right side that is related
to one from the left, he could submit it to the oracle in the CCA game and use
the reply to break hiding on the left side. One restriction on CCA commitments
that has been considered is parallel CCA security, where the MiM can ask only
one query that may, however, contain an unbounded number of commitments.
Another restriction is that of self-destruct (SD)-CCA, where the oracle stops
working if the MiM submits an invalid commitment.

Parallel CCA commitments from CNMC. In this second part we investigate
possible applications our CNMC. In particular, we will show a bridge between
(unconditionally secure) CNMC and (computational) cryptographic primitives
secure in the concurrent setting.

For the stand-alone setting the result of [5] shows how to use a bit parallel
CCA commitment5 to construct a 1-1 string non-malleable commitment relying
on stand-alone NM code. In particular, constructing string commitment from
the corresponding 1-bit primitive, they first encode the input message with an
NM code and then apply a 1-bit commitment scheme.

Following the same approach of [5] but using a CNMC (resilient to the same
class of tampering functions of [5]) we are asking which flavor of non-malleability
w.r.t. commitment we can achieve. In particular, is it enough to plug-in our
CNMC in the construction of [5] to obtain a concurrent NM string commit-
ment? The answer is only partially yes, due to the self-destruct limitation of
CNMC. Indeed, a MiM adversary of NM commitments can compute multiple
invalid commitments. Then, we show how to bypass this limitations requiring
only OWFs.

In more details, we obtain a compiler that takes a CCA bit commitment and
constructs an SD concurrent NM commitment. Due to the adaptiveness of our
NM code we actually achieve a stronger security notion, namely a string SD-CCA
commitment scheme. Furthermore we can relax the requirements on the CCA
bit commitment: it just needs to be SD-CCA-secure instead of CCA-secure.

Summarizing, we show a compiler that on input a (non-tag based) SD-CCA
bit commitment scheme and a continuous non-malleable code resilient against
permutations and bit overwrites, outputs a (non-tag based) SD-CCA string com-
mitment scheme. Our construction, like the one of [5], preserves the round com-
plexity of the bit commitment scheme and does not require any additional as-

5 Note that a particular accent is placed on the fact that the compiler requires as input
a possible (non-tag based) n-parallel bounding CCA bit commitment because. The
reduction is non-trivial only because they are working in the standard non-tag based
setting. Otherwise, in case of tags, one can simply sign the entire transcript using the
tags and obtain a non-malleable string commitment. In case of bit commitments, tag-
based non-malleability is a stronger requirement than the standard (non-tag-based)
non-malleability. Pass and Rosen [47] argue that for string commitments, the two
notions are equivalent since one can simply commit the tag as part of the string, if
there are no tags. Since we only have bit commitments, this does not work.

DKORS 7

sumption. Finally , we show that a SD-parallel CCA string commitment scheme
can be upgraded to a parallel string commitment scheme without self-destruct,
assuming only one-way functions. The construction is non-trivial (it requires
very recent developed tecniques) and adds only two rounds of interaction.

Together with our compiler described above, this implies the first construc-
tion that exploit the CNMC property to obtain a parallel CCA commitment. Fur-
thermore, parallel CCA commitment founds multiple applications like [41, 10].
Observe that parallel CCA commitment is not implied by parallel NM commit-
ment (see [11]).

Previous work on NMCs and NM commitments. The literature presents works
that exploit the properties of the non-malleable code to construct non-malleable
commitments. Goyal et al. [35] use non-malleable codes in the split-state model
to realize a 3-round one-one non-malleable commitment relying on one way
permutations secure against a quasi-polynomial time adversary. Chandran et
al. [13] show that block non-malleable codes with t blocks imply non-malleable
commitments of t − 1 rounds. As we discuss above, Agrawal et al. [5] showed
that is possible to construct a one-one non-malleable commitment relying on
a non-malleable code and a bounded parallel CCA bit commitment. However,
no one before uses non-malleable codes to construct a parallel CCA commit-
ment scheme. The aim of this second part is to build bridges between different
notions of non-malleability, and to not construct a new NM commitment or a
CCA commitment that are already available in literature. Indeed, there is a long
line of research that tries to reduce the round complexity of NM commitment
(e.g. [24, 9, 47, 49, 48, 43, 32, 33, 36, 35, 19, 20, 39, 38, 45]). Several constructions
of CCA commitment are also available in literature (e.g. [12, 44, 40, 34]).

1.5 Technical overview of our CNMC secure against
permutations-and-overwrites

Construction of Continuous Non-Malleable Code. Our code consists of an amal-
gamation of two different layers of encoding schemes.

The top layer is a Reed-Solomon code used here as a sharing scheme. We take
a message m, append a random suffix and then encode it using Reed-Solomon
to receive a codeword consisting of N blocks that may be seen as shares of bN3 c-
out-of-N secret sharing scheme. The intuition behind this scheme is that the
adversary needs to learn at least N

3 shares to learn anything about the initial
message.

The bottom layer is using a Two-Split State Super Strong Non-Malleable
Code (instantiated either by [4] or [42]). Each share si from the above secret
sharing scheme is converted into (si||i) and then encoded using the two-split
state code to get two shares (Li, Ri) (We also expect the bit-parity of Li to be
0 and the bit-parity of Ri to be 1). The final code is (L1, R1, ..., RN , LN).

To prove that the just described code is actually continuous non-malleable
code, we first redefine the experiment in the definition of continuous codes. The
new definition is obviously stronger, so it is sufficient to work with it. In the

8 CNMC Against Permutations and Overwrites, and its Applications

new definition, whenever an adversary tampers with a block (Li, Ri) with non-
constant functions and succeeds in creating valid (from the point of view of
Super Strong NMC decoder) output blocks (L′i, R

′
i) (In particular, the parities

of all (L′i, R
′
i) must be correct), we will reveal blocks (Li, Ri) to the adversary.

As observed earlier, the adversary’s necessary task is to learn at least bN3 c
blocks of the underlying si shares.

Since the adversary can only tamper bitwise and permute bits we can prove
that if the adversary doesn’t know N

3 blocks and he tries to modify the codeword
he will either get detected with probability exponentially close to 1, or he can
attempt to learn some small amount information about the codeword (i.e. tamper
with few blocks Li, Ri with non-constant function). However, using the bottom
layer, we show that every attempt to learn even the smallest information about
the codeword (i.e. by overwriting all but only few bits) yields some probability
of detection which amplifies with amount of information adversary is trying to
learn. We will therefore show that adversary can not (i.e. the probability is
negligable) breach bN3 c blocks threshold.

The argument consists of two main technical observations:

– If the adversary applies any non-constant functions f, g to single block Li, Ri
then, due to combination of super strong nmc properties and parity require-
ments we have placed on Li, Ri, adversary risks close to 1

2 detection proba-
bility.

– If the adversary decides to mix bits between different blocks (Li, Ri) he
has to risk violation of parity requirements on these blocks. This lemma is
inspired by similar lemma for unary schemes from [6].

Using these ideas we can claim that if adversary tampers with k blocks using
non-constant functions he also gets detected with a probability 1 − p−k. The
proof of this fact is more involved because we have to deal with minute cases.
For example if we prove that mixing of bits will make the parity unpredictable
for each block it still may happen that the events of error are correlated so not
obviously amplify the error rate. Example 1. Assume adversary tampers only
with L1 and L2, if he permutes bits in a way that output L′1 contains first halfs
of vectors L1, L2, L′2 contains second halfs of L1, L2. Then parity of L′1 is correct
if and only if parity of L′2 is correct. We handle this by picking only largest
possible subset of independent parity checks. In this case we would focus only
on parity of L′1 and discard any other checks generated by L1, L2, R1, R2.

