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Abstract. We consider the question of whether the security of unique
digital signature schemes can be based on game-based cryptographic
assumptions using linear-preserving black-box security reductions—that
is, black-box reductions for which the security loss (i.e., the ratio between
“work” of the adversary and the “work” of the reduction) is some a
priori bounded polynomial. A seminal result by Coron (Eurocrypt’02)
shows limitations of such reductions; however, his impossibility result
and its subsequent extensions all suffer from two notable restrictions:
(1) they only rule out so-called “simple” reductions, where the reduction
is restricted to only sequentially invoke “straight-line” instances of the
adversary; and (2) they only rule out reductions to non-interactive (two-
round) assumptions.
In this work, we present the first full impossibility result: our main result
shows that the existence of any linear-preserving black-box reduction for
basing the security of unique signatures on some bounded-round assump-
tion implies that the assumption can be broken in polynomial time.

1 Introduction

Digital signature schemes, whereby a party can “sign” a message in a publicly
verifiable yet still adversarially unforgeable way, are one of the most basic and
important classes of cryptographic primitives; their security has been studied
since the 1970s. While the earliest constructions of digital signatures [16,38,40,
41] were heuristic in nature, modern constructions have tight proofs of security
against all computationally bounded adversaries based on certain underlying
assumptions.

Specifically, in a provably secure construction, we have a reduction R, which,
given any adversary A which breaks the security of a digital signature scheme
Π, can break a certain underlying assumption C; hence, if the assumption holds,
then the scheme must be secure. In this paper, we restrict our attention to black-
box security reductions, where R only interacts with A as a “black box”.3 As far
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as we know, all security proofs for digital signatures rely on black-box security
reductions.

We are interested in the security loss of such a reduction (a concept originally
proposed as “security preservation” in [29]), or intuitively how “inefficient” it is
in terms of running time and success probability compared to the adversary it
runs. Informally, if, given a security parameter n, R (including the instances of
A it runs) and A run in time TimeRA(n) and TimeA(n) respectively, and have
success probabilities of SuccessRA(n) and SuccessA(n), then the security loss is
given by the maximum over all adversaries A of:

λR(n) =
SuccessA(n)

SuccessRA(n)

TimeRA(n)

TimeA(n)

Intuitively, if we define the “work factor” of the adversary A to be the ratio

of its running time to its success probability, or WorkA(n) = TimeA(n)
SuccessA(n)

(and

respectively for RA), then we can think of the security loss as

λR =
WorkRA(n)

WorkA(n)

or how much “work” the reduction R needs to do to break the underlying as-
sumption compared to the amount of work that its adversary A does to break the
primitive Π. So the higher the security loss, the easier the primitive is to break
compared to the underlying assumption. As such, having security reductions
with low security loss is essential for proving practical security of cryptographic
primitives, since the security loss has a significant effect on the security param-
eter (i.e., the bit length of a key, size of a large prime for RSA, etc.) which must
be used for the underlying assumption to achieve a particular level of security
for the primitive.

The most efficient possible reductions are those which have constant security
loss λR(n) ≤ c; these are commonly called tight reductions [5]. These reductions
prove that WorkA(n) is always directly proportional to WorkRA(n), and so in-
creasing the security parameter will always have the same effect on the security
of the primitive as on the security of the underlying assumption.

A weaker notion of efficiency—introduced by Luby [29]—is that of a linear-
preserving reduction, where the security loss is required to be bounded by some a
priori fixed polynomial p(·) in just the security parameter; that is, λR(n) ≤ p(n).

For instance, a security reduction that only runs the adversary A a fixed
polynomial number of times (independent of A’s running time and success prob-
ability) may not be tight, but is still linear-preserving.4 While, with a linear-
preserving reduction, the concrete security of the primitive Π is only comparable
to that of the assumption if we use an increased security parameter for Π, Π
still retains the same “asymptotic” security as the underlying assumption: for

4 The name “linear-preserving” comes from the fact that WorkRA is still linear in the
quantity WorkA(n), although it may depend polynomially on the security parameter
n.



instance, if Π can be broken in time poly(n) · (2n/3), then so can the underlying
assumption.

Unique Signatures. While the original provably secure construction of digital
signatures in [21] was neither tight nor linear-preserving, more recent construc-
tions [1,5,7,12,13,23] with tight reductions have been exhibited. However, while
these modern constructions are quite efficient, they sacrifice some arguably im-
portant features of the original constructions in achieving this. Most notably, the
earliest construction in [40] had the property that signatures were unique—that
is, for every public key and every message, there exists at most one valid signature
for that message. Whereas provably secure constructions of unique signatures
exist [30, 31], as well as constructions of verifiable random functions [9, 26, 31]
(which [31] shows imply unique signatures), none of these have linear-preserving,
let alone tight, security reductions. And unfortunately, for many recent applica-
tions of digital signatures (e.g., the recent applications to blockchains [19, 34]),
this uniqueness property is in fact necessary.

Can Unique Signatures Have Linear-Preserving Reductions? A natural ques-
tion, given the fact that no linear-preserving reductions have been discovered, is
whether a certain degree of security loss is required when proving the security of
unique signatures. This question was first addressed in 2002 by Jean-Sébastien
Coron in his seminal paper [14]. At a high level, Coron’s goal was to demonstrate
that any unique signature scheme with a black-box security reduction must have
a security loss of O(`(n)), where `(n) is the number of signing queries made by
the adversary. This, in particular, would rule out all linear-preserving reductions
for unique signature schemes because `(n) depends on the specific adversary A
and can be an arbitrarily large polynomial.

However, while Coron’s proof rules out many “natural” reductions, it does
not fully answer the question. In particular, it applies only to a quite restricted
class of “simple” reductions which run the adversary in a “sequential straight-
line” fashion—that is, they can run many instances of the adversary, but must
run them sequentially (such that each must finish before the next starts) and can-
not rewind the adversary. Furthermore, Coron’s result applies only to reductions
to the class of non-interactive (i.e., two-round) security assumptions (e.g., in-
verting a one-way function or breaking RSA). This latter restriction is necessary
to some extent; if the security assumption may have arbitrarily many rounds,
then it becomes trivial to base security on such an assumption (e.g., reducing
the security of digital signatures to itself). However, there is still a large gap
between non-interactive and “unbounded-round” security assumptions, leaving
open the question of whether bounded-round assumptions [33] (that is, security
assumptions modeled as security games with an a priori bounded number of
communication rounds) can be used to prove the security of unique signatures.

Since Coron’s seminal work, his result has been generalized to a number
of related primitives [3, 24], improved and simplified [3, 27], and extended to
rule out other notions of security tightness [42]. However, despite these exten-
sions, improvements, and generalizations, the above restrictions—to simple re-



ductions, and to non-interactive assumptions—have not yet been surmounted,
leaving open the question:

Does there exist a linear-preserving security reduction for basing the se-
curity of unique digital signatures on some natural hardness assumption?

Main Theorem. In this work, we settle this question, ruling out all linear-
preserving reductions from unique signatures to any bounded-round assumption.

Theorem 1. (Informal.) There does not exist a linear-preserving black-box re-
duction from the security of some unique signature scheme Π to a bounded-round
intractability assumption C, unless C can be broken in polynomial time.

More precisely, we show that, unless C can be broken in polynomial time, the se-
curity loss of any black-box reduction from the security of some unique signature
scheme Π to any bounded-round intractability assumption C must be at least
O(
√
`(n)), where `(n) is the number of signature queries the adversary uses (and

thus not a fixed polynomial independent of the adversary). Moreover, we observe
(deferred to the full version) that our main theorem, with minor alterations, can
also be applied to the related notion of rerandomizable signatures, or non-unique
signatures with the property that signatures can be efficiently “rerandomized”.

1.1 Proof Outline

In proving our main theorem, we follow the “meta-reduction” paradigm, orig-
inally pioneered in [8] (see also [2, 4, 6, 10, 18, 22] for related work concerning
meta-reductions), though we note that work on black-box separations using other
frameworks dates back much farther, to [25]. The core idea behind this approach
is, given an arbitrary black-box reduction R that breaks the assumption C by
using black-box access to some “ideal adversary” A (which itself breaks the se-
curity of the primitive Π), to create an efficient adversary B which breaks C
without using A: B will internally run R and, roughly speaking, internally (and
efficiently) “emulate” A for R. The implication then is that if such a reduction
R exists and breaks C using the inefficient adversary A, then B would likewise
break C, but in polynomial time, proving that C is not a secure assumption. See
Figure 1 for an illustration of the mechanics of this paradigm.

