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Abstract. The GGH15 multilinear maps have served as the foundation
for a number of cutting-edge cryptographic proposals. Unfortunately,
many schemes built on GGH15 have been explicitly broken by so-called
“zeroizing attacks,” which exploit leakage from honest zero-test queries.
The precise settings in which zeroizing attacks are possible have remained
unclear. Most notably, none of the current indistinguishability obfusca-
tion (iO) candidates from GGH15 have any formal security guarantees
against zeroizing attacks.

In this work, we demonstrate that all known zeroizing attacks on
GGH15 implicitly construct algebraic relations between the results of
zero-testing and the encoded plaintext elements. We then propose a
“GGH15 zeroizing model” as a new general framework which greatly
generalizes known attacks.

Our second contribution is to describe a new GGH15 variant, which
we formally analyze in our GGH15 zeroizing model. We then construct
a new iO candidate using our multilinear map, which we prove secure
in the GGH15 zeroizing model. This implies resistance to all known
zeroizing strategies. The proof relies on the Branching Program Un-
Annihilatability (BPUA) Assumption of Garg et al. [TCC 16-B] (which
is implied by PRFs in NC1 secure against P/poly) and the complexity-
theoretic p-Bounded Speedup Hypothesis of Miles et al. [ePrint 14] (a
strengthening of the Exponential Time Hypothesis).

1 Introduction

1.1 Motivation

Multilinear maps [2] are a powerful cryptographic tool that have enabled many
cryptographic applications, ranging from multiparty key agreement [2] to ex-
tremely powerful indistinguishability obfuscation (iO) [3]. There are currently
three families of multilinear maps: those of Garg, Gentry, and Halevi [4] (GGH13),
those of Coron, Lepoint, and Tibouchi [5] (CLT13), and those of Gentry, Gor-
bunov, and Halevi [6] (GGH15).
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Each of these multilinear map families are based on fully homomorphic en-
cryption (FHE) schemes. However, the FHE schemes are intentionally weakened
by providing a broken secret key to allow useful information to be extracted from
encrypted values. Because of these broken secret keys, extensive cryptanalysis is
required before we can gain confidence that some security remains. In this work,
we study the GGH15 multilinear maps. We believe these maps are particularly
interesting for a couple reasons:

– In some cases, by specializing the GGH15 construction to certain settings,
security can actually be proved based on the well-studied Learning with Er-
rors (LWE) assumption [7]. Notably, the lockable obfuscation constructions
of Wichs and Zirdelis [8], of Goyal, Koppula, and Waters [9], and of Chen,
Vaikuntanathan, and Wee [10], and the private puncturable PRFs of Canetti
and Chen [11] and Chen et. al. [10], are all based in part on the GGH15 mul-
tilinear maps, and can be proved secure under LWE.1 Therefore, the GGH15
multilinear maps seem to be the most promising route to achieving security
based on LWE.

– The other two candidate multilinear maps, GGH13 and CLT13, have been
shown vulnerable to quantum attacks [13–17]. In contrast, given the positive
results above and the fact that LWE appears resistant to quantum attacks,
it seems reasonable to expect that GGH15 is quantum immune, at least in
certain settings. This leaves GGH15 as the main candidate multilinear map
for the post-quantum era.

Despite the above positive results, there is still a large gap between what
is provably secure under LWE and what the community hopes to achieve with
multilinear maps, namely iO. On the positive side, “direct attacks” on the mul-
tilinear maps seem unlikely. Here “direct attacks” refer to attempts to attack
the underlying FHE schemes, ignoring the extra information provided through
the broken secret key.

Unfortunately, all multilinear map candidates have been subject to very
strong “zeroizing” attacks [4, 18, 19] which exploit the broken secret key. These
attacks have broken many of the applications which had not been proven se-
cure. Since the original attacks, the field has seen a continual cycle of breaking
schemes and fixing them. In the case of GGH15, these attacks [19, 20, 10] have
broken many applications, including multiparty key agreement, and several of
the iO candidates.

Given the importance of iO, it is important to study the security of multi-
linear maps even in the setting that lacks a security proof under well-studied
assumptions. In order to break free from the cycle above, our aim is to develop
a rigorous and formal justification for security, despite the lack of “provable”
security.

Recent works have shown how to break the attack-fix-repeat cycle for GGH13 [21]
and CLT13 [22] multilinear maps by devising abstract “zeroizing” models that

1 The lockable obfuscation constructions in [8] and [9] use ideas from prior work of
Goyal, Koppula, and Waters [12] which introduced techniques for using GGH15
encodings to encrypt branching programs.
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capture and generalize all known zeroizing attack strategies on the maps. These
works formally prove security of applications in these models, demonstrating in
a rigorous sense that the analyzed schemes are resistant to known zeroizing at-
tacks. Since these works, all subsequent classical polynomial-time attacks have
fit the proposed models, demonstrating that these models may reasonably reflect
the security of the maps.

Our goal is to extend these works to the GGH15 setting, devising a model
that captures and generalizes all known zeroizing attack strategies. For GGH15,
however, there are unique challenges that make this task non-trivial:

– The underlying mathematics of the scheme differs from previous schemes,
and the details of the attacks are quite different. As such, any attack model
will be different.

– There does not appear to be a single unified GGH15 multilinear map in the
literature, but instead many variants — the basic GGH15 map, a version
with safeguards, a version with commutative plaintexts, etc. Moreover, many
applications do not conform to the multilinear map interface, and are instead
described directly on the GGH15 implementation. The many variants of
GGH15 and applications are accompanied by similarly varied settings for
the attacks.

– Additionally, there are some functional limitations of GGH15: plaintexts are
required to be “short”, by default plaintexts do not commute, and the level
structure derives from graphs instead of sets. These present challenges in
applying the standard multilinear map tools (such as Kilian randomizing
branching programs, straddling sets, etc) to the GGH15 setting. This breaks
many of the analysis techniques that have been applied to other multilinear
map candidates, and has also led to some ad hoc proposals, such as using
diagonal matrices for the plaintexts, multiplying by random scalars to create
levels, or Kilian randomizing using special types of matrices.

Therefore, our goal will be to:

Develop an abstract zeroizing attack model that captures
all known zeroizing attacks on all variants of GGH15, and
develop new techniques for proving security in this model.

Our Results. In this work we devise an abstract attack model that applies to
all existing variants of GGH15 and applications built on top of GGH15. We
demonstrate that our attack model captures and generalizes all zeroizing attacks.

We then describe a new variant of GGH15, based on several prior works in
the area, which we can prove strong security statements about in our model. Our
new scheme is flexible enough to support a simple obfuscation scheme which we
can prove secure in our model. The result is a scheme that is provably resistant
to zeroizing attacks. Before giving our results, we start with a very brief overview
of the GGH15 maps and known attacks
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1.2 The GGH15 Multilinear Map

GGH15 is a “graph-induced” multilinear map, which departs somewhat from
the usual multilinear map notions. Here, we have a connected directed acyclic
graph G = (V,E) of d nodes with a single source (labeled 1) and a single sink
(labeled d). A “level” is a pair of vertices (u, v) for which there is a path from
u to v; we will denote such levels by u v (different paths between u, v will be
considered the same level). Plaintexts S are encoded relative to levels u  v,
and we denote such an encoding as [S]u v.

Given a handful of encodings, the following operations can be performed:

– Addition: Two encodings [S0]u v, [S1]u v relative to the same pair of ver-
tices can be added, obtaining the encoding of the sum [S0 + S1]u v(relative
to the same pair of vertices).

– Multiplication: Two encodings [S0]u v, [S1]v w whose nodes form a path
u  v  w can be multiplied, obtaining an encoding [S0 · S1]u w of the
product at the level corresponding to concatenating the paths.

– Zero Testing: Given an encoding [S]1 d between the unique source and
sink, we can test whether or not S is equal to 0.

In GGH15, the “plaintexts” are also matrices, rather than scalars, mean-
ing the multiplications above are non-commutative. Moreover, in GGH15, the
plaintext matrices are required to be “short”.

GGH15 works as follows. Associated to each node u is a matrix Au. An
encoding of S at level u v is a matrix D that satisfies AuD = SAv +E mod q
where both D and E are “short”. This encoding is generated using a lattice
trapdoor.

Addition is straightforward to verify. For multiplication, suppose AuD0 =
S0Av+E0 mod q and AvD1 = S1Aw+E1 mod q. Then AuD0D1 = S0S1Aw+
E0D1 + S0E1 mod q.

Since Sb, Db and Eb are short, we can define E2 = E0D1 + S0E1, which is
also short, and we see that D0D1 is an encoding of S0S1 relative to the path
u w.

For zero-testing, we note that if we have an encoding D of S relative to
1 d and we compute A1D mod q = SAd + E mod q, the resulting matrix will
be “short” relative to q if S = 0, and otherwise, we would expect the result to
be large relative to q.

1.3 Zeroizing Attacks on GGH15

As with all current multilinear map candidates, GGH15 is vulnerable to “zeroiz-
ing” attacks. These attacks leverage the fact that any time a zero-test actually
detects 0, the procedure also produces an equation that holds over the integers.