Example 2. Consider a tampering function which takes one bit from some
blocks (Li, Ri) and permutes them to the last block (L′N , R

′
N) while fixing all

other (Li, Ri) to some constants. If (L′N , R
′
N) has a correct parity and valid

Super-Strong NMC decoding then we will reveal, to adversary, all blocks that
’donated’ bits to (L′N , R

′
N). Notice however that this will not reveal more bits

then |LN |+ |RN | blocks.

Above examples illustrate how we bound number of blocks adversary can
learn for each independent validity check he has to create.

DKORS 9

1.6 Technical overview of our self-destruct CCA commitment and
parallel CCA commitment.

The self-destruct CCA commitment scheme. We want to show that given a self-
destruct CCA bit commitment scheme (non-tag based), committing to each bit
of the codeword individually, results in a self-destruct CCA string commitment
scheme. The security proof is based on the following high-level idea: if the adver-
sary of the self-destruct CCA string commitment is mauling, then, the attack on
the commitment level can be ”translated” into an attack on the non-malleable
code. In other word, we can show an adversary ANMCode that breaks the security
of the non-malleable code using the adversary A on the commitment level that
distinguish a commitment of message m0 from a commitment of message m1.
ANMCode will act as the sender in the left session with A. Instead in the k-th
right session (for k = 1, . . . , poly(λ)) ANMCode will act as a receiver of the string
commitment. Then he needs to emulate the oracle O of the string commitment
computing the following steps: 1) define a tamper function fk based on value v
committed in the right session (note that he can obtain v querying the oracle of
the bit commitment Obit6) 2) send back to A the decoding of fk(encmb

), where
encmb

is an encoding of mb (received from the challenger of the non-malleable
code game). At the end, ANMCode will output what A outputs. However we no-
tice that the adversary that we described is not yet an adversary against the
non-malleable code since the tamper functions can be dependent on what is
committed on the left. We can demonstrate that the hiding of the self-destruct
CCA bit commitment ensures that the distribution of the tamper functions is
computational independent from the message committed by the sender. There-
fore the final adversary against the non-malleable code will simply commits to
a random message on the left session. Finally, we crucially need that the non-
malleable code is information theoretic secure since we have no guarantee that
Obit works in polynomial time.

Upgrade SD-PCCA commitment scheme to PCCA commitment scheme. At
a very high level our PCCA string commitment scheme works as follows. The
sender interacts with the receiver in order to compute a commitment τ of m using
a self-destruct PCCA string commitment. Furthermore, the receiver engages with
the sender a protocol to allow the extraction of a trapdoor. We use the ”trapdoor
protocol” described in [20] where the trapdoor is represented by the knowledge
of two signatures under a verification key sent by receiver in the 4th last round.
In order to allow the extraction of the trapdoor, the receiver sends a signature
of a randomly chosen message in the 3rd last round by the sender. Then, the
sender executes a special witness-indistinguishable proof of knowledge (WIPoK)
with the receiver in order to prove that he computed a valid commitment of m
or that he knows a trapdoor.

Observe that if we use a 3-round WIPoK it is not clear how the proof of
security will proceed. In particular, in the security proof there are some hybrids
were we simulate the oracle of the parallel CCA commitment in polynomial time

6 The definition of the tamper function is more complicated, see Section 4 for the
details.

10 CNMC Against Permutations and Overwrites, and its Applications

extracting the committed messages from the WIPoKs. Let us consider the hybrid
were we switch the witness in one of the WIPoK. In the reduction to the WI we
have to emulate the oracle of the parallel CCA commitments, since the reduction
has to work in polynomial time. As we said, our hope to emulate the oracle is
to extract the committed messages from the WIPoKs, however the extraction
procedure rewinds also the challenger of the WI.

To overcome this problem we adopt the approach proposed in [20] relying on
non-interactive primitives instead of 3-rounds WIPoK.

Therefore, similarly to [20], we construct this WIPoK relying on: instance-
dependent trapdoor commitments (IDTC) and special honest-verifier zero knowl-
edge (SHVZK).

In more details, let (ls1trap, ls
2
trap, ls

3
trap, ls

4
trap) be the transcript of a 4-round

special HVZK delayed-input7 proof of knowledge (PoK). The transcript
(ls1trap, ls

2
trap, ls

3
trap, ls

4
trap) is used to prove knowledge of two signatures of two dif-

ferent message w.r.t. a verification key sent by the reaciver. The transcript
(ls1trap, ls

2
trap, ls

3
trap, ls

4
trap) is used to prove the knowledge of the trapdoor.

At the 4th last round the sender sends an equivocal com obtained running
IDTC. At last round the sender will equivocate com in order to send as opening
(dec, ls2trap). In the last round also ls4trap is sent. The instance used for the IDTC is
τ , this means that the commitment com (computed using IDTC) can be opened
to any value because τ is a well-formed commitment.

In the opening phase the sender sends the opening of the self-destruct PCCA
string commitment.

Note that the first two rounds of the ”trapdoor protocol” can be run with
the last two rounds of the self-destruct commitment. Therefore the described
construction has t+2 rounds (where t is the number of rounds of the self-destruct
PCCA string commitment).

Overview of the security proof. In the 1st experiment (the real game RG0)
the sender commits to m0. We observe that due to the security of the signature
scheme we can demonstrate that in the real game A is committing to a well-
formed commitments in all parallel right sessions with non-negligible probability.
Symmetrically there is the experiment RG1 where the sender commits to m1 and
A is committing to a well-formed commitment in all parallel right sessions. Then
we consider a hybrid game H0

b , for b ∈ {0, 1}, where the sender commits to mb

and the oracle is emulated extracting the committed values from the special
WIPoK. Note that H0

b is distributed statistically close to RGb until A receives
the committed values, therefore we are ensured that we can extract the values
committed in the right sessions. The 2nd hybrid game that we consider is H1

b

in which we switch the witness used to compute the transcript of the special
WIPoK in the left sessions (i.e. we are using the trapdoor that is extracted by
rewinding A in the left session). Using techniques that are similar to the one
showed in [20] we are able to demonstrate that also in H1

b we can extract the
committed values in all parallel right sessions with non-negligible probability.

7 By delayed-input we mean that the witness and the instance are needed only to play
the last round.

DKORS 11

Moreover, we can demonstrate that the distribution of the commitment values
along with the view of A is indistinguishable between H0

b and H1
b , for b ∈ {0, 1}.

Indeed, both in H1
0 and in H1

1 we are guaranteed that A is committing to a well-
formed commitment in all parallel right sessions with non-negligible probability.
Summing up, a detectable deviation from H1

0 and H1
1 implies a contradiction

of the self-destruct PCCA security of the underlining commitment. Finally we
observe that the extraction procedure of the signatures does not interfere with
the reductions since in the parallel right sessions the commitment phase made
by A ends in the third last round. This observation concludes the high-level
overview of the security proof.