Of course, we cannot prove complete non-existence (since, indeed, provably
secure unique signature schemes exist); instead, we show that, unless R makes
many queries to A—which already implies that the security loss is high—then we
can efficiently emulate A’s responses with “high” (but not overwhelming) prob-
ability, which in turn will imply that B breaks C unless R’s success probability
is relatively small (again implying that its security loss is high).

Coron’s Meta-Reduction. As already mentioned, Coron, in [14], demonstrates
how to employ this technique for a restricted class of reductions from the security
of unique signatures. In particular, imagine an “ideal” inefficient adversary A
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Fig. 1: The meta-reduction paradigm. Left: R breaks the assumption C by using
the “ideal” but inefficient adversary A (against the signature scheme Π) as an
oracle. Right: the meta-reduction B runs R (forwarding its communication with
C) and efficiently emulates A to break C with slightly less probability than in
the left experiment.

which requests signatures for `(n) randomly chosen messages, next uses a brute-
force search to find a signature (i.e., a forgery) on a new random message, and
finally returns the forgery. (Note that this adversary A is inefficient as it requires
a brute-force search to recover the forgery.) In order to simulate R’s interaction
with A while running in polynomial time, B will run R normally and simulate
A by first requesting signatures for `(n) random messages. However, in order to
extract a forgery without using brute force, B will pick a random message m∗,
rewind the execution of R to before a randomly selected query, and try querying
R for m∗ instead of what it sent to R during the “main” (i.e., non-rewound)
thread. If R returns a correct signature for m∗ during this “rewinding”, then
B has succeeded in efficiently extracting a forgery and can return it to R. In
this case, B has succeeded in perfectly emulating A; note that this relies on the
fact that the signature scheme is unique and thus there exists at most one valid
signature on m∗.

Of course,Rmay not always return a correct response to A’s (or B’s) queries;
however, if A receives any incorrect responses in the “main” thread, it may
simply return ⊥ to R (as the security game for unique signatures only dictates
that A must return a valid forgery when its queries are correctly answered), and
so, in that case, B may also do so when emulatingA. The only time that B will fail
to emulate A is, in fact, whenR responds correctly to the original `(n) queries by
B during the “main” execution, but fails to respond to the rewound query of m∗

in any rewinding (and so B can neither return ⊥ or a forgery). Coron, through
an elegant (yet complex) probabilistic argument, shows that the probability of
this “bad event” is bounded above by O(1)/`(n). Intuitively, the reason this
holds is that, unless R provides signatures to a fraction O(1)/`(n) of random



messages m∗ (and thus the rewinding succeeds with probability O(1)/`(n)), it
is unlikely that R provides correct signatures to all the `(n) signature requests
on the “main” thread, and in this case B does not need to provide a forgery to
succeed in emulating A. Of course, formalizing this argument is quite non-trivial,
and Coron presents a sophisticated analysis which does so.

This argument rules out all reductions R from the security of unique sig-
natures to a non-interactive security assumption which break the assumption
with probability greater than the failure probability of B—that is, O(1)/`(n)—
assuming R runs a single instance of its adversary. If R runs multiple, M(n),
instances of its adversary in a sequential (i.e., non-interleaved) manner, then
by the union bound over all instances, the failure probability bound becomes
O(M(n))/`(n). Furthermore, in this case TimeRA(n) ≥ M(n)TimeA(n), and so
(given SuccessA(n) = 1) Coron’s argument achieves a bound of

λR(n) ≥ O(`(n))

which thus rules out all linear-preserving reductions as there is no a priori poly-
nomial bound on `(n).

We note that while Coron’s proof relies on a subtle and non-trivial analysis,
a very recent and elegant work by Bader et al. [3] presents a much simpler
proof of Coron’s theorem. In their approach, however, they consider a quite
different ideal adversary A′, which is even more tailored to simple reductions
and non-interactive assumptions.5 Consequently, we focus on Coron’s original
approach, which we shall see can be generalized to deal with all reductions and
all bounded-round assumptions.

The problem with interactive assumptions and “nesting”. Note that, in the above
argument, it is crucial that the security assumption is non-interactive. Otherwise,
when we rewind R, R may send a new message to C and may require a response
before proceeding; if this happens, we can no longer perform the emulation (as
we cannot rewind the communication with C).

Additionally, the argument crucially relies on the fact that R talks to A in a
“straight-line” fashion, and only considers sequential interactions with (multiple
instances) of A. If we did not have that restriction, R might simultaneously
run multiple instances of A and “nest” these different executions. For instance,
it might be the case that R receives a query from a particular instance of A,
begins an entirely different instance of A (or perhaps even multiple instances),
makes queries, and potentially requests a forgery, all before returning a response
to the first query. Rewinding this will be troublesome because, depending on
the query, R could respond differently to the nested queries or even follow an
entirely different execution pattern. Even more worrying is the fact that, if there
are enough levels of nesting, rewinding every query for every instance may take
super-polynomial time, which would invalidate the construction of B (since an

5 In fact, whereas it is not clear whether Coron’s meta-reduction B fails under these
more general conditions, the meta-reduction from [3] trivially breaks down under
them.
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Fig. 2: A simple example of nested rewinding by B that might occur during
interaction between R and two concurrent simulated instances of A. Note that
the inner rewinding must occur twice, once before the outer rewinding and once
after, as the public key pk2 might change based on the message m1,`(n). In fact,
with m concurrent instances, up to 2m rewindings may occur in this fashion.

inefficient adversary would not contradict the assumption C). See Figure 2 for
an example illustrating this.

Interestingly, this problem is also prevalent in research concerning concurrent
zero-knowledge [17]. This connection was already noted in the earlier impossibil-
ity result for black-box reductions of [33], where a “recursive rewinding strategy”
(similar to [11,15,36,39]) is used to overcome this problem. The core idea behind
this technique is to rewind every relevant query, but to “abort” the rewinding
when “too many” nested queries take place during the rewinding. The limit on
nested queries furthermore decreases by a factor of n with each recursive level
of nesting, so, since the total number of messages is polynomial, the number of
levels will always be bounded by a constant, providing the polynomial bound on
running time.

One might be tempted to simply apply this technique directly to the problem
at hand; unfortunately, due to a fundamental difference between the two results,
this is not possible. Specifically, in [33], the result proven is a complete impos-
sibility (and not just a bound on the security loss): more precisely, emulation
of A can be shown to succeed with overwhelming probability. In our context,
however, the probability that the emulation succeeds is some inverse polynomial
(and inherently must be so, or else we would have shown a complete impossibility
of black-box security reductions). The problem then with a recursive rewinding
strategy is that the failure probabilities may “cascade”. Additionally, we cannot
rely on the technique from [33] of repeatedly rewinding until we obtain a correct
response, since that would bias the distribution of the message m∗ on which we
output a forgery!



A Simple Rewinding Technique. We deal with the problem by using a differ-
ent (and actually much simpler) rewinding strategy, inspired by a technique
for “bounded-concurrent” zero-knowledge arguments originally introduced by
Lindell [28]. The key observation is that rewinding is only necessary when B
encounters an “end message” (i.e., R requesting a forgery from an instance of
A). If, during the rewinding to extract a forgery for some instance of A, B
avoids queries that contain an end message for a separate instance of A (i.e.,
those that would cause recursive rewinding), then it becomes straightforward to
bound the number of rewindings and show that B will run in polynomial time;
as an added advantage, this allows us to treat end messages very similarly to
external communication in the analysis of our meta-reduction.

However, while this simulation strategy at first glance may seem straight-
forward (and, indeed, in the context of bounded-concurrent zero-knowledge, the
analysis is simple), our scenario presents multiple major differences that make
it quite non-trivial. In particular (as already mentioned above), unlike for zero-
knowledge, we can no longer rewind queries with arbitrary messages; instead, in
order to generate a forgery of a uniformly random message, we must choose a
single forgery target m∗ and rewind every query only once using this same mes-
sage m∗ (otherwise, as mentioned above, we would bias the distribution of the
message m∗ on which we output a forgery). Thus, to not bias the distribution of
m∗, we must rewind each query with the same message m∗ and consequently, we
no longer have any independence between the rewindings, which severely com-
plicates the analysis. (Indeed, recall that even in the simplified setting of Coron,
his argument is already quite non-trivial.)