For GGH15, notice that zero-testing computes A1D mod q = SAd + E mod
q. If S = 0, the result is just E mod q, which equals E since E is guaranteed to
be short relative to q. But recall from the GGH15 description that if D is the
result of several multilinear map operations, E depends on not just the error
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terms of the original encodings, but also on the plaintext values S. Therefore,
any successful zero-test will give an equation depending on the original plaintext
values, and this equation holds over the integers. These equations can then po-
tentially be manipulated to learn non-trivial information about the underlying
plaintexts. This is the heart of all known zeroizing attacks on GGH15.

More abstractly, suppose that c plaintext matrices S1, . . . ,Sc are encoded rel-
ative to various edges, producing the corresponding encoding matrices D1, . . . ,Dc.
In all known zeroizing attacks, the adversary adds and multiplies the matrices
{Di}i honestly (respecting the edge-constraints of the graph) to produce top-
level encodings of zero.2 Let pu({Di}i) denote the u-th top-level encoding of
zero the adversary constructs. Each top-level zero pu({Di}i) is then zero-tested
by multiplying on the left by A1, successfully obtaining a low-norm matrix of
zero-test results, which we denote as Tu (in some constructions, Tu is simply a
scalar). The current attacks all build a new matrix W whose entries are plucked
from the various Tu matrices (or Tu itself in the case of a scalar). From this
point, the known attacks differ in strategy from each other. But at a high level,
all of them extract some piece of information from W, such as its kernel or
its rank, and use this information to recover non-trivial information about the
hidden plaintext matrices {Si}i.

1.4 Our Zeroizing Model for GGH15

We make the following observation: all known attacks that recover information
about the plaintexts {Si}i from the {Tu}u set up an algebraic relation between
the two (we will often refer to this relation as a polynomial). More precisely,
this means that implicit in all successful zeroizing attacks on GGH15, there is a
non-trivial bounded-degree polynomial Q such that

Q({Tu}u, {Si,j,k}i,j,k) = 0

holds over the integers, where Si,j,k denotes the (j, k)-th entry of matrix Si.
In known attacks, this Q depends on the matrix W in some way; however,
anticipating potential new avenues for attack, we consider a much more general
attack format which assumes as little as possible about the structure of the
attacks. Hence, our general condition makes no reference to a matrix W.

While this condition seems simple, it is not a priori obvious that any of
the GGH15 zeroizing attacks actually produce such a Q. In theory, an adversary
might recover information about the plaintext matrix entries {Si,j,k}i,j,k through
any efficient algorithm taking {Tu}u as input. We certainly cannot hope to re-
express any poly-time algorithm as a polynomial over its inputs and outputs.
However, we are able to show that all known attacks can be recast as procedures
that uncover a Q polynomial.

2 Technically, the Coron et al. attack on key exchange does not compute top-level
encodings of zero, but encodings of the same matrix relative to different source-to-
sink paths [19]. However, by connecting a master source node to the original source
nodes, we can assume that all GGH15 graphs have a single source. In this case, the
Coron et al. attack indeed computes top-level encodings of zero.
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Example: The CLLT16 Attack. In Coron et al. [19], the first step of the attack
is to construct the matrix W as above, and then compute a vector v in the left
kernel of W. They show, using the algebraic structure of GGH15, that such a v
in fact gives a relation amongst the plaintext elements only (no error terms). In
particular, there is a vector x of fixed polynomials in the underlying plaintext
elements such that v is orthogonal to x. The attack then proceeds to use this
relation amongst the plaintexts to break the scheme.

We observe that an equivalent view of their analysis is that x is in the column
span of W. This means that if we append the column vector x to W, the rank
will be unchanged. Suppose for the moment that W itself is full rank, and that
it is one column shy of being square. Then we can capture the fact that the rank
does not increase with a simple algebraic relation: the determinant of [ W | x ]
equals 0. Therefore, in this restricted setting where W is full rank and almost
square, we see that the CLLT16 attack implicitly contains a polynomial Q as
desired.

In the actual attack, W may not be full rank, meaning the determinant may
trivially be 0 no matter what x is; this means Q does not give us a useful relation
over the plaintexts. Moreover, [ W | x ] may not be square, so the determinant
may not be defined. With a bit more effort, we can see that a polynomial Q is
nonetheless implicit in the attack for general W. Basically, if we knew the rank
r of W, we could choose a “random” matrix R with r+1 rows, and a “random”
matrix S with r + 1 columns. If we compute R · [ W | x ] · S, we will obtain an
(r + 1) × (r + 1) matrix whose rank is (with high probability) identical to the
rank of [ W | x ]. Now we can take the determinant of R · [ W | x ] ·S to be our
algebraic relation. In practice, we do not know r, but we can guess it correctly
with non-negligible probability since r is polynomially bounded.

The GGH15 Zeroizing Model. With our observations above in hand, we can
define a new zeroizing model for GGH15. Roughly, the model allows the attacker
to perform multilinear map operations as explicitly allowed by the multilinear
map interface (i.e. following edge constraints). Then, after performing a zero-
test, if the encoding actually contained a zero, the adversary obtains a handle
to the elements produced by zero-testing (the E matrix in the discussion above,
but potentially a different quantity for different GGH15 variants). Next, the
adversary tries to construct an algebraic relation Q between the zero-test results
and the original plaintexts. The only restrictions we place on Q are that it must
be computable by an efficient algebraic circuit, and that it must have degree that
is not too large (e.g. sub-exponential). These restrictions are very conservative,
as the known attacks are quite low degree and very efficiently computable.

In the full version, we also discuss how to relax the model even further in
two different ways. In one, we allow the adversary to zero-test arbitrary (degree-
bounded) polynomials over the encodings, which may not necessarily obey edge
restrictions. In the other relaxed model (which is incomparable to the first relax-
ation), we allow the adversary to zero-test polynomials over handles to elements
of encodings rather than over handles to the full matrices, as long as the poly-
nomials still follow the edge constraints.
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1.5 A New GGH15 Variant

For our next result, we describe a new GGH15 variant. Our goal with this variant
is to add safeguards — some of which have been proposed in the literature —
in a rigorous way that allows us to formally analyze the effectiveness of these
safeguards. Our modifications to GGH15 are as follows:

Tensored Plaintexts. First, we will modify plaintexts as suggested in Chen et
al. [10]. Plaintexts will still be matrices M. However, before encoding, we will
manipulate M as follows. First, we will tensor M with a random matrix S. Then
we will also append S as a block diagonal, obtaining the matrix

S′ =

[
M⊗ S

S

]
Then we will encode S′ as in plain GGH15. By performing this encoding, we can
use the Chen et al. [10] proof to show that direct attacks (those that do not use
the broken secret key) are provably impossible, assuming LWE.

Block Diagonal Ciphertexts. Next, after obtaining a plain GGH15 encoding D′

of S′, we append a block diagonal B. Each matrix B will have “smallish” entries,
and will be chosen independently for each encoding. These matrices will multiply
independently of the encodings D′. After multiplying to the top level, we will
introduce bookend vectors which will combine the products of the D′ and B
matrices together. Since the B matrices are small, this will not affect zero-testing.

These block diagonals are used to inject sufficient entropy into the encodings,
which will be crucial for several parts of our analysis. In particular, these block
diagonals will be used to prove that any attack in our zeroizing model will also
lead to an attack in a much simpler “GGH15 Annihilation Model”, discussed
below in Section 1.6. Their role is similar to block diagonals introduced by Garg
et al. [21], in the context of GGH13 multilinear maps. However, we note that their
role here is somewhat different: our block diagonals are added to the ciphertexts,
whereas in [21] they are added to the plaintexts before encoding.

Kilian Randomization. As described so far, the block diagonals B can simply
be stripped off by the adversary, and therefore do not provide any real-world
security, despite offering security in our model as discussed in Section 1.6. The
reason for this inconsistency is that our model assumes the adversary treats the
encoding matrices monolithically, only operating on whole encoding matrices.
Such an adversary cannot decompose a block diagonal matrix into its blocks.

We therefore employ the relaxation of our model discussed above, where the
adversary can manipulate the individual components of an encoding indepen-
dently (this is done in the full version [1]). This model captures any adversary’s
attempts to decompose a block matrix, and potentially much more. In order to
maintain security even in this relaxed model, we Kilian-randomize the encodings,
which is one of the suggested safeguards from the original GGH15 paper [6].
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More precisely, we associate a random matrix Ru with each node u. Then,
when encoding on an edge u v, we left-multiply the block diagonal encoding
from above by R−1u , and right multiply by Rv. Note that the inner R matrices
cancel out when multiplying two compatible encodings. Moreover, we include
R’s in the bookend vectors to cancel out the outer matrices when zero-testing.

This randomization, intuitively, allows us to bind the matrices B to D′. We
formally prove in our relaxed model that the adversary learns nothing extra if it
attempts to manipulate the individual matrix entries; therefore, the adversary
might as well just operate monolithically on whole encodings. This allows our
analysis from above to go through.

Asymmetric Levels. Finally, we introduce asymmetric levels. In an asymmetric
multilinear map, plaintexts are encoded relative to subsets of {1, . . . , κ}. Encod-
ings relative to the same subset can be added, and encodings relative to disjoint
subsets can be multiplied. Encodings relative to the “top” level {1, . . . , κ} can
be zero-tested.

