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Abstract. We present a cryptographic primitive P satisfying the follow-
ing properties:
– Rudich’s seminal impossibility result (PhD thesis ’88) shows that

P cannot be used in a black-box manner to construct an injective
one-way function.

– P can be used in a non-black-box manner to construct an injective
one-way function assuming the existence of a hitting-set generator
that fools deterministic circuits (such a generator is known to exist
based on the worst-case assumption that E = DTIME(2O(n)) has a
function of deterministic circuit complexity 2Ω(n)).

– Augmenting P with a trapdoor algorithm enables a non-black-box
construction of an injective trapdoor function (once again, assum-
ing the existence of a hitting-set generator that fools deterministic
circuits), while Rudich’s impossibility result still holds.

The primitive P and its augmented variant can be constructed based on
any injective one-way function and on any injective trapdoor function,
respectively, and they are thus unconditionally essential for the existence
of such functions. Moreover, P can also be constructed based on various
known primitives that are secure against related-key attacks, thus enabling
to base the strong structural guarantees of injective one-way functions
on the strong security guarantees of such primitives.
Our application of derandomization techniques is inspired mainly by the
work of Barak, Ong and Vadhan (CRYPTO ’03), which on one hand relies
on any one-way function, but on the other hand only results in a non-
interactive perfectly-binding commitment scheme (offering significantly
weaker structural guarantees compared to injective one-way functions),
and does not seem to enable an extension to public-key primitives.
The key observation underlying our approach is that Rudich’s impos-
sibility result applies not only to one-way functions as the underlying
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primitive, but in fact to a variety of “unstructured” primitives. We put
forward a condition for identifying such primitives, and then subtly tailor
the properties of our primitives such that they are both sufficiently un-
structured in order to satisfy this condition, and sufficiently structured in
order to yield injective one-way and trapdoor functions. This circumvents
the basic approach underlying Rudich’s long-standing evidence for the
difficulty of constructing injective one-way functions (and, in particular,
injective trapdoor functions) based on seemingly weaker or unstructured
assumptions.

1 Introduction

Over the last few decades the cryptography community has been successful in
constructing a wide variety of cryptographic primitives based on the minimal
assumption that one-way functions exist. For example, the existence of one-way
functions has been shown equivalent to the existence of private-key encryption
schemes [GGM84], pseudorandom functions and permutations [GGM86, LR88,
NR99], message authentication codes [GGM86], pseudorandom generators [BM84,
HIL+99], universal one-way hash functions and signature schemes [NY89, Rom90],
commitment schemes [Nao91, HIL+99, HNO+09], and many other symmetric
primitives (also known as “MiniCrypt” primitives [Imp95]).

Despite the great progress in basing symmetric cryptography on one-way
functions, the existence of one-way functions is still not known to imply the
existence of all symmetric cryptographic primitives. A prime example is that of
injective one-way functions (and, in particular, one-way permutations), whose
existence seems to require somewhat more structured assumptions (e.g., specific
number-theoretic assumptions [GLN11]).1 Moreover, the seminal work by Rudich
[Rud88], within the framework of Impagliazzo and Rudich modeling black-box
constructions [IR89, RTV04], provided substantial evidence that the existence of
injective one-way functions may not be “naturally implied” by the existence of
arbitrary one-way functions. Specifically, Rudich proved that one-way functions
cannot be used in a black-box manner to construct injective one-way functions.2

Black-box impossibility results are clearly inherently limited, and do not
capture non-black-box techniques (e.g., [GMW86, Yao86, NY90, Bar01, AIK06,
BP12, CPS16]). Thus, it may still be the case that one-way functions can be
used in a non-black-box manner to construct injective one-way functions (and
even one-way permutations). Given that Rudich’s black-box barrier is currently
the main evidence for explaining our lack of success in constructing injective
one-way functions based on seemingly weaker assumptions, this naturally raises
the fundamental question of whether or not Rudich’s black-box barrier can be
circumvented using non-black-box techniques.
1 An additional example is that of collision-resistant hash functions, whose existence
also seems to require somewhat stronger assumptions [Sim98].

2 Although Rudich formalized his statements for one-way permutations, his proof relies
only on the injectivity of the resulting functions, and thus applies to injective one-way
functions.
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Significant progress towards obtaining a better understanding of the above
question was made in the work of Barak, Ong and Vadhan [BOV07]. Their work
demonstrated that derandomization techniques can be fundamentally useful in
cryptographic constructions by enabling to eliminate interaction from certain
two-message cryptographic protocols. Relying on the existence of a hitting-
set generator that fools co-non-deterministic algorithms3, they derandomized
Naor’s statistically-binding commitment scheme [Nao91] for obtaining a non-
interactive perfectly-binding commitment scheme (in addition, relying on the
existence of a hitting-set generator that fools co-non-deterministic circuits, they
derandomized Dwork and Naor’s ZAPs [DN07] for obtaining a non-interactive
witness-indistinguishable proof system for NP).

In particular, as observed by Barak, Ong and Vadhan, a non-interactive
perfectly-binding commitment scheme naturally implies a somewhat weak form
of an injective one-way function, to which they refer to as a “partially-injective”
one-way function. Such a function f is a two-input function f(x, y), which is
injective with respect to its first input x but not necessarily with respect to its
second input y (thus offers significantly weaker structural guarantees compared to
an injective one-way function), and for which it is hard to recover x given f(x, y)
where both x and y are distributed uniformly. This shows that non-black-box
techniques are useful for constructing a somewhat weak form of injective one-way
functions, but the problem of whether or not such techniques can be useful for
constructing (fully) injective one-way functions (and even trapdoor functions)
based on seemingly weaker assumptions has been left completely open.

1.1 Our Contributions

We show that non-black-box techniques can be used to circumvent the ba-
sic approach underlying Rudich’s long-standing evidence for the difficulty of
constructing injective one-way functions (and, in particular, injective trapdoor
functions) based on seemingly weaker or unstructured assumptions. In addition,
whereas separations between the black-box and non-black-box power of crypto-
graphic constructions were known to exist for private-key primitives [MP12], our
work provides in particular such a separation for public-key primitives.

Specifically, we present a cryptographic primitive P and prove that it satisfies
the following properties:

– Rudich’s seminal impossibility result shows that P cannot be used in a
black-box manner to construct an injective one-way function.

– P can be used in a non-black-box manner to construct an injective one-
way function assuming the existence of a hitting-set generator that fools
deterministic circuits. The non-black-box aspect of our construction is quite
modest, asking for an upper bound on the size of P’s implementation.

3 Such a generator is known to exist based on the worst-case assumption that E =
DTIME(2O(n)) has a function that is not computable for infinitely many input lengths
by a probabilistic non-deterministic algorithm that runs in sub-exponential time
[NW94, IW97, MV99, GSTS03].
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– Augmenting P with a trapdoor algorithm enables a non-black-box construc-
tion of an injective trapdoor function (once again, assuming the existence
of a hitting-set generator that fools deterministic circuits), while Rudich’s
impossibility result still holds.

Generally speaking, a hitting-set generator that fools deterministic circuits
is known to exist based on the worst-case assumption that E = DTIME(2O(n))
has a function of deterministic circuit complexity 2Ω(n) (see Section 2.1 for more
details). For our construction, however, it suffices to assume the existence of
a hitting-set generator that fools a rather simple computation involving the
primitive P (two parallel invocations of P followed by a comparison of their
outputs). Thus, if a hitting-set generator that fools this specific computation
is known to exist unconditionally then we do not need to rely on the above
worst-case assumption.