Towards dealing with this, we present a new way of analyzing an ideal
adversary which is quite similar to Coron’s ideal adversary. Our analysis re-
lies on a “randomness-switching” argument similar in spirit to that of [35, 37],
where we demonstrate that any “bad” sequence of randomness which causes the
meta-reduction to fail can be permuted into many “good” sequences for which
the meta-reduction succeeds. In particular, recall from our above discussion of
Coron’s meta-reduction that, if a sequence of messages is such that B fails to em-
ulate A, then all of its rewindings with the forgery target m∗ must fail to extract
a signature for the query to m∗. Hence, every rewound sequence beginning with
a prefix (m1, . . . ,mi−1,m

∗) will either contain nesting or external communica-
tion during the query for m∗, or is such that R provides an incorrect signature
for m∗. In the latter case, we can conclude as above that A and B, having re-
ceived an invalid signature, will both accordingly return ⊥ (meaning that in fact
B will succeed) if any sequence with that prefix is given in the (non-rewound)
execution; thus, any such sequence cannot itself be a “bad” sequence. This, com-
bined with the fact that the amount of nesting and external communication (and
hence the possible number of rewound sequences which do not fall into the latter
category) is bounded, will allow us to derive an upper bound for the possible
number of “bad” sequences of randomness and hence for the probability of one
of these sequences occurring (and causing the meta-reduction B to fail). This
failure probability bound for B will ultimately allow us to upper-bound the suc-



cess probability, and hence lower-bound the security loss, of the reduction R.
(In the full version, as an independent contribution and a warm-up, we sketch
how an even simpler randomness-switching approach can be used to provide a
simplified proof of a generalization of Coron’s theorem to arbitrary reductions
with static scheduling—where the order in which the reductions sends its sends
messages is a-priori fixed).

Overview. In Section 2 we present key notation and definitions to be employed
in our proof. We present and discuss our main result in Section 3, construct our
“ideal” adversary A in Section 3.1, construct the meta-reduction B in Section
3.2, and complete our analysis and proof of the main theorem in Section 3.3.
Lastly, we defer a synopsis of related work, as well as the details of an extension
of our theorem to rerandomizable signatures, to the full version of this paper.

2 Preliminaries and Definitions

2.1 Notation

Let N denote the set of natural numbers (positive integers), and let [n] denote
the set of natural numbers at most n, or {1, 2, . . . , n}. For n ∈ N, we denote by 1n

the string of n ones, which will be used to provide a security parameter as input
to an algorithm (this is by convention, so that the input length is bounded below
by the security parameter). Given a set S = {s1, . . . , sn} of distinct elements,
we shall let |S| denote the number of elements n in S, and we refer to the set
Πn(S) as the set of permutations of S, which contains any sequence which itself
contains, in any order, each element of S exactly once.

When we say that a statement holds “for all sufficiently large n ∈ N”, by
this we indicate that there exists an N ∈ N such that, for any integer n ≥ N ,
the statement holds for n.

We recall that a function ε(·) is negligible if, for any polynomial p(·), ε(n) <
1/p(n) for all sufficiently large n ∈ N—that is, if ε(·) is asymptotically smaller
than any inverse polynomial. (For instance, an inverse exponential such as e−cn

is negligible in n for any constant c > 0.)
Lastly, we assume a basic level of familiarity with the concepts of probabilistic

algorithms and interactive Turing machines [20]. We will let RA(x) denote the
probability distribution over the output of an oracle algorithm R given oracle
access to a probabilistic A. If A is a (deterministic) interactive algorithm, we
instead assume R has oracle access to the function that, given the current partial
transcript of (i.e., all messages sent up to a certain point in) interaction between
R and A, returns A’s next message to R.

Furthermore, we shall refer by 〈A, C〉(x) to the probability distribution over
the output of C after interaction between probabilistic interactive Turing ma-
chines A and C, both given common input x (where the common input is also
provided to any oracles, e.g., to O if A is an oracle machine given by AO); the
view of the respective experiment, or the transcript of all messages sent and all
randomness consumed, shall be denoted as [A ↔ C](x).



2.2 Unique Signatures

First, we define unique signature schemes. Recall that a signature scheme is a
means by which a message can be signed with the signer’s secret key and the
signature can be verified using a public key. A unique signature scheme, then,
is simply a signature scheme for which each message can only have one possible
signature:

Definition 1. A unique signature scheme is a triple (Gen,Sign,Ver) of prob-
abilistic polynomial-time algorithms such that, for every n ∈ N:

– Gen, on input 1n, produces a pair (pk, sk)
– Sign, on input (sk,m) for any m ∈ {0, 1}n, produces a signature σ. (We

write σ ← Signsk(m).)
– Ver, on input (pk,m, σ), produces either Accept or Reject. (We write out←

Verpk(m,σ).)

and, in addition, the following properties hold:

– Correctness: For every n ∈ N and m ∈ {0, 1}n:

Pr [(pk, sk)← Gen(1n) : Verpk(m,Signsk(m)) = Accept] = 1

– Uniqueness: For every m ∈ {0, 1}∗, and pk ∈ {0, 1}∗, there exists at most
one σ ∈ {0, 1}∗ for which Verpk(m,σ) = Accept.

We next turn to discussing what it means for such a scheme to be secure.
A natural definition of security is the notion of existential unforgeability against
adaptive chosen-message attacks [21], which requires that an adversary knowing
the public key, even if allowed to adaptively choose a bounded number of mes-
sages and observe their signatures, is unable to forge any signature for a message
they have not yet queried. We formalize this by allowing the adversary access to
an oracle for Sign, as follows:

Definition 2. We say that a signature scheme is unforgeable if, for every non-
uniform probabilistic polynomial-time oracle-aided algorithm A, there is some
negligible function ε(·) such that for all n ∈ N:

Pr
[
(pk, sk)← Gen(1n); (m,σ)← ASignsk(·)(1n, pk) : Verpk(m,σ) = Accept ∧ Valid

]
≤ ε(n)

where Valid is the event that none of A’s queries were for the signature of the
output message m.

We will define a weaker notion of a signature scheme being `(·)-unforgeable
identically to the above, with the exception that Valid is the event that the fol-
lowing two conditions on A are true:

– A has queried its oracle at most `(n) times.
– None of A’s queries were for the signature of the output message m.



The bounded notion of `(·)-unforgeability is primarily useful to prove our con-
crete security loss bound, whereas our main result applies to the general notion
of unforgeability. Furthermore, for the purposes of the impossibility result, we
weaken the definition of unforgeability to a worst-case definition, as this will
strengthen our main theorem (by showing that basing even this weak notion of
security on standard assumptions will incur a security loss):

Definition 3. We say that a signature scheme is weakly unforgeable (respec-
tively, weakly `(·)-unforgeable) if, for every non-uniform probabilistic polynomial-
time oracle-aided algorithm A and every n ∈ N:

Pr
[
(pk, sk)← Gen(1n); (m,σ)← ASignsk(·)(1n, pk) : Verpk(m,σ) = Accept ∧ Valid

]
< 1

where Valid is defined as above (and respectively for `(·)-unforgeability). In par-
ticular, we say that a non-uniform probabilistic polynomial-time algorithm A
breaks weak unforgeability of a signature scheme (Gen,Sign,Ver) if the probabil-
ity above is equal to 1.

2.3 Intractability Assumptions

Next, we define intractability assumptions in a manner originally proposed in
[32]. Formally, we can model an assumption as a “security game” involving an
interaction between a probabilistic challenger C and adversary A, after which
C will output either Accept or Reject. We say that an adversary A breaks the
assumption if C accepts with probability non-negligibly greater than a certain
threshold.

For instance, an assumption that a function f is one-way could be modeled
by a two-round interaction where C sends A the image y = f(x) on a uniformly
random input x, A sends a message x′ to C, and C accepts if and only if f(x′) =
y. In this case, A breaks the assumption if it inverts f (i.e., C accepts) with
probability non-negligibly greater than zero.