We do not quite obtain asymmetric multilinear maps from GGH15. Instead,
we add the asymmetric level structure on top of the graph structure. That is,
there is still a graph on d nodes as well as a set of asymmetric levels. Any
plaintext is now encoded relative to a pair (u  v, L), where u  v is a path
in the graph and L is a subset of {1, . . . , κ}. Encodings can be added as long as
both the graph-induced and asymmetric levels are identical, and encodings can
be multiplied as long as both sets of levels are compatible. An element can be
zero-tested only if it is encoded relative to the source-to-sink path 1  d, and
the “top” asymmetric level {1, . . . , κ}. Asymmetric levels are useful for creating
straddling sets [23] for proving the security of obfuscation.

To achieve this functionality, we use a technique suggested by Halevi [24].
Simply associate a random scalar to each asymmetric level, and divide an en-
coding by the corresponding subset of level scalars. We choose the level scalars
so that they cancel out if and only if they are multiplied together, corresponding
to a “top”-level encoding.

We note that it is possible for an adversary to combine elements that do
not conform to the asymmetric level structure. For example, an adversary can
multiply two encodings with the same asymmetric level. The point is that the
adversary will not be able to successfully zero-test such an encoding.

However, the ability to combine illegal elements presents some difficulty for
our analysis. Namely, the adversary could combine some illegal elements, and
then cancel them out later at some point prior to zero-testing. Such a procedure
will generate a valid zero-test, despite being composed of illegal operations. This
breaks usual security proofs relying on asymmetric levels, which assume the
ability to immediately reject any illegal operations. Essentially what we get then
is an “arithmetic model” for the asymmetric levels, due to Miles, Sahai, and
Weiss [25]. We will therefore use the techniques from their work in order to
prove security in our model.
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1.6 An Annihilation Model for Our Scheme

Next, we define a GGH15 Annihilation Model which is much simpler than the
zeroizing model described above. This model makes it very easy to evaluate
whether a set of plaintexts could possibly lead to an attack.

Up until successful zero-tests, this model is similar to the original model de-
scribed above: the adversary can combine elements as long as they respect the
edges in the underlying graph G. One key difference is that encodings are also
associated with an asymmetric level structure. For the asymmetric level struc-
ture, we work with the arithmetic model, which allows the adversary to combine
arbitrary elements, but any zero-test must be on elements which respect the
asymmetric level structure (in addition to respecting the graph level structure).

After successful zero-tests, the model changes from above. Instead of trying
to compute a polynomial relation Q, the adversary simply tries to compute
an annihilating polynomial Q′ for the set of zero-test polynomials previously
submitted (where each is evaluated over matrices of formal variables). We show
that any attack on our scheme in the GGH15 zeroizing model corresponds to an
attack in the GGH15 annihilation model, allowing us to focus on proving the
security of schemes in the simpler to reason about annihilation model.

1.7 Zeroizing-Proof Obfuscation

We now turn to constructing obfuscation secure against zeroizing attacks. With
our new GGH15 construction and models in hand, the construction becomes
quite simple. As with the original obfuscator of Garg et al. [3], our obfuscator
works on matrix branching programs; such an obfuscator can be “bootstrapped”
to a full obfuscator using now-standard techniques (e.g. using FHE as in [3]).
Our obfuscator is essentially the obfuscation construction of [26], which in turn
is based on [23]. We do have some simplifications, owing to the fact that our
multilinear map directly works with matrices.

– We assume the branching program is given as a “dual-input” branching pro-
gram, following the same restrictions as in [23].3 Any branching program can
be converted into such a dual-input program using simple transformations
as described in [23].

– We instantiate our multilinear map with the single path graph G whose
length matches the length ` of the branching program. We also use the
version with asymmetric level structure, using ` asymmetric levels.

– We directly encode the branching program matrices. Each matrix is encoded
at the asymmetric level corresponding to how it would be encoded in [26]. Its
graph-induced level is chosen to be consistent with evaluation order; namely,
the branching program matrices in column i are encoded at the i-th edge in
G.

3 Dual-input is necessary to invoke the p-Bounded Speedup Hypothesis for MAX 2-
SAT. This arises in the proof of Lemma 7.



10 James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry

We can then easily prove our obfuscator is secure against zeroizing attacks.
The following is a sketch of the proof: in our GGH15 annihilation model, follow-
ing previous analysis of [25], we can show that under the p-Bounded Speedup
Hypothesis, the only successful zero-tests the adversary can construct are lin-
ear combinations of polynomially many honest branching program evaluations.
But then, any annihilation attack gives an annihilating polynomial for branch-
ing programs. We then rely on a non-uniform variant of the Branching Program
Un-Annihilatability Assumption (BPUA) of [21], which conjectures that such
annihilating polynomials are computationally intractable. This assumption can
be proven true under the very mild assumption that PRFs secure against P/poly
and computable by branching programs exist (in particular, PRFs computable
by log-depth circuits suffice).4

1.8 Concurrent Work: A Weak Model for CLT13

Ma and Zhandry [28] propose a weak multilinear map model for the CLT13
multilinear maps [5], which they show captures all known zeroizing attacks on
CLT13. They prove that an obfuscation scheme of Badrinarayanan, Miles, Sahai,
and Zhandry [26] as well as an order revealing encryption construction of Boneh
et al. [27] are secure against zeroizing attacks when instantiated with CLT13.
They also give a polynomial-degree asymmetric multilinear map “fix” which they
prove secure in their model under a new assumption they call the “Vector-Input
Branching Program Un-Annihilatability Assumption,” a strengthening of the
BPUA Assumption.

Due to the substantial differences between the CLT13 and GGH15 multilinear
maps, the techniques of Ma and Zhandry do not apply to the GGH15 setting.
Most notably, their model captures an attacker’s ability to perform a step that
leads to factoring the CLT13 modulus. There is no composite modulus in the
GGH15 scheme and thus the zeroizing attacks we consider are quite different.

2 Preliminaries

2.1 Notation

Throughout this paper we use capital bold letters to denote a matrix M. Lower-
case bold letters denote vectors v. Occasionally, we will use diag(M1, . . . ,Mk)
to denote a matrix with block diagonals M1, . . . ,Mk. We will often need to dis-
tinguish between values and formal variables. For example, in a situation where
the variable x = 2, it can be difficult to tell when x represents a formal vari-
able or when it represents the number 2. Thus, whenever we want x to denote
a formal variable, we explicitly write it as x̂. When an expression over formal
variables is identically 0, we write ≡ (or 6≡ if it is not). Finally, we identify the
ring Zq with elements [−q/2, q/2).

4 Using similar arguments, we can adapt the order-revealing encryption (ORE) con-
struction of [27] to our scheme, and prove security under BPUA, analogous to con-
structing ORE from GGH13 as in [21].
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2.2 Background on Lattices

Here, we give a very brief background on lattices. A lattice Λ of dimension n is
a discrete additive subgroup of Rn that is generated by n basis vectors denoted
as {b1, . . . ,bn ∈ Rn}. Specifically, we have Λ = {

∑
i∈[n] xi · bi} for integer xi’s.

We then have the following useful definitions and lemmas.

Definition 1 (Discrete Gaussian on Lattices). First, define the Gaussian
function on Rn with center c ∈ Rn and width σ > 0 as

∀x ∈ Rn, ρσ,c(x) = e−π‖x−c‖
2/σ2

.

Then, the discrete Gaussian distribution over an n-dimensional Λ with center
c ∈ Rn and width σ is defined as

∀x ∈ Λ,DΛ,σ,c(x) =
ρσ,c(x)∑

y∈Λ ρσ,c(y)
.

Note that we omit the subscript c when it is 0.

Definition 2 (Decisional Learning with Errors (LWE) [7]). For n,m ∈ N
and modulus q ≥ 2, distributions for secret vectors, public matrices, and error
vectors θ, π, χ ⊆ Zq, an LWE sample is defined as (A, sTA + eT mod q) with
s,A, e sampled as s← θn, A← πm×n, and e← χm.

An algorithm is said to solve LWEn,m,q,θ,π,χ if it is able to distinguish the
LWE sample from one that is uniformly sampled from πm×n × U(Zm×1q ) with
probability non-negligibly greater than 1/2.

Lemma 1 (Hardness of LWE [7]). Given n ∈ N, for any m = poly(n), q ≤
2poly(n), let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there exists an efficient

(possible quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists an
efficient (possible quantum) algorithm for approximating SIVP and GAPSVP in
the `2 norm, in the worst case, to within Õ(nq/σ) factors.

Lemma 2 (LWE with Small Public Matrices [29]). Given n,m, q, σ cho-
sen as in Lemma 1, LWEn′,m,q,U(Zq),DZ,σ,DZ,σ is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,σ

for n′ ≥ 2n log q.