Our application of derandomization techniques is inspired mainly by the work
of Barak, Ong and Vadhan [BOV07], which on one hand relies on any one-way
function, but on the other hand only results in a non-interactive perfectly-binding
commitment scheme (offering a significantly weaker structural guarantee when
compared to injective one-way functions), and does not seem to enable an ex-
tension to public-key primitives (see Section 1.3 for an in-depth discussion and
comparison to previous applications of derandomization techniques in cryptogra-
phy).

The primitive P. Our primitive P is a predicate P : {0, 1}∗ → {0, 1} that sat-
isfies two rather natural properties, and we refer to this primitive as a correlated-
input balanced one-way predicate. We show that such a predicate P can be
constructed based on any injective one-way function without relying on any addi-
tional assumptions, and thus the existence of such a predicate is unconditionally
essential for the existence of an injective one-way function. Therefore, under
a standard worst-case hardness assumption, the existence of our primitive is
equivalent to that of an injective one-way function, although it is strictly weaker
when restricted to black-box constructions.

Moreover, we also show that P can be constructed in a black-box manner
from various known primitives that are secure against related-secret attacks (e.g.,
related-key pseudorandom functions and related-seed pseudorandom generators).
Although these primitives seem rather unstructured, it turns out that we can rely
on their strong security guarantees to achieve the relatively modest structural
guarantee of P, and then apply derandomization techniques to obtain the more
robust structure of injective one-way functions.

In addition to the primitive P , we also introduce a natural “public-key” variant
of P which is obtained by augmenting P with a trapdoor algorithm. We show
that this augmented primitive can be constructed based on any injective trapdoor
function without relying on any additional assumptions, and thus the existence
of this primitive is unconditionally essential for the existence of an injective
trapdoor one-way function. Therefore, similarly to the above, under a standard
worst-case hardness assumption, the existence of our augmented primitive is
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equivalent to that of an injective trapdoor function, although it is strictly weaker
when restricted to black-box constructions.

Our approach. The key observation underlying our approach is that Rudich’s
black-box impossibility result applies not only to rule out black-box constructions
of injective one-way functions from general one-way functions as the underlying
primitive class, but in fact from a wide variety of “unstructured” primitive classes.
As basic examples, these include one-way functions and “almost-injective” one-way
functions4, and obviously do not include injective one-way functions. At a very
high level, as we discuss in Section 1.2 in more detail, Rudich’s impossibility
applies to any primitive class S satisfying the following condition: For any
O,O′ ∈ S and for any two disjoint sets of inputs X and X ′ of polynomial size,
there exists an O′′ ∈ S that agrees with O on the set X and agrees with O′ on
the set X ′.

Equipped with this observation, a significant part of our effort in this work
focuses on carefully identifying a primitive P that on one hand is sufficiently
unstructured in order to satisfy the above condition, whereas on the other hand
it is sufficiently structured in order to yield an injective one-way function (via a
non-black-box construction). As we pointed out, one-way functions and almost-
injective one-way functions are examples for primitive classes that satisfy the
above condition, but it is still a long-standing open problem to use them in
order to construct an injective one-way function. Instead, we specifically tailor
the properties of our primitive P in order to simultaneously satisfy the above
condition and yield an injective one-way function via derandomization techniques.

1.2 Overview of Our Approach

In this section we provide an overview of our main contributions. First, we
describe our new notion of a correlated-input balanced one-way predicate, as well
as our non-black-box construction of an injective one-way function. We emphasize
that we view the introduction and the specific formalization of our new primitive
as a central contribution given that: (1) it is sufficiently unstructured in order to
satisfy the above-mentioned condition for Rudich’s impossibility result, (2) it is
sufficiently structured in order to yield an injective one-way function, and (3) its
existence is essential for the existence of an injective one-way function.

Then, we describe the application of Rudich’s impossibility proof to correlated-
input balanced one-way predicates, and discuss the observation that Rudich’s
impossibility result applies to a wide variety of primitives. In fact, we prove a
stronger result, showing that there is no black-box construction of a partially-
injective one-way function (as defined by Barak, Ong and Vadhan [BOV07]) from
these primitives.

Correlated-input balanced one-way predicates. The new primitive at the
heart of our approach is an efficiently-computable predicate P : {0, 1}∗ → {0, 1}
4 We denote by an ”almost-injective” function a function that is injective for each input
length on all but a negligible fraction of its domain.
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that can be viewed as a two-input predicate P(x, r), where r ∈ {0, 1}`(|x|), which
satisfies the following two natural requirements with respect to correlated inputs:

– The first requirement is that the predicate P has to be rather balanced in
the sense that |Pr[P(x, r) = P(x′, r)] − 1/2| is bounded for every distinct
x, x′ ∈ {0, 1}n, where the probability is taken over the choice of a uniform
r ∈ {0, 1}`(n).
This requirement (on its own) is easy to satisfy by making sure that P is
pair-wise independent over the choice of r ∈ {0, 1}`(n). For example, this
requirement can be satisfied by defining P(x, r) = 〈f(x), r〉, where f may be
any injective function mapping n-bit inputs to `(n)-bit outputs.

– The second requirement is that for adversarially-chosen values r1, . . . , rT ∈
{0, 1}`(n), the function mapping x to the sequence of values P(x, r1), . . . ,
P(x, rT ) is a one-way function of x.
This requirement (on its own) is easy to satisfy by making sure that P first
applies any given one-way function to its first input x, and only then involves
its second input r in the computation. For example, this requirement can
be satisfied by defining P(x, r) = 〈f(x), r〉, where f may be any one-way
function mapping n-bit inputs to `(n)-bit outputs (note that this predicate
fails to satisfy the first requirement whenever f is not an injective function).

The following definition formalizes these two requirements:

Definition 1.1. Let P : {0, 1}∗ → {0, 1} be an efficiently-computable predicate,
and let ` = `(n) and δ = δ(n) be functions of the security parameter n ∈ N.
Then, P is a correlated-input (`, δ)-balanced one-way predicate if it satisfies the
following two requirements:

– For any n ∈ N and for any x, x′ ∈ {0, 1}n such that x 6= x′ it holds that∣∣∣∣ Pr
r←{0,1}`(n)

[P(x, r) = P(x′, r)]− 1

2

∣∣∣∣ ≤ δ(n).
– For any probabilistic polynomial-time algorithm A there exists a negligible

function ν(·) such that

Pr [InvertP,A(n) = 1] ≤ ν(n)

for all sufficiently large n ∈ N, where the experiment InvertP,A(n) is defined
as follows:
1. (state, r1, . . . , rT ) ← A(1n) for r1, . . . , rT ∈ {0, 1}`(n), where T = T (n)

may be any polynomial determined by A.
2. x′ ← A (state,P (x, r1) , . . . ,P (x, rT )) where x← {0, 1}n.
3. If x′ = x then output 1, and otherwise output 0.

As demonstrated above, each of the two requirements on its own can be easily
satisfied, but it seems significantly more difficult to simultaneously satisfy both
requirements. However, putting together our examples for predicates that satisfy
each requirement on its own, we observe that for any injective one-way function
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f mapping n-bit inputs to `(n)-bit outputs, it holds that P(x, r) = 〈f(x), r〉 is a
correlated-input (`(n), δ(n))-balanced one-way predicate, where δ(n) = 0.5 This
shows that the existence of such a predicate is unconditionally essential for the
existence of an injective one-way function.

