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Abstract. A series of recent research starting with (Alwen and Ser-
binenko, STOC 2015) has deepened our understanding of the notion of
memory-hardness in cryptography — a useful property of hash functions
for deterring large-scale password-cracking attacks — and has shown
memory-hardness to have intricate connections with the theory of graph
pebbling. Definitions of memory-hardness are not yet unified in the some-
what nascent field of memory-hardness, however, and the guarantees
proven to date are with respect to a range of proposed definitions. In
this paper, we observe two significant and practical considerations that
are not analyzed by existing models of memory-hardness, and propose
new models to capture them, accompanied by constructions based on
new hard-to-pebble graphs. Our contribution is two-fold, as follows. First,
existing measures of memory-hardness only account for dynamic memory
usage (i.e., memory read/written at runtime), and do not consider static
memory usage (e.g., memory on disk). Among other things, this means
that memory requirements considered by prior models are inherently
upper-bounded by a hash function’s runtime; in contrast, counting static
memory would potentially allow quantification of much larger memory
requirements, decoupled from runtime. We propose a new definition
of static-memory-hard function (SHF) which takes static memory into
account: we model static memory usage by oracle access to a large pre-
processed string, which may be considered part of the hash function
description. Static memory requirements are complementary to dynamic
memory requirements: neither can replace the other, and to deter large-
scale password-cracking attacks, a hash function will benefit from being
both dynamic-memory-hard and static-memory-hard. We give two SHF
constructions based on pebbling. To prove static-memory-hardness, we
define a new pebble game (“black-magic pebble game”), and new graph
constructions with optimal complexity under our proposed measure. More-
over, we provide a prototype implementation of our first SHF construction
(which is based on pebbling of a simple “cylinder” graph), providing an ini-
tial demonstration of practical feasibility for a limited range of parameter
settings. Secondly, existing memory-hardness models implicitly assume
that the cost of space and time are more or less on par: they consider
only linear ratios between the costs of time and space. We propose a
new model to capture nonlinear time-space trade-offs: e.g., how is the
adversary impacted when space is quadratically more expensive than
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time? We prove that nonlinear tradeoffs can in fact cause adversaries to
employ different strategies from linear tradeoffs.
Please refer to the full version of our paper for all results, proofs, appen-
dices, and implementation details [DLP18].

1 Introduction

Pebble games were originally formulated to model time-space tradeoffs by a game
played on DAGs. Generally, a DAG can be thought to represent a computation
graph where each node is associated with some computation and a pebble placed
on a node represents saving the result of its computation in memory. Thus, the
number of pebbles represents the amount of memory necessary to perform some
set of computations. The natural complexity measures to optimize in this game
is the minimum number of pebbles used, as well as the minimum amount of time
it takes to finish pebbling all the nodes; these goals correspond with minimizing
the amount of memory and time of computation.

Pebble games were first introduced to study programming languages and com-
piler construction [PH70] but have since then been used to study a much broader
range of tasks such as register allocation [Set75], proof complexity [AdRNV17,Nor12],
time-space tradeoffs in Turing machine computation [Coo73,HPV77], reversible
computation [Ben89], circuit complexity [Pot17], and time-space tradeoffs in
various algorithms such as FFT [Tom81], linear recursion [Cha73,SS79b], matrix
multiplication [Tom81], and integer multiplication [SS79a] in the RAM as well
as the external memory model [JWK81]. To see a more comprehensive survey of
the results in pebbling up to the last couple of years, see [Pip82] up to the 1980s
and [Nor15] up to 2015.

The relationship between pebbling and cryptography has been a subject of re-
search interest for decades, which has enjoyed renewed activity in the last few years.
A series of recent works [AB16,ABH17,ABP17a,ABP17b,AS15,AT17,ACP+16,AAC+17,BZ16,BZ17]
has deepened our understanding of the notion of memory-hardness in cryptog-
raphy, and has shown memory-hardness to have intricate connections with the
theory of graph pebbling.

Memory-hard functions (MHFs) have garnered substantial recent interest
as a security measure against adversaries trying to perform attacks at scale,
particularly in the ubiquitous context of password hashing. Consider the following
scenario: hashes of user passwords are stored in a database,and when a user enters
a password p to log in, her computer sends H(p) to the database server, and the
server compares the received hash to its stored hash for that user’s account. For
a normal user, it would be no problem if hash evaluation were to take, say, one
second. An attacker trying to guess the password by brute-force search, on the
other hand, would try orders of magnitude more passwords, so a one-second hash
evaluation could be prohibitively expensive for the attacker.

The evolution of password hashing functions has been something of an arms
race for decades, starting with the ability to increase the number of rounds
in the DES-based unix crypt function to increase its computation time—a
feature that was used for exactly the above purpose of deterring large-scale
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password-cracking. Attackers responded by building special-purpose circuits for
more efficient evaluation of crypt, resulting in a gap between the evaluation cost
for an attacker and the cost for an honest user.

A promising approach to mitigating this asymmetry in cost between hash eval-
uation on general- and special-purpose hardware is to increase the use of memory
in the password hashing function. Memory is implemented in standardized ways
which have been highly optimized, and memory chips are widely regarded to be
an interchangeable commodity. Commonly used forms of memory — whether
on-die SRAM cache, DRAM, or hard disks — are already optimized for the
purpose of data I/O operations; and while there is active research in improving
memory access times and costs, progress is and has been relatively incremental.
This state of affairs sets up a relatively “even playing field,” as the normal user
and the attacker are likely to be using memory chips of similar memory access
speed. While an attacker may choose to buy more memory, the cost of doing so
scales linearly with the amount purchased.

The designs of several MHFs proposed to date (e.g., [Per09,AS15,AB16,ACP+16,ABP17a])
have proven memory-hardness guarantees by basing their hash function con-
structions on DAGs, and using space complexity bounds from graph pebbling.
Definitions of memory-hardness are not yet unified in this somewhat nascent field,
however — the first MHF candidate was proposed only in 2009 [Per09] — and
the guarantees proven are with respect to a range of definitions. The “cumulative
complexity”-based definitions of [AS15] have enjoyed notable popularity, but
some of their shortcomings have been pointed out by subsequent work proposing
alternative more expressive measures, in particular, [ABP17b,AT17].

Our contribution We observe two significant and practical considerations not
analyzed by existing models of memory-hardness, and propose new models to
capture them, accompanied by constructions based on new hard-to-pebble graphs.
Our main contribution is two-fold, as described in (1) and (2) below. We also
provide an additional contribution of separate interest, described in (3).

1. Static-memory-hardness. Existing measures of memory-hardness only
account for dynamic memory usage (i.e., memory read/written at runtime),
and do not consider static memory usage (e.g., memory on disk). Among other
things, this means that memory requirements considered by prior models are
inherently upper-bounded by a hash function’s runtime; in contrast, counting
static memory would potentially allow quantification of much larger memory
requirements, decoupled from the honest evaluator’s runtime.
We propose a new definition of static-memory-hard function (SHF) (Defini-
tion 24), and present two SHF constructions based on pebbling. To prove
static-memory-hardness, we define a new pebble game called the black-magic
pebble game (Definition 2), and prove properties of the space complexity
of this game for new graphs (Graph Constructions 2 and 8). Graph Con-
struction 8 gives rise to an SHF with a better asymptotic guarantee (same
space usage but sustained over more time), whereas Graph Construction 2
yields an SHF with the advantage of simplicity in practice. Informal theorems
stating the constructions’ static-memory-hardness guarantees are given in
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Section 1.2 and formal theorems are in Section 5. In our full version [DLP18],
we discuss our prototype implementation based on Graph Construction 2.
We emphasize that static memory requirements are complementary to dy-
namic memory requirements: neither can replace the other, and to deter
large-scale password-cracking attacks, a hash function will benefit from being
both dynamic-memory-hard and static-memory-hard.

2. Modeling nonlinear cost of space vs. time. Existing measures of memory-
hardness implicitly assume a linear trade-off between the costs of space and
time. This model precludes situations where the relative costs of space and
time might be more unbalanced (e.g., quadratic or cubic). We demonstrate
that this modeling limitation is significant, by giving an example where
adversaries facing asymptotically different space-time cost tradeoffs would
in fact employ different strategies. Then, to remedy this shortcoming, we
define graph-optimal variants of memory-hardness measures (in Section 2)
that explicitly model the relative cost of space and time. These can be seen
as extending the main memory-hardness measures in the literature (namely,
cumulative complexity and sustained memory complexity). We prove bounds
on the new measure as elaborated in Section 1.2.