Lemma 3 (Trapdoor Sampling [30]). There exists a PPT algorithm called
TrapSam(1n, 1m, q) that, given any integers n ≥ 1, prime q ≥ 2, and sufficiently
large m = O(n log q), outputs (A, τ) where A is statistically close to uniform over
Zn×mq , and τ is a trapdoor for A. Furthermore, there is another PPT algorithm
SampleD(A, τ,y, σ) that outputs a sample of vector d from DZm,σ conditioned on
Ad = y. For sufficiently large σ = O(

√
n log q), with all but negligible probability,

we have

{A,d,y : y← U(Znq ),d← SampleD(A, τ,y, σ)}
≈s

{A,d,y : d← DZm,σ,y = Ad}.
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2.3 Matrix Branching Programs

We introduce dual-input matrix branching programs of the type considered in
[31] but with one minor modification. Formally, a dual-input matrix branching
program BP of length h, width w, and input length ` consists of an input
selection function inp : [h]→ [`]× [`] and 4h matrices

{Mi,b1,b2 ∈ {0, 1}w×w}i∈[h];b1,b2∈{0,1}.

BP is evaluated on input x ∈ {0, 1}` by checking whether or not∏
i∈[h]

Mi,x(i) = 0w×w

where x(i) := (xinp(i)1 , xinp(i)2). Note that the definition from [31] includes right
and left bookend vectors that are multiplied on either side of the branching
program product resulting in a scalar that is either zero or non-zero. We can
simply turn each bookend into a matrix by repetition of rows/columns in order to
recover the functionality described above. As noted in [31], branching programs
of this type can be constructed from any NC1 circuit with h = poly(n) and w = 5
by Barrington’s theorem [32].

2.4 Straddling Sets

Our obfuscator uses the notion of straddling sets in order to enforce input con-
sistency. Please refer to Barak et al. [23] for a simple construction.

Definition 3 (Straddling Set System). A straddling set system with n en-
tries is a universe set U and a collection of subsets S = {Si,b ⊆ U}i∈[n],b∈{0,1}
such that

–
⋃
i∈[n] Si,0 =

⋃
i∈[n] Si,1 = U

– For any distinct C,D ⊆ S such that
⋃
S∈C S =

⋃
S∈D S, there exists b ∈

{0, 1} such that C = {Si,b}i∈[n] and C = {Si,1−b}i∈[n]

3 GGH15 Zeroizing Model

3.1 Graph-Induced Ideal Model

We discuss the syntax of graph-induced graded encoding schemes and describe
an ideal model (also known as a generic multilinear map model) for the graph-
induced setting. Note that this is completely analogous to the ideal model for
symmetric/asymmetric multilinear maps, which itself is an extension of the
generic group model to the multilinear map setting [4, 3].

We consider directed acyclic graphs (DAGs) G = (V,E) where |V | = d. We
assume the graph has a single source and a single sink. We label the vertices from
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1 to d according to some fixed topological ordering, so that all edges/paths in
the graph can be written as j  k where j, k ∈ [d], j < k. (Note that the precise
distinction between paths and edges in graph-induced maps is not important,
since the intermediate nodes on a path do not matter).

Formally, the graph-induced ideal model is instantiated with a DAG G =
(V,E), a plaintext ring R, and a set of plaintexts {Mi, ui  vi}i. The plaintexts
are indexed by i, and plaintext Mi comes with an associated path ui  vi, where
ui, vi ∈ [d], ui < vi.

We describe the model as an interaction between an oracleM (the “model”)
and a user A (the “adversary”).

– Instance Generation. The modelM is instantiated with the graph G, plain-
text ring R and the set {Mi, ui  vi}i. For each i, the modelM generates a

handle Ĉi, stores a pointer from Ĉi to Mi, and releases (Ĉi, ui  vi) publicly.

A can only interact with the handles Ĉi, which in the ideal setting leak no
information about Mi. The model provides the following interfaces for A:

– Addition. Addition on two handles Ĉi, Ĉj is permitted only if their corre-
sponding paths ui  vi, uj  vj are the same. The model M looks up the

corresponding plaintexts Mi,Mj , and returns a newly generated handle Ĉk
to the sum Mi +Mj , along with the path ui  vi.

– Multiplication. Multiplication on two handles Ĉi, Ĉj is permitted only if
the path ui  vi ends where path uj  vj begins (vi = uj). The model M
looks up the corresponding plaintexts Mi,Mj , and returns a newly generated

handle Ĉk to the product Mi ·Mj , along with the combined path ui  vj .

– Zero-Test. A can request a zero-test on a handle Ĉ.M responds with “zero”
if the corresponding plaintext is 0, and the corresponding path is the source-
to-sink path. Otherwise, the result is “not zero.”

Implicit in this model is the assumption that the adversary cannot learn anything
beyond what the interfaces explicitly allow. In particular, it can only learn the
bits returned by zero-testing honestly generated source-to-sink encodings, and
nothing more.

Zero-Test Circuits Observe that addition, multiplication, and zero-testing can
be handled in a single interface. Here, A simply submits an arithmetic circuit
p that computes a polynomial over the handles {Ĉi}i. Any handle that results
in a successful zero-test in the above model can be represented as a polynomial-
size circuit over {Ĉi}i where each arithmetic gate respects the addition and
multiplication restrictions enforced by the graph structure.

However, we can relax the restriction on the arithmetic circuit so that the
individual gates may not necessarily respect the graph constraints, but the re-
sulting polynomial still computes a valid source-to-sink encoding (for example, if
terms that violate graph constraints cancel out in the final evaluation). Looking
ahead to our GGH15 Zeroizing Model, we will require this relaxed constraint on
arithmetic circuits, which only makes the model more conservative.
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3.2 GGH15 Variants

There are a number of GGH15 variants in the literature that modify the original
GGH15 construction at a number of key points. We identify several points in
which the various schemes differ, and establish standard notation before intro-
ducing our model.

Pre-Processing. In the original GGH15 construction [6], an encoding of a plain-
text matrix M at path u v is the matrix D satisfying Au ·D = M ·Av + E.

A number of works have proposed performing additional pre-processing to
M before sampling the matrix D. For example, the γ⊗diag-GGH15 encodings
of Chen et al. [10] encode a plaintext matrix M by first sampling a random
P (in the notation of [10], this is the Si,b matrix) and constructing the matrix
diag(M⊗P,P) where ⊗ denotes the tensor product (Kronecker product).

Then the encoding D is the matrix satisfying

Au ·D =

[
M⊗P

P

]
·Av + E.

As other GGH15 variants perform different pre-processing steps on the initial
plaintext M, we denote the result of pre-processing as S. If there is no pre-
processing step, then S = M. In the example above S = diag(M⊗P,P).5 The
encoding is then computed as Au ·D = S ·Av + E.

Post-Encoding. The original GGH15 paper [6] as well as Halevi [24] discuss
various steps intended to safeguard the scheme against attacks (sometimes called
“GGH15 with safeguards”). These steps essentially perform operations on the
matrix D generated from the standard GGH15 encoding procedure to produce
a “final” encoding C. We will adopt this notation, and set C to be the result of
the overall encoding process. If there is no post-encoding step, then C = D.

Zero-Testing. In the original GGH15 construction, zero-testing a source-to-sink
encoding is done by computing a matrix from the public parameters and the
encodings C, and testing if this matrix is small. Ideally, only the bit of informa-
tion (whether or not the result is small) is useful to the adversary. Of course,
the zeroizing attacks on GGH15 show that this assumption is false, and that
the actual matrix resulting from the zero-test can provide useful information
to the adversary [19, 20, 10]. This matrix will be referred to as the “result” of
zero-testing. To avoid confusion, the 0/1 bit learned from the zero-test will be
referred to as a bit rather than the result.

In certain GGH15 variants, the result of zero-testing is not a matrix. For
example in “GGH15 with safeguards” [6, 24], the result of zero-testing is a scalar.
We will use the letter T to generically denote the result of zero-testing (noting
that T may represent a matrix depending on the scheme, even though it might
not be written in bold).

5 Essentially, S is the result of the γ functions in the notation of [10]. However, the S
notation is more natural for our setting, especially when referring to entries of these
matrices.
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GGH15 Algorithms. Unlike the graph-induced ideal model, our GGH15 Zeroiz-
ing Model is defined with respect to a specific GGH15 scheme/variant in mind.
For example, in the ideal setting, a zero-test is successful if and only if the prod-
uct of the plaintexts is zero. In our GGH15 Zeroizing Model, the model explicitly
maintains encodings corresponding to each plaintext, and whether a zero-test is
successful is determined by performing computations on the encodings and pub-
lic parameters corresponding to an actual GGH15 variant.

To specify our model, we let the scheme be denoted by G. For example, G
may be the original GGH15 construction [6], the “GGH15 with safeguards” [24],
etc. To be a valid GGH15 scheme, we require G to have the following algorithms
(in the literature, PreProcess is usually implicit):

– G.KeyGen(1λ, G,R, aux): Takes the security parameter, a description of a
graph G with source 1 and sink d, a ring R, and potential auxiliary infor-
mation aux, and produces public parameters pp and secret parameters sp.

– G.PreProcess(sp,M): Converts the input plaintext M into a pre-encoding S.
For many schemes (including the original GGH15 construction), S = M.

– G.Enc(sp,S, ui  vi): Encodes S on the path ui  vi.
– G.Add(pp,C1,C2): Takes an encoding C1 of M1 at path u1  v1 and an

encoding C2 of M2 at path u2  v2. If u1 = u2 and v1 = v2, this produces
an encoding C3 of M1 + M2 at path u1  v1.