2 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of a and
b). We use the abbreviation ppt that stands for probabilistic polynomial time.
We use poly(·) to indicate a generic polynomial function and N to denote the
set of positive integer.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}.Analogously, unless otherwise specified, for an NP-
language L we denote by RelL the corresponding polynomial-time relation (that
is, RelL is such that L = LRelL). We denote by L̂ the language that includes both
L and all well formed instances that do not have a witness. Moreover we require
that membership in L̂ can be tested in polynomial time. We implicitly assume
that a PPT algorithm that is supposed to receive an instance in L̂ will abort
immediately if the instance does not belong to L̂. Let A and B be two interactive
probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the distribution of B’s
output after running on private input β with A using private input α, both
running on common input γ. Typically, one of the two algorithms receives 1λ as
input. A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during
an execution where A receives a private input α, B receives a private input β and
both A and B receive a common input γ. Moreover, we will refer to the view of
A (resp. B) as the messages it received during the execution of 〈A(α), B(β)〉(γ),
along with its randomness and its input. We say that a protocol (A,B) is public
coin if B sends to A random bits only.

If Z is a set then Z ← Z will denote a random variable sampled uniformly
from Z. We start with some standard definitions and lemmas about the statis-
tical distance. Recall that if X and X ′ are random variables over the same set
X then the statistical distance between X and X ′ is denoted by ∆(X;X ′), and
defined as ∆(X;X ′) = 1

2

∑
x∈X |PrX = x− PrX ′ = x|. If the variables X and

X ′ are such that ∆(X;X ′) ≤ ε then we say that X is ε-close to X ′, and write
X ≈ε X ′. If E , E ′ are some events then by ∆(X|E ; X ′|E ′) we will denote the

12 CNMC Against Permutations and Overwrites, and its Applications

distance between variables X̃ and X̃ ′, distributed according to the conditional
distributions PX|E and PX′|E′ .

If UX is the uniform distribution over X then d(X|E) := ∆(X|E ;UX) is
called statistical distance of X from uniform given the event E . Moreover, if Y
is independent from X then d(X|Y) := ∆((X,Y); (UX , Y)) is called statistical
distance of X from uniform given the variable Y . More generally, if E is an event
then d(X|Y, E) := ∆((X,Y)|E ; (UX , Y)|E). It is easy to see that d(X|Y) is equal
to the average

∑
y Pr(Y = y) · d(X|Y = y) = Ey(d(X|Y = y)).

Definition 1 ((Average-) Min-Entropy). Let X have finite support X . The
min-entropy H∞(X) of X is defined by

H∞(X) = − log max
x∈X

Pr(X = x).

For an event E, the conditional min-entropy H∞(X|E) of X given E is defined
by

H∞(X|E) = − log max
x∈X

Pr(X = x|E).

For an event E and a random variable Y with finite support Y, the average
min-entropy H̃∞(X|Y, E) of X given Y and E is defined by

H̃∞(X|Y, E) = − logEy max
x∈X

Pr(X = x|Y = y, E).

Randomness extractors will be the workhorses of our non-malleable code con-
structions.

Definition 2 (Flexible Two-Source Extractors). A function Ext : X1 ×
X2 → Z is called a flexible (ε, δ)-two-source extractor, if it holds for all tuples

((X1, Y1), (X2.Y2)) for which (X1, Y1) is independent of (X2, Y2) and H̃∞(X1|Y1)+

H̃∞(X2|Y2) ≥ log(|X |) + log(|Y|)− δ that

d(Ext(X1, X2)|Y1, Y2) ≤ ε.

A well known example of a flexible two-source extractor is the Hadamard
extractor or inner-product-extractor.

Lemma 1 (Hadamard Extractor [2]). The function Ext : Fnq × Fnq → Fq
given by Ext(x, y) = 〈x, y〉 is a flexible (ε, δ) extractor for δ ≤ (n − 1) log(q) −
2 log(1/ε).

Lemma 2 (Entropy-preservation of inner-product for correlated dis-
tributions). Let X be random variable over X l, let C be random variable such
that for every c we have H∞(X|C = c) ≥ l · log |X |− d, where d < log |X |. Then
for any non-zero v ∈ X l

H∞(〈X, v〉X | C = c) ≥ log |X | − d

for every c in supp(C).

DKORS 13

We will now assemble a few basic technical lemmata that we will need for
our proofs.

Lemma 3 (Bayes’ rule for statistical distance [26]). Let (X,Y) ∈ X × Y
be a random variables, such that d(X|Y) ≤ ε. Then for every x ∈ X we have

∆(Y |X = x ; Y) ≤ 2|X |ε.

Also if A is a random event such that d(X|Y,A) ≤ ε, we have:

∆(Y |X = x,A ; Y |A) ≤ 2|X |ε.

Lemma 4 ([25]). Let X,T be any arbitrarily correlated random variables and
let E be random event then

H̃∞(X|T, E) ≥ H̃∞(X|T)− log
1

Pr(E)
.

In the Appendix A the reader can find a series of standard definitions used
in the rest of the paper.

2.1 Definitions related to Non-Malleable Codes

Definition 3 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where
Enc :M→ C is a randomized function and Dec : C →M∪{⊥} is a deterministic
function, such that it holds for all M ∈M that Dec(Enc(M)) = M .

Definition 4 (Two-State Code). A coding scheme (Enc,Dec) where the coun-
terdomain of Enc has the form C = {0, 1}k × {0, 1}k is called a two-state code.

Definition 5 (Paritied Two-State Code). Let (Enc,Dec) (where Enc :M→
C = C1 × C2 = {0, 1}k × {0, 1}k) be a two-state code. Now let Encpar : M → C
be a randomized function restricted to a condition that parity(Enc(m)1) = 0 and
parity(Enc(m)2) = 1, where parity is a function calculating the parity of number
of ones in a given vector (i.e. parity(0101011) = 0 and parity(011111) = 1).

More formally, the procedure computing Encpar(m) can be described as fol-
lows: we run in a loop the encoding procudure (c1, c2)← Enc(m) until parity(c1) =
0 and parity(c2) = 1.

Similarily, let Decpar : C →M∪{⊥} be defined as follows: for c = (c1, c2) ∈
C, if parity(c1) 6= 0 or parity(c2) 6= 1 then Decpar(c) := ⊥, otherwise Decpar(c) :=
Dec(c).

Now, the coding scheme (Encpar,Decpar) is called a paritied two-state code.

We will now define the continuous tampering experiment. Our definition is
a weaker version of [37]: instead of Super Strong Tampering experiment we will
use the standard tamper experiment from [27].

14 CNMC Against Permutations and Overwrites, and its Applications

Definition 6 ((Continuous-) Tampering Experiment). We will define con-
tinuous non-persistent self-destruct non-malleable codes using [4] experiment,
which is equivalent to original [27] experiment. Fix a coding scheme (Enc,Dec)
with message space M and codeword space C. Also fix a family of functions
F : C → C. Let D = {DfC}f∈F,C∈C be some family of distributions over {0, 1},
indexed by tampering function f and a codeword C. We will first define the tam-
pering oracle TamperstateC,D (f), for which initially state = alive. For a tampering
function f ∈ F and a codeword C ∈ C define the tampering oracle by

TamperstateC,D (f) :
If state = dead output ⊥
C ′ ← f(C)

If Dec(C ′) = Dec(C) and DfC = 0 output same
M ′ ← Dec(C ′)
If M ′ = ⊥ set state← dead and output ⊥
Otherwise output C ′

Fix a tampering adversary A and a codeword C ∈ C. We define the continuous
tampering experiment CTC,D(A) by

CTC,D(A) :
state← alive

v ← ATamperstateC,D(·)

Output v

Definition 7. Let (Enc,Dec) be a coding scheme and CT be its corresponding
continuous tampering experiment for a class F of tampering functions. We say
that (Enc,Dec) is an ε-secure continuously non-malleable code against F , if there

exists a family of distributions D = {DfC}f∈F,C∈C over {0, 1} such that for all
tampering adversaries A and all pairs of messages M0,M1 ∈M that

CTC0,D(A) ≈ε CTC1,D(A),

where C0 ← Enc(M0) and C1 ← Enc(M1).