In addition, in the full version of the paper [RS18] we show that the existence
of a correlated-input balanced one-way predicate is also implied by that of various
primitives that are secure against related-key attacks. These include, for example,
related-key pseudorandom functions (e.g., [BK03, Luc04, BC10, LMR14, AW14])
and related-seed pseudorandom generators (e.g., [GL10]). Unlike injective one-
way functions, these primitives seem rather unstructured, yet still suffice for
constructing correlated-input balanced one-way predicates.

Our injective one-way function. Given any correlated-input (`, 1/4)-balanced
one-way predicate P, we present a construction of an injective one-way function
by relying on a hitting-set generator H that fools deterministic circuits whose
size is roughly that of P ’s given implementation. Our construction applies to any
function ` = `(n) of the security parameter n ∈ N (recall that `(n) denotes the
length of P ’s second input r), as long as it is upper bounded by some polynomial
(e.g., `(n) = log2(n), `(n) = n2). In what follows we first describe the construction
assuming that `(n) = O(log n), as this case already sheds initial light on some of
the main ideas underlying the construction. In fact, assuming that `(n) = O(log n)
the construction is fully black box, and the hitting-set generator is not needed.
Then, we show that the construction extends to any polynomial `(n) by relying
on a hitting-set generator.

Let P be a correlated-input (`, 1/4)-balanced one-way predicate where `(n) =
O(log n), and denote by rn,1, . . . , rn,L(n) all L(n) = 2`(n) possible `(n)-bit strings
for any n ∈ N (note that L = L(n) is polynomial given that `(n) = O(log n)).
Then, we claim that the function

g(x) =
(
P(x, r|x|,1), . . . ,P(x, r|x|,L(|x|))

)
is both injective and one way:

– The injectivity of g follows from the fact that P is balanced: For any distinct
x, x′ ∈ {0, 1}n, as long as Pr[P(x, r) = P(x′, r)] < 1, where the probability is
taken over the choice of a uniform r ∈ {0, 1}`(n), this means that there exists
at least one value r ∈ {0, 1}`(n) for which P(x, r) 6= P(x′, r), and therefore
g(x) 6= g(x′).

– The one-wayness of g follows from the fact that P is one-way for correlated
inputs: For any sequence of values r1, . . . , rT the function mapping x to the
sequence of values P(x, r1), . . . ,P(x, rT ) is a one-way function of x. This
holds, in particular, for the sequence of values rn,1, . . . , rn,L(n), and thus g is
a one-way function.

5 This follows from our above observation that P(x, r) = 〈f(x), r〉 satisfies the first
requirement for any injective f , and satisfies the second requirement for any one-way
f .
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Now suppose that P is a correlated-input (`, 1/4)-balanced one-way predicate
where `(n) may be any polynomial. Here, we can no longer define g as above by
enumerating over all possible `(n)-bit strings to be used as P’s second input r.
All we need, however, is to enumerate over a carefully-chosen set r1, . . . , rT such
that for any distinct x, x′ ∈ {0, 1}n there exists a value r ∈ {r1, . . . rT } such that
P(x, r) 6= P(x′, r). This is exactly the type of guarantee that is provided by a
hitting-set generator, and enables us to argue that the following function g is both
injective and one way: On input x ∈ {0, 1}n our function g : {0, 1}∗ → {0, 1}∗ first
uses a hitting-set generator H that fools circuits whose size is roughly the size of
P’s implementation for obtaining a sequence of values r1, . . . , rT (n) ∈ {0, 1}`(n),
and then outputs the value

g(x) =
(
P(x, r1), . . . ,P(x, rT (n))

)
.

In Section 3 we prove that the injectivity of g follows from the fact that P is
balanced and H is a hitting-set generator, whereas the one-wayness of g follows
from the fact that P is one way for correlated inputs as above. Moreover, we show
that by augmenting P with a trapdoor argument, our construction generalizes to
an injective trapdoor function. We refer the reader to Section 3 for the formal
details.

Applying Rudich’s impossibility to correlated-input predicates.We now
briefly overview Rudich’s approach while pointing out the adjustments required
in order to apply it to correlated-input balanced one-way predicates. Let O =
{On}n∈N be an oracle, where each On is uniformly chosen from some function
family Sn, and let C be an oracle-aided circuit guaranteeing that CO implements
an injective function for any O ∈ {Sn}n∈N. In the case of Rudich’s proof,
Sn is the family of all functions mapping n bits to n bits, and hence O is
simply a random length-preserving function. In our case, Sn is the set of all
(`(n) = n, δ(n) = 2−n/3)-balanced predicates; i.e., predicates taking inputs
in {0, 1}n × {0, 1}n, such that for every distinct x, x′ ∈ {0, 1}n it holds that∣∣Prr←{0,1}n [On(x, r) = On(x′, r)]− 1/2

∣∣ ≤ 2−n/3. We set `(n) = n for the sake of
simplicity, but the proof holds for any super-logarithmic ` with minor adjustments.

Rudich’s proof then considers an adversary that makes a polynomial number of
queries to O and always succeeds in inverting CO(x∗) for any input x∗. On input
y∗ = CO(x∗), the adversary A proceeds in iterations, where in each iteration it
arbitrarily picks a value x and a possible oracle O′ that is consistent with what
it has learned so far on O, such that y∗ = CO

′
(x). A then checks if CO(x) = y∗

(if so x = x∗), and if not, queries O with all queries in the execution of CO
′
(x)

that were not already known. The main observation is that in each iteration, the
adversary either learns a new query made in the evaluation of CO(x∗), or finds
the correct pre-image x = x∗ of y∗. Hence, if C makes at most q oracle queries,
then A is guaranteed to find x∗ within q + 1 iterations.

In order to prove this main observation, suppose that in some iteration A
does not learn a new query made in the evaluation of CO(x∗) nor does it hold
that x = x∗. This means that from A’s point of view, the oracles have so far been
defined on disjoint sets of inputs. Now, the idea is that O and O′ can be “glued”
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together to form a third oracle O′′ ∈ S such that CO
′′
(x) = CO

′′
(x∗) = y∗,

contradicting the injectivity guarantee of C. In the case of Rudich’s proof, this
is straightforward: since S is the family of all length-preserving functions, O′′
can simply be any oracle that is consistent with the answers of O and O′ to the
queries made during the evaluations of CO(x∗) and CO

′
(x), respectively, and

can be arbitrarily defined everywhere else. In our case, we need to show that we
can complete O′′ to be balanced for every input length.

More generally, this shows that Rudich’s proof does not only apply to length-
preserving functions or to correlated-input balanced predicates, but in fact to
any function family S that is “sufficiently unstructured” in order to guarantee
the following property: For any two functions O,O′ ∈ S and for any two disjoint
sets of “not too short” inputs X and X ′ of polynomial size, there exists a function
O′′ ∈ S that agrees with O on the set X and agrees with O′ on the set X ′. We
have provided two examples for such families: All length-preserving functions
(i.e., where O a random oracle) and all balanced predicates. Of course, not all
families exhibit this property as some primitives — and in particular injective
one-way functions — do imply injective one-way functions in a black-box manner.
For example, if we consider S = {Sn}n∈N where Sn is the set of all permutations
on n-bit strings, then this is obviously not the case even for X and X ′ of size
one. For any n ∈ N and any distinct x, x′ ∈ {0, 1}n, if O(x) = O′(x′), then no
function O′′ ∈ S can agree both with O on input x and with O′ on input x′, as
this will contradict the injectivity of O′′.