3. We give the first graph construction that is tight, up to log log n-factors,
to the optimal cumulative complexity that can be achieved for any graph
(upper bound due to [ABP17a,ABP17b]).

Informal version of Theorem 6.23 in [DLP18]. There exists a family of
graphs where the cumulative complexity of any constant in-degree graph with

n nodes in the family is Θ
(
n2 log logn

logn

)
which is asymptotically tight to the

upper bound of Θ
(
n2 log logn

logn

)
given in [ABP17a,ABP17b] in the sequential

pebbling model.

The full version [DLP18] gives a brief background on graph pebbling, Sec-
tion 1.1 gives discussion on memory-hardness measures and related work, and
Sections 1.2 and 1.2 give more detailed high-level overviews of our SHF con-
tribution and nonlinear space-time tradeoff model (items (1) and (2) above),
respectively.

Graph pebbling and memory-hardness Graph pebbling algorithms can be
used to construct hash functions in the (parallel) random oracle model. This
paradigm has been used by prior constructions of memory-hard hashing [AS15]
as well as other prior works [DKW11].

Informally, the idea to “convert” a graph into a hash function is to associate
with each node v a string called a label, which is defined to be O(v, pred(v))
where O is a random oracle and pred(v) is the list of labels of predecessors
of v. For source nodes, the label is instead defined to be O(v, ζ) for a string
ζ which is an input to the hash function. The output of the hash function is
defined to be the list of labels of target nodes. Intuitively, since the label of a
node cannot be computed without the “random” labels of all its predecessors,
any algorithm computing this hash function must move through the nodes of
the graph according to rules very similar to those prescribed by the pebbling
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game; and therefore, the memory requirement of computing the hash function
roughly corresponds to the pebble requirement of the graph. Thus, proving lower
bounds on the pebbling complexity of graph families has useful implications for
constructing provably memory-hard functions.

In our setting, in contrast to previous work, we employ a variant of the above
technique: the string ζ is a fixed parameter of our hash function, and the input
to the hash function instead specifies the indices of the target nodes whose labels
are to be outputted.

1.1 Discussion on memory-hardness measures and related work

The original paper proposing memory-hard functions [Per09] suggested a very
simple measure: the minimum amount of memory necessary to compute the
hash function. It was subsequently observed that a major drawback of this
measure is that it does not distinguish between functions f and g with the same
peak memory usage, even if the peak memory lasts a long time in evaluating f
and is just fleeting in evaluating g (Figure 1a). This is significant as the latter
type of function is much better for a password-cracking adversary. In particular,
pipelining the evaluation of the latter type of function would allow reuse of
the same memory for many function evaluations at once, effectively reducing
the adversary’s amortized memory requirement by a factor of the number of
concurrent executions (Figure 1b).
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(b) Pipelined evaluations of g (reusing mem-
ory)

Fig. 1: Limitations of peak memory usage as a memory-hardness measure

Cumulative complexity [AS15] put forward the notion of cumulative complex-
ity (CC), a complexity measure on graphs. CC was adopted by several subsequent
works as a canonical measure of memory-hardness. CC measures the cumulative
memory usage of a graph pebbling function evaluation: that is, the sum of memory
usage over all time-steps of computation. In other words, this is the area under a
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graph of memory usage against time. CC is designed to be very robust against
amortization, and in particular, scales linearly when computing many copies of a
function on different inputs. This is a great advantage compared to the simpler
measure of [Per09], which does not account well for an amortizing adversary (as
shown in Figure 1).

Depth-robust graphs More recently, [AB16,ABP17a] proved bounds on opti-
mal CC of certain graph families. They showed that a particular graph property
called depth-robustness suffices to attain optimal CC (up to polylog factors–the CC

of any graph with bounded in-degree is upper bounded byO
(
n2 log logn

logn

)
[AB16,ABP17b]).

An (r, s)-depth-robust graph is one where there exists a path of length s even
when any r vertices are removed. Intuitively, this captures the notion that storing
any r vertices of the graph will not shortcut the pebbling in a significant way. It
turns out that depth-robustness will again be a useful property in our new model
of memory-hardness with preprocessing.

Sustained memory complexity Very recently, Alwen, Blocki, and Pietrzak [ABP17a]
proposed a new measure of memory complexity, which captures not only the
cumulative memory usage over time (as does CC), but goes further and captures
the amount of time for which a particular level of memory usage is sustained. Our
SHF definition also captures sustained memory usage: we propose a definition of
capturing the duration for which a given amount of memory is required, designed
to capture static as well as dynamic memory requirements. By the nature of static
memory, it is especially appropriate in our setting to consider (and maximize)
the amount of time for which a static memory requirement is sustained.

Core-area memory ratio Previous works have considered certain hardware-
dependent non-linearities in the ratio between the cost of memory and compu-
tation [BK15,AB16,RD17]. Such phenomena may incur a multiplicative factor
increase in the memory cost that is dependent, in a possibly non-linear way, on
specific hardware features. Note that the non-linearity here is in the hardware-
dependence, rather than the space-time tradeoff itself. In contrast, our new models
are more expressive, in that they make configurable the asymptotic tradeoff be-
tween space and time (by a parameter α which is in the exponent, as detailed in
Definition 16) in an application-dependent way. This versatility of configuration
targets applications where the trade-off may realistically depend on arbitrary and
possibly exogenous space/time costs, and thus contrasts with metrics tailored for
a specific hardware feature, such as core-memory ratio.

Towards a general theory of moderately hard functions Most recently,
Alwen and Tackmann [AT17] proposed a more general (though not comprehensive)
framework for defining desirable guarantees of “moderately hard functions,” i.e.,
functions that are efficient to compute but somewhat hard to invert. Their work
points out a number of drawbacks of prior measures such as those described above.
Notably, many of the prior measures characterized the hardness of computing the
function with an implicit assumption that this hardness would translate to the
hardness of inverting the function (as it would indeed in the case of a brute-force
approach to inversion). In other words, these measures implicitly assume that
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the hash function in question “behaves like a random oracle” in the sense that
brute-force inversion is the optimal approach.

1.2 Our contributions in more detail

To prove static-memory-hardness, we define a new pebble game called the black-
magic pebble game (Definition 2), and prove properties of the space complexity
of this game for new graphs (Graph Constructions 2 and 8).

The black-magic pebble game may additionally be of independent interest for
the pebbling literature. Indeed, a pebble game used to analyze security of proofs
of space [DFKP15] can be viewed as a non-adaptiveversion of the black-magic
pebble game in which the target node set is sampled from a distribution by a
challenger.

Based on our new graph constructions, we construct SHFs with provable
guarantees on sustained memory usage, as follows. Graph Construction 8 gives a
better asymptotic guarantee (same space usage but sustained over more time),
whereas Graph Construction 2 has the advantage of simplicity in practice. In our
full version [DLP18], we discuss our prototype implementation based on Graph
Construction 2.

Static-memory-hard functions (SHFs) Prior memory-hardness measures
make a modeling assumption: namely, that the memory usage of interest is solely
that of memory dynamically generated at run-time. However, static memory can
be costly for the adversary too, and yet it is not taken into account by existing
measures such as CC. Intuitively, it can be beneficial to design a function whose
evaluation requires keeping a large amount of static memory on disk (which may be
thought to be produced in a one-time initial setup phase). While not all the static
memory might be accessed in any given evaluation, the “necessity” to maintain
the data on disk can arise from the idea that an adversary attempting to evaluate
the function on an arbitrary input while having stored a lesser amount of data
would be forced to dynamically generate comparable amounts of memory. Note
that the resulting dynamic memory requirements could be orders of magnitude
larger (say, gigabytes) than the memory requirements of existing memory-hard
function proposals, because unlike in prior memory-hardness models, here we
have decoupled the memory requirement from the memory requirements of the
honest evaluator.