3 Continuous Non-Malleable Code against
Permutations-With-Overwrites

In this section we define a coding scheme (Encc,Decc) and prove it is a continuous
non-malleable code against a class PermOver of permutations-with-overwrites
(the actual definition will follow).

3.1 Coding scheme

LetM = {0, 1}n and C = C1× · · ·× CN , where each Ci = {0, 1}k1 ×{0, 1}k1 . Let
also (Enc2,Dec2) denote a two-state code (actually we need a two-state strong
non-malleable code here, however the specific instantiation will be given later)

DKORS 15

and hN denote a bN/3c-out-of-N secret sharing scheme (again, the specific in-
stantiation will be given later). Now we are ready to introduce the (randomized)
function (procedure) Encc :M→ C:

For m ∈ M and a random r ∈ {0, 1}n, let (d1, . . . , dN) ← hN (m||r) where
(d1, . . . , dN) ∈ ({0, 1}k2)N are shares for (m||r). Now, for each di let (Li, Ri)←
Encpar2 (di||i).

Finally, we state ci ← (Li, Ri) and Encs(m) outputs (c1, . . . , cN).
The definition of Decc is simple and straightforward (forced by the definition

of a coding scheme).

Remark 1. The above construction is not tight for a given message length n
since it also depends on the choice of parameters (N, k1, k2) and the specific
definitions of both: the two-state code (Enc2,Dec2) and the secret sharing scheme
hN . However, before we pick adequate parameters and schemes, we need one
definition more:

Definition 8. We call a two-split code (Enc2,Dec2) ε-admissible if the scheme
(Encpar2 ,Decpar2) fulfills the following requirements:

1. [Canonical encoding procedure:] Encpar2 (m) is uniform in {c : Decpar2 (c) = m}.
2. [Detection of close to bijective tampering:]

For any message m, if Encpar2 (m) = (X,Y) then for any functions f, g :
{0, 1}k1 → {0, 1}k1 such that
H∞(f(X)),H∞(g(Y)) ≥ 2/3 · k1 − 1 and (for any x or y) f(x) 6= x or
g(y) 6= y it holds:

Pr(Decpar2 (f(X), g(Y)) = ⊥) ≥ 1− ε.

3. [Detection of complete overwrite of one part:] For any constant c ∈ {0, 1}k1 ,
and any uniform X,Y ∈ {0, 1}k1 , such that parity of X is 0 and parity of Y
is 1 we get,

Pr(Dec2(X, c) = ⊥) ≥ 1− ε,
Pr(Dec2(c, Y) = ⊥) ≥ 1− ε

4. [Leakage resilient storage:] For any message m, if Encpar2 (m) = (X,Y) then

for any functions f, g : {0, 1}k1 → {0, 1}k1 such that H̃∞(X|f(X)) ≥ 1/3 ·k1
and H̃∞(Y |f(Y)) ≥ 1/3 · k1 we get

∆ [(f(X), Y) ; (f(U0), U1)] ≤ ε ,
∆ [(X, g(Y)) ; (U0, g(U1))] ≤ ε ,

where U0, U1 are independent uniformly distributed over {0, 1}k1 , such that
parity of Ui is equal i.

In the full version of the paper [23], we discuss possible instantiations (for an
appropriate εc) of definition 8:

16 CNMC Against Permutations and Overwrites, and its Applications

with [4]: EncAKO : {0, 1}m →
(
{0, 1}O(m6)

)2
is 2−O(m)− admissible,

with [42]: EncLi : {0, 1}m →
(
{0, 1}O(m·logm)

)2
is 2−O(m)− admissible.

(Of course the second code of the above gives better parameters. However we
argue for both above statements.)

Through the rest of the paper we always refer to the second of the above spe-
cific two-state code and the specific error probability when notation (Enc2,Dec2)
and εc is used.

3.2 Definition of the class of tampering functions

Here we define the class PermOver of tampering functions. Through this paper
functions from this class PermOver are called permutations-with-overwrites.

Let us consider a set {0, 1}q of vectors of q bits (q-vectors, for short). Now,
let denote Πq the class of permutations of bits of q-vectors. Denote also Oq the
class of functions f : {0, 1}q → {0, 1}q, such that:

for all i, either f(x)i = xi or f(x)i = bi for a fixed bi.
Loosely speaking: any function from Oq, independently for each bit, either

leaves it unchanged or sets it into a fixed value (i.e. overwrites it).
Now we simply define the class PermOverq = Oq ◦Πq. For our application we

will equate C = ({0, 1}k1 × {0, 1}k1)N with {0, 1}2k1N and consider PermOver =
PermOver2k1N as a tampering class for C.

The above description of course finishes the definition of our class of tamper-
ing functions, however we want a few further related definitions.

Related definitions. Let us fix a tampering function t ∈ PermOver. As men-
tioned above we will think of t as a function from C1×· · ·×CN to C1×· · ·×CN .
Now, for each i ∈ {1, . . . , N} we say that t either leaves or overwrites or modifies
the i-th block. These phrases stand for the following:

If t(c)i = ci then t leaves the i-th block. If t(c)i = a for some a independent
of c then t overwrites the i-th block. Finally, if none of the previous occurs, then
we say that t modifies the i-th block.

If t overwrites i-th block, two cases are possible. Either ci is independent of
f(c) or some bits of ci are moved to some modified blocks. In the first case we say
that t strong-overwrites i-th block and in the second case, it weak-overwrites.

Touched blocks are blocks either modified or weak-overwritten. In that case
we say that t touches these blocks.

For a function t ∈ PermOver and a codeword c ∈ C we denote touch(t, c) the
set of all touched blocks and its indices, more formally: touch(t, c) = {(ci, i)|t touches ci}.

Example. The above definitions may look a little bit obscure at first sight, so
– to make things clearer – we give an example.

Let N = 4 and each Ci = {0, 1}6. Now let us consider:

t
(

(b11, b
1
2, b

1
3, b

1
4, b

1
5, b

1
6), (b21, b

2
2, b

2
3, b

2
4, b

2
5, b

2
6), (b31, b

3
2, b

3
3, b

3
4, b

3
5, b

3
6), (b41, b

4
2, b

4
3, b

4
4, b

4
5, b

4
6)
)

=(
(0, 0, 0, 1, 1, 1), (b21, b

2
2, b

2
3, b

2
4, b

2
5, b

2
6), (0, 1, 0, 1, 0, 1), (0, b15, b

4
4, 1, b

4
2, b

1
1)
)
.

DKORS 17

Obviously t ∈ PermOver and we have that: t leaves the second block, over-
writes the first and the 3-rd block and modifies the 4-th block. The first block
is weak-overwritten (because the 5-th block gets one bit from the first block)
and the 3-rd block is strongly overwritten. Function t touches the blocks of the
indices 1 and 4 so, for exemplary

c = ((0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 0, 0), (1, 0, 0, 0, 0, 1)),

we have:
touch(t, c) = {

(
(0, 0, 1, 1, 0, 0), 1

)
,
(
(1, 0, 0, 0, 0, 1), 4

)
}.

3.3 Statement and Proof

The main statements for the whole Section 3 are the following:

Theorem 1. The coding scheme (Encc,Decc) is an (α + 2εc)
bN/3c-secure con-

tinuous non-malleable code against PermOver for α = (0.5)
1

8·k1 .