Two final remarks are in order. First, one still needs to show that our balanced
predicate oracle is hard to invert for correlated inputs. Roughly speaking, this
follows from the fact that a truly uniform predicate is correlated-input one way,
and is also balanced with an overwhelming probability. Second, our proof readily
extends to rule out black-box constructions of the seemingly weaker partially-
injective one-way functions from our strengthened variant of P that is augmented
with a trapdoor algorithm. We refer the reader to Section 4 for the formal details.

1.3 Related Work

The power of black-box vs. non-black-box constructions. Our work shows
a gap between the power of black-box constructions and the power of non-black-
box constructions both in the private-key setting and in the public-key setting.

Such a gap in the private-key setting was previously identified by Mahmoody
and Pass [MP12] who proved that one-way functions cannot be used in a black-
box manner for constructing a non-interactive commitment scheme. Combining
their negative result with the above-mentioned positive result of Barak et al.
implies that, under a standard worst-case hardness assumption, the existence of
a one-way function is equivalent to that of a non-interactive commitment scheme,
although it is strictly weaker when restricted to black-box constructions.6

6 As pointed out by Mahmoody and Pass [MP12], this is different from the results
of Barak [Bar01] and Goldreich and Krawczyk [GK96] which provide separations
between the power of black-box and non-black-box proofs of security.
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Our work identifies such a gap in the public-key setting as well, by showing
that augmenting our primitive P with a trapdoor algorithm enables a non-
black-box construction of a trapdoor function (while Rudich’s impossibility
result still holds), whereas the construction of Barak et al. does not seem to
enable an extension to the public-key setting. An additional such gap in the
public-key setting was identified by Döttling and Garg [DG17] who presented a
breakthrough construction of an identity-based encryption scheme based on the
computational Diffie-Hellman assumption, circumventing the impossibility result
of Papakonstantinou et al. [PRV12] in the generic-group model.

Derandomization in cryptography. When compared to the work of Barak,
Ong and Vadhan [BOV07] and other applications of derandomization in similar
scenarios (e.g., [Lau83, Nao91, DN07, DNR04, BV17]), our work exhibits the
following main differences.

– The underlying cryptographic building block and the resulting primitive in our
work are incomparable to those in their work: We rely on a seemingly stronger
cryptographic building block (specifically, a correlated-input balanced one-
way predicate in our work vs. a one-way function in their work), and obtain
a seemingly stronger primitive (an injective one-way function in our work vs.
a partially-injective one-way function in their work). A natural question that
arises in this context is whether or not our two approaches can be combined
and yield a non-black-box construction of an injective one-way function based
on any one-way function.

– We rely on the existence of a hitting-set generator that fools deterministic cir-
cuits, whereas Barak et al. rely on the seemingly incomparable assumption that
there exists a hitting-set generator that fools co-non-deterministic algorithms.
In turn, our transformation relies on the assumption that E = DTIME(2O(n))
has a function of deterministic circuit complexity 2Ω(n), whereas Barak et
al. rely on the assumption that E = DTIME(2O(n)) has a function that is
not computable for infinitely many input lengths by a probabilistic non-
deterministic algorithm that runs in sub-exponential time.

– Following the work of Barak et al. derandomization using pseudorandom gen-
erators was also applied in the recent work of Bitansky and Vaikuntanathan
[BV17] (both motivated by the classic applications of derandomization tech-
niques in similar settings [Lau83, Nao91, DN07, DNR04]). The common theme
underlying these applications is to derandomize an “almost perfectly correct”
primitive into a “perfectly correct” one. This seems somewhat incomparable
to our work, where our starting point is not an “almost perfectly correct”
injective one-way function, but rather our new notion of a correlated-input
balanced one-way predicate.
Indeed, it would seem that using an “almost perfectly correct” injective one-
way function as our starting point is not enough. Consider for example a
collection of functions, where all of them are one way, and most of them
are injective. A standard attempt to apply derandomization techniques to
construct an injective one-way function from such a collection may naturally
rely on the following idea: Given an input x, use a hitting-set generator
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to choose a small subset of the functions in the collection, evaluate all of
these functions on the same input x, and concatenate their outputs. The
properties of the hitting-set generator indeed guarantee that the resulting
function is injective (since at least one of the functions chosen by the generator
is injective), but unfortunately there is no guarantee that this function is
actually one way. A similar problem will arise when trying to start with
a single function that is almost injective in the sense that it has only a
few collisions. Our new primitive P is just strong enough to enable the
construction of an injective one-way function by applying such techniques,
yet still weak enough so that Rudich’s black-box separation directly applies
to it.

Strengthening the framework of black-box constructions. In recent years
there have been several approaches for extending the framework of black-box
impossibility results to capture various non-black-box techniques. For example,
Brakerski et al. [BKS+11] and Asharov and Segev [AS15] showed that various
non-black-box constructions that are based on non-interactive zero-knowledge
proofs and indistinguishability obfuscation [BGI+12, GGH+13], respectively, can
in fact be modeled in a black-box manner. This enabled them to prove various
limitations on the power of these two primitives even when used in a particular
non-black-box manner. Subsequently, Garg et al. [GMM17] refined the framework
of Asharov and Segev to also account for “self-calls” of some primitives that might
receive circuits as input (e.g., indistinguishability obfuscation).

Baecher, Brzuska and Fischlin [BBF13] considered more fine-grained variants
of black-box constructions. Among their definitions, they considered constructions
where the correctness or security guarantees need hold only for the case when
the underlying primitive or the adversary in the security reduction are assumed
to be efficient. They also went a step further, to consider a more subtle definition
in which the security reduction may depend on some parameters of the assumed
adversary (such as running time, success probability, etc.), even though its access
to the adversary may still be black box. These notions seem related to, but do not
precisely capture our non-black-box construction of an injective one-way function,
which makes use of knowledge of the implementation size of the underlying
primitive (with a security proof that makes black-box use of the adversary).

Most relevant to our work is the work of Pass, Tseng and Venkitasubramaniam
[PTV11] that rules out constructions of various cryptographic primitives (e.g., one-
way permutations, collision-resistant hash functions, constant-round statistically-
hiding commitments, and constant-round black-box zero-knowledge proofs for
NP) based on one-way functions, where the implementation of the underlying
one-way function can be used in an arbitrary manner both within the construction
and within the security proof, but the adversary may only be used in a black-box
manner within the proof of security7. Their results are based on average-case

7 This is exactly our case: We need a bound on the size of the underlying primitive’s
implementation both for the construction and for security proof, but the adversary is
used in a black-box manner.
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strengthenings of the traditional assumption that coNP is not contained in AM.
As Pass et al. pointed out, their approach does not seem to extend to ruling
out constructions of injective one-way functions (as such functions may not be
size-verifiable in general).

More recently, the work of Dachman-Soled [Dac16] strengthened the black-box
barrier of constructing a public-key encryption scheme based on one-way functions
[IR89] by relying on somewhat similar assumptions. Roughly speaking, her work
considers non-adaptive constructions, where both the underlying one-way function
and the adversary are used in a black-box manner by the construction and the
security proof, respectively, but the security proof is allowed to rely on the
implementation of the underlying one-way function in an arbitrary manner (this
class of constructions seems orthogonal to our construction).