We propose a new model and definitions for static-memory-hard functions
(SHFs), in which we model static memory usage by oracle access to a large
preprocessed string, which may be considered part of the hash function description.
In particular, the preprocessed string can be public and known to the adversary

— the important guarantee is that without storing (almost) all of it statically, the
adversary will incur huge online memory requirements.

Definition (informal).We model a static-memory-hard function family as a
two-part algorithm H = (H1,H2) in the parallel random oracle model, where
H1(1κ) outputs a “large” string to which H2 has oracle access,and H2 receives
an input x and outputs a hash function output y. Informally, our hardness
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requirement is that with high probability, any two-part adversary A = (A1,A2)
must either have A1 output a large state (comparable to the output size of H1),
or have A2 use large (dynamic) space.

We then give two constructions of SHFs based on graph pebbling. To prove
static-memory-hardness, we define a new pebble game called the black-magic
pebble game of which we give an overview in Section 1.2. Our simpler SHF
construction is based on a family of tree-like “cylinder” graphs, which achieves
memory usage proportional to the square root of the number of nodes, sustained
over time proportional to the square root of the number of nodes. Furthermore,
we give a better construction based on pebbling of a new graph family, that
achieves better parameters: the same (square root) memory usage, but sustained
over time proportional to the number of nodes.

Informal version of Theorem 13. The “cylinder graph” (Graph Construc-
tion 2) can be used to construct an SHF with static memory requirement
Λ ∈ Θ(

√
n/(κ − ξ log(κ)) where n is the number of nodes in the graph, κ

is a security parameter, and ξ ∈ ω(1), such that any adversary using non-trivially
less static memory than Λ must incur at least Λ dynamic memory usage for at
least Θ(

√
n) steps.

Informal version of Theorem 14. Graph Construction 8 can be used to
construct an SHF with static memory requirement Λ ∈ Θ(

√
n)/(κ − ξ log(κ))

where n, κ, and ξ are as described above, such that any adversary using non-
trivially less static memory than Λ must incur at least Λ dynamic memory usage
for at least Θ(n) steps.

Static memory requirements are complementary to dynamic memory require-
ments: neither can replace the other, and to deter large-scale password-cracking
attacks, a hash function will benefit from being both dynamic-memory-hard
and static-memory-hard. In Section 4.1, we give a discussion of how, given a
static-memory-hard function and a (dynamic-)memory-hard function, they can
be concatenated to yield a “dynamic SHF” that inherits both the static memory
requirement of the former and the dynamic memory requirement of the latter.

Black-magic pebble game We introduce a new pebble game called the black-
magic pebble game. This game bears some similarity to the standard (black)
pebble game, with the main difference that the player has access to an additional
set of pebbles called magic pebbles. Magic pebbles are subject to different rules
from standard pebbles: they may be placed anywhere at any time, but cannot
be removed once placed, and may be limited in supply. The pebbling space cost
of this game is defined as the maximum number of standard pebbles on the
graph at any time-step plus the total number of magic pebbles used throughout
the computation. Observe that while the most time-efficient strategy in the
black-magic pebble game is always to pebble all the target nodes with magic
pebbles in the first step, the most space-efficient strategy is much less clear.

Lower-bounds on space usage can be non-trivially different between the
standard and magic pebbling games. For example, if a graph has a constant
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number of targets, then magic pebbling space usage will never exceed a constant
number of pebbles, whereas the standard pebbling space usage can be super-
constant. In particular, it is unclear, in the new setting of magic pebbling, whether
known lower-bounds on pebbling space usage in the standard pebble gameare
transferable to the magic pebble game. We prove in Section 5 that for layered
graphs,the best possible lower-bound for the magic pebbling game is Θ(

√
n).

We leave determining the lower bound for magic pebbling space usage in
general graphs as an open question. An answer to this open question would
be useful towards constructing better static-memory-hard functions using the
paradigm presented herein.

Our proof techniques rely on a close relationship between black-magic pebbling
complexity and a new graph property which we define, called local hardness.
Local hardness considers black-magic pebbling complexity in a variant model
where subsets of target nodes are required to be pebbled (rather than all target
nodes, as in the traditional pebbling game), and moreover, a “preprocessing
phase” is allowed, wherein magic pebbles may be placed on the graph in advance
of knowing which target nodes are to be produced. This “preprocessing” aspect
bears some resemblance to the black-white pebbling game [CS74], a variant of the
standard pebbling game in which some limited number of white pebbles can be
placed “for free,” and the black pebbles must be placed according the standard
rules. However, our setting differs from the black-white pebbling game: while
preprocessing and storing magic pebbles in advance can be viewed as analogous to
placing white pebbles for free, the black-white pebbling game imposes restrictions
on the removal of white pebbles from the graph, which are not present in our
setting.

Capturing relative cost of memory vs. time Existing measures such as CC
and sustained memory complexity trade off space against time at a linear ratio.
In particular, CC measures the minimal area under a graph of memory usage
against time, over all possible algorithms that evaluate a function.

However, different applications may have different relative cost of space and
time. We propose and define a variant of CC called α-CC, parametrized by α
which determines the relative cost of space and time, and observe that α-CC
may be meaningfully different from CC and more suitable for certain application
scenarios. For example, when memory is “quadratically” more expensive than
time, the measure of interest to an adversary may be the area under a graph of
memory squared against time, as demonstrated by the following theorem.

Informal version of Theorem 6.8 in [DLP18]. There exist graphs for which
an adversary facing a linear space-time cost trade-off would in fact employ a
different pebbling strategy from one facing a cubic trade-off.

It follows that when the costs of space and time are not linearly related, the
CC measure may be measuring the complexity of the wrong algorithm, i.e., not
the algorithm that an adversary would in fact favor. We thus see that our α-CC
measure is more appropriate in settings where space may be substantially more
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costly than time (or vice versa). Moreover, our parametrized approach generalizes
naturally to sustained memory complexity. We show that our graph constructions
are invariant across different values of α, a potentially desirable property for hash
functions so that they are robust against different types of adversaries.

Informal version of Theorem 6.13 in [DLP18]. Given any graph construc-
tion G = (V,E), there exists a pebbling strategy that is less expensive asymptot-
ically than any strategy using a number of pebbles asymptotically equal to the
number of nodes in the graph for any time-space tradeoff.

Please refer to the full version of our paper for all results, proofs, appendices,
and implementation details [DLP18].

2 Pebbling definitions

A pebbling game is a one-player game played on a DAG where the goal of the
player is to place pebbles on a set of one or more target nodes in the DAG.

In Section 2.1, we formally define two variations of the sequential and parallel
pebble games: the standard (black) pebble game and the black-magic pebble game,
the latter of which we introduce in this work. We also give the definitions of valid
strategies and moves in these games. Then in Section 2.2, we define measures for
evaluating the sequential and parallel pebbling complexity on families of graphs.

2.1 Standard and magic pebbling definitions

Definition 1 (Standard (black) pebble game).

– Input: A DAG, G = (V,E), and a target set T ⊆ V . Define pred(v) =
{u ∈ V : (u, v) ∈ E}, and let S ⊆ V be the set of sources of G.

– Rules at move i: At the start of the game, no node of G contains a pebble.
The player has access to a supply of black pebbles. Game-play proceeds in
discrete moves, and Pi (called a “pebble configuration”) is defined as the set
of nodes containing pebbles after the ith move. P0 = ∅ represents the initial
configuration where no pebbles have been placed. Each move may consist of
multiple actions adhering to the following rules.

1. A pebble can be placed on any source, s ∈ S.
2. A pebble can be removed from any vertex.
3. A pebble can be placed on a non-source vertex, v, if and only if its direct

predecessors were pebbled at time i− 1 (i.e., pred(v) ∈ Pi−1).
4. A pebble can be moved from vertex v to vertex w if and only if (v, w) ∈ E

and pred(w) ∈ Pi−1.

– Goal: Pebble all nodes in T at least once (i.e., T ⊆
⋃t
i=0 Pi).

Remark 1. At first glance, it may seem that rule 4 in Definition 1 is redundant as
a similar effect can be achieved by a combination of the other rules. However, the
application of rule 4 can allow the usage of fewer pebbles. For example, a simple
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two-layer binary tree (with three nodes) could be pebbled with two pebbles using
rule 4, but would require three pebbles otherwise. Nordstrom [Nor15] showed
that in sequential strategies, it is always possible to use one fewer pebble by
using rule 4.