As an example of an assumption that would have a non-zero threshold, an
assumption that two distributions D0 and D1 are indistinguishable could be
modeled by the two-round interaction where C picks a random b ∈ {0, 1}, sends
A a sample from Db, receives b′ from A, and accepts if b = b′. Then A would
only break the assumption if C accepts with probability non-negligibly greater
than a threshold of 1/2. Formally, we model these assumptions following [33]:

Definition 4. For polynomial r(·), we denote an r(·)-round intractability
assumption by a pair (C, t(·)), where t(·) is a function and C is a probabilistic
interactive algorithm with input 1n and an a priori bound of r(n) rounds of
communication. We say that (C, t(·)) is secure if the following is true:

For any non-uniform probabilistic polynomial-time interactive algorithm A,
there exists a negligible function ε(·) such that, for all n ∈ N:

Pr [〈A, C〉(1n) = Accept] ≤ t(n) + ε(n)



Furthermore, we say that a specific A breaks the assumption if the above in-
equality is not true with respect to that A; in particular, for some polynomial
p(·), we say that A breaks (C, t(·)) with probability 1/p(·) if, for infinitely many
n ∈ N,

Pr [〈A, C〉(1n) = Accept] ≥ t(n) +
1

p(n)

We also call a pair (C, t(·)) a bounded-round intractability assumption if
there exists some polynomial r(·) such that (C, t(·)) is an r(·)-round intractability
assumption.

We note that any standard cryptographic security assumption can be mod-
eled as a pair (C, t(·)) of this form, including our definitions above of the security
of signature schemes. (In this case, the threshold t(n) would be zero, and C would
have r(n) = 2`(n) + 2 rounds of communication, first generating (pk, sk) and
sending pk to A, then signing `(n) messages for A, and finally receiving (m,σ)
and outputting the result of Ver, or Reject if it had already signed m.) In par-
ticular, this is why we require an a priori bound on the number of rounds r(·)
of the assumption; it will allow us to avoid such trivial reductions as reducing
unforgeability to itself (for which we could obviously not prove the impossibility
result).

2.4 Black-Box Reductions

Finally, we briefly discuss what it means for one assumption to be based on an-
other assumption. In particular, given two assumptions (C1, t1(·)) and (C2, t2(·)),
basing the hardness of C1 on that of C2 in a black-box way would classically
entail, given an arbitrary adversary A2 which can break (C2, t2(·)) construct-
ing a polynomial-time procedure A1 that breaks (C1, t1(·)) through standard
interactions with A2 (i.e., using A2 in a black-box manner).

Notably, there is no guarantee that A1 invoke A2 only once; it could be the
case that there are polynomially many invocations, or even “nested” invocations
(e.g., multiple concurrent invocations such that the rounds of communication
may be interleaved or dependent on one another), of A2 during the execution of
A1. We can formalize this by imagining A1 as a polynomial-time reduction R
that has oracle access to the interactive algorithm A (formerly A2):

Definition 5. We refer to a probabilistic polynomial-time oracle-aided algo-
rithm R as a black-box reduction for basing the hardness of assump-
tion (C1, t1(·)) on that of (C2, t2(·)) if, given any deterministic A that breaks
(C1, t1(·)), RA breaks (C2, t2(·)). We refer to such a black-box reduction as fixed-
parameter if, given common input 1n, RA queries A only on input 1n.

We notably restrict our attention to oracles that are deterministic (or have
some fixed randomness), as this allows us to consider cases where the reduction
R can rewind or restart its oracle. We shall also restrict our attention, similarly
to [33], to the case of fixed-parameter reductions where R invokes its adversary



A only using a single security parameter (i.e., A must be the same algorithm
in each instance); in particular, for security parameter n, we allow R to run up
to M(n) instances of some parameterized adversary A(1n). Lastly, we can also
apply the above concept to our definition of weak `(·)-unforgeability (and define
a fixed-parameter reduction identically for this case):

Definition 6. We say that a probabilistic polynomial-time oracle-aided algo-
rithm R is a black-box reduction for basing weak unforgeability of a signature
scheme (Gen,Sign,Ver) on the hardness of an assumption (C, t(·)) (resp. for weak
`(·)-unforgeability) if, for every deterministic algorithm A that breaks weak un-
forgeability of (Gen,Sign,Ver) (i.e., forges a signature with probability 1), there
is a polynomial p(·) such that, for infinitely many n ∈ N, RA breaks (C, t(·))
with probability 1/p(n).

Finally, we wish to formalize the security loss of such a reduction R, or the
loss in the reduction’s success probability proportionate to its time efficiency.
We state this as follows:

Definition 7. Let R be a black-box reduction for basing the hardness of as-
sumption (C1, t1(·)) on that of (C2, t2(·)). Given any deterministic A and for
each n ∈ N:

– Let SuccessA(n) = Pr[〈A, C1〉(1n) = Accept] − t1(n) (that is, the probability
with which A breaks (C1, t1(·)), taken over all randomness of A and C1).

– Let QueryA(n) denote the maximum, over all randomness of A and C1, of
the possible number of messages sent from C1 to A during the experiment
[A ↔ C1](1n).

– Let SuccessRA(n) = Pr[〈RA, C2〉(1n) = Accept]− t2(n) (that is, the probabil-
ity with which RA breaks (C2, t2(·)) taken over all randomness of A, C2, and
R).

– Let QueryRA(n) denote the maximum, over all randomness of A, C2, and R,
of the possible number of messages sent from R to A during the experiment
[RA ↔ C2](1n).

Then we say that the security loss of R is given by:

λR(n) = maxA

(
SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)

)
Furthermore, we say that R is linear-preserving if its security loss is

bounded above by a fixed polynomial independent of A—that is, there is a polyno-
mial p(·) for which, for all sufficiently large n ∈ N and every A, λR(n) ≤ p(n).

We note that, as we consider black-box reductions, we consider the ratio
between the communication complexities of R and A as opposed to the running
times when determining the security loss. While many other recent works (e.g.,
[3, 24]) use a definition which, though similar to the above, measures actual
running time rather than rounds of communication, we note that our definition
is at least as strong as time-based alternatives, and formally prove this fact in
the full version.



3 Main Theorem

As our main theorem, we prove the following result:

Theorem 2. Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let
(C, t(·)) be some r(·)-round intractability assumption for polynomial r(·). If there
exists some fixed-parameter black-box reduction R for basing weak unforgeability
of Π on the hardness of (C, t(·)), then either:

(1) R is not a linear-preserving reduction, or
(2) there exists a polynomial-time adversary B that breaks (C, t(·)).

We note that this result also applies to the slightly more general notion of
rerandomizable signatures through an almost identical argument; we discuss this
in more detail in the full version. Theorem 2 follows in a straightforward manner
from the following lemma, which is a concrete security loss bound analogous to
Coron’s in [14], but generalized so that it handles arbitrary (i.e., not just simple)
reductions:

Lemma 1. Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let
(C, t(·)) be some r(·)-round intractability assumption for polynomial r(·). If for
some polynomial `(·) there exists some fixed-parameter black-box reduction R for
basing weak `(·)-unforgeability of Π on the hardness of (C, t(·)), then either R’s
security loss is at least

λR(n) ≥
√
`(n)− (r(n) + 1)

for all sufficiently large n ∈ N, or there exists a polynomial-time adversary B
that breaks the assumption (C, t(·)).

Lemma 1 implies Theorem 2 by the definition of a linear-preserving reduction
(we defer the formal proof to the full version, however). Hence, the remainder
of the section is dedicated to proving Lemma 1. Our proof of Lemma 1 follows
four major steps, which we shall describe here at a high level before beginning
the full argument.

Constructing an Ideal Adversary. First, we describe an “ideal” adversary A
which is guaranteed to break the security of Π while sending `(n) queries, but
does so by brute force and hence does not run in polynomial time. Our objective
then is to create a meta-reduction B that almost always emulates the interaction
RA between R and A. If it does so with, say, probability 1 − 1/p(n), then
B will break the assumption (C, t(·)) with probability at least SuccessRA(n) −
1/p(n). However, this means that RA itself cannot have success probability non-
negligibly greater than 1/p(n); otherwise, C would be broken with non-negligible
probability by B.

The “ideal” A will pick `(n) messages (~m) at random and query R for the
signatures of each of these messages in turn, and will finally brute-force a secret



key from the results and use that key to forge a signature for another random
message m∗, which it will return. Crucially, A will also verify R’s responses to
its queries and return ⊥ instead if not all are correct signatures. By construction
A breaks `(·)-weak unforgeability; however, due to the brute-force step, it (and
consequently RA) will not run in polynomial time.