1.4 Open Problems

Circumventing other black-box barriers. A natural question that arises is
whether we can rely on worst-case assumptions and similar techniques to those we
use in order to circumvent other known and long-standing black-box impossibility
results. In particular, can such techniques be useful in obtaining a key-agreement
protocol from any one-way function or from slightly stronger yet symmetric-key
primitives, or in constructing collision-resistant hash functions from any one-way
function; circumventing the black-box separation results of Impagliazzo and
Rudich [IR89] and of Simon [Sim98], respectively? Conversely, can one enhance
the aforementioned impossibility results in a way that will provide evidence that
such constructions are unlikely to exist? We refer the reader to Section 1.3 for a
discussion on recent approaches to broaden the black-box separations framework.

Correlated-input balanced one-way predicates vs. one-way functions.
Our new primitive P seems to be somewhat stronger than “plain” one-way
functions, yet at least from a structural point of view, the added requirement
is fairly modest and it seems much weaker than the injectivity requirement of
injective one-way functions. A central open question is then the following: Can
one construct a correlated-input balanced one-way predicate from any one-way
function, resulting – when combined with our result (and a worst-case complexity
assumption) – in a construction of an injective one-way function from any one-way
function? Alternatively, can it be shown that such a construction is impossible in
a black-box manner, thus establishing that a black-box barrier between general
one-way functions and their injective counterparts still exists?

Per the latter possibility, it seems that the structural properties of P are weak
enough, so that at least the techniques underlying Rudich’s approach cannot
be applied to ruling out black-box constructions of P from one-way functions.
More broadly, any separation that aims to derive a contradiction to P’s balance
requirement (the first property in Definition 1.1) will have to fundamentally
deviate from Rudich’s technique due to the following observation. Suppose C is
a candidate implementation of an (`, δ)-balanced predicate with respect to some
oracle O, and say we partially fix O so that the output of CO is determined for
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a subset X of its possible inputs of length n+ `(n). Even if X is of exponential
size (in n), then CO might still be (`, δ)-balanced for a non-negligible δ, which is
enough for our needs of constructing an injective one-way function.

Constructing correlated-input balanced trapdoor predicates. In the cur-
rent state of affairs, candidates for injective trapdoor functions are scarce. Most
candidates rely on specific number-theoretic or lattice based assumptions, and gen-
eral constructions from other cryptographic primitives either rely on very strong
assumptions such as sub-exponential indistinguishability obfuscation [BPW16] or
are proven in the random oracle model [BHS+98]. We thus view the construction
of our trapdoor version of P from new assumptions as a very interesting open
problem, as this will imply new constructions for injective trapdoor functions.
More specifically, can the trapdoor version of P be obtained from public-key
encryption (perhaps with additional symmetric primitives)? Can enhancing the
latter’s security properties help in such a transformation (similarly to the symmet-
ric case, in which we were able to trade strong security guarantees of related-key
secure pseudorandom functions for the structural ones of P)?

Weakening the derandomization-related assumption. Our construction of
an injective one-way function is based on the existence of a hitting-set generator,
which in turn is known to exist under the assumption of a non-uniform circuit
lower bound (namely, that E = DTIME(2O(n)) has a function of deterministic
circuit complexity 2Ω(n)). Can this assumption be weakened? More specifically,
can similar results be obtained using weaker types of hitting-set generators or
pseudorandom generators, known to exist under seemingly weaker complexity
assumptions? For example, can results of similar nature be based on the seemingly
weaker assumption that P = BPP, which Goldreich [Gol11] showed to yield certain
uniform versions of pseudorandom generators?

Implications to extensions of Rudich’s work. A variety of extensions have
been developed to Rudich’s impossibility result, including for example [BKS+11,
MM11, AS15, AS16, BDV17, RSS17]. Our result does not directly imply that all
of these extensions may be circumvented as well, since they deal with primitives
that seem either significantly stronger than injective one-way functions (e.g.,
public-key primitives [BKS+11, AS15] and specific forms of injective one-way
functions [MM11, AS16]), or incomparable to injective one-way functions (e.g.,
bounded-TFNP instances [RSS17]), and are currently not known to be implied
by our notion of a correlated-input balanced one-way predicate. An interesting
problem that arises given these extensions is to extend our approach to such
stronger or incomparable primitives.

1.5 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce
our notation as well as the basic cryptographic primitives that we consider in
this paper. In Section 3 we present our constructions of an injective one-way
function and of an injective trapdoor function. Finally, in Section 4 we show that
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Rudich’s impossibility result applies not only to constructions based on one-way
functions, but also to constructions based on correlated-input balanced one-way
predicates (and even when augmented with a trapdoor algorithm).

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x← X
the process of sampling a value x from the uniform distribution over X . The
statistical distance between two distributions X and Y over a finite domain Ω
is SD(X,Y ) = 1

2

∑
ω∈Ω |X(ω) − Y (ω)|. For an integer n ∈ N we denote by [n]

the set {1, . . . , n}. A function ν : N→ R+ is negligible if for any polynomial p(·)
there exists an integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

2.1 Hitting-Set Generators

We rely on the following standard notion of a hitting-set generator, as formalized
by Goldreich et al. [GVW11], for the class of deterministic circuits (see also
[Sip88, CG89, And94, ACR+97, LLS+97, ACR98, GVW11] and the references
therein).

Definition 2.1. A deterministic polynomial-time algorithm H is a hitting-set
generator that fools deterministic circuits if for every n, t ∈ N the generator H
on input (1n, 1t) outputs a set S such that the following hold:

– S ⊆ {0, 1}n.
– For every circuit C : {0, 1}n → {0, 1} of size at most t for which

Pr
x←{0,1}n

[C(x) = 1] ≥ 1/4,

there exists some x∗ ∈ S such that C(x∗) = 1.

Any pseudorandom generator [NW94] that fools deterministic circuits and has
a logarithmic seed length immediately gives rise to such a hitting-set generator (by
having H enumerate over all possible seeds). This implies the following corollary
on which we rely for our constructions in Section 3:

Corollary 2.2 ([NW94, IW97]). If there exists a function f ∈ DTIME(2O(n))
with deterministic circuit complexity 2Ω(n), then there exists a hitting-set generator
that fools deterministic circuits.

2.2 Injective and Partially-Injective One-Way Functions

In this paper we rely on the following standard notions of one-way functions and
injective one-way functions (see, for example, [Gol01]), as well as on the notion
of partially-injective one-way functions due to Barak, Ong and Vadhan [BOV07].
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Definition 2.3. An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is one
way if for every probabilistic polynomial-time algorithm A there exists a negligible
function ν(·) such that

Pr
x←{0,1}n

[
A(1n, f(x)) ∈ f−1 (f(x))

]
≤ ν(n)

for all sufficiently large n ∈ N.

An injective one-way function is a function that is both injective and one
way. Barak, Ong, and Vadhan [BOV07] introduced the following notion of a
partially-injective one-way function.

Definition 2.4 ([BOV07]). Let m = m(n) be a function of the security param-
eter n ∈ N. An efficiently-computable function f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ is a
partially-injective one-way function if it satisfies the following two requiremets:

1. For every n ∈ N, every x, x′ ∈ {0, 1}n such that x 6= x′, and every y, y′ ∈
{0, 1}m(n), it holds that f(x, y) 6= f(x′, y′) (i.e., f is injective with respect to
its first input).