Corollary 1. Instantiation for the above code with (N, k2, k1) =
(6dn2/3e, dn1/3e, cdn1/3e log dn1/3e), with (Enc2,Dec2) = (EncLi,DecLi) (see the
end of Section 3.1) and hN = RSN (see Appendix B) gives us a continuous
non-malleable code against PermOver such that:

– the code rate is O(log n), and

– the error rate is O(2−O(n1/3)).

Proof. The message length is n and the codeword length is N · 2 · k1 ≈
6n2/3 · 2 · cn1/3 1

3 log n = 4cn log n, so the code rate is approximately 4c log n =
O(log n). (Remark: c is a constant from EncLi rate.) The error rate is:

(α+2εc)
bN/3c = ((0.5)

1
8·k1 +2εc)

bN/3c ≤ (2
−O

(
1

n1/3 log n

)
+2−O(n))n

2/3+1 = 2−O(n1/3).

Before the actual proof of Theorem 1 we want to introduce a slightly modified
version of continuous tampering experiment for (Encc,Decc) and PermOver and
a definition of a specific type of distribution that we call block-wise distribution.

The described below experiment is obviously stronger (from adversary’s point
of view) then the original one so it is sufficient to prove that our coding scheme
is secure against PermOver for the modified experiment:

Definition 9 ((Modified) Continuous Tampering Experiment). Let us
consider a tampering oracle ModTampstateC (t), for which initially state = alive.
For a tampering function t ∈ PermOver and a codeword C ∈ C define the tam-
pering oracle by

ModTampstateC (t) :
If state = dead output ⊥
C ′ ← t(C)
If Decc(C

′) = Decc(C) output (same, touch(t, c))
M ′ ← Decc(C

′)
If M ′ = ⊥ set state← dead and output ⊥
Otherwise output C ′

18 CNMC Against Permutations and Overwrites, and its Applications

Fix a tampering adversary A and a codeword C ∈ C. We define the (modified)
continuous tampering experiment MCTC(A) by

MCTC(A) :
state← alive

v ← AModTampstateC (·)

Output v

Remark 2. The main difference of the above experiment and the original one is
the output of the oracle when Decc(C

′) = Decc(C). In this case in our definition
we give the adversary additionally all touched blocks.

Definition 10 (Block-wise Distribution). For C = C1 × . . .× CN the distri-
bution D over C is a block-wise distribution if (informally speaking) each block
Ci is either fixed or uniform and independent of the other blocks.

Formally, we say that D is a block-wise distribution if there exists a set of
indices I ⊂ [1, 2, . . . , N] such that for all i ∈ I there exists ci ∈ Ci such that:

PD(Ci = ci) = 1, and
the conditional distribution (D|Ci = ci for all i) is uniform.

Remark 3. If |I| = l in the above definition, then we will sometimes say that D
has l constant blocks or that the adversary knows l blocks.

Proof sketch for Theorem 1. Our key observation is that after each oracle call
in the tampering experiment, the distribution of the codewords (from the per-
spective of the adversary) is almost always block-wise. Moreover, to increase the
number of known (constant) blocks, the adversary must take a risk of receiving
⊥. This idea is expressed in the following Lemma 5. Notice, that from basic
properties of secret sharing schemes, the tampering experiment is independent
from the message m while the number of known blocks is smaller then bN/3c.
So, the only way for the adversary to distinguish between two different messages
is to learn at least bN/3c blocks. However (from Lemma 5) this happens with

probability at most (α+2εc)
bN/3c (for α = (0.5)

1
8·k1) so this observation finishes

the proof for Theorem 1. ut
Before the statement of the key Lemma 5, we need one definition more:

Definition 11. For a block-wise distribution D and a tampering function t ∈
PermOver we say that t freshly-touches the i-th block if t touches this block and
this block is not known in context of D.

Lemma 5. Let α = (0.5)
1

8·k1 , let l1, l2 ∈ N such that l1 + l2 < bN/3c, and let D
be a block-wise distribution over C with l1 constant blocks and let t ∈ PermOver
be a tampering function freshly-touching l2 blocks. Then, with probability at least
(1−(α+2εc)

l2) a call ModTampstateC (t) will return ⊥. Moreover – with probability
at least (1−2−n) – the distribution D conditioned on the answer from the oracle
will be block-wise with l1 + l2 constant blocks.

The formal proof can be found in the full version of the paper [23].

DKORS 19

4 SD-CCA Commitment Scheme

4.1 Definition of CCA Secure Commitment Schemes

We assuming that the reader has familiarity with the standard definition of
commitment scheme and proof system.

Self-Destruct CCA Secure Commitment Schemes. Let Π = (Sen,Rec)
be a commitment scheme. The self-destruct CCA-oracleOsdcca forΠ = (Sen,Rec)
acts as follows in an interaction with an adversary A: it participates with A in
polynomially many sessions of the commit phase of Π as an honest receiver.
At the end of each session, if the session is valid, the oracle returns the unique
value m committed in the interaction. The oracle outputs ⊥ and implements the
self-destruct mode, (i.e. the oracle will respond with ⊥ for all subsequent com-
mitment queries) if one of the following cases happen: 1) a session has multiple
valid committed values8; 2) the commitment is invalid; 3) if the committed value
m is equal to a special self-destruct symbol ⊥.

More precisely, let us consider the following probabilistic experiment
INDsdcca

b (Π = (Sen,Rec), λ, z,A). Let Osdcca be the SD CCA-oracle for Π. The
adversary has access to Osdcca during the entire course of the experiment. On

input 1λ, and z ∈ {0, 1}? the adversary AOsdcca

sends two strings m0 and m1

with |m0| = |m1| to the experiment. The experiment randomly selects a bit

b← {0, 1} and commits to mb to AOsdcca

. Note that if A queries the oracle with
a commitment of m s.t. m ∈ {m0,m1} 9 then, the oracle returns the special

symbol same. Finally AOsdcca

sends a bit y to the experiment. The output of

the experiment is replaced by ⊥ if AOsdcca

sends a commitment to Osdcca whose
transcript is identical to the one computed on the left. Otherwise, the output of
the experiment is y. Let INDsdccab (Π = (Sen,Rec), λ, z,A) denote the output of
the experiment described above.

Definition 12 (Self-destruct CCA (SD-CCA) secure string commit-
ment scheme). Let Π(Sen,Rec) be a commitment scheme and Osdcca be the
self-destruct CCA-oracle for Πsdcca. We say that Πsdcca is self-destruct CCA-
secure (w.r.t. the committed-value oracle), if for every ppt-adversary A and all
z ∈ {0, 1}? it holds that:

{INDsdcca0 (Π = (Sen,Rec), λ, z,A)} ≈ {INDsdcca1 (Π = (Sen,Rec), λ, z,A)}

Definition 13 (Self-destruct parallel CCA (SD-PCCA) secure string
commitment scheme). The self-destruct parallel CCA oracle is defined like

8 The statistical binding property guarantees that this happens with only negligible
probability.

9 As noted in [5], following [24], this definition allows MIM to commit to the same
value. It is easy to prevent MIM from committing the same value generically in case
of string commitments: convert the scheme to tag based by appending the tag with
v, and then sign the whole transcript using the tag.