– G.Mult(pp,C1,C2): Takes an encoding C1 of M1 at path u1  v1 and an
encoding C2 of M2 at path u2  v2. If v1 = u2, this produces an encoding
C3 of M1 ·M2 at path u1  v2.

– G.ZeroTest(pp,C): Takes an encoding C, computes a result T , and returns
(T, b). If C is an encoding of 0 relative to path 1 d, then T is “small” and
b = 1 (indicating successful zero-test). Otherwise, b = 0 with overwhelming
probability.

3.3 GGH15 Zeroizing Model

Initialize Parameters. M is initialized with a security parameter λ, a graph
G = (V,E), a ring R, potential auxiliary information aux, and a graph-induced
encoding scheme G. It runs G.KeyGen(1λ, G,R, aux) to generate the public and
secret parameters (pp, sp), which it stores.

Initialize Elements. M is given a set of initial plaintext elements {Mi, ui  vi}i
where each plaintext is indexed by i, and i-th plaintext Mi is associated with
path ui  vi. The model applies a pre-processing procedure to the plaintext
(recall in the standard GGH15 construction, this procedure does nothing):

Si ← G.PreProcess(sp,Mi).

Then it computes the encoding Ci from the pre-encoding Si:

Ci ← G.Enc(sp,Si, ui  vi).
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Each tuple (Si,Ci, ui  vi) is stored in the pre-zero-test table. For each

encoding Ci, the model generates a corresponding handle Ĉi that contains no
information about Ci or Si. The handle is released, along with the corresponding
encoding level ui  vi, and the model internally stores a mapping between the
handle Ĉi and the tuple (Si,Ci, ui  vi). While the encoding Ci is a matrix,

the adversary is given a single handle Ĉi to the entire matrix.

Zero-Testing. The adversary generates a polynomial p (represented as a poly(λ)-

size arithmetic circuit), over the handles Ĉi and submits it to the model. Note
that since the handles correspond to non-commutative encodings, p must be
treated as a polynomial over non-commuting variables.

The model verifies that p computes an edge-respecting polynomial, meaning
that each monomial is a product of encodings corresponding to a source-to-sink
path. If p is not edge-respecting, the model returns ⊥. If p is edge-respecting,
the model M evaluates p on the encodings Ci, producing a matrix p({Ci}i)
that corresponds to a valid source-to-sink encoding (or a linear combination of
source-to-sink encodings). Finally, M zero-tests p({Ci}i), obtaining (T, b) ←
G.ZeroTest(pp, p({Ci}i)). If the zero-test is successful (b = 1), the model stores

the value T (possibly a matrix, vector, or scalar) and generates a handle T̂` to
each element of T . Otherwise, the model returns ⊥.

We index the successful zero-tests by the letter u, so Tu will denote the result
of the u-th successful zero-test, T̂u will be the corresponding handles, and pu will
be the polynomial submitted for the u-th successful zero-test.6

Post-Zero-Test. In the post-zero-test stage, the adversary submits a polynomial
Q of degree at most 2o(λ) over the handles {T̂u}u and pre-encoding elements

{Ŝi,j,k}i,j,k where Ŝi,j,k is a handle to the (j, k)-th entry of the i-th pre-encoding
matrix Si. For the sake of readability, we will frequently drop the outer subscripts
and denote these sets as {T̂u} and {Ŝi,j,k}. The model M checks the following:

1. Q({Tu}, {Si,j,k}) = 0

2. Q({Tu}, {Ŝi,j,k}) 6≡ 0

3. Q({T̂u}, {Si,j,k}) 6≡ 0

If all three checks pass, the model returns “Win”, and otherwise it returns ⊥.
In Section 3.4, we explain how we derive these conditions, and in Section 3.5 we
justify how these conditions capture the known attacks. We note that A is free
to submit as many polynomials Q as it wants as long as it remains polynomial
time. If any such Q causesM to return “Win” then the adversary is successful.

Note that in reality, a zeroizing attack that succeeds with non-negligible
probability is indeed considered successful. Thus, we will allow the adversary
to be possibly randomized, and we define a successful adversary to be one that
can obtain a “Win” with non-negligible probability (over the randomness of the
model and the adversary).

6 Although we denote each zero-test result as Tu, an adversary is not required to use
Tu monolithically. For example, an adversary can extract a single entry of Tu in the
case when Tu are matrices.
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3.4 Deriving the Post-Zero-Test Win Condition

All known zeroizing attacks on GGH15 exclusively rely on the results of zero-
tests to recover information about the hidden plaintexts [19, 20, 10]. In our model,
this can be viewed as using the values {Tu} to learn something about the values
{Si,j,k}. Furthermore, we claim that all attacks that do this recover informa-
tion that can be expressed as an algebraic relation (we justify this claim in
Section 3.5).

More precisely, underneath all successful zeroizing attacks on GGH15, there
is a non-trivial bounded-degree polynomial Q (the algebraic relation) such that

Q({Tu}, {Si,j,k}) = 0

holds over the integers.
This corresponds to the intuition that in a zeroizing attack, the adversary

can learn something about the pre-encoding entries Si,j,k by plugging the results
of zero-testing {Tu} into the above relation. While not every algebraic relation is
solvable, we take the conservative route and model any non-trivial relation the
adversary can construct as a win.

Now we formalize what it means for Q to be non-trivial. If the adversary can
indeed plug in the results of zero-testing to learn something about the Si,j,k,

then the expression must not be identically zero over the Ŝi,j,k terms (taken
as formal variables), when the {Tu} values are plugged in. Thus, we have the
condition

Q({Tu}, {Ŝi,j,k}) 6≡ 0.

We also want to ensure that the zeroizing attack uncovers information about
the pre-encodings beyond what the adversary can learn honestly. Note that if
the adversary obtains a successful zero-test, it learns that some function of the
pre-encoding entries Ŝi,j,k evaluates to 0. As a simple example, if the adversary
learns from an honest zero-test that matrix Si′ is the 0 matrix, then Si′,j′,k′ = 0

for any choice of j′, k′. The formal polynomial Q = Ŝi′,j′,k′ for any j′, k′ would
then satisfy both of the above conditions. However, we should not consider this
a successful zeroizing “attack,” as it does not use the zero-test results to derive
information about the pre-encodings.

To ensure that what the adversary learns about the pre-encodings relies on
Tu in a non-trivial way, we enforce a third condition

Q({T̂u}, {Si,j,k}) 6≡ 0.

Roughly, this condition states that the relation is not always satisfied re-
gardless of what the {Tu} values are, and thus the attack “uses” the zero-test
leakage.

3.5 Algebraic Relations in Known Attacks

We now describe in detail how in the Coron et al. [19] attack (henceforth
CLLT16) on multiparty key exchange over GGH15, we can derive an algebraic
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relation Q satisfying our three win conditions with non-negligible probability.
For the analogous description of the other major zeroizing attacks ([20, 10]), re-
fer to the full version of this work [1], and for a review of the settings of these
attacks, refer to the full version or the original papers [19, 20, 10].

Step 1: Compute Top-Level Encodings of Zero. The CLLT16 attack on
GGH15 key exchange does not explicitly compute encodings of zero in the orig-
inal exposition. Instead, the attack computes encodings of the same plaintext
on two different source-to-sink paths (starting from different sources), and sub-
tracts the encodings. In our setting we enforce without loss of generality that
all graphs must have a single source, which can be generically achieved by con-
necting a “super” source node to the original source nodes of the graph, and
encoding a 1 (or identity matrix) on edges leading into the original sources.

The encodings used in the key exchange are Ci,0 for 1 ≤ i ≤ 3 (which
we introduce to connect the super source node) and Ci,i′,l for 1 ≤ i, i′ ≤
3, 1 ≤ l ≤ N (for some large enough N). Then for {C} = {Ci,0}i∈{1,2,3} ∪
{Ci,i′,l}i,i′∈{1,2,3},l∈[N ], the polynomial

pj,k({C}) = C2,0 ·C2,1,1 ·C2,2,j ·C2,3,k −C3,0 ·C3,1,k ·C3,2,1 ·C3,3,j

is an encoding of s3,1·s1,j ·s2,k−s2,k ·s3,1·s1,j = 0 for all choices of j ∈ [J ], k ∈ [K],
where for this attack J = K = N (N is a parameter in the key exchange
construction). Recall the key exchange construction uses a GGH15 variant that
supports a commutative plaintext space, so this is always an encoding of 0.

Step 2: Zero-Test and Build W Matrix. Zero-test each of these top-level
encodings, and let the result of zero-testing pj,k({C}) be Tj,k. Construct a J×K
matrix W where the (j, k)-th entry Wj,k is derived from Tj,k. In all current
attacks, the matrix W has the following properties:

– W factors into X × Y where the rows of Y are linearly independent over
the integers (with high probability).

– There exists a column of X that is in the column space of a J×η dimensional
matrix M, for some η that we specify below for each attack. Each entry of
M is a polynomial over the entries of pre-encoding matrices {S}.