2. For every probabilistic polynomial-time algorithm A there exits a negligible
function ν(·) such that

Pr
(x,y)←{0,1}n+m(n)

[A (f(x, y)) = x] ≤ ν(n)

for all sufficiently large n ∈ N.

Note that a partially-injective one-way function with m(n) = 0 is in fact an
injective one-way function, but for general m(n) this notion seems potentially
weaker than that of an injective one-way function. Barak et al. observed that any
perfectly-binding non-interactive commitment scheme yields a partially-injective
one-way function. Since Barak et al. derandomized Naor’s commitment scheme
[Nao91] into a perfectly-binding non-interactive one assuming the existence of a
hitting-set generator that fools co-non-deterministic algorithms (recall Section
2.1), the following corollary follows.

Corollary 2.5 ([BOV07]). Assuming the existence of a hitting-set generator
that fools co-non-deterministic algorithms, then one-way functions imply partially-
injective one-way functions.

2.3 Injective Trapdoor Functions

We also rely in this paper on the following standard notion of a collection of
trapdoor functions (see, for example, [Gol01]).

Definition 2.6. Let m = m(n) be a function of the security parameter n ∈ N. A
collection of trapdoor functions is a triplet of efficient algorithms F = (G,F, F−1)
satisfying the following requirements:
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1. G is a probabilistic algorithm that on input 1n, samples and outputs a public
key pk ∈ {0, 1}n and a corresponding trapdoor td ∈ {0, 1}n.8

2. F is a deterministic algorithm that receives as input a public key pk ∈ {0, 1}n
and an additional input value x ∈ {0, 1}n and outputs a value y ∈ {0, 1}m(n).
We require that for every probabilistic polynomial-time algorithm A there
exists a negligible function ν such that

Pr
(td,pk)←G(1n)
x←{0,1}n

[F (pk,A(1n, pk, F (pk, x))) = F (pk, x)] ≤ ν(n)

for all sufficiently large n ∈ N.
3. F−1 is a deterministic algorithm that on input (td, F (pk, x)) has the following

guarantee: For any n ∈ N, (td, pk) in the range of G(1n) and x ∈ {0, 1}n,
it holds that F−1(td, F (pk, x)) outputs x′ ∈ {0, 1}n such that F (pk, x′) =
F (pk, x).

We say that F is a collection of injective trapdoor functions if for every n ∈ N
and any (td, pk) in the range of G(1n) the function F (pk, ·) is injective.

3 Our Constructions

In this section we present our non-black-box constructions of an injective one-way
function (see Section 3.1) and an injective trapdoor function (see Section 3.2).

3.1 An Injective One-Way Function

In this section we present our non-black-box construction of an injective one-way
function from any correlated-input balanced one-way predicate and any hitting-
set generator that fools deterministic circuits. More formally, our construction
relies on the following two building blocks:

– A correlated-input (`, 1/4)-balanced one-way predicate P (recall Definition
1.1), where `(n) may be upper bounded by any fixed polynomial (e.g., `(n) =
log2(n), `(n) = n2). Let t = t(n) be an upper bound on the size of the circuit
computing P(x, r) for inputs x ∈ {0, 1}n (recall that r ∈ {0, 1}`(n)).

– A hitting-set generator H that fools deterministic circuits. Denote by T =
T (n) the size of the set S that is produced by the generator H on input
(1`(n), 12t(n)+c) for a constant c to be determined later. As discussed in
Section 2.1, such a generator exists based on the worst-case assumption that
E = DTIME(2O(n)) has a function with deterministic circuit complexity
2Ω(n).

8 Definition 2.6 assumes that the lengths of the public key and of the trapdoor are
equal to the security parameter n. This is for simplicity only, and in both cases one
may replace n with any length that is polynomial in n.



Injective Trapdoor Functions via Derandomization 17

We note that the choice of the constant 1/4 that parameterizes both of our
building blocks is rather arbitrary. More generally, the construction may rely
on any (`, δ)-balanced predicate and on any ε-hitting-set generator as long as
δ + ε ≥ 1/2 (in Definition 2.1 we fixed ε to be 1/4, but the definition readily
extends to any ε ∈ [0, 1]).

The construction. On input x ∈ {0, 1}n our function g : {0, 1}∗ → {0, 1}∗ first
computes

H
(
1`(n), 12t(n)+c

)
=
(
r1, . . . , rT (n)

)
∈ {0, 1}`(n)×T (n),

where c > 0 is a fixed constant that we determine later on, and then outputs the
value

g(x) =
(
P(x, r1), . . . ,P(x, rT (n))

)
∈ {0, 1}T (n).

The following theorem, which is proved in the full version of this work [RS18],
states that g is an injective one-way function based on our assumptions on the
underlying building blocks P and H:

Theorem 3.1. Assuming that P is a correlated-input (`, 1/4)-balanced one-way
predicate and that H is a hitting-set generator that fools deterministic circuits,
the function g is an injective one-way function.

3.2 An Injective Trapdoor Function

We now turn to extend our approach to injective trapdoor functions. Loosely
speaking, we augment our primitive P with a trapdoor algorithm P−1, and show
that an extension of the construction presented in Section 3.1 yields an injective
trapdoor function. Informally, knowledge of a trapdoor enables P−1 to find an
x ∈ {0, 1}n such that P(x, r) = b for each pair (r, b) ∈ {0, 1}`(n) × {0, 1} in a set
S of such pairs that is given as input to the algorithm, with the proviso that S
provides “sufficient information” about x. This last condition may be formalized
as a boolean set function φ :

(
{0, 1}`

)∗ → {0, 1} with the interpretation that a
set is mapped to 1 if and only if it is “sufficiently rich”. Informally, a reasonable
choice of a function φ should meet two criteria:

1. For every n ∈ N, it should be possible to efficiently come up with a set that
satisfy φ. Otherwise, P−1 seems of little use.

2. φ should be monotone; i.e., if S ⊆ T and φ(S) = 1, then φ(T ) = 1. Intuitively,
if φ(S) = 1 has the interpretation that S generates “enough information” on
x, then surely this is also the case for T .

A natural choice for φ, which we will adopt in our definition below, is a
function that checks whether or not the input set contains a basis for F`(n)2 (when
each element r ∈ {0, 1}`(n) is viewed a vector in F`(n)2 ); that is, φ(S) = 1 if and
only if S contains a subset of `(n) linearly independent r’s. This choice, other than
satisfying the aforementioned criteria, enables us to construct a correlated-input
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balanced trapdoor predicate (as will be defined shortly in Definition 3.2) from
any injective trapdoor function, making our trapdoor predicate with respect to
that choice of φ essential for the existence of injective trapdoor functions.

It should be noted, however, that any choice of φ that satisfies the above two
criteria yields a predicate that can be used in a non-black-box manner to construct
an injective trapdoor function via our transformation, yet (a strengthened version
of) Rudich’s proof shows that this is not the case when restricting ourselves to
black-box constructions. Indeed, in Section 4 we show that this augmented variant
of P cannot be used in a black-box manner to construct even a partially-injective
one-way function.