We note for completeness that while rule 4 is standard in the pebbling
literature, not all the papers in the MHF literature include rule 4.

Next, we define the black-magic pebble game which we will use to prove
security properties of our static-memory-hard functions.

Definition 2 (Black-magic pebble game).

– Input: A DAG G = (V,E), a target set T ⊆ V , and magic pebble bound
M ∈ N ∪ {∞}.

– Rules: At the start of the game, no node of G contains a pebble. The
player has access to two types of pebbles: black pebbles and up to M magic
pebbles. Game-play proceeds in discrete moves, and Pi = (Mi, Bi) is the
pebble configuration after the ith move, where Mi, Bi are the sets of nodes
containing magic and black pebbles after the ith move, respectively. P0 =
(∅,∅) represents the initial configuration where no black pebbles or magic
pebbles have been placed. Each move may consist of multiple actions adhering
to the following rules.

1. Black pebbles can be placed and removed according to the rules of the
standard pebble game which are defined in the full version.

2. A magic pebble can be placed on and removed from any node, subject
to the constraint that at most M magic pebbles are used throughout the
game.

3. Each magic pebble can be placed at most once: after a magic pebble is
removed from a node, it disappears and can never be used again.

– Goal: Pebble all nodes in T at least once (i.e., T ⊆
⋃t
i=0 (Mi ∪Bi)).

Remark 2. In the black-magic pebble game, unlike in the standard pebble game,
there is always the simple strategy of placing magic pebbles directly on all the
target nodes. At first glance, this may seem to trivialize the black-magic game.
When optimizing for space usage, however, this simple strategy may not be
favorable for the player: by employing a different strategy, the player might be
able to use much fewer than T pebbles overall.

Next, we define valid sequential and parallel strategies in these games.

Definition 3 (Pebbling strategy). Let G be a graph and T be a target set. A
standard (resp., black-magic) pebbling strategy for (G,T ) is defined as a sequence
of pebble configurations, P = {P0, . . . , Pt}, satisfying conditions 1 and 2 below. P
is moreover valid if it satisfies condition 3, and sequential if it satisfies condition
4.

1. P0 = ∅.
2. For each i ∈ [t], Pi can be obtained from Pi−1 by a legal move in the standard

(resp., black-magic) pebble game.
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3. P successfully pebbles all targets, i.e., T ⊆
t⋃
i=0

Pi.

4. For each i ∈ [t], Pi contains at most one vertex not contained in Pi−1 (i.e.,
|Pi \ Pi−1| ≤ 1).

A black-magic pebbling strategy must satisfy one additional condition to be con-
sidered valid:

5. At most M magic pebbles are used throughout the strategy, i.e., |
⋃
i∈[t]Mi| ≤

M where Mi is the ith configuration of magic pebbles.

2.2 Cost of pebbling

In this subsection, we give definitions of several cost measures of graph pebbling,
applicable to the standard and black-magic pebbling games. While these defi-
nitions assume parallel strategies, we note that the sequential versions of the
definitions are entirely analogous.

Space complexity in standard pebbling We give a brief informal summary
of the definitions in this subsection, before proceeding to the formal definitions.

Pebbling complexity measures We informally overview the pebbling com-
plexity definitions, some of which are new to this work.

The time complexity of a pebbling strategy P is the number of steps, i.e.,
Time (P) = |P|. The time complexity of a graph G = (V,E) given that at most S
pebbles can be used is Time(G,S) = minP∈PG,T,S (Time (P)). Next, we overview
variants of space complexity.

1. Space complexity of a pebbling strategy P on a graph G, denoted by Ps(P),
is the minimum number of pebbles required to execute P. Space complexity
of the graph G with target set T , written Ps(G,T ), is the minimum space
complexity of any valid pebbling strategy for G.

2. Λ-sustained space complexity [ABP17a]of a pebbling strategy P on a
graph G, denoted by Pss(P, Λ), is the number of time-steps during the
execution of P, in which at least Λ pebbles are used. Λ-sustained space
complexity of the graph G with target set T , written Pss(G,Λ, T ) is the
minimum Λ-sustained space complexity of all valid pebbling strategies for G.

3. Graph-optimal sustained complexity of a pebbling strategy P, denoted
by Popt-ss(P), is the number of time-steps during the execution of P, in
which the number of pebbles in use is equal to the space complexity of
G. Graph-optimal sustained complexity of the graph G with target set T ,
written Popt-ss(G,T ) is the minimum graph-optimal sustained complexity of
all valid pebbling strategies for G.

4. ∆-suboptimal sustained complexity of a pebbling strategy P is the num-
ber of time-steps, during the execution of P , in which the number of pebbles
in use is at least the space complexity of G minus ∆. ∆-suboptimal sus-
tained complexity of the graph G is the minimum ∆-suboptimal sustained
complexity of all valid pebbling strategies for G.

A couple of remarks are in order.
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Remark 3. The third and fourth definitions are new to this paper. They can be
seen as special variants of Λ-sustained space complexity, i.e., with a special setting
of Λ dependent on the specific graph family in question. They are useful to define
in their own right, as unlike plain Λ-sustained space complexity, these measures
express complexity for a given graph family relative to the best possible value of
Λ at which sustained space usage could be hoped for. In the rest of this paper,
we prove guarantees on graph-optimal sustained complexity of our constructions,
which have high sustained space usage at the optimal Λ-value. However, we
also define ∆-suboptimal sustained complexity here for completeness, since it is
more generaland preferable to graph-optimal complexity when evaluating graph
families where the maximal space usage may not be sustained for very long.

Remark 4. We have found the term “Λ-sustained space complexity” can be
slightly confusing, in that it measures a number of time-steps rather than an
amount of space. We retain the original terminology as it was introduced, but
include this remark to clarify this point.

We now present the formal definitions of the complexity measures for the
standard pebbling game. In all of the below definitions, G = (V,E) is a graph,
T ⊆ V is a target set, P = (P1, . . . , Pt) is a standard pebbling strategy on (G,T ),
and PG,T denotes the set of all valid standard pebbling strategies on (G,T ).

Definition 4. The space complexity of pebbling strategy P is: Ps(P) = maxPi∈P (|Pi|).
The space complexity of G is the minimal space complexity of any valid pebbling
strategy that pebbles the target set T ⊂ V : Ps(G,T ) = minP′∈PG,T (Ps (P ′)).

Definition 5. The Λ-sustained space complexity of P is: Pss(P, Λ) = |{Pi : |Pi| ≥ Λ}|.
The Λ-sustained space complexity of G is the minimal Λ-sustained space complex-
ity of any valid pebbling strategy that pebbles the target set T ⊆ V : Pss(G,Λ, T ) =
minP′∈PG,T (Pss (P ′, Λ)).

Definition 6. The graph-optimal sustained complexity of P is:
Popt-ss(P) = Pss(P,Ps(G,T )). The graph-optimal sustained complexity of G

is the minimal graph-optimal sustained complexity of any valid pebbling strategy
that pebbles the target set T ⊆ V : Popt-ss(G,T ) = minP′∈PG,T (Popt-ss (P ′)).

Definition 7. The ∆-suboptimal sustained complexity of P is:

Popt-ss(P, ∆) = Pss(P,Ps(G,T )−∆).

The ∆-suboptimal sustained complexity of G is the minimal graph-optimal
sustained complexity of any valid pebbling strategy that pebbles the target set
T ⊆ V : Popt-ss(G,∆, T ) = minP′∈PG,T (Popt-ss (P ′, ∆)).

Time complexity in standard pebbling We present the following formal
definitions for measuring the time complexity of strategies in the standard pebble
game. In all the below definitions, G = (V,E) is a graph, T ⊆ V is a target set,
P = (P1, . . . , Pt) is a standard pebbling strategy on (G,T ) where PG,T,S denotes
the set of all valid pebbling strategies on (G,T ) that use at most S pebbles.
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Definition 8. The time complexity of a pebbling strategy P is Time (P) = |P|.
The time complexity of a graph G = (V,E) given that at most S pebbles can be
used is Time(G,S) = minP∈PG,T,S (Time (P)).