20 CNMC Against Permutations and Overwrites, and its Applications

the self-destruct CCA-oracle, except that the adversary is restricted to a parallel
query, i.e., the adversary can only send a single query that may contain multiple
commitments sent in parallel. Let IND

sdpcca
b (Π = (Sen,Rec), λ, z,A) define the

output of the security game for self-destruct parallel CCA security. The formal
definition is then analogous to the definition of SD-CCA security.

Note that any SD-CCA commitment scheme is also a SD-PCCA commitment
scheme.

Definition 14 (Parallel CCA secure (PCCA) string commitment scheme[11,
41]). The parallel CCA oracle is defined like self-destruct parallel CCA-oracle,
except that the oracle does not implement the self-destruct mode. In more de-
tails, when a commitment is not valid, or a session has multiple valid committed
values the oracle returns ⊥, and the committed messages (or the symbol same)

in all the other cases. Let INDsdpccab (Π = (Sen,Rec), λ, z,A) define the output of
the security game for parallel CCA security (PCCA). The formal definition is
then analogous to the definition of SD-PCCA security.

In this paper we also consider a self-destruct (parallel) CCA secure bit com-
mitment scheme that is defined as in Def. 12 (13), except that the message
space is {0, 1} and the oracle never returns same.

In all the paper we denote by δ̃ a value associated with the right session
(where the adversary A plays with the oracle) where δ is the corresponding
value in the left session. For example, the sender commits to v in the left session
while A commits to ṽ in the right session.

4.2 SD-CCA Commitment Scheme from NMCode

In this subsection we describe our Πsdcca = (Sensdcca,Recsdcca) a t-round (non-
tag based) self-destruct CCA string commitment scheme, that makes use of the
following tools.

1. Πbit
sdcca = (Combit

sdcca,Dec
bit
sdcca) is a t-round (non-tag based) self-destruct CCA

bit commitment scheme.
2. ΠNMCode = (Enc,Dec) is a continuos non-malleable code resilient against

PermOver. The procedure Enc outputs a codeword that is n-bits long.

Our SD-CCA commitment scheme is described in Fig 1.

Theorem 2. If Πbit
sdcca = (Combit

sdcca,Dec
bit
sdcca) is a t-round (non-tag based) self-

destruct CCA bit commitment scheme and ΠNMCode = (Enc,Dec) is a continuous
non-malleable code resilient against PermOver, then Πsdcca = (Sensdcca,Recsdcca)
is a a t-round (non-tag based) self-destruct CCA string commitment scheme.

The formal proof can be found in the full version of the paper [23].

DKORS 21

Common input: security parameter λ.
Input to Sensdcca: m ∈ {0, 1}λ.
Commitment phase:

1. Sensdcca:
1. Run encm ← Enc(1λ,m).

2. Sensdcca ↔ Recsdcca:
1. For i = 1, . . . , n, Sensdcca on input encmi interacts with Recsdcca and computes the

commitment phase τi of Combit
sdcca obtaining the i-th decommitment information

decsdccai
a.

3. Recsdcca: accepted the commitment iff the following conditions are satisfied.
1. For i = 1, . . . , n τi is accepting.
2. For i, j = 1, . . . , n and i 6= j τi is not identical to τj .

Decomittment phase:
1. Sensdcca → Recsdcca

1. Send (m, decsdcca1 , . . . , decsdccan) to Recsdcca.
2. Recsdcca: For i = 1, . . . , n if decsdccai is not a valid decommitment of τi then abort,
otherwise continue as follow.
1. Run (encm

′
i)← Decbitsdcca(τi, dec

sdcca
i).

2. Set encm
′

= encm
′

1 || . . . ||encm
′

n and run m′ ← Dec(encm).
3. If m 6= m′ abort, otherwise output 1.

a The n commitment phases are computed in parallel.

Fig. 1: Description of our SD-CCA string commitment scheme.

4.3 Parallel CCA Commitment Scheme from SD-PCCA
Commitment Scheme

In this subsection we describe our Πpcca = (Senpcca,Recpcca) a t+ 2-round (non-
tag based) PCCA string commitment scheme, that makes use of the following
tools.
1. Πsdpcca = (Sensdcca,Recsdcca) is a t-round (non-tag based) SD-PCCA string

commitment scheme.
2. a 2-round IDTC schemeΠ = (Sen,Rec,TFake) for the followingNP-language
L = {τsdcca : (m, decsdcca) s.t. Recsdcca on input (m, decsdcca) accepts m as a
decommitment of τsdcca}.

3. Πsign = (Gen,Sign,Verify) is a signature scheme.
4. A 4-round delayed-input public coin LStrap = (Ptrap,Vtrap) with SHVZK sim-

ulator Strap. LStrap = (Ptrap,Vtrap) is adaptive-input PoK for the NP-relation
RelLtrap where Ltrap = {(vk : ∃ (σ1,msg1, σ2,msg2) s.t. Verify(vk,msg1, σ1) =
1 AND Verify(vk,msg2, σ2) = 1 AND msg1 6= msg2}. We denote with `trap
the dimension of the instances belonging to LStrap.
Our Πpcca = (Senpcca,Recpcca) is described in Fig 2.

Theorem 3. If Πsdpcca = (Sensdpcca,Recsdpcca) is a t-round (non-tag based) self-
destruct PCCA string commitment scheme and OWFs exists, then Πsdcca =
(Senpcca,Recpcca) is a a t + 2-round (non-tag based) PCCA string commitment
scheme.

22 CNMC Against Permutations and Overwrites, and its Applications

The formal proof can be found in the full version of the paper [23].

Common input: security parameter λ, instances length: `, `trap.
Input to Senpcca: m ∈ {0, 1}λ.
Commitment phase:

1. Senpcca ↔ Recpcca:
1. Senpcca on input m interacts with Recpcca and compute the commitment phase

τsdpcca of Sensdpcca obtaining the decommitment information decsdpcca.
2. Senpcca interacts with Recpcca in order to prove that he computes a well-formed

commitment of m a:
a. Recpcca runs the following algorithms: (sk, vk) ← Gen(1λ), ρ ← Rec(1λ, `),

ls1trap ← Vtrap(1λ, `trap). Then, he sends (vk, ρ, ls1trap) to Recpcca.
b. Senpcca picks msg, ls3trap ← {0, 1}λ, and runs the following algorithms: ls2trap ←
Strap(1λ, `trap, ls

3
trap; rtrap), com, aux ← TFake(1λ, ρ, τsdpcca). Then, he sends

(com,msg) to Recpcca.
c. Recpcca picks ls3trap ← {0, 1}λ and runs σ ← Sign(sk,msg). Then, he sends (c, σ)

to Senpcca.
d. Senpcca If Verify(vk,msg, σ) 6= 1 then aborts, otherwise continues as fol-

low. Runs ls4trap ← Strap(vk, rtrap). Furthermore, he sets x = (τsdpcca) and
w = (m, decsdpcca) then runs dec ← TFake(x,w, ρ, ls2trap, aux). Then, he sends
(dec, ls2trap, ls

4
trap) to Recpcca.

1. Recsdcca: accept the commitment iff the following conditions are satisfied.
1. Rec(ρ, x, com, ls2trap, dec) = 1.
2. Vtrap(vk, ls1trap, ls2trap, ls3trap, ls4trap) = 1
3. If Recsdpcca accepts the commitment τsdpcca.

Decomittment phase:
1. Senpcca → Recpcca: send (m′, decsdcca) to Recpcca.
2. Recsdcca: If decsdpcca is not a valid decommitment of τsdpcca then abort, otherwise runs
Recsdpcca on input (τsdpcca, decsdpcca) obtaining m. If m = m′ output 1 and 0 otherwise.

a The rounds a. and b. can be run in parallel with the last two rounds of the commitment
phase of Πsdpcca.