Constructing a Meta-Reduction. Hence, to efficiently emulate RA, we create
the meta-reduction B. B will run R and forward communicate with C as normal;
when R would start a new instance of its adversary A, B will generate messages
~m and m∗ randomly (i.e., identically to A) and forward queries to R in the
same manner as A. However, when R requires an instance to provide a forged
signature, B will also “rewind” the simulated execution to the start of each
query for that instance and try to query R with m∗ instead of the message it
would normally query. If R gives a response to the rewound query, then B has
(efficiently) found a forgery for m∗, which it can return to R when it requests a
forgery from the corresponding instance of A.
B, while rewinding, will abort (and try rewinding the next slot instead) if

eitherR would communicate externally with C (which B of course cannot rewind)
or R would request a forgery for some other simulated instance of A during the
simulated execution of RA (i.e., before responding to the rewound query). In
particular, this strategy ensures that recursive rewinding as in [33] will not be
required, since B will never attempt to start rewinding some instance while
rewinding a different one.

Furthermore, B will “verify” all of R’s responses to its signature queries
(in the non-rewound part of the execution) in the same manner as A, likewise
returning ⊥ from the simulated instance of A if not all responses are valid. So,
whenever either R gives a simulated instance one or more incorrect responses or
B successfully extracts a forgery (noting that, by the uniqueness property, the
forgeries they return must be identical, which is crucial), A and B’s simulations
of A will be identically distributed to one another.

Bounding the Failure Probability. So, to bound the probability with which B
does not successfully emulate some instance of A, we must bound the probabil-
ity that all of B’s queries to R (~m) are correctly answered, yet the rewinding of
every one of the queries fails due to either R responding badly to m∗, R commu-
nicating externally with C, or a forgery request for another simulated instance
of A occurring before R responds.

We bound this probability by using a counting argument similar to that ex-
hibited in the introduction. In particular, we consider the messages ~m and m∗ for
a particular instance, fixing the randomness outside of that instance arbitrarily.
Then we show that, for any “bad” sequencing of these messages such that the
non-rewound execution succeeds but every rewinding fails, many (though not
all, because of the possibility for rewindings to fail due to an end message or
external communication) of the rewindings of this sequence will correspond to
“good” sequences where B returns ⊥ due to receiving an incorrect response from
R.



What we intuitively show is that, in every set of `(n) + 1 sequences corre-
sponding to a sequence and its various rewindings, at most M(n) + r(n) + 1 can
be bad (since, informally, given a bad sequence, in expectation only M(n)+r(n)
of its rewindings can fail for reasons besides R responding incorrectly, i.e., due to
nested end messages or external communication), where M(n) is the maximum
number of instances of A which R executes (which we show by our construc-
tion of A must be no less than the number of successful end messages). Hence

we obtain a bound of M(n)+r(n)+1
`(n)+1 on the failure probability for each instance,

which by the union bound over all M(n) instances sums to an overall failure

probability of less than M(n)
(

M(n)+r(n)+1
`(n)

)
.

Bounding the Security Loss. This does not immediately imply a bound on the
security loss λR(n), since M(n) can be arbitrarily large. However, as in the
technical overview, we bound the security loss by showing that, if M(n) is large,
this requires a large enough running time of R that we still obtain a non-trivial
lower bound on the security loss. Specifically, recalling that

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)

we notice first that QueryRA(n)/QueryA(n) ≥ M(n), which follows (with some
subtleties which we defer to the main proof) from the fact that R will in the
worst case run M(n) instances of A. So, since SuccessA(n) = 1 by construction,
and since, as we discussed previously, SuccessRA(n) cannot be non-negligibly
larger than the failure probability of B, we have

λR(n) ≥ `(n)

M(n) + r(n) + 1

which immediately implies the bound when M(n) <
√
`(n) − (r(n) + 1) (and

so λR(n) >
√
`(n)). On the other hand, we also know that SuccessRA(n) ≤ 1

trivially, and so it is also the case that λR(n) ≥M(n), which implies the bound
when M(n) ≥

√
`(n)− (r(n) + 1), completing the proof of Lemma 1 and hence

Theorem 2.

3.1 The “Ideal” Adversary

We now proceed to the formal proof of Lemma 1. First, we exhibit an ineffi-
cient adversary A that will break weak `(·)-unforgeability, so that we can later
construct an efficient B to simulate it while running R in order to break the
assumption (C, t(·)).

Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let (C, t(·)) be
some r(·)-round intractability assumption for polynomial r(·). Assume that there
exists some black-box reduction R for basing weak `(·)-unforgeability of Π on
the hardness of (C, t(·)) which, given an oracle breaking weak unforgeability, will
break (C, t(·)) with probability 1/p(·) for some polynomial p(·).



First, for any polynomial `(n), we construct an inefficient but easily emulat-
able adversary A which sends at most `(n) queries and is guaranteed to break
weak unforgeability of Π. Since we will require A to be deterministic during ex-
ecution yet generate random messages, we will assume that A is formally given
by a deterministic interactive AO which has access to a random oracle O (of
course, O is not needed for our actual constructions, as we shall emulate A),
which, as in [33], is given by a random variable which is uniformly distributed
over functions {0, 1}∗ → {0, 1}∞. In particular, this ensures that the queries
output by AO are uniformly distributed (i.e., over the randomness of O), but
are still preserved under rewinding.

We shall henceforth denote by A the specific adversary AO which, on input
1n, behaves as described in Figure 3. Informally, A makes `(n) signature queries,
generating the message for each query by applying O to the current partial
transcript. Finally, after receiving responses for each query, A returns a brute-
forced forgery, but only if it successfully “verifies” the transcript by ensuring that
each query’s response is valid and that each query in the transcript was generated
in the correct manner (i.e., by O applied to the prior partial transcript).

– Initially, receive a message pk, the public key; respond (i.e., generate m1)
according to the next step for i = 1.

– On receiving a message consisting of a partial transcript τ =
(pk,m1, σ1, · · · ,mi−1, σi−1) for some i ∈ [`(n)], do the following:
• Generate mi by taking the first n bits resulting from applying the oracle
O to τ .

• Return the new partial transcript τ ||mi.
– On receiving a message consisting of a complete transcript τ =

(pk,m1, σ1, · · · ,m`(n), σ`(n)) (we shall refer to such a message as a “forgery
request” or “end message”), do the following:
• Verify that, for each signature σi, Verpk(mi, σi) = Accept. If not true

for all i, return ⊥.
• Verify that, for each message mi, mi is equal to the first n bits re-

sulting from applying the oracle O to the prefix transcript τ<i =
(pk,m1, σ1, · · · ,mi−1, σi−1). If not true for all i, then return ⊥.

• Finally, generate a random message m∗ (distinct from each mi in τ) by
applying O to the transcript τ , use brute force to find a signature σ∗

for which Verpk(m∗, σ∗) = Accept, and return the forgery (m∗, σ∗).

Fig. 3: Formal description of the “ideal” adversary AO.

It is straightforward to see that A, given any fixed oracle O, will break weak
`(·)-unforgeability; given an honest signing oracle (which will always send the cor-
rect partial transcript), it will always return some (m,σ) such that Verpk(m,σ) =
Accept, m was not queried (as m∗ is not equal to any of the queries mi), and
only `(n) queries were made.



However, when interacting with R, which is not bound by the rules of an
honest oracle, the transcript verification is necessary to prevent R from “cheat-
ing” in certain ways during its interaction. First, we wish to ensure that R will
return valid signatures to queries as often as possible. Also, we wish to ensure
that R is actually required to answer `(n) signature queries generated randomly
by A and cannot, for instance, immediately send A an end message with an ar-
tificially generated transcript; this is done by using the oracle O to generate A’s
messages and ensuring that the transcript is consistent with the oracle. Formally,
we make the following claim, which will be useful later:

Claim 1. There exists a negligible function ν(·) such that, for all n ∈ N, the

probability, over all randomness in the experiment [RAO ↔ C](1n), that some
instance of A returns a forgery (i.e., something besides ⊥) to R without having
received `(n) different responses to its signature queries from R, is less than
ν(n).

The proof, which is straightforward, is deferred to the full version.

Furthermore, this construction of A (using the oracle O) allows us to assume,
without loss of generality, that the reduction R will never rewind an instance
of A—this is without loss of generality because there is a single accepting tran-
script for each choice of the oracle O. Namely, given an oracle O, if R always
provides correct signatures, then A’s messages (including the forgery it returns)
and R’s responses are fully determined by O and the uniqueness property of Π.
Meanwhile, if R does not provide correct signatures, A will not return a forgery.