Space complexity in black-magic pebbling Next, we define the correspond-
ing complexity notions for the black-magic pebbling game. As above, G = (V,E)
is a graph, T ⊆ V is a target set, and M is a magic pebble bound. In this
subsection, P = (P1, . . . , Pt) = ((M1, B1), . . . , (Mt, Bt)) denotes a black-magic
pebbling strategy on (G,T ). Moreover, MG,T,M denotes the set of all valid magic
pebbling strategies on (G,T ), and m(P) denotes the total number of magic
pebbles used in the execution of P.

Definition 9. The (magic) space complexity of P is: Ps(P) = max (m(P),maxPi∈P (|Pi|)).
The (magic) space complexity of G w.r.t. M is the minimal space complex-
ity of any valid magic pebbling strategy that pebbles the target set T ⊆ V :
Ps(G,M, T ) = minP∈PG,T,M (Ps (P)).

Remark 5. We briefly provide some intuition for the complexity measure defined
above in Def. 9. If we consider all magic pebbles to be static memory objects that
were saved from a previous evaluation of the hash function, then the total number
of magic pebbles is the amount of memory that was used to save the results of a
previous evaluation of the hash function. Because of this, it is natural to take the
maximum of the memory used to store results from a previous evaluation of the
function and the current memory that is used by our current pebbling strategy
since that would represent how much memory was used to compute the results
of hash function during the current evaluation.

Definition 10. The (magic) Λ-sustained space complexity of P is: Pss(P, Λ) =
|{Pi : |Pi| ≥ Λ}|. The Λ-sustained space complexity of G w.r.t. M and T ⊆ V is:
Pss(G,Λ,M, T ) = minP∈PG,T,M (Popt-ss (P, Λ)).

Definition 11. The (magic) graph-optimal sustained complexity of P is: Popt-ss(P) =
Pss(P,Ps(G,T )). The graph-optimal sustained complexity of G w.r.t. M and
T ⊆ V is: Popt-ss(G,M, T ) = minP∈PG,T,M (Popt-ss (P)).

Definition 12. The (magic)∆-suboptimal sustained complexity of P is: Popt-ss(P, ∆) =
Pss(P,Ps(G,T ) −∆). The ∆-suboptimal sustained complexity of G w.r.t. M
and T ⊆ V is:

Popt-ss(G,∆,M, T ) = min
P∈PG,T,M

(Popt-ss (P, ∆)) .

2.3 Incrementally hard graphs

We introduce the following definition for our notion of graphs which require |T |
pebbles to pebble regardless of the number of targets that are asked, given a
constraint on the number of magic pebbles that can be used. This concept has
not been previously analyzed in the pebbling literature; traditional pebbling
complexity usually treats graphs with fixed target sets.
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Definition 13 (Incremental Hardness). Given at most M magic pebbles, for
any subset of targets C ⊆ T where |C| >M, the number of pebbles (magic and
black pebbles) necessary in the black-magic pebble game to pebble C is at least
|T | where the number of magic pebbles used in this game is upper bounded by M:
Ps(G, |C| − 1, C) ≥ |T |.

α-tradeoff cumulative complexity α-tradeoff cumulative complexity, or CCα,
is a new measure introduced in this paper, which accounts for situations where
space and time do not trade off linearly. Similar notions to this have been explored
before e.g. [FLW13], [BK15,AB16,RD17]. A discuss of the core-area memory
ratio [BK15,AB16,RD17] can be found in Section 1.1. They considered the notion
of λ-memory-hardness where intuitively S · T = Ω

(
Gλ+1

)
where the space-time

cost is some exponential of the size of the stored graph [FLW13]. We note that
this notion is very different from our notion of α-tradeoff complexity since they
only consider the space-time cost (not cumulative complexity) and do not consider
nonlinear tradeoffs between space and time (one can just consider Gλ+1 to a
constant in the tradeoff curve).

Here, we see the usefulness of defining sustained complexities in terms of the
minimum required space (as opposed to being parametrized by Λ) since we can
always obtain an upper bound on CCα, for any α, of a graph directly from our
proofs of the space complexity and sustained time complexity of a DAG.

Definition 14 (Standard pebbling α-space cumulative complexity). Given
a valid parallel standard pebbling strategy, P, for pebbling a graph G = (V,E),
the standard pebbling α-space cumulative complexity is the following:

p-ccα(G,P) =
∑
Pi∈P

|Pi|α .

Definition 15 (Black-magic pebbling α-space cumulative complexity).
Given a valid parallel black-magic pebbling strategy, P, for pebbling a graph
G = (V,E), the black-magic pebbling α-space cumulative complexity is the
following:

p-ccMα (G,P) = max

(
m(P)α,

∑
Pi∈P

|Pi|α
)

= max

(
m(P)α,

∑
Pi∈P

|Bi ∪Mi|α
)

where m(P) denotes the total number of magic pebbles used in the magic
pebbling strategy P.

The following definition, CCα, is an analogous definition to CC as defined
by [AS15] (specifically, CCα when α = 1 is equivalent to CC) to account for
varying costs of memory usage vs. time.

Definition 16 (CCα). Given a graph, G ∈ G, and a valid standard/magic
pebbling strategy, P, we define the CCα(G) to be
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CCα(P) = (p-ccα (G,P)) .

Given a graph, G ∈ G, and a family of valid standard pebbling strategies, P,
we define the CCα(G) to be

CCα(G) = min
P∈P

(p-ccα (G,P)) ,

and, given a family PM of valid black-magic pebbling strategies, we define CCα(G)
to be

CCα(G) = min
PM∈PM

(
p-ccMα

(
G,PM

))
.

3 Parallel random oracle model (PROM)

In this paper, we consider two broad categories of computations: pebbling strategies
and PROM algorithms. Specifically, we discussed above the pebbling models and
pebble games we use to construct our static memory-hard functions. Now, we
define our PROM algorithms.

Prior work has observed the close connections between these two types of
computations as applied to DAGs, and our work brings out yet more connections
between the two models. In this section, we give an overview of how PROM
computations work and define the complexity measures that we apply to PROM
algorithms. Some of the complexity measures were introduced by prior work, and
others are new in this work.

3.1 Overview of PROM computation

The random oracle model was introduced by [BR93]. When we say random oracle,
we always mean a parallel random oracle unless otherwise specified.

An algorithm in the PROM is a probabilistic algorithm B which has parallel
access to a stateless oracle O: that is, B may submit many queries in parallel
to O. We assume O is sampled uniformly from an oracle set O and that B may
depend on O but not O.

The algorithm proceeds in discrete time-steps called iterations, and may be
thought to consist of a series of algorithms (Bi)i∈N, indexed by the iteration i,
where each Bi passes a state σi ∈ {0, 1}∗ to its successor Bi+1. σ0 is defined to
contain the input to the algorithm. We write |σi| to denote the size, in bits, of

σi. We write 8σi8 to denote |σi|w , where w is the output length of the oracle O.
In other words, 8σi8 is the size of σi when counting in words of size w. In each
iteration, the algorithm Bi may make a batch qi = (qi,1, . . . , qi,|qi|) of queries,
consisting of |qi| individual queries to O, and instantly receive back from the
oracle the evaluations of O on the individual queries, i.e., (O(qi,1), . . . ,O(qi,|qi|)).

At the end of any iteration, B can append values to a special output register,
and it can end the computation by appending a special terminate symbol ⊥ on
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that register. When this happens, the contents y of the output register, excluding
the trailing ⊥, is considered to be the output of the computation. To denote the
process of sampling an output, y, provided input x, we write y ← BO(x).

Definition 17 (Oracle functions). An oracle function is a collection f = {fO :
D → R}O∈O of functions with domain D and outputs in R indexed by oracles
O ∈ O.

A family of oracle functions is a set F = {fκ : Dκ → Rκ}κ∈N where each fκ is
indexed by oracles from an oracle set Oκ : {0, 1}κ → {0, 1}κ indexed by a security
parameter κ.