In the CLLT16 setting (augmented with our “super” source S), we zero-test
by multiplying AS with pj,k({C}) evaluated over the encodings. This gives a
zero-test result Tj,k as a vector. Coron et al. observe that the first element of
this vector can be written as a dot product xj ·yk where the entries of xj depend
only on the encodings corresponding to user 1 (and the fixed encodings) and the
entries of yk depend only on the encodings corresponding to user 2 (and the fixed
encodings). Moreover, the first element of xj is the pre-encoding s1,j . Coron et
al. also argue that arranging many column vectors yk into a square matrix Y
results in Y being invertible with high probability. Thus we take Wj,k to be the
first element of Tj,k, X to consist of the row vectors x1, ...,xJ , and M to simply
be the column vector [s1,1 s1,2 · · · s1,J ]> (of dimension J × η where η = 1).

Step 3: Deriving an Algebraic Relation. To show how the CLLT16 attack is
captured by our model, we demonstrate that this W matrix is already sufficient
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to come up with a Q satisfying our post-zero-test win condition (with non-
negligible probability). For this it suffices to give a polynomial-time procedure
(the adversary) that extracts a Q satisfying our win condition.

To win in our model, the adversary will pick the parameter K so that Y
turns out to be square and thus invertible and the parameter J ≥ K + η (where
η is specified in step 2 by the setting we are in). Y being invertible implies that
every column of X is in the column space of W, so in particular we have a
column of X that is in both the column space of W and the column space of
M. Intuitively, if we are able to combine the columns of W and M into a square
matrix, we are guaranteed that the determinant of this matrix will be zero. We
just have to ensure that the columns from W and the columns from M are each
linearly independent so that the determinant polynomial is not identically zero
when either set of variables is substituted in. The adversary mounts the attack
as follows, where the parameter β is taken to be exponential in the security

parameter λ that the underlying scheme was initialized with, and
U←− denotes

“drawing uniformly at random.”
To start, the adversary forms the matrix W of handles to honest zero-test

results and the matrix M of pre-encoding handles where W ∈ ZJ×K and M ∈
ZJ×η. The adversary then guesses the ranks rM of M and rW of W uniformly
at random. The adversary guesses the correct ranks with probability 1/(Kη).

The adversary then draws four random matrices U,U′
U←− Z(rM+rW)×J

β ,

V
U←− Zη×rMβ , V′

U←− ZK×rWβ , and constructs

M′ = U ·M ·V , and W′ = U′ ·W ·V′.

Note that M′ ∈ Z(rM+rW)×rM , and W′ ∈ Z(rM+rW)×rW . Lastly, the adversary
constructs a square (rM + rW) × (rM + rW) matrix A = [ M′ | W′ ] by
concatenating M′ and W′. Note that the entries of A are over handles to the
zero-test results and the pre-encodings. The adversary takes the determinant
polynomial Q of this matrix and submits Q as the post-zero-test polynomial.

Assume the adversary has guessed the two ranks correctly, which happens
with non-negligible probability since K, η = poly(λ). We now show that Q will
satisfy the following three win conditions in our model with non-negligible prob-
ability.

1. Q({Tj,k}, {Si,j,k}) = 0

2. Q({Tj,k}, {Ŝi,j,k}) 6≡ 0

3. Q({T̂j,k}, {Si,j,k}) 6≡ 0

First, Q({Tj,k}, {Si,j,k}) = 0 since we have explicitly introduced a linear de-
pendency among the columns of A. Now we argue that with high probability,
M′ has an rM × rM dimensional submatrix of rank rM which implies that its
columns are linearly independent and thus that Q({T̂j,k}, {Si,j,k}) 6≡ 0. The

same argument applies to W′ implying that Q({Tj,k}, {Ŝi,j,k}) 6≡ 0. This follows
from an application of the following lemma (with proof in the full version [1]),
noting that in our case, β is exponential in λ and the dimensions of M and W
are polynomial in λ.
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Lemma 4. Suppose an M ∈ Zn×mβ has rank r. Draw uniformly random U ←
Zr×nβ ,V ← Zm×rβ . Then M′ := U ·M · V is full rank with probability at least

1− 2r
β .

3.6 Limitations of Our Model

Our model does not permit a number of common operations that might arise in
standard lattice cryptanalysis. For example, we naturally disallow any modular
reductions or rounding on the results of zero-testing, since the relation would
no longer be algebraic. This may at first appear problematic, since it means our
model does not capture many simple attack strategies such as LLL [33].

We stress, however, that this is a common feature of many abstract attack
models defined in the literature. For example, the random oracle model does
not allow for differential cryptanalysis, despite it being a powerful way to attack
hash functions. This is usually considered okay, since schemes are tuned (say,
by increasing the number of rounds) to make such attacks useless. Similarly,
the generic group model is often applied to elliptic curves, even though the
model does not allow for known attacks such as the MOV attack [34]. Instead,
these models capture things the adversary can do no matter how parameters are
chosen.

Our setting is similar, as most lattice attacks can be defeated by tuning pa-
rameters. The most devastating attacks on schemes such as GGH15 are zeroizing
attacks, as they are present no matter how parameters are chosen. Therefore,
we devise a model that accurately captures how zeroizing attacks are performed,
and tune parameters to block all other attacks.

4 Towards Zeroizing Resistance: New Models and
Constructions

4.1 Section Overview

In this section we construct a graph-induced encoding scheme with two desirable
properties.

Property 1: Asymmetric Levels. In asymmetric multilinear maps such as GGH13
and CLT13, plaintexts are encoded relative to subsets ` ⊆ [κ], where κ is a
positive integer. Two encodings can be added if and only if they are encoded at
the same level set and can be multiplied if and only if they are encoded at disjoint
level sets. Only top level [κ] encodings can be zero-tested. In certain settings such
as obfuscation, it is desirable to enforce restrictions based on these asymmetric
levels (for example, to implement straddling sets which prevent “mixed-input”
attacks [23, 25]). Unfortunately, the GGH15 edge restrictions do not immediately
give us the same capabilities of asymmetric level restrictions. Thus, we require
a notion of “Graph-Induced Multilinear Maps with Asymmetric Levels”, which
simultaneously associates every encoding with a graph path ui  vi as well
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as a level set ` ⊆ [κ] (first described by Halevi [24]). Addition, multiplication,
and zero-test operations are only allowed as long as both the graph-induced
restrictions and the asymmetric level set restrictions are satisfied.

We naturally redefine our GGH15 Zeroizing Model for this new notion, call-
ing the resulting model the “Level-Restricted GGH15 Zeroizing Model”. This
model is identical to the GGH15 Zeroizing Model, except the adversary is now
forced to additionally respect the asymmetric level restrictions when computing
a top-level encoding of zero.

Property 2: Semantic Security of Encodings. Recent techniques of Chen et al. [10]
show how to produce GGH15 encodings that achieve provable semantic security
from LWE via a new construction they call “γ-GGH15 encodings”. We give
the formal security statement and show how to adapt their security proof to
our setting in the full version [1]. Note that this semantic security guarantee is
orthogonal to what our GGH15 Zeroizing Model captures. Semantically secure
encodings ensure that the encodings themselves do not leak information, but only
in the setting where successful zero-tests are computationally unachievable. On
the other hand, our GGH15 Zeroizing Model captures adversaries who attack
using the zero-test leakage but only under the idealized assumption that the
encodings themselves leak nothing.

A New GGH15 Variant We integrate these two new techniques into a new
construction we call γ-GGH15-AL (γ-encodings and asymmetric levels). We en-
force asymmetric levels using a simple trick of dividing by random scalars due
to Halevi [24]. We show that security of our γ-GGH15-AL construction in the
GGH15 Zeroizing Model implies security in a (more restrictive) Level-Restricted
GGH15 Zeroizing Model. In other words, we prove that an attack on γ-GGH15-
AL that is free to disobey the asymmetric level restrictions has no more power
than an attack that obeys the asymmetric level restrictions. The proof proceeds
from applications of the Schwartz-Zippel lemma, which allow us to argue that a
top-level encoding that disobeys level restrictions will not give a successful zero-
test (with overwhelming probability). To achieve semantic security guarantees,
we incorporate the γ-GGH15 encoding strategy of [10] into our γ-GGH15-AL
construction.

We note that semantic security is only a heuristic statement in our setting.
The semantic security proofs of [10] hold when the adversary cannot successfully
zero-test, but in our construction, zero-testing can be achieved using a right
bookend vector. Thus, our construction only has semantic security when this
bookend vector is hidden from the adversary. The intuition is that when the
right bookend vector is not hidden, security is lost because of zeroizing attacks,
at which point we appeal to our GGH15 Zeroizing Model.

At the end of this section, we introduce a third model we call the “GGH15 An-
nihilation Model.” We show that any successful zeroizing attacks in the GGH15
Zeroizing Model on our γ-GGH15-AL construction imply the existence of a suc-
cessful adversary in the GGH15 Annihilation Model (by first going through the
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Level-Restricted GGH15 Zeroizing Model). An adversary in the GGH15 Annihi-
lation Model will correspond to a polynomial-complexity arithmetic circuit that
annihilates the zero-test polynomials submitted by the adversary.