Fig. 2: Description of our Parallel CCA string commitment scheme.

A Definition and Tools

Definition 15 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}?
is called one way if the following two conditions hold:

– there exists a deterministic polynomial-time algorithm that on input y in the
domain of f outputs f(y);

– for every ppt algorithm A there exists a negligible function ν, such that for
every auxiliary input z ∈ {0, 1}poly(λ):

Prob [y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))] < ν(λ).

DKORS 23

Definition 16 (Following the notation of [?]). A triple of ppt algorithms
(Gen,Sign,Verify) is called a signature scheme if it satisfies the following prop-
erties.

Validity: For every pair (s, v)← Gen(1λ), and every m ∈ {0, 1}λ, we have that

Verify(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for
all auxiliary input z ∈ {0, 1}? it holds that:

Pr[(s, v)← Gen(1λ); (m,σ)← ASign(s,·)(z, v) ∧ Verify(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A
to the oracle Sign(s, ·).

Definition 17 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitute a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:
Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Pr [〈P(w),V〉(x) = 1] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there
exists a negligible function ν such that for every x /∈ L and every z:

Pr [〈P?(z),V〉(x) = 1] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-
input completeness if P needs x and w only to compute the last round and V
needs x only to compute the output. Before that, P and V run having as input
only the size of x. The notion of delayed-input completeness was defined in [21].
An interactive protocol Π = (P,V) is public coin if, at every round, V simply
tosses a predetermined number of coins (i.e. a random challenge) and sends the
outcome to the prover. Moreover we say that the transcript τ of an execution
b = 〈P(z),V〉(x) is accepting if b = 1.

Definition 18 (Proof of Knowledge [43]). A protocol Π = (P,V) that en-
joys completeness is a proof of knowledge (PoK) for the relation RelL if there
exists a probabilistic expected polynomial-time machine Ext, called the extrac-
tor, such that for every algorithm P?, there exists a negligible function ν, every
statement x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input
z ∈ {0, 1}?,

Pr [〈P?r (z),V〉(x) = 1] ≤ Pr
[
w ← ExtP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK)
if the above condition holds w.r.t. any ppt P?.

24 CNMC Against Permutations and Overwrites, and its Applications

In this paper we also consider the adaptive-input PoK/AoK property for all
the protocols that enjoy delayed-input completeness. Adaptive-input PoK/AoK
ensures that the PoK/AoK property still holds when a malicious prover can
choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol
played between a prover P and a verifier V on common input x and private input
w of P s.t. (x,w) ∈ RelL. In a 3-round protocol the first message a and the third
message z are sent by P and the second messages c is played by V. At the end
of the protocol V decides to accept or reject based on the data that he has seen,
i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge
length the number of bit of c.

Definition 19 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for
a relation RelL is a Σ-Protocol if the following properties hold:

– Completeness: if (P,V) follow the protocol on input x and private input w
to P s.t. (x,w) ∈ RelL, V always accepts.

– Special soundness: if there exists a polynomial time algorithm such that,
for any pair of accepting transcripts on input x, (a, c1, z1), (a, c2, z2) where
c1 6= c2, outputs witness w such that (x,w) ∈ RelL.

– Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt
simulator algorithm S that for any x ∈ L, security parameter λ and any chal-
lenge c works as follow: (a, z)← S(1λ, x, c). Furthermore, the distribution of
the output of S is computationally indistinguishable from the distribution of
a transcript obtained when V sends c as challenge and P runs on common
input x and any w such that (x,w) ∈ RelL.

A.1 2-Round Instance-Dependent Trapdoor Commitments

Here we define a special commitment scheme based on an NP-language L where
sender and receiver also receive as input an instance x. While correctness and
computational hiding hold for any x, we require that statistical binding holds
for x 6∈ L and knowledge of a witness for x ∈ L allows to equivocate. Finally, we
require that a commitment along with two different openings allows to compute
the witness for x ∈ L. We recall that L̂ denotes the language that includes L
and all well formed instances that are not in L.

Definition 20. Let 1λ be the security parameter, L be an NP-language and RelL
be the corresponding NP-relation. A triple of ppt algorithms Π = (Sen,Rec,Sen)
is a 2-Round Instance-Dependent Trapdoor Commitment scheme if the following
properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the
2nd round Sen on input the message m, 1λ, ρ and x ∈ L outputs (com, dec).
We will refer to the pair (ρ, com) as the commitment of m. Moreover we
will refer to the execution of the above two rounds including the exchange

DKORS 25

of the corresponding two messages as the commitment phase. Then Rec on
input m, x, com, dec and the private coins used to generate ρ in the com-
mitment phase outputs 1. We will refer to the execution of this last round
including the exchange of dec as the decommitment phase. Notice that an
adversarial sender Sen? could deviate from the behavior of Sen when com-
puting and sending com and dec for an instance x ∈ L̂. As a consequence
Rec could output 0 in the decommitment phase. We will say that dec is a
valid decommitment of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs
1.

Hiding. Given a ppt adversary A, consider the following hiding experiment
ExpHidingbA,Π(λ, x) for b = 0, 1 and x ∈ L̂R:

– On input 1λ and x, A outputs a message m, along with ρ.
– The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs

Sen on input m, x and ρ, obtaining a pair (com, dec), otherwise it runs
TFake on input x and ρ, obtaining a pair (com, aux). The challenger
outputs com.

– A on input com outputs a bit b′ and this is the output of the experiment.

We say that hiding holds if for any ppt adversary A there exist a negligible
function ν, s.t.:∣∣∣Prob

[
ExpHiding0A,Π(λ, x) = 1

]
−Prob

[
ExpHiding1A,Π(λ, x) = 1

] ∣∣∣ < ν(λ).

Special Binding. There exists a ppt algorithm Ext that on input a commit-
ment (ρ, com), the private coins used by Rec to compute ρ, and two valid
decommitments (dec, dec′) of (ρ, com) to two different messages m and m′

w.r.t. an instance x ∈ L, outputs w s.t. (x,w) ∈ RelL with overwhelming
probability.

Trapdoorness. For any ppt adversary A there exist a negligible function ν,

s.t. for all x ∈ L it holds that:
∣∣∣Prob

[
ExpComA,Π(λ, x) = 1

]
−

Prob
[
ExpTrapdoorA,Π(λ, x) = 1

] ∣∣∣ < ν(λ) where ExpComA,Π(λ, x) and

ExpTrapdoorA,Π(λ, x) are defined below10.

ExpComA,Π(λ, x): ExpTrapdoorA,Π(λ, x):
-On input 1λ and x, A outputs
(ρ,m).

-On input 1λ and x, A outputs
(ρ,m).

-Senon input 1λ, x, m and ρ,
outputs (com, dec).

-TFake on input 1λ, x and ρ,
outputs (com, aux).
-TFake on input tk s.t. (x, tk) ∈
RelL, x, ρ, com, aux and m out-
puts dec.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

10 We assume w.l.o.g. that A is stateful.

26 CNMC Against Permutations and Overwrites, and its Applications

B Instantiation of a secret sharing scheme

In this section we aim for a coding scheme RSN : {0, 1}2n → ({0, 1}k2)N that
holds the bN/3c-out-of-N secret sharing property. We show such construction
for all parameters such that bN/3c · k2 ≥ 2n.