Definition 18 (Memory complexity of PROM algorithms). The mem-
ory complexity of B(x; ρ) (i.e., the memory complexity of B on input x and
randomness ρ) is defined as:

memO(B, x, ρ) = max
i∈N
{8σi8} . (1)

Definition 19 (Λ-sustained memory complexity of PROM algorithms).
The Λ-sustained memory complexity of B(x; ρ) is defined as:

s-memO(Λ,B, x, ρ) = |{i ∈ N : |σi| ≥ Λ}| . (2)

Note that (1) and (2) are distributions over the choice of O ← O.

3.2 Functions defined by DAGs

We now describe how to translate a graph construction into a function family,
whose evaluation involves a series of oracle calls in the PROM. Any family of
DAGs induces a family of oracle functions in the PROM, whose complexity is
related to the pebbling complexity of the DAG. We first define the syntax of
labeling of DAG nodes, then define a graph function family.

Definition 20 (Labeling). Let G = (V,E) be a DAG with maximum in-degree

δ, let L be an arbitrary “label set,” and define O(δ,L) =
(
V ×

⋃δ
δ′=1 L

δ′ → L
)

.

For any function O ∈ O(δ,L) and any label ζ ∈ L, the (O, ζ)-labeling of G is a
mapping labelO,ζ : V → L defined recursively as follows.

labelO,ζ(v) =

{
O(v, ζ) if indeg(v) = 0

O(v, labelO,ζ(pred(v))) if indeg(v) > 0
.

Definition 21 (Graph function family). Let n = n(κ) and let Gδ = {Gn,δ =
(Vn, En)}κ∈N be a graph family. We write Oδ,κ to denote the set O(δ, {0, 1}κ)
as defined in Definition 20. The graph function family of G is the family of
oracle functions FG = {fG}κ∈N where fG = {fOG : {0, 1}κ → ({0, 1}κ)z}O∈Oδ,κ
and z = z(κ) is the number of sink nodes in G. The output of fOG on input label
ζ ∈ {0, 1}κ is defined to be

fOG (ζ) = labelO,ζ(sink(G)) ,

where sink(G) is the set of sink nodes of G.
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3.3 Relating complexity of PROM algorithms and pebbling
strategies

Any PROM algorithm B and input x induce a black-magic pebbling strategy,
epf-magicζ(B,O, x, $), called an ex-post-facto black-magic pebbling strategy. The
way in which this strategy is induced is similar to ex-post-facto pebbling as
originally defined by [AS15] in the context of the standard pebble game. We
adapt their technique for the black-magic game.

Definition 22 (Ex-post-facto black-magic pebbling). Let n = n(κ) and
let Gδ = {Gn,δ = (Vn, En)}κ∈N be a graph family. Let ζ = ζ(κ) ∈ {0, 1}κ be an
arbitrary input label for the graph function family FG. For any v ∈ Vn, define

pre-labO,ζ(v) = (v, labelO,ζ(pred(v))) .

Let B be a non-uniform PROM algorithm. Fix an implicit security parameter
κ. Let x be an input to B. We now define a magic pebbling strategy induced by
any given execution of BO(x; $), where $ denotes the random coins of B. Such
an execution makes a sequence of batches of random oracle calls (as defined in
Section 3.1), which we denote by

q(B,O, x, $) = (q1, . . . ,qt) .

The induced black-magic pebbling strategy,

epf-magicζ(B,O, x, $) = ((B0,M0), . . . , (Bt,Mt)) , (3)

is called an ex-post-facto black-magic pebbling, and is defined by the following
procedure.

1. B0 = M0 = ∅.
2. For i = 1, . . . , t:

(a) Bi = Bi−1.
(b) Mi = Mi−1.
(c) For each individual query q ∈ qi, if there is some v ∈ Vn such that

q = pre-labO,ζ(v) and v /∈ Pi, then “pebble v” by performing the following
steps:

i. If pred(v) ⊆Mi ∪Bi:
– Bi = Bi ∪ {v}.

ii. Else:

– V = {v}.
– Let V ∗ be the transitive closure of V under the following opera-

tion:
V = V ∪

(⋃
v′∈V pred(v′) ∩ (Mi ∪Bi)

)
.

– Mi = Mi ∪ V ∗.
3. For i = 1, . . . , t:

(a) A node v ∈Mi ∪Bi is said to be necessary at time i if

∃j ∈ [t], q ∈ qj , v
′ ∈ Vn s.t. j > i ∧ v ∈ pred(v′) ∧ q = pre-labO,ζ(v

′)

∧
(
6 ∃k ∈ [t], q′ ∈ qk s.t. i < k < j ∧ q′ = pre-labO,ζ(v)

)
.
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In other words, a node is necessary if its label will be required in a future
oracle call, but its label will not be obtained by any oracle query between
now and that future oracle call.
Remove from Bi and Mi all nodes that are not necessary at time i.

3.4 Legality and space usage of ex-post-facto black-magic pebbling

The following theorems establish that the space usage of PROM algorithms is
closely related to the space usage of the induced pebbling.

We will use the following supporting lemma, also used in prior work such as
[AS15,DKW11] (see, e.g., [DKW10] for a proof).

Lemma 1. Let B = b1, . . . , bu be a sequence of random bits and let H be a set.
Let P be a randomized procedure that gets a hint h ∈ H, and can adaptively query
any of the bits of B by submitting an index i and receiving bi as a response. At
the end of its execution, P outputs a subset S ⊆ {1, . . . , u} of |S| = ϕ indices
which were not previously queried, along with guesses for the values of the bits
{bi : i ∈ S}. Then the probability (over the choice of B and the randomness of
P) that there exists some h ∈ H such that P(h) outputs all correct guesses is at
most |H|/2ϕ.

Lemma 2 (Legality and magic pebble usage of ex-post-facto black-
magic pebbling). Let n = n(κ) and let Gδ = {Gn,δ = (Vn, En)}κ∈N be a
graph family. Let ζ ∈ {0, 1}κ be an arbitrary input label for Gδ. Fix any efficient
PROM algorithm B and input x. With overwhelming probability over the choice of
random oracle O ← O and the random coins $ of B, it holds that the ex-post-facto
magic pebbling epf-magicζ(B,O, x, $) consists of valid magic-pebbling moves, and

uses fewer than χ =
⌊

|x|
κ−log(q) + 1

⌋
magic pebbles (i.e., for all i, |Mi| ≤ χ), where

q is the number of oracle queries made by B(x).

Lemma 3 (Space usage of ex-post-facto black-magic pebbling). Let
n,Gδ, ζ be as in Lemma 2. Fix any PROM algorithm B and input x. Fix any
i ∈ [t], λ ≥ 0, and define

epf-magicζ(B,O, x, $) = (PO1 , . . . , P
O
t ) = ((BO1 ,M

O
1 ), . . . , (BOt ,M

O
t ))

for oracle O. We may omit the superscript O for notational simplicity. It holds
for all large enough κ that the following probability is overwhelming:

Pr [∀i ∈ [t], |Pi| ≤ χ′] ,

where χ′ =
⌊
|σi|

κ−log(q) + 1
⌋

, q is the number of oracle queries made by B, and the

probability is taken over O ← O and the coins of B.
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4 Static-memory-hard functions

We now define static-memory-hard functions. As mentioned above, prior notions
of memory-hardness consider only dynamic memory usage. To model static
memory usage, we consider a hash function with two parts (H1,H2) where H2(x)
computes the output of the hash function h(x) given oracle access to the output
of H1. This design can be seen to reduce honest party computation time by
limiting the hard work to one-off preprocessing phase, while maintaining a large
space requirement for password-cracking adversaries. Informally, our guarantee
says that unless the adversary stores a specified amount of static memory, he
must use an equivalent amount of dynamic memory to compute h correctly
on many outputs. Definition 23 is syntactic and Definition 24 formalizes the
memory-hardness guarantee.

Notation PPT stands for “probabilistic polynomial time.” For b ∈ {0, 1}∗, define
Seekb : {1, . . . , |b|} → {0, 1} to be an oracle that on input ι returns the ιth bit of
b.

Definition 23 (Static-memory hash function family (SHF)). A static-

memory hash function family HO = {hOκ : {0, 1}w′ → {0, 1}w}κ∈N mapping
w′ = w′(κ) bits to w = w(κ) bits is described by a pair of deterministic oracle
algorithms (H1,H2) such that for all κ ∈ N and x ∈ {0, 1}n,

HSeekR̂
2 (1κ, x) = hκ(x), where R = H1(1κ) .