4.2 A Graph-Induced Encoding Scheme with Asymmetric Levels

Overview To encode a plaintext matrix M on an edge i  j with level set
L ⊆ [κ] we first generate a random matrix P in order to apply the γ⊗diag
function of [10]. The resulting pre-encoding diag(M⊗P,P) is encoded via the
ordinary GGH15 encoding procedure to obtain an encoding D. The next step
is to draw a random k × k matrix B and append it on along the diagonal. This
matrix B ensures each final encoding matrix C has sufficient entropy (used in
Lemma 5), and is crucial for Lemma 6. The next step is to multiply by Kilian-
randomization matrices (drawn by KeyGen for each vertex), and then divide by
level scalars

∏
`∈L z`. The resulting encoding is

C = (
∏
`∈L

z`)
−1 ·R−1i ·

[
D

B

]
·Rj .

To ensure that zero-testing works, we construct our right bookend vector
w to contain the product (

∏
`∈[κ] z`), which cancels out the level scalars in the

encoding as long as it is at the top level [κ]. The left and right bookends also con-
tain Kilian-randomization matrices R1 and R−1d multiplied in to cancel out the
Kilian-randomization on the encodings. The bookends contain additional compo-
nents bv and b>w which multiply with the B random matrices during zero-testing.
This has the effect of adding the products of random matrices (with two random
bookends) to the result of any zero-test (this will be crucial for our obfuscation
security proof, where it will have the effect of adding a random branching pro-
gram evaluation). The remaining bookend components are essentially set to be
the bookends required by the γ-GGH15 encodings. However, we also multiply
them by randomly sampled vectors v′ and w′ to simplify dimensions.

Construction γ-GGH15-AL.KeyGen(1λ, G,R = Z, κ, β, k):7

Parameter Generation

– Label the nodes of G in topological order as 1, . . . , d where node 1 is the
unique source and node d is the unique sink.

– Choose parameters n,w, n′,m, q, σ, χ,B where n = wn′ + n′ according to
the remark below. All operations happen over Zq. Plaintexts have dimension
w×w with entries bounded by β, pre-encodings have dimension n× n with
entries bounded (with high probability) by β · σ ·

√
n, and encodings have

7 κ is the number of asymmetric levels, β is a bound on the size of plaintext entries,
and k is the dimension of the block diagonal matrices we append during the encoding
procedure.
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dimension (m+k)× (m+k) with entries bounded by ν = 2λ. We draw error
matrices under distribution (χ)n×m and set B to be the zero-test bound.

Instance Generation

– (GGH15 matrices and trapdoors) For each vertex i ∈ V , sample (Ai, τi) ←
TrapSam(1n, 1m, q).

– (Kilian-randomization matrices) For each vertex i ∈ V , sample a random

invertible Ri ∈ Z(m+k)×(m+k)
q .

– (Asymmetric level scalars) For each level ` ∈ [κ], sample a random invertible
z` ∈ Zq.

Bookend Generation

– (Left bookend matrix from γ-GGH15 encodings) Sample a random J′ ←
{0, 1}n′×wn′

and define

J := [J′ | In
′×n′

].

– (Encoding matrix used in right bookend) Sample a uniform A∗ ← Zn×mq ,
an error matrix E∗ ← (χ)n×m, and compute

D∗ ← SampleD(Ad, τd,

[
Iwn

′×wn′

0n
′×n′

]
·A∗ + E∗, σ)

This encoding serves to cancel out the lower random block diagonals on
pre-encodings and enables zero-testing on the actual plaintexts.

– (Random bookend vectors) Sample v′ ← Dn′

Z,σ,w
′ ← Dm

Z,σ.

– (Final bookend vectors) Sample uniform bv ∈ Zkν ,bw ∈ Zkν and compute the
final bookends

v = [v′ · J ·A1|bv] ·R1, w = (
∏
`∈[κ]

z`) ·R−1d ·
[
D∗ ·w′>

b>w

]
.

Output

– Public parameters pp = {n,w, n′,m, k, q, σ, χ,B,v,w}
– Secret parameters sp = {Ai, τi,Ri}i∈[d], {z`}`∈[κ]

γ-GGH15-AL.Enc(sp,M ∈ Zw×wβ , i j, L ⊆ [κ]):

– Draw P← Dn′×n′

Z,σ and E← (χ)n×m

– Compute D← SampleD(Ai, τi,

[
M⊗P

P

]
·Aj + E, σ)

– Draw uniform B← Zk×kν and output the encoding

C = (
∏
`∈L

z`)
−1 ·R−1i ·

[
D

B

]
·Rj
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γ-GGH15-AL.ZeroTest(pp,C):

– Return zero if |v ·C ·w>| ≤ B, and not zero otherwise.

Parameters. First, we derive an additional security parameter λLWE = poly(λ)
which determines the hardness of LWE instances associated with the construc-
tion. We set the encoding bound ν = 2λ and choose n,w, n′,m, q, σ, χ = DZ,s
where n = wn′ + n′, m = Θ(n log q) and σ = Θ(

√
n log q) for trapdoor func-

tionality and n′ = Θ(λLWE log q) and s = Ω(
√
n′) for LWE security.8 Set the

zero-test bound B := (m ·β ·σ ·
√
n)d+1 +(k ·ν)d+1 and choose q ≥ B ·ω(poly(λ))

such that q ≤ (σ/λLWE) · (2λLWE)1−ε for some ε ∈ (0, 1).
In the full version of this paper, we show that these constraints can be sat-

isfied with λLWE = poly(λ), and furthermore that this setting of parameters
satisfies correctness [1].

4.3 Level-Restricted GGH15 Zeroizing Model

In order to define this model, we need the following definition.

Definition 4 (Level-Respecting Encodings). Fix a universe of levels [κ].
Let Li be the set of levels associated with encoding Ci. Let m be a monomial
over encodings {Ci} which contains the j encodings C1, ...,Cj. Then m is level-

respecting if L1, ..., Lj are disjoint and
⋃j
i=1 Li = [κ]. A polynomial p over en-

codings {Ci} is level-respecting if and only if each of its monomials is.

We only mention the differences between this model and the GGH15 Zeroiz-
ing Model. Here we expect that the GGH15 variant G that the model is initialized
with supports asymmetric levels, namely that G.Enc additionally takes as input
a level set L ⊆ [κ].

Initialize Parameters. The model M in addition takes a parameter κ denoting
the number of asymmetric levels.

Initialize Elements. M is additionally given a level set Li ⊆ [κ] along with each
plaintext Mi and path ui  vi.M computes the corresponding pre-encoding Si
(from G.PreProcess), and computes the encoding

Ci ← G.Enc(sp,Si, ui  vi, Li).

M stores (Si,Ci, ui  vi, Li) in a pre-zero-test table.

Zero-test. When the adversary submits a polynomial p, M additionally checks
that it is level-respecting, and if it is not, M returns ⊥.

Lemma 5. Let A be a successful adversary in the GGH15 Zeroizing Model in-
stantiated with γ-GGH15-AL. Then there exists a successful adversary A′ in the
Level-Restricted GGH15 Zeroizing Model instantiated with γ-GGH15-AL.

See the full version [1] for a proof of the above lemma, which relies on a
simple application of the Schwartz-Zippel lemma applied to polynomials over
formal variables corresponding to the level scalars.

8 Following Chen et. al. [10]
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4.4 GGH15 Annihilation Model

We turn to describing a new model which has properties that are much easier to
reason about when proving security. Instead of requiring the adversary to find an
algebraic relation in the post-zero-test stage, we instead require the adversary to
find an annihilating polynomial for the set of successful zero-test polynomials it
previously obtained. More specifically, this polynomial must annihilate the zero-
test polynomials when evaluated on square matrices of formal variables of some
dimension k. This k affects the difficulty of winning in the model, since matrices
of larger dimension will be harder to annihilate. The advantage of having this
model is that we have a notion of winning that corresponds more directly to
the underlying plaintexts encoded with the scheme. Namely, if we are able to
encode plaintexts (taking advantage of asymmetric levels) in such a way that
annihilating successful zero-test polynomials is hard, we can immediately obtain
security in this model.

We describe the differences between this model and the Level-Restricted
GGH15 Zeroizing Model. First, there is no computational bound on the adver-
sary — it can submit as many zero-test queries as it wants and can take as much
computation as it wants in the post-zero-test stage. However, each post-zero-test
polynomial it submits must be implemented with a polynomial size circuit. The
other modifications are described below.

Initialize Parameters. The model M takes in an additional ‘tuning’ parameter
k, which determines in some sense how strong the win condition will be.

Post-zero-test. At this point the adversary has submitted a set {pu}u of successful
zero-test polynomials which we associate with a set of formal variables {p̂u}u.
The adversary now submits a polynomial sized circuit C̄ that implements a
polynomial Q̄({p̂u}u) over these formal variables. The model M associates a

set of k × k matrices {Ĉi}i of formal variables with the set of encodings {Ci}i
and considers two additional k-dimensional vectors v̂ and ŵ of formal variables.
Note that each individual entry of each of these matrices and vectors is a distinct
formal variable. M returns “Win” if the following hold:

1. The degree of Q̄ is 2o(λ)

2. Q̄({p̂u}u) 6≡ 0

3. Q̄({v̂ · pu({Ĉi}i) · ŵ>}u) ≡ 0

Lemma 6. Fix any k ∈ N. Let A be a successful adversary in the Level-Restricted
GGH15 Zeroizing Model instantiated with γ-GGH15-AL where KeyGen receives
the parameter k. Then there exists a successful adversary A′ in the GGH15 An-
nihilation Model with tuning parameter k.