The following definition naturally extends Definition 1.1 by considering a
family of predicates equipped with a trapdoor algorithm, as discussed above:

Definition 3.2. Let ` = `(n) and let δ = δ(n) be functions of the security
parameter. A correlated-input (`, δ)-balanced trapdoor predicate is a triplet
T = (G,P, P−1) of efficiently-computable algorithms such that:

– The algorithm G on input 1n outputs a pair (pk, td) ∈ {0, 1}∗.
– For every n ∈ N and for every pk ∈ {0, 1}∗ produced by G(1n), the function
P (pk, ·, ·) : {0, 1}n × {0, 1}`(n) → {0, 1} is an (`, δ)-balanced predicate. That
is, for any x, x′ ∈ {0, 1}n such that x 6= x′ it holds that∣∣∣∣ Pr

r←{0,1}`(n)
[P(pk, x, r) = P(pk, x′, r)]− 1

2

∣∣∣∣ ≤ δ(n).
– For every n, T ∈ N, and for every (pk, td) that is produced by G(1n), the
algorithm P−1 satisfies the following guarantee:
On input td and {(ri, bi)}Ti=1 ∈

(
{0, 1}`(n) × {0, 1}

)T
, if the set {ri}Ti=1 con-

tains a subset of `(n) linearly independent elements and there exists an
x ∈ {0, 1}n such that P (pk, ri) = bi for every i ∈ [T ], then P−1 outputs such
an x. Otherwise, P−1 outputs ⊥.

– For any probabilistic polynomial-time algorithm A there exists a negligible
function ν(·) such that

Pr [InvertT ,A(n) = 1] ≤ ν(n)

for all sufficiently large n ∈ N, where the experiment InvertT ,A(n) is defined
as follows:
1. (state, r1, . . . , rT ) ← A(1n, pk) for r1, . . . , rT ∈ {0, 1}`(n), where T =

T (n) may be any polynomial determined by A and (pk, td)← G(1n).
2. x′ ← A (state, Ppk (x, r1) , . . . , Ppk (x, rT )) where x← {0, 1}n.
3. If x′ = x then output 1, and otherwise output 0.

Observe that the existence of T is indeed essential for the existence of an
injective trapdoor function. Let F = (GF , F, F

−1) be any collection of injective
trapdoor functions, and consider the construction Ppk(x, r) = 〈Fpk(x), r〉. This
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is essentially (a keyed version of) the same construction that we had in the
symmetric case, and P is thus both balanced for every pk and correlated-input
one way for the same reasons as before. As for the inversion algorithm P−1,
note that given the construction P , every pair (r, b) in the input to P−1 may
be interpreted as a linear equation with `(n) variables over F2: 〈Fpk(x), r〉 = b.
Hence, when the input to P−1 contains `(n) linearly independent r’s (which is
only then that it is required to return a pre-image x), it can uniquely recover
z = Fpk(x) and invoke F−1td (z) to find x.

Similarly to Section 3.1, our construction of an injective trapdoor function
is based a hitting-set-generator against deterministic circuits H, but we replace
the correlated-product (`, 1/4)-balanced one-way predicate P, with a correlated-
product (`, 1/4)-balanced trapdoor predicate T = (G,P, P−1). As before, we let
t = t(n) be an upper bound on the size of the circuit computing Ppk(x, r) for
x ∈ {0, 1}n and let T = T (n) denote the size of S = {r1, . . . , rT } - the output
set of H on input (1`(n), 12t(n)+c).

The construction. The construction extends that of an injective one-way
function presented in Section 3.1. The main difference is that we need to make
sure that the output of Fpk(x) encodes “enough information” on x so that
we may use P−1td to implement the inversion algorithm F−1td . To ensure that,
when computing Fpk(x), we will also invoke Ppk on (x, e1), . . . , (x, e`(n)), where
e1, . . . , e`(n) are the standard basis vectors, interpreted as binary strings of
length `(n). The output of Fpk(x) will then consist of two parts: The first part
Ppk(x, r1), . . . , Ppk(x, rT ) ensures injectivity (as in Section 3.1), while the second
part Ppk(x, e1), . . . , Ppk(x, e`(n)) ensures efficient invertibility.

Concretely, given the aforementioned ingredients, we construct an injective
trapdoor function F = (GF , F, F

−1) as follows:

– The algorithm GF on input 1n invokes G(1n), and outputs its output (pk, td).
– The algorithm F on input (pk, x) ∈ {0, 1}n × {0, 1}n computes H(1`(n),

12t(n)+c) = (r1, . . . , rT ), and outputs

Fpk(x) =
(
Ppk(x, r1), . . . Ppk(x, rT ), Ppk(x, e1), . . . , Ppk(x, e`(n))

)
.

– The algorithm F−1 on input (td, y) ∈ {0, 1}n×{0, 1}T+`(n) computesH(1`(n),
12t(n)+c) = (r1, . . . , rT ), and outputs

F−1td (y) = P−1td

(
(r1, y1), . . . , (rT , yT ), (e1, yT+1), . . . , (e`(n), yT+`(n))

)
where yi denotes the ith bit of y for every i ∈ {1, . . . , T + `(n)}.

Theorem 3.3. Assuming that T = (G,P, P−1) is a correlated-input (`, 1/4)-
balanced trapdoor predicate and that H is a hitting-set generator that fools deter-
ministic circuits, the triplet F = (GF , F, F

−1) is an injective trapdoor function.

The proof of Theorem 3.3 can be found in the full version [RS18].
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4 Applying Rudich’s Impossibility to Correlated-Input
Predicates

In this section we show that Rudich’s impossibility result [Rud88] can be applied
to correlated-input balanced trapdoor predicates. That is, we show that there is
no black-box construction of an injective one-way function from such a predicate.
In fact, we prove a stronger result, showing that there is no black-box construction
of a partially-injective one-way function (as defined by Barak, Ong and Vadhan
[BOV07]) from such a predicate (recall Definition 2.4). Since any injective trapdoor
function is also an injective (and a partially-injective) one-way function, it trivially
follows that the former also cannot be constructed in a black-box manner from
our predicate. We prove the following theorem:

Theorem 4.1. There is no black-box construction of a partially-injective one-
way function based on a correlated-input (`(n), δ(n))-balanced trapdoor predicate,
where `(n) = n and δ(n) = 2−n/3.

We note that, as with Rudich’s original statement, the above theorem applies
even to semi-black-box constructions (i.e., cases where the construction itself is
black box, but adversaries may be used in a non-black-box manner within the
proof of security – see [RTV04] for more details). In addition, we note that our
choice of `(n) = n is done purely for simplicity, and our proof applies to any
super-logarithmic `(n) (recall that a logarithmic `(n) does imply an injective
one-way function in a black-box manner – see Section 1.2).

In what follows we first describe the oracle that enables us to prove our result
(essentially replacing Rudich’s random function with a random predicate and
complementing it with a trapdoor oracle). We describe and analyze (a slightly
modified version of) Rudich’s attacker with respect to this oracle, showing that
it can invert any partially-injective one-way function. Then, we show that this
oracle is an exponentially-secure correlated-input balanced trapdoor predicate for
poly-query adversaries. Theorem 4.1 then immediately follows (see, for example,
[Rud88, IR89, RTV04]). Throughout our proof we rely on the following standard
notion of a q-query algorithm:

Definition 4.2. Let A be an oracle-aided algorithm and let q = q(n) be a function
of the security parameter n ∈ N. Then, A is a q-query algorithm if for any n ∈ N
it holds that A issues at most q(n) oracle queries when invoked on inputs of
length n.