(The superscript O is left implicit.)

The next definition presents a parametrized notion of (Λ,∆, τ, q)-hardness
of an SHF. Before delving into the formal definition, we give a brief intuition of
the guarantee provided by Definition 24: any adversary who produces at least
q correct input-output pairs of the hash function must either have used Λ−∆
static memory or incur a requirement of Λ dynamic memory sustained over τ
time-steps at runtime.

The role of q. The parameter q in Definition 24 serves to capture the intuitive
idea that an adversary that uses a certain amount of space could always use
that space to directly store output values of hκ. Clearly, an adversary with an
arbitrary input R could very easily output up to 8|R|8 correct output values.
Our goal is to lower bound the amount of space needed by an adversary who
outputs nontrivially more correct values than that — and q, which is a function
of |R|, captures how many more.

Definition 24 ((Λ,∆, τ, q)-hardness of SHF). Let H = {hκ}κ∈N be a static-
memory hash function family described by algorithms (H1,H2), mapping w′ to w
bits. H is (Λ,∆, τ)-hard if for any large enough κ ∈ N, any string R ∈ {0, 1}Λ−∆,

and any PPT algorithm A, for any set X = {x1, . . . , xq} ⊆ {0, 1}w
′
, there is a

negligible ε such that

Pr
O,ρ

[{
(x1, hκ(x1)), . . . , (xq, hκ(xq))

}
= A(1κ, R; ρ) ∧ s-memO(Λ,A, R, ρ) < τ

]
< ε .
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For simplicity, we henceforth assume w′ = w = κ (i.e., the oracle’s input and
output sizes are equal to the security parameter) unless otherwise stated.

4.1 Dynamic SHFs

As discussed in detail in the introduction, static memory requirements are
orthogonal and complementary to dynamic memory requirements of MHFs as
formalized by [AS15]. Given a pebbling-based SHF and a pebbling-based MHF,
they can be combined by simple concatenation into a “dynamic SHF,” a function
that inherits both the static memory requirement of the former and the dynamic
memory requirement of the latter, as outlined (informally) next.

Let HOdyn be a dynamic MHF and (HO1 ,HO2 ) be a SHF family, and the
computation of both of these correspond to computing labels of nodes in a
DAG as a function of a pebbling algorithm and a random oracle O. We con-
struct a dynamic SHF HO that is defined as follows: on input (1κ, x), output

HO(0,·)
2 (1κ, x)||HO(1,·)

dyn (1κ, x). The resulting HO inherits both the MHF guaran-

tees of Hdyn and the SHF guarantees of (H1,H2). Note that importantly, the

labels of the nodes in the graphs corresponding to the MHF HO(0,·)
dyn and the

SHF (HO(1,·)
1 ,HO(1,·)

2 ) are independent as the MHF and the SHF use disjoint
partitions of the random oracle domain.

Using this method, our SHF constructions can be combined with existing
MHF constructions such as [AS15], [ABP17a], [ABP17b], yielding a “best of both
worlds” dynamic SHF that enjoys both types of memory-hardness.

5 SHF constructions

A first attempt What if we pebble a hard-to-pebble graph, and then let
Rk,i = H(P (k), i) where P (k) is the entire pebbling of the graph (on input k
and iteration i is the i-th call to the hash function H)? This would in fact work
in the random oracle model where the random oracle takes arbitrary-length
input. However, in practice, hash functions do not take arbitrary-length input.
While constructions like Merkle-Damg̊ard [Mer79] and sponge [BDPA08] can
transform a fixed-input-length hash function into one that takes arbitrary-length
inputs, the resulting function does not behave like a random oracle even if the
fixed-length hash function does.Moreover, the computation graphs of known
length-expanding transformations such as Merkle-Damg̊ard and sponge functions
require very little space to compute. For instance, the computation graph of the
Merkle-Damg̊ard construction is a binary tree and the computation graph of the
sponge function is a caterpillar graph both of which take logarithmic and constant
space, respectively, to compute. Thus, we have to use special constructions to
achieve the local-hardness properties we need.

Recall from Definition 13 that the property we want is this “locally hard to
access” notion, meaning that if an adversarial party chooses to not store the static
part of our hash function which they obtain from performing the “preprocessing”
computation associated with H1, then they must use the same memory and
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sustained time to recompute the function when our static-memory-hard function
is called on any subset of inputs larger than the memory used to store the
preprocessed computation. We achieve this desired property in our H1 functions
using two novel DAG constructions, one of which is optimal for a specific graph
class and the other we conjecture to be optimal for all general graph classes.

5.1 H1 constructions

We first note the differences between the graph constructions we present here and
the constructions presented in previous literature [AS15,ACK+16,ABP17a,DFKP15].
Firstly, many of the constructions presented in previous work feature a single tar-
get node. This is reasonable in the context of memory-hard functions since both
the honest party and the adversary must compute the hash function dynamically
(obtaining a single label as the output of the function) on each input. However, in
our context of static-memory-hard functions, single-target-node constructions do
not make sense. Secondly, our constructions differ from even the multiple target
node constructions presented in the literature (specifically, the constructions
of [DFKP15]) since prior constructions mainly focused on finding graphs that
have large memory vs. time tradeoffs.

Our constructions are designed with the goal that any adversary that does
not store almost all the target labels must dynamically use the same amount
of space as needed to store all the labels to compute the hash function (while
still incurring a cost in runtime). Moreover, our constructions based on local
hardness ensure a stronger guarantee than the constructions in [DFKP15]; in
our case, one must use at least S space (for some definition of S) to compute
any given subset of targets larger than one’s current memory usage, whereas in
their case, they use S space to compute some subset of targets chosen uniformly
at random. Therefore, our specifications are stronger in that we provide a space
bound as well as a time bound for adversaries; and moreover, for honest parties,
the time cost is only a one-time setup cost. We prove our pebbling costs in terms
of the black-magic pebble game (defined in Section 2) as opposed to the standard
pebble game used in previous works. Most notably, this means that in all of our
constructions, the pebbling number is upper bounded by the number of targets
(since one can always just pebble the targets with magic pebbles).

We begin with some simple and clean constructions of H1 based on pebbling
constructions that exist in the literature. We first prove a lemma regarding the
minimum number of pebbles used in the PROM model and the minimum number
of pebbles used in the sequential memory model. This is useful in more than one
way: (1) it tells us that parallelization does not save the adversary in space so
honest parties (who can only compute a constant number of labels at a time)
and adversaries (who can compute an arbitrary number of labels at the same
time) operate under the same space constraints and (2) it allows us to directly
compare sustained time complexities between adversaries and honest parties with
respect to space usage .

Lemma 4 (Standard Pebbling Sequential/Parallel Equivalence). Given

a DAG G = (V,E), Ps(G,T ) = P
‖
s (G,T ) where Ps(G,T ) is defined to be the
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minimum standard pebbling space complexity in the sequential model, and we

define P
‖
s (G,T ) to be the minimum standard pebbling space complexity in the

parallel model.

We use Lemma 4 to prove an equivalent lemma for the black-magic pebble
game below.

Lemma 5 (Black-Magic Pebbling Sequential/Parallel Equivalence). Given

a DAG G = (V,E), Ps(G, |T |, T ) = Ps
‖(G, |T |, T ) where Ps(G, |T |, T ) was de-

fined to be the minimum black-magic pebbling space complexity in the sequential
model, and we define Ps

‖(G, |T |, T ) to be the minimum black-magic pebbling
space complexity in the parallel model.

Now, we jump into our constructions. We first provide a simple construction
and show why this construction is not optimal. In addition, we define some sub-
graph components in the pebbling literature that are important subcomponents
of our constructions.

A failed attempt at H1 We first provide a failed attempt at constructing H1

due to the large amount of time that is needed to compute the function (for the
sequential honest party) with respect to the amount of memory needed to store
the output of the function. In other words, this construction is problematic in
the sense that an exponential number of steps is necessary to compute the stored
results of the function from scratch for the honest party but the adversary with
parallel processing time can compute the function from scratch in linear time.
Although the honest party could obtain the results of the preprocessing (i.e. the
static part of the hash function) from elsewhere, we must ensure that they can
still feasibly compute H1 themselves in the event that they do not trust any of
the sources from which they can obtain the static data.