Because A breaks unforgeability, and by the assumed properties of R and
the determinism of AO for any fixed oracle O, it must be true that there exists
polynomial p(·) such that

Pr
[
〈RA

O
, C〉(1n) = Accept

]
≥ t(n) +

1

p(n)

for any oracle O. As such, by the fact that R is fixed-parameter, we can observe
that, for any n, averaging this probability over all possible oracles O, we likewise
have

Pr
[
〈RA, C〉(1n) = Accept

]
≥ t(n) +

1

p(n)

even though A over a randomly-chosen O is not deterministic.

Of course, A is inefficient, so, in order to break the assumption (C, t(·)), we
must construct an efficient B that is able to runR while emulating its interactions
with A most of the time. Hence, the remainder of the proof will be dedicated
to constructing this meta-reduction and analyzing the probability with which it
succeeds in emulating the “ideal” A. Intuitively, if B successfully emulates A at
least 1− 1/p′(n) of the time for some function p′(·), then:

∣∣Pr
[
〈RA, C〉(1n) = Accept

]
− Pr [〈B, C〉(1n) = Accept]

∣∣ ≤ 1

p′(n)



Pr [〈B, C〉(1n) = Accept] ≥ t(n) +
1

p(n)
− 1

p′(n)

meaning that B must break C with probability at least 1/p(n) − 1/p′(n), as
desired. Hence, what we shall effectively show in the subsequent steps is that,
unless the security loss of R is large, 1/p′(n) will be non-negligibly smaller than
1/p(n), and thus B will break the security of (C, t(·)).

Slots. As a notational aside, we shall for simplicity henceforth refer to the pair
of a query made by A (or something, such as B, which emulates A) and its
corresponding response by R as a slot (vopen, vclose). Such a slot is determined
by two views: the “opening” of the slot, or the view vopen of the execution of R
immediately before A’s query to R, and the “closing” of the slot, or the view
vclose of the execution immediately after R responds to the respective query.
(We will also often refer to the view of R immediately after the opening query
of a message m, which we shall denote by the concatenation vopen||m.)

3.2 The Meta-Reduction

We next construct the meta-reduction B which will efficiently emulate A. Let B
be as described formally in Figure 4; informally, B will run R internally, forward-
ing communication to C as R would while also internally simulating instances
of A interacting with R. The primary difference between B and the “ideal” ex-
ecution of A interacting with R is that B, being restricted to polynomial time,
cannot brute-force forgeries as A does; instead, while simulating each instance
of A, B will select at random a message m∗ for which to forge a signature and
attempt to rewind each slot for that instance, substituting m∗ for the original
message.6

If R ever returns a valid signature σ∗ for m∗, then B may store that signature
and finally return (m∗, σ∗) whenR requests a forgery for that instance. However,
if one of the following “bad events” occurs:

– R fails to return a valid signature of m∗.
– R asks for a forgery for another instance before returning a signature.
– R requires external communication with C (which cannot be rewound) before

returning a signature.

then B will abort and try the next slot. In this way we circumvent the issue of
having to recursively rewind nested end messages as in [33].

First, we can show that B, unlike A, is efficient:

Claim 2. There exists a polynomial t(n) such that, for all n ∈ N, Real(1n) is
guaranteed to run in time at most t(n).

6 That is, when “rewinding” a slot (vopen, vclose), B will simulate interaction with R
starting from the view vopen||m∗.



– Set initial view v ← ⊥ and set k ← 1. Execute R, updating the current
view v according to the following rules.

– When R begins a new instance of A and sends a public key pk, la-
bel this instance as instance k. Generate and store `(n) random queries
~mk = (mk,1, . . . ,mk,`(n)) and a target forgery m∗k. (Abort and return Fail
if m∗k is equal to a message in ~mk.) Also let pkk ← pk and initialize the
forgery fk ← {}. Lastly, respond with τ∗k = pkk||mk,1 and increment k.

– When R attempts to communicate externally with C, forward the message,
return C’s response to R, and update v accordingly.

– When R sends a transcript τ = (pk,mI,1, σI,1, · · · ,mI,j , σI,j) to some sim-
ulated instance I of A, store the signature σI,j and do the following:

• If j = `(n) (i.e., this is an end message), then do the following:

∗ If τ is an inconsistent transcript (i.e., mI,i or σI,i in τ is different
from the stored mI,i or σI,i (respectively) for some i ∈ [`(n)], or not
all σI,i have been stored) or R’s response to some signature query
j was invalid (i.e., VerpkI (mI,i, σI,i) = Reject for some i ∈ [`(n)]),
then return ⊥.

∗ Otherwise, if fI is still empty (i.e., not⊥), run the procedure Rewind
detailed below for the instance I.

∗ If, at this point, there is a stored forgery fI = (m∗I , σ
∗
I ), then return

it and continue executing R as above. Otherwise, abort the entire
execution of B and return Fail.

• If VerpkI (mI,j , σI,j) = Reject, then store fI ← ⊥.
• Lastly, respond with τ ||mI,j+1 and continue the execution of R.

Rewind procedure:

– Given instance I, for j ∈ [`(n)] let (vjopen, v
j
close) denote the slot correspond-

ing to the jth signature query for instance I.
– For each j ∈ [`(n)], “rewind” the slot (vjopen, v

j
close) as follows: Let k′ ← k,

and begin executing R from the view v′ = vjopen||m∗I as in the main routine,
with the following exceptions:

• When R begins a new instance of A, label this instance as instance
k′ and increment k′. (That is, continue creating new instances, but
preserve the counter k in the outer execution for after the rewinding.)

• When R attempts to communicate externally with C, abort the rewind-
ing and continue to the next j.

• When R sends an end message for an instance I ′ 6= I of A, abort the
rewinding and continue to the next j, unless R has not sent responses
to `(n) signature queries for I ′ (in which case reply with ⊥).

• If v′ ever contains a message whose transcript contains a response σ∗I to
the query for m∗I , then, if it is the case that VerpkI (m∗I , σ

∗
I ) = Accept,

store fi ← (m∗I , σ
∗
I ) and end the Rewind procedure (i.e., return to the

outer execution); otherwise, if VerpkI (m∗I , σ
∗
I ) = Reject, store nothing

to fI and continue to the next j.

Fig. 4: Formal description of the meta-reduction B.



The proof, which is straightforward, is deferred to the full version.
Next, to reason about the failure probability of B (and through it the success

probability of RA), let us define the following experiments:

– Let Ideal(1n) denote [RA ↔ C](1n)—that is, the experiment where R(1n),
using the “ideal” adversary A(1n) as a black box, communicates with C(1n).

• When we refer to probabilities in the context of this experiment, they are
taken over a uniform distribution over random oracles O (which results
in uniformly distributed messages ~mI and m∗I) for each instance I of A
started by R.

• When we wish to fix the randomness of a particular execution of Ideal,
we will denote this with the notation Ideal{OI}I∈[M(n)],Oext

(1n), or, for
more clarity, Ideal{~mI ,m∗I}I∈[M(n)],Oext

(1n). ~mI and m∗I are the messages
and forgery generated for instance I by each oracle OI given the (deter-
ministic) prefix; Oext is a random variable representing the random coins
used by R and C, containing a number of bits equal to the maximum
number of coins needed (which must be polynomially many since R and
C are polynomial-time). When all ~mI and m∗I are fixed, and Oext is fixed,
note that the execution of Ideal is deterministic for each instance.

– Let Real(1n) denote [B ↔ C](1n)—that is, the “real” experiment where B(1n)
communicates directly with C(1n) by attempting to simulate the interaction
between A(1n) and R(1n) while forwarding any external communications.

• When we refer to probabilities in the context of this experiment, they are
taken over uniformly distributed messages ~mI and m∗I for each simulated
instance I of A started by R in the context of B.

• When we wish to fix the randomness of a particular execution of Real,
we will again denote this with the notation Real{~mI ,m∗I}I∈[M(n)],Oext

(1n),
where ~mI and m∗I are the messages and forgery for each simulated in-
stance I of A and Oext is again a random variable representing the
random coins used by R and C. When all ~mI and m∗I are fixed, and Oext

is fixed, note that the execution of Real is deterministic for each instance,
just as with Ideal.