The oracle. Our oracle is a triplet T = (G,P,P−1) = {(Gn,Pn,P−1n )}n∈N of
three sub-routines. For every n ∈ N, the functions Gn,Pn and P−1n are defined
as follows:

– The function Gn : {0, 1}n → {0, 1}n is a uniformly chosen function from
{0, 1}n to {0, 1}n. Looking ahead, Gn will be used for mapping trapdoors to
corresponding public keys.
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– For any pk ∈ {0, 1}n the function Pn(pk, ·, ·) : {0, 1}n × {0, 1}n → {0, 1} is a
predicate sampled uniformly at random from all predicates of suitable input-
length that are correlated-input δ(n)-balanced, independently of Pn(pk′, ·, ·)
for any pk′ 6= pk. That is, for any pk ∈ {0, 1}n, the predicate Pn(pk, ·, ·) is
sampled uniformly subject to the condition that for any distinct x, x′ ∈ {0, 1}n
it holds that∣∣∣∣ Pr

r←{0,1}n
[Pn(pk, x, r) = Pn(pk, x′, r)]−

1

2

∣∣∣∣ ≤ 2−n/3.

– For any td ∈ {0, 1}n, the function P−1(td, ·) : ({0, 1}n × {0, 1})∗ → {0, 1}n ∪
{⊥} is defined as follows. For R = {(ri, bi)}i ∈ ({0, 1}n × {0, 1})∗ define the
set:

Xtd,R = { x ∈ {0, 1}n : ∃pk ∈ {0, 1}n s.t. G(td) = pk ∧ ∀i,P(pk, x, ri) = bi} .

Then, for every R ∈ ({0, 1}n × {0, 1})∗, if Xtd,R 6= ∅, P−1n (td,R) returns a
uniformly chosen element in the set. Otherwise, it returns ⊥.

We denote the set of all such oracles by S.

4.1 Inverting Partially-Injective One-Way Functions

Suppose F is an s-size, q-query black-box implementation of a partially-injective
one-way function from the oracle T for some polynomially bounded s = s(n)
and q = q(n). We assume without loss of generality that before each query of
the form (td, {(ri, bi)}i) that F makes to P−1, it also obtains pk = G(td) via a
single query to G, and after learning x = P−1(td, {(ri, bi)}i) it also queries P
with (pk, x, ri) for each ri (if x = ⊥, we forgo these queries to P). Note that
as F makes at most q(n) queries to P−1 and each of which involves at most
s(n) values of r, this adds at most q(n) · (s(n) + 1) queries to the computation.
For ease of notation we simply assume F makes the afore-described queries and
continue to bound on the total number of queries made by F by q(n).

The following lemma shows that for every black-box implementation F of a
partially-injective one-way function from the oracle T , there exists a poly-query
adversary that on input F T (x, y) always finds x.

Lemma 4.3. Let q = q(n), s = s(n) and let F be an s-size, q-query algorithm
such that for every T ∈ S it holds that F T : {0, 1}∗ → {0, 1}∗ is partially
injective. Then, there exists an O(q6 · s6)-query algorithm A such that

Pr
(x,y)←{0,1}n+m(n)

[
AT

(
F T (x, y)

)
= x

]
= 1

for all sufficiently large n ∈ N.

Consider the following attacker A, that on input v∗ finds x∗ such that there
exists some y∗ for which F T (x∗, y∗) = v∗:
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– Input: A string v∗ ∈ {0, 1}∗, which is the output of F T on input (x∗, y∗) ∈
{0, 1}n+m(n).

– Initialize: A initializes a set Q(A) = ∅, to hold all query/answer pairs to T
that A learns throughout the attack.

– Learning: Let n′ = 2 log (2q(n) · s(n)). A queries P with all queries of length
at most 3n′ = n′ + n′ + `(n′), and updates Q(A) accordingly.

– Iteration: A runs q(n) + 1 iterations of the following three steps:
1. Simulation: A finds a possible execution of F that is consistent with Q(A)

and v∗. That is, A finds inputs x, y, and an oracle T̂ = (Ĝ, P̂, P̂−1) ∈ S

that is consistent with Q(A), such that F T̂ (x, y) = v∗.
2. Evaluation: A evaluates F T (x, y) (note that the evaluation is done with

the true oracle T ). In case F T (x, y) = v∗, A terminates and outputs x.
3. Update: A queries the true oracle T with all queries made in the exe-

cution of F T̂ (x, y) and are not in Q(A), and updates Q(A) accordingly.
Additionally, for any query of the form u = (td, {(ri, bi)}i) that A makes
to (the true oracle) P−1 in the update phase, it also queries P with
(pk, x, ri) for each ri, where x is the answer to u according to P̂−1 (if
x = ⊥, A forgoes these queries to P), and pk is the public-key associated
with td according to Ĝ; i.e., pk = Ĝ(td).9

The success and query efficiency of A follow immediately by the following claim,
a proof for which is given in the full version [RS18].

Claim 4.4 In each iteration, at least one of the following events occur:

1. A queries T with a query that is made by the execution of F T (x∗, y∗), but
was not in Q(A) at the beginning of the iteration.

2. A finds x∗ and some y for which F T (x∗, y) = v∗, and terminates.

Proof of Lemma 4.3 from Claim 4.4. Since F T (x∗, y∗) makes at most q(n)
queries to T , by Claim 4.4 and the pigeon-hole principle, there exists an iteration
in which A finds x∗ and terminates. Moreover, during the learning phase, A
queries the oracle with O

(
q(n)6 · s(n)6

)
queries, and in each iteration it queries

the oracle with at most q(n) · (s(n) + 2) new queries. Since there are at most
q(n) + 1 iterations, A is an O(q6 · s6)-query algorithm.

4.2 T is One Way for Correlated Inputs

The proof that the oracle T is one way for correlated inputs (according to
Definition 3.2) consists of the following two steps. First, we show that a uniformly-
chosen predicate (not necessarily balanced) is one way with an extremely high
probability. Then, we show that the uniform distribution over predicates is

9 Recall that we assumed that before each query to P−1 that contains some trapdoor
td, F queries G with td. Hence, this is also the case in the execution chosen by A in
the simulation step.
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statistically close to the uniform distribution over balanced predicates (for our
choice of `(n) = n and δ(n) = 2−n/3).

In more detail, recall that the trapdoor and public key in the experiment
InvertT ,AT (n) are chosen as follows: First, the trapdoor td is chosen uniformly
at random from the set {0, 1}n and then the public key is set to be pk = G(td).
Now, let Rn denote the uniform distribution over predicates mapping a triplet
of strings of length n each, to an output bit (i.e., if Pn is a predicate drawn
from Rn, then for every pk ∈ {0, 1}n and x, r ∈ {0, 1}n it holds that P(pk, x, r)
is a uniformly-chosen bit which is independent of the value of Pn on all other
inputs). The following lemma shows that when Pn is sampled from Rn, then
any poly-query adversary inverts P = {Pn′}n′∈N on inputs of length n (vis-à-vis
Definition 3.2) with probability that is negligible in n, regardless of how P−n is
chosen (where we use P−n to denote P \ {Pn}).

Lemma 4.5. Let q = q(n) be a function of the security parameter n ∈ N. For
any q-query algorithm A, any n ∈ N and any fixing of P−n, it holds that

Pr
[
InvertT ,AT (n) = 1

]
≤ 2q(n)

2n − q(n)

where Pn ← Rn.

The proof of Lemma 4.5 is provided in the full version [RS18].
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