A proof of the above can also be found in the full version [1]. It again relies
on the Schwartz-Zippel lemma, this time applied to polynomials over formal
variables corresponding to the elements of the block diagonals added during
γ-GGH15-AL.Enc.
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5 An iO Candidate with Zeroizing Resistance

We design our obfuscator to invoke the Branching Program Un-Annihilatability
(BPUA) Assumption of Garg et al. [21]. Roughly, this assumption states that no
polynomial-size circuit can annihilate the evaluations of every matrix branching
program, provided we consider branching programs whose input bits are read
many times and in interleaved layers.

Thus, the first step of our obfuscator is to pad the input branching program in
order to satisfy the requirement of the BPUA Assumption. To facilitate this, one
of the inputs to our obfuscator is the parameter t = t(`, λ) ≥ 4`4 which specifies
the minimum number of layers required. Note that the resulting padded program
may have length greater than t, so we use a separate variable d to denote the
actual length of the branching program after padding. We also enforce that each
pair of input bits is read together in many layers, which is required to invoke
the p-Bounded Speedup Hypothesis of [25].

To encode the matrices with γ-GGH15-AL, we pick asymmetric level sets
from a straddling set system. The sets are assigned precisely to enforce that
evaluations respect the input read structure of the padded branching program.
The encoding edges are picked so that the branching program evaluations are
naturally computed by traversing a path graph.

5.1 Construction

Input. The input to the obfuscator is the security parameter λ and a dual-input
branching program BP (defined in Section 2.3) of length h, width w, and input
length `. BP consists of the matrices {Mi,b1,b2}i∈[h],b1,b2∈{0,1} and input selection
function inp : [h]→ [`]× [`] which satisfies the following requirements:

– For each i ∈ [h] : inp(i)1 6= inp(i)2, where inp(i)1, inp(i)2 denote the first and
second slots of inp(i), respectively.

– For each pair j 6= k ∈ [`], there exists i ∈ [h] such that inp(i) ∈ {(j, k), (k, j)}.

BP is evaluated on input x ∈ {0, 1}` by checking whether∏
i∈[h]

Mi,x(i) = 0w×w

where we abbreviate x(i) := (xinp(i)1 , xinp(i)2).

Step 1: Pad the branching program. We pad the branching program with identity
matrices until it has d ≥ t layers to ensure the following conditions:

– Each pair of input bits (j, k) is read in at least 4`2 different layers.

– There exist layers i1 < i2 < · · · < it such that inp(i1)1, . . . , inp(it)1 cycles
t/` times through [`].
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Step 2: Form straddling sets. For each input index i ∈ [`], let ri be the number of
layers in which the bit i is read, and create a straddling set system with universe

U(i) and subsets {S(i)
j,b}j∈[ri],b∈{0,1}. Let U :=

⋃
i∈[`] U(i).

Step 3: Encode with γ-GGH15-AL. Let G be a path graph with d + 1 nodes
1, ..., d+ 1 and initialize the γ-GGH15-AL construction9

pp, sp← γ-GGH15-AL.KeyGen(1λ, G,Z, |U|, max
i,b1,b2

{||Mi,b1,b2 ||∞}, k = 5).

For i ∈ [d] and b ∈ {1, 2}, define jb(i) to be the number of times inp(i)b has been
read after reading i columns of the branching program, and compute

Ci,b1,b2 ← γ-GGH15.Enc(sp,Mi,b1,b2 , i i+ 1, S
inp(i)1
j1(i),b1

∪ S inp(i)2
j2(i),b2

).

5.2 Security

In order to state the p-Bounded speedup hypothesis, we recall the following
definition of Miles et al. [25].

Definition 5 (X-Max-2-SAT Solver). Consider a set X ⊆ {0, 1}`. We say
that an algorithm A is an X-Max-2-SAT solver if it solves the Max-2-SAT prob-
lem restricted to inputs in X. Namely given a 2-CNF formula φ on ` variables,
A(φ) = 1 iff ∃x ∈ X that satisfies at least a 7/10 fraction of φ’s clauses.

Assumption 1. (p-Bounded Speedup Hypothesis, introduced in [25]). Let p :
N→ N. Then for any X-Max-2-SAT solver that has size t(`), |X| ≤ p(poly(t(`))).

The assumption essentially states that the NP-complete problem Max-2-SAT
is still hard even for restricted sets of variable assignments. This hardness is
parameterized by p, and in its strongest form, p is taken to be a polynomial. In
this form, the assumption states that no polynomial time algorithm can solve
X-Max-2-SAT on an X of super-polynomial size. However, we can also take p to
be 2polylog(n) and obtain meaningful results as we discuss in the full version of
this work [1].

We now state a non-uniform variant of the BPUA, but first we need the
following definition from [21].

Definition 6. A matrix branching program BP is L-bounded for L ∈ N if every
intermediate value computed when evaluating BP on any input is at most L. In
particular all of BP ’s outputs and matrix entries are at most L.

9 We set k = 5 so that the dimension of the random block diagonals added during
encoding match the dimension of matrix branching programs obtained from Bar-
rington’s theorem.
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Assumption 2. (Non-uniform variant of the BPUA assumption of [21]) Let
t = poly(`, λ) and let X ⊆ {0, 1}` have poly(λ) size and Q be a poly(λ)-size
2o(λ)-degree polynomial over Z. Then for all `, sufficiently large λ, and all primes
2λ < p < 2poly(λ), there exists a 2λ-bounded dual-input matrix branching program
BP : {0, 1}` → [2λ] of length t whose first input selection function (inp1) iterates
over the ` input bits t/` times, such that Q({BP (x)}x∈X ) 6= 0 (mod p).

Note that this statement is a very mild strengthening of the original BPUA
assumption stated in [21]. Their assumption is required to hold for any Q of
bounded degree generated by a polynomial-time algorithm, whereas our assump-
tion must hold for any Q of polynomial size and bounded degree. However, we
note that Garg et al. [21] justify their assumption by showing it is implied by
the existence of PRFs in NC1 secure against P/poly. With a minor tweak to
their proof, we can show our non-uniform BPUA is also implied by the exis-
tence of PRFs in NC1 secure against P/poly. We simply modify the non-uniform
adversary used in [Theorem 2, [21]] to take the polynomial-size Q as advice.

Finally, we use the following definition in our security proof.

Definition 7 (Input-Respecting Polynomial). Given a branching program
{Mi,b1,b2}i∈[h],b1,b2∈{0,1} with input selection function inp : [h] → [`] × [`], a
polynomial p over the matrices (or elements of matrices) is input-respecting if
no monomial involves two encodings {M

i,b
(i)
1 ,b

(i)
2
}, {M

j,b
(j)
1 ,b

(j)
2
} (or entries of

encodings) such that inp(i)1 = inp(j)1 and b
(i)
1 6= b

(j)
1 or inp(i)2 = inp(j)2 and

b
(i)
2 6= b

(j)
2 .

Theorem 1 (Main Theorem). Assuming the p-Bounded Speedup Hypothesis
and the non-uniform BPUA Assumption (implied by the existence of PRFs in
NC1 secure against P/poly), our obfuscator is secure in the GGH15 Zeroizing
Model.

Proof. It suffices to prove security in the GGH15 Annihilation Model with pa-
rameter 5 (since we set k = 5 in the obfuscation construction). Suppose an
adversary A wins in this model instantiated with our obfuscator. We argue that
every successful zero-test polynomial submitted by A is a linear combination of
polynomially many branching program evaluations and thus that the existence
of a Q used to win in the GGH15 Annihilation Model would violate Assump-
tion 2. We know that every successful zero-test polynomial submitted by A
in this model is level-respecting, so by construction of straddling sets, we can
conclude that every polynomial is input-respecting. A polynomial that is both
edge-respecting (so each monomial contains exactly one branching program ma-
trix from each layer) and input-respecting, is a linear combination of branching
program evaluations. However, we have no bound on the number of terms in the
linear combination. We now rely on the analysis techniques of Miles, Sahai, and
Weiss [25] to show that each polynomial is in fact a linear combination of polyno-
mially many branching program evaluations, assuming the p-Bounded Speedup
Hypothesis. A proof of the following lemma is available in the full version [1].
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Lemma 7. (adapted from [25]) Consider an adversary A interacting with our
obfuscation candidate in the GGH15 Annihilating Model. Assuming the p-Bounded
Speedup Hypothesis, any edge-respecting and input-respecting polynomial submit-
ted by A is a linear combination of polynomially-many branching program eval-
uations.

With this lemma in hand, we inspect the Q submitted by A that resulted in
the model outputting “Win”. Notice that the {Ĉi}i are in the shape of a dual-
input branching program of width 5 (without the bookends), so by Lemma 7,

every v̂ · pu({Ĉi}i) · ŵ> is actually a linear combination of polynomially many
honest branching program evaluations. Since there are only polynomially many
pu’s (since Q is implemented with a polynomial size circuit), and since Q is
identically zero over these evaluations, Q contradicts Assumption 2, and we can
conclude that A could not have won in the GGH15 Annihilation model and thus
in the GGH15 Zeroizing Model except with negligible probability.
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