• Furthermore, we may opt to isolate a particular simulated instance k
by fixing all randomness except for that instance’s; we denote this by
Real∗{~mI ,m∗I}−k,Oext

(1n) and note that the probability space in this altered
experiment is over uniformly distributed ~mk and m∗k. Further note that
in experiment Real∗ the execution up to the start of the isolated instance
k is deterministic, as is the execution for any choice of ~mk and m∗k.

– In all experiments, we will denote the view, or execution, as the transcript of
all messages sent between, and all randomness consumed by, real or simulated
machines (i.e., between R, A or B’s simulation of A, and C). We will notate
this using just the notation for the experiment, e.g., Real(1n).

– In all experiments, we will denote the result, or output, as either the final
output of C (either Accept or Reject) if C finishes, or as Fail if C does not
finish (i.e., when B aborts returning Fail). This will be notated by Output,
e.g., Output[Real(1n)] = Accept.



3.3 Analyzing the Meta-Reduction

Using this terminology, we wish to show that Real(1n) is identically distributed
to Ideal(1n) with high probability. To that end, we make the following claim:

Claim 3. For all n ∈ N:

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]|
≤ Pr[Output[Real(1n)] = Fail]

Proof Sketch. Intuitively, this follows from the uniqueness property of Π; for any
message m∗, there is only a single possible signature σ∗. Thus, given some setting
of the randomness in the experiments, Real must proceed identically to Ideal (that
is, each instance of A in Real will have an identical view to the corresponding
simulated instance in Ideal) unless B’s attempt to extract a forgery fails for some
m∗, in which case by construction Real must return Fail. The complete proof is
deferred to the full version.

We can use this claim to bound RA’s success probability by bounding the
probability that B will return Fail for some simulated instance I of A. Let M(n)
be the maximum, over all randomness of A, C, and R, of the number of instances
of A that R runs to completion (i.e., for which it responds to all `(n) queries)
during the experiment Real(1n). Then we show the following:

Proposition 1. There exists a negligible function ε(·) such that, for all n ∈ N:

Pr[Output[Real(1n)] = Fail] ≤M(n)

(
M(n) + r(n) + 1

`(n) + 1

)
+ ε(n)

Proof. We first prove the following claim for any Real∗{~mI ,m∗I}−k,Oext
(1n) (i.e., for

any fixed setting of all randomness aside from ~mk and m∗k), and notice that, since
it applies to arbitrarily fixed randomness, it must thus apply over all possible
randomness of the experiment Real(1n):

Claim 4. There exists a negligible ν(·) such that, given any setting of the ran-
domness in the experiment Real∗{~mI ,m∗I}−k,Oext

(1n), the probability, over the uni-
formly chosen messages mk,1, . . . ,mk,`(n),m

∗
k, that the simulated instance k will

return Fail is, for all n ∈ N, at most

M(n) + r(n) + 1

`(n) + 1
+ ν(n)

Proof. Let us begin by assuming that other simulated instances (besides k) of A
in the experiment Real∗{~mI ,m∗I}−k,Oext

(1n) will never return Fail (i.e., that they
will “magically” produce a correct forgery in the case where they otherwise would



return Fail). Clearly, this can only increase the probability that instance k will
return Fail by ensuring that the experiment never aborts early.

Now let us consider the messages ~m∗k , (mk,1, . . . ,mk,`(n),m
∗
k) in instance

k; note that by the definition of Real∗{~mI ,m∗I}−k,Oext
(1n) the execution is fully

determined by ~m∗k. Let us also define for i ∈ [`(n)− 1] the “rewound” sequence

ρ( ~m∗k, i) , (mk,1, . . . ,mk,i−1,m
∗
k)

that is, the rewinding of ~mk where the message in slot i is replaced by m∗k to
attempt to extract a forgery.

In order for B to return Fail, one of the following “bad events” must occur
for each i ∈ [`(n)]:

– E1(ρ( ~m∗k, i)): R fails to return a valid signature of m∗I in the rewinding of
the last slot in the sequence (slot i).

– E2(ρ( ~m∗k, i)): During the rewinding of the last slot in the sequence (slot i),
R asks for a forgery for another instance k′ 6= k before returning a signature
for m∗I , or R requires external communication with C (which cannot be
rewound) before returning a signature for m∗I .

In addition, for k to fail, the non-rewound execution of the instance must
succeed, in that the event E1(~mk,≤i) (where R fails to return a valid signature)
cannot occur for any prefix ~mk,≤i = (mk,1, . . . ,mk,i), where i ∈ [`(n)].

Since, as we have noted, the behavior of k in Real∗{~mI ,m∗I}−k,Oext
(1n) is fully

determined by ~m∗k, every sequence ~m∗k will deterministically either result in
instance k returning something (either a forgery or ⊥) or aborting and returning
Fail; we shall refer to the former type of sequence (where k succeeds) as a “good”
sequence, and the latter type as a “bad” sequence. To describe the relationship
between these “good” and “bad” sequences, we first introduce the following
terminology:

For any k > 0 and any arbitrary set ~m of k distinct messages in [2n], let
Πk(~m) denote the set of ordered permutations of the elements of ~m. Given a
sequence π = (m1, . . . ,mk−1,m

∗) ∈ Πk(~m), we let the “rewinding” operator ρ
for i ∈ [k − 1] be defined as before—that is:

ρ(π, i) , (m1, . . . ,mi−1,m
∗)

(Note that this is a sequence of length i.) We shall say that a sequence a =
(a1, . . . , ak−1, a

∗) ∈ Πk(~m) blocks a sequence b = (b1, . . . , bk−1, b
∗) ∈ Πk(~m)

with respect to some i ∈ [k − 1] if

ρ(a, i) = (b1, . . . , bi)

that is, if a has a rewinding equivalent to a prefix of b. If we wish to denote
that a blocks b with respect to a particular i, we shall say that a blocks b in
slot i. Furthermore, we will say that sequences a1, a2, . . . ac ∈ Πk(~m) c-block a
sequence b ∈ Πk(~m) if there exist distinct i1, . . . , ic ∈ [k − 1] such that, for any
j ∈ [c], aj blocks b in slot ij .



We next formalize the relationship between the “blocking” property and
good/bad sequences that will allow us to use this property to bound the number
of bad sequences that may occur. Specifically, we prove the following lemma:

Lemma 2. Any sequence that is (M(n) + r(n) + 1)-blocked by bad sequences
must be a good sequence.

Proof. Consider a sequence ~m′k which is (M(n) + r(n) + 1)-blocked by bad

sequences. This means that ~m′k must have M(n) + r(n) + 1 distinct slots ij for
which E1 or E2 occurs in its (non-rewound) execution, as the execution is at
each of those points identical to a rewinding of one of the bad sequences by the
fact that the sequence blocks ~m′k in slot ij . However, because at most M(n)
end messages (to completed instances of A, note that others are answered with
⊥) and at most r(n) rounds of external communication can occur in any given
execution, we observe that E2 can happen for at most M(n)+r(n) of these slots,
and thus that E1 must happen for at least one slot. In this case, we can deduce
that ~m′k must be a good sequence, because it must contain some slot for which
R fails to return a correct response (meaning that B can successfully emulate A
by returning ⊥)—that is, the event E1(~mk,≤i) must occur for that slot, which
we have previously stated cannot be the case for bad ~m∗k. ut

Consider, then, a set S of “bad” sequences ~m∗k which are permutations of
any set of `(n) + 1 distinct messages (i.e., an unordered set containing ~mk,i and
m∗k). The following lemma, combined with Lemma 2, allows us to bound the size
of such a set S:

Lemma 3. Let ~m be an arbitrary set of ` + 1 distinct messages in [2n], and
let S ⊂ Π`+1(~m) be a set of permutations of ~m. If it is the case that, for some
B ∈ N, any member of Π`+1(~m) which is (B+1)-blocked by a subset of S cannot
itself lie in S, then |S| ≤ (B + 1)`!

Proof. We begin with the following crucial claim:

Subclaim 1. No member of Π`+1(~m) is (B + 2)-blocked by a subset of S.

Proof. Assume for the sake of contradiction that there exists some π ∈ Π`+1(~m),
B + 2 sequences π1, . . . , πB+2 ∈ S, and B + 2 distinct integers i1, . . . , iB+2 ∈ [`]
such that each partial sequence ρ(πj , ij) is equivalent to the first ij elements of
π.

Assume without loss of generality that the integers ij are in strictly ascending
order. Consider the last sequence πB+2 = (πB+2

1 , . . . , πB+2
∗ ); we shall show that

πB+2 is (M + 1)-blocked by sequences in S, leading to a contradiction because
by definition no element of S can be (M + 1)-blocked by other members of S.