Intuitively, our failed attempt at constructing H1 is a series of binary search
trees. From here onwards, we describe all constructions of H1 as a directed acyclic
graph with n nodes and later use our theorems above to prove static memory
hardness from our constructed DAGs.

Graph Construction 1 (Composite Binary Tree DAG). Let BCh be a composite
binary tree DAG with height h constructed in the following way where T is the
number of targets of our DAG. Let s = |T |. In our intended construction h = s.

1. Let the set of nodes be V . Let the set of edges be E.
2. Create (s+ 1)2h−1 + s nodes.
3. Create s+ 1 binary search trees using (s+ 1)2h−1 nodes in total where edges

are directed from children to parents in each binary tree. Let ri for i ∈ [1, s+1]
be the roots of these binary search trees.

4. Order the remaining nodes in some arbitrary order, let sj be the jth node in
this order for j ∈ [1, s].

5. Create directed edges (ri, si) and (ri+1 mod s, si) for all i ∈ [1, s].

Given any binary search tree with height h, the minimum number of pebbles
necessary to pebble the tree is h (assuming a ‘tree’ with one node has height 1)
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using the rules of the standard pebble game. Therefore, to ensure that the apex
of the tree is pebbled and that both the honest party and the adversary both use
h space to pebble the apex, the number of leaves necessary at the base of the tree
is 2h−1. If we suppose that the computationally weak honest party (who does
not build special circuits) can only evaluate a constant number of random oracle
calls at a time (place a constant number of pebbles), the number of sequential
evaluations necessary for the honest party is ≥ Ω(2h) which is infeasible to
accomplish. In constrast, the adversary only has to make O(h) parallel random
oracle calls, an exponential factor difference between the honest party and the
adversary! Such a construction fails since it is clearly infeasible for the honest
party since they would never be able to compute all target values of H1 from
scratch (since this computation requires exponential time for the honest party).
Thus, we would like a construction that has the same minimum space requirement
but also small sequential evaluation time. We prove a better (but also simply
defined) construction below.

Cylinder construction We make use of what is defined in the pebbling lit-
erature as a pyramid graph [GLT80] in constructing our cylinder graph. The
key characteristic of the pyramid graph we use is that the number of pebbles
that is required to pebble the apex of the pyramid is equal to the height of
the pyramid [GLT80] using the rules of the standard pebble game. Note that a
pyramid by itself is not useful for our purposes since the black-magic pebbling
space complexity of a pyramid with one apex is 1. Therefore, we need to be able
to use the pyramid in a different construction that uses superconstant number of
pebbles in the magic pebble game in order to successfully pebble all target nodes.

Graph Construction 2 (Illustrated in Fig. 2). Let ΠC
h be a cylinder graph

with height h. We define ΠC
h as follows:

1. Create 2h2 nodes. Let this set of 2h2 nodes be V .
2. Arrange the nodes in V into 2h levels of h nodes each, ranging from level

0 to level 2h − 1. Let the j-th node in level i be vji . Create directed edges

(vj mod h
i , vj mod h

i+1 ) and (vj mod h
i , v

(j+1) mod h
i+1 ) for all i ∈ [0, 2h − 2]. Let

this set of edges be E.

Fig. 2: Cylinder construction (Def. 2) for h = 5.
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Lemma 6. Given a cylinder graph with height h, ΠC
h , Ps(Π

C
h , T ) ≥ h.

Lemma 7. Popt-ss(Π
C
h , T ) ≥ 2h.

Theorem 3. Using the rules of the standard pebble game, h pebbles are necessary
for at least h parallel steps to pebble any target of a height 2h cylinder graph,
ΠC
h .

Theorem 4. Ps(Π
C
h , |T |, T ) ≥ h where ΠC

h is defined as in Def. 2 where |S| =
|T | = h.

As a simple extension of our theorem and proof above, we get Corollary 1.
Moreover, as an extension of the proof given for Theorem 4 that all magic pebbles
are placed on targets and from Theorem 3, we obtain Corollary 2.

Corollary 1. Given a cylinder G = (V,E) as constructed in Graph Construc-
tion 2, G is incrementally hard: Ps(G, |C| − 1, C) ≥ |T | for any subset C ⊆ T .

Corollary 2. Given a cylinder G = (V,E) as constructed in Graph Construc-
tion 2, Popt-ss(G, |C| − 1, C) = Θ(|T |) for all subsets of C ⊆ T .

A logical question to ask after constructing our very simple hash function based
on a cylinder graph is whether such a construction is optimal in terms of graph-
optimal sustained complexity and follows our requirements for a static-memory-
hard hash function. As it turns out, the graph-optimal sustained complexity of
a cylinder graph is optimal in the class of layered graphs. In other words, if we
choose to use layered graphs in our constructions, then we cannot hope to get
a better memory and time guarantee. From an implementation and practical
standpoint, layered graphs are easier to implement and hence this result has
potential practical applications (as more complicated constructions need to
consider memory allocation factors in the real-life implementation, not considered
in the theoretical model).

Theorem 5. Given a layered graph, G = (V,E), if the number of target nodes
is |T | = s and Ps(G, s, T ) ≥ s, then |V | = Ω(s2). A layered graph is one such
that the vertices can be partitioned into layers and edges only go between vertices
in consecutive layers.

Thus, our construction of the cylinder graph is optimal in terms of amount of
memory used in the asymptotic sense for the class of layered graphs. An open
question is whether this is also optimal when we consider the larger class of all
DAGs.

Open Question. Does Thm 5 also hold for general graphs with bounded in-degree
2?

Given the impossibility of providing a better space guarantee for layered
graphs, we provide a general (non-layered) construction that transforms a graph
from a certain class into another graph with the same space guarantee as in
Theorem 5. Furthermore, we provide an example below that has the same space
guarantees but a better time guarantee.
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Layering shortcut-free graphs We now show how to convert any shortcut-free
DAG, G = (V,E), with Ps(G,T ) = s and one target node (i.e. |T | = 1) into a
DAG, G′ = (V ′, E′), with |T ′| = s targets and Ps(G

′, s, |T ′|) = s.

Definition 25 (Shortcut-Free Graphs). Let G = (V,E) be a DAG where
Ps(G,T ) ≥ s. Let tPs be the last time step that exactly s pebbles must be on G
during any normal and regular pebbling strategy, P, (see our full version [DLP18]
and [GLT80,DL17]) that uses s pebbles. More specifically, let Let X be the union
of the set of nodes that are pebbled at tPs for all normal and regular strategies
P: X =

⋃
P∈P

PtPs . Let D be the set of descendants of nodes of X. A DAG is

shortcut-free if |X| ≤ s and given s1 < s pebbles placed on any subset X1 ⊂ X,
no normal and regular strategy uses less than s−s1 pebbles to pebble D∪ (X\X1).

Graph Construction 6. Given a shortcut-free DAG, G = (V,E), with Ps(G,T ) =
s and |T | = 1, we create a DAG, G′ = (V ′, E′), with the following vertices and
edges and with the set of targets T ′ where |T ′| = s. Let X be defined as in
Definition 25.

1. V ′ is composed of the nodes in V and s − 1 copies of X ∪D. Let the i-th
copy of X be Xi (the original is X0) and let the i-th copy of x ∈ Xi be xi.

2. E′ is composed of the edges in E and the following directed edges. If (v, w) ∈ E
and v, w ∈ X, then create edges (vi, wi) ∈ E′ for all i ∈ [1, s − 1]. Create
edges (u, vi) ∈ E′ if (u, v) ∈ E and u ∈ V \X,D.

3. The set of targets T ′ is the union of the set of targets of the different copies:
T ′ =

⋃s−1
i=0 Ti.

Using the above construction, we have created a graph G′ = (V ′, E′) where
|V ′| = |V |+ (s− 1)(|D|+ |X|) and |T ′| = s.

Theorem 7. Given a shortcut-free DAG G = (V,E) with Ps(G,T ) = s and
|T | = 1, the construction produced by Graph Construction 6 produces a DAG