It turns out that the only we need for this purpose is the Reed-Solomon error
correcting code c with following parameters:

– alphabet size = 2k2 ,
– block length = N ,
– message length M = 2 · d 2nk2 e.

Now our coding scheme may be defined as: RSN (m) = c(m||x), where x is a
randomness of the same size as m.

We omit the simple proof that the above code actually holds the bN/3c-out-
of-N secret sharing property.

Acknowledgments

We thank Michele Ciampi for several discussions on the applications of our
CNMC.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) Theory of Cryptography - 13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. LNCS, vol. 9563, pp.
393–417. Springer (2016), https://doi.org/10.1007/978-3-662-49099-0_15

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC. ACM (2014)

3. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Informa-
tion theoretic continuously non-malleable codes in the constant split-state model.
Unpublished Manuscript, available on eprint. Presented at IMS Workshop on In-
formation Theoretic Cryptography in NUS, Singapore. (2016)

4. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. TCC (2017), http://eprint.iacr.org/

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I. LNCS, vol. 9215, pp. 538–557. Springer (2015)

6. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I. pp. 375–397
(2015)

https://doi.org/10.1007/978-3-662-49099-0_15
http://eprint.iacr.org/

DKORS 27

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes
for bounded depth, bounded fan-in circuits. Cryptology ePrint Archive, Report
2016/307 (2016), https://eprint.iacr.org/2016/307

8. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: Ac0, decision trees, and streaming space-bounded tamper-
ing. Cryptology ePrint Archive, Report 2017/1061 (2017), https://eprint.iacr.
org/2017/1061

9. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: 43rd Symposium on Foundations of Computer
Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings.
pp. 345–355 (2002)

10. Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concur-
rently composable security with shielded super-polynomial simulators. In: Coron,
J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I. LNCS, vol.
10210, pp. 351–381 (2017)

11. Broadnax, B., Fetzer, V., Müller-Quade, J., Rupp, A.: Non-malleability vs. cca-
security: The case of commitments. In: Abdalla, M., Dahab, R. (eds.) Public-Key
Cryptography - PKC 2018 - 21st IACR International Conference on Practice and
Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018,
Proceedings, Part II. LNCS, vol. 10770, pp. 312–337. Springer (2018)

12. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA. pp. 541–550. IEEE Computer Society (2010)

13. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-
malleable codes. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi,
D. (eds.) 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy. LIPIcs, vol. 55, pp. 31:1–31:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

14. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing. pp. 285–298. ACM (2016)

15. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes in the constant split-state
model. FOCS (2014)

16. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M.
(ed.) Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA,
January 12-14, 2014. pp. 155–168. ACM (2014), http://doi.acm.org/10.1145/
2554797.2554814

17. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: TCC (2014)

18. Choi, S.G., Kiayias, A., Malkin, T.: Bitr: built-in tamper resilience. In: Advances
in Cryptology–ASIACRYPT 2011, pp. 740–758. Springer (2011)

19. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part III. LNCS, vol.
9816, pp. 270–299. Springer (2016)

https://eprint.iacr.org/2016/307
https://eprint.iacr.org/2017/1061
https://eprint.iacr.org/2017/1061
http://doi.acm.org/10.1145/2554797.2554814
http://doi.acm.org/10.1145/2554797.2554814

28 CNMC Against Permutations and Overwrites, and its Applications

20. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II.
LNCS, vol. 10402, pp. 127–157. Springer (2017)

21. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved or-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) Theory of
Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, Jan-
uary 10-13, 2016, Proceedings, Part II. LNCS, vol. 9563, pp. 112–141. Springer
(2016)

22. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part I. pp. 532–560 (2015)

23. Damgrd, I., Kazana, T., Obremski, M., Raj, V., Siniscalchi, L.: Continuous nmc
secure against permutations and overwrites, with applications to cca secure com-
mitments. Cryptology ePrint Archive, Report 2018/596 (2018), https://eprint.
iacr.org/2018/596

24. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
May 5-8, 1991, New Orleans, Louisiana, USA. pp. 542–552 (1991)

25. Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-
malleable codes in the constant split-state model. Unpublished Manuscript, avail-
able on eprint. Presented at IMS Workshop on Information Theoretic Cryptogra-
phy in NUS, Singapore. (2016)

26. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Advances in Cryptology-CRYPTO 2013. Springer (2013)

27. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS. pp. 434–
452. Tsinghua University Press (2010)

28. Faust, S., Mukherjee, P., Nielsen, J., Venturi, D.: Continuous non-malleable codes.
In: Theory of Cryptography Conference - TCC. Springer (2014)

29. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage re-
silient von neumann architecture. In: Katz, J. (ed.) Public-Key Cryptography
- PKC 2015 - 18th IACR International Conference on Practice and Theory in
Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,
Proceedings. LNCS, vol. 9020, pp. 579–603. Springer (2015), http://dx.doi.org/
10.1007/978-3-662-46447-2_26

30. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings. LNCS, vol. 8441, pp. 111–128. Springer
(2014), http://dx.doi.org/10.1007/978-3-642-55220-5_7

31. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) Theory of Cryptography, First Theory of Cryp-
tography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004,
Proceedings. LNCS, vol. 2951, pp. 258–277. Springer (2004), http://dx.doi.org/
10.1007/978-3-540-24638-1_15

https://eprint.iacr.org/2018/596
https://eprint.iacr.org/2018/596
http://dx.doi.org/10.1007/978-3-662-46447-2_26
http://dx.doi.org/10.1007/978-3-662-46447-2_26
http://dx.doi.org/10.1007/978-3-642-55220-5_7
http://dx.doi.org/10.1007/978-3-540-24638-1_15
http://dx.doi.org/10.1007/978-3-540-24638-1_15

DKORS 29

32. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011. pp. 695–704 (2011)

33. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commit-
ments: A black-box approach. In: 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012.
pp. 51–60 (2012)

34. Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently
composable secure computation via a robust extraction lemma. In: Dodis, Y.,
Nielsen, J.B. (eds.) Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I. LNCS,
vol. 9014, pp. 260–289. Springer (2015)

35. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016. pp. 1128–1141. ACM (2016)

36. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. pp. 41–50 (2014)

37. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part I. pp. 451–480 (2015)

38. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography - 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part II. LNCS, vol. 10678, pp. 139–171. Springer (2017)

39. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds.
In: Umans, C. (ed.) 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. pp. 564–575. IEEE
Computer Society (2017)

40. Kiyoshima, S.: Round-efficient black-box construction of composable multi-party
computation. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part II. LNCS, vol. 8617, pp. 351–368. Springer
(2014)

41. Kiyoshima, S.: Statistical concurrent non-malleable zero-knowledge from one-way
functions. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part II. LNCS, vol. 9216, pp. 85–106. Springer (2015)

42. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. STOC (2017), https://arxiv.org

43. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011.
pp. 705–714. ACM (2011)

44. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012
- 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings. LNCS, vol. 7417, pp. 461–478. Springer (2012)

https://arxiv.org

30 CNMC Against Permutations and Overwrites, and its Applications

45. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: Umans, C. (ed.) 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017. pp. 576–587. IEEE Computer Society (2017)

46. Liu, F.H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Advances in Cryptology–CRYPTO 2012, pp. 517–532. Springer (2012)

47. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th An-
nual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005. pp. 533–542. ACM (2005)

48. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings. pp.
638–655 (2010)

49. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. pp. 531–540. IEEE
Computer Society (2010)

	Continuous NMC Secure Against Permutations and Overwrites, with Applications to CCA Secure Commitments