We know that, since by assumption the first iB+2 elements of π are equivalent
to ρ(πB+2, iB+2) = (πB+2

1 , . . . , πB+2
iB+2−1, π

B+2
∗ ), then the first iB+2 − 1 elements

of πB+2 and π must be identical. However, notice that, for any j < B + 2,
we have that ρ(πj , ij) is identical to π in the first ij elements, which, since by



assumption ij ≤ iB+2 − 1, also indicates that ρ(πj , ij) is identical to πB+2 in
the first ij elements.

This in turn implies that πB+2 is (B + 1)-blocked by π1, . . . , πB+1 ∈ S,
contradicting that πB+2 ∈ S by the requisite property of S. ut

So, we know that any member of S can be at most B-blocked by a subset
of S, while any non-member can be at most (B + 1)-blocked by a subset of S.
We will combine this fact (an effective upper bound on the number of blocked
sequences) with the subsequent claim (a respective lower bound) to derive our
final bound on |S|.

Subclaim 2. For each i ∈ [`], there exist |S| distinct sequences blocked in slot i
by sequences in S.

Proof. Beginning with i = 1, we observe that sequences with at least |S|/`!
different last elements m∗ must occur in S (as there are only `! sequences with
any given last element). Furthermore, any sequence in S with a certain last
element m∗ must block in slot 1 a total of `! different sequences (i.e., anything
beginning with m∗), and different m∗ will produce disjoint sets of sequences
blocked. Thus, we conclude that the sequences in S will block in slot 1 at least
(|S|/`!)`! = |S| distinct sequences.

For the remaining slots i > 1, we can apply the same logic to the distinct
arrangements of the elements (m1, ...,mi−1) and m∗ . Among the sequences in
S there must be a minimum of |S|/(`+ 1− i)! such arrangements (since, given a
fixed (m1, ...,mi−1,m

∗), there are (`+ 1− i)! sequences possible), and sequences
with each arrangement will block in slot i a total of (`+1− i)! distinct sequences
(i.e., any sequence beginning with (m1, ...,mi−1,m

∗)). Hence, the sequences in S
will block in slot i at least (|S|/(`+1−i)!)(`+1−i)! = |S| distinct sequences. ut

In total, we notice that at least |S| distinct sequences are blocked in slot i
for any i ∈ [`], and so there are at least |S|` distinct pairs (π, i) such that the
sequence π is blocked in slot i by sequences in S. Furthermore, we recall that
the sequences in S are each blocked in slot i by sequences in S for at most B
different i, while the remaining (`+ 1)!− |S| elements are each blocked in slot i
by sequences in S for at most B + 1 different i. This provides an upper bound
of B|S| + ((` + 1)! − |S|)(B + 1) on the number of “blocking” pairs (π, i). We
lastly combine these lower and upper bounds (noting that, if the lower bound
exceeded the upper bound, there would be a contradiction) to bound |S|:

|S|` ≤ B|S|+ ((`+ 1)!− |S|)(B + 1) = B(`+ 1)! + (`+ 1)!− |S|

|S|(`+ 1) ≤ (B + 1)(`+ 1)!

|S| ≤ (B + 1)`!

ut



Recall that, if S is the set of all bad sequences which are permutations of some
set ~m∗ of `(n)+1 distinct messages, we have by Lemma 2 that any sequence which
is (M(n) + r(n) + 1)-blocked by bad sequences in S must be good and thus lie
outside of S. Hence, by Lemma 3, S has size at most (M(n) + r(n) + 1) (`(n))!.
Given any set of `(n)+1 distinct messages, then, the above applies to show that
at most an

(M(n) + r(n) + 1) (`(n))!

(`(n) + 1)!
=
M(n) + r(n) + 1

`(n) + 1

fraction of the sequences defined by the permutations of this set can be bad,
and the remainder must be good. Applying this to every possible set of `(n) + 1
distinct messages, we get that at most the same fraction of all sequences of
distinct messages can be bad. While the property that messages are distinct
is not necessarily guaranteed, we note that the probability that they are not
over uniformly randomly chosen messages is negligible—specifically, we notice
that the probability of any pair of elements colliding is 2−n, and so, by the

union bound, the probability that any of the `(n)(`(n)+1)
2 pairs of elements can

collide is smaller than ν(n) , `(n)22−n (which is negligible in n because `(·) is
polynomial).

Hence, the chance that a sequence chosen at random is bad, which by defi-
nition is equal to the probability that a randomly chosen sequence of messages
~m∗k = (mk,1, . . . ,mk,`(n),m

∗
k) will result in instance k returning Fail, can be at

most the fraction of sequences without repeated elements which are bad plus the

fraction of sequences with repeated elements, or M(n)+r(n)+1
`(n)+1 + ν(n), as desired.

ut
Recall that, because this result holds for any execution of the experiment

Real∗{~mI ,m∗I}−k,Oext
(1n), it must also hold over a random such execution—i.e.,

the actual execution Real(1n) of B, where the messages for all instances are
chosen uniformly at random. Furthermore, it holds for any instance k of A.

To conclude the proof of the proposition, by Claim 1 we know that R must
send a total of at least `(n) messages to each instance of A in order for the
failure probability of B to emulate that instance to be more than negligible; if
not, then B will always respond with ⊥ (having not received `(n) signature query
responses), while A will return ⊥ with all but negligible probability. Recall that
M(n) is an upper bound to the number of instances of A to which R sends `(n)
messages. By Claim 4 and a union bound over all M(n) completed instances of
A, the failure probability of B for those instances is at most

M(n)

(
M(n) + r(n) + 1

`(n) + 1
+ ν(n)

)
for negligible ν(·), and the failure probability for all other instances (of which
there can only be a polynomial number by the time constraint on R) is negligible
by the union bound applied to Claim 1. Hence the overall failure probability of
Real (i.e., the execution of B) must be bounded above by

Pr[Output[Real(1n)] = Fail] ≤M(n)

(
M(n) + r(n) + 1

`(n) + 1
+ ν(n)

)
+ ν′(n)



< M(n)

(
M(n) + r(n) + 1

`(n) + 1

)
+ ε(n)

for some negligible functions ν′(·) and ε(·). ut

Completing the Proof of Lemma 1. Finally, in order to bound the security loss,
we note that, if the probability SuccessRA(n) (which specifically is by definition a
lower bound to the probability Pr[Output[Ideal(1n)] = Accept]− t(n); recall that
t(·) is the threshold for the underlying assumption C) is non-negligibly greater
than the failure probability of Real, there exists a polynomial p(·) such that:

Pr[Output[Ideal(1n)] = Accept]− t(n) ≥ Pr[Output[Real(1n)] = Fail] +
1

p(n)

But, by Claim 3, this would imply that

Pr[Output[Real(1n)] = Accept]− t(n) ≥ 1

p(n)

that is, that B breaks the security of (C, t(·)). So, by Proposition 1, unless B
breaks the security of (C, t(·)), the above cannot be the case—that is, there must
exist negligible ε(·), ε′(·) such that, for sufficiently large n:

SuccessRA(n) ≤ Pr[Output[Real(1n)] = Fail] + ε′(n)

< M(n)

(
M(n) + r(n) + 1

`(n) + 1

)
+ (ε(n) + ε′(n)) < M(n)

(
M(n) + r(n) + 1

`(n)

)
Of course, SuccessRA(n), being a probability, is also trivially bounded above

by 1. Furthermore, by the definition of M(n), we know that QueryRA(n) ≥
M(n)`(n). Lastly, we consider two cases to derive our bound on the security
loss.

Case 1. If M(n) ≥
√
`(n)− (r(n) + 1), then:

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)
≥ 1

1

M(n)`(n)

`(n)

= M(n) ≥
√
`(n)− (r(n) + 1)

Case 2. Otherwise, if M(n) <
√
`(n) − (r(n) + 1) we have M(n) + r(n) + 1 <√

`(n), and so:

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)
≥ 1

M(n)
(

M(n)+r(n)+1
`(n)

)M(n)`(n)

`(n)

=
`(n)

M(n) + r(n) + 1
>

`(n)√
`(n)

=
√
`(n)

Either way, we observe that λR(n) ≥
√
`(n) − (r(n) + 1), thus completing the

proof of both Lemma 1 and Theorem 2.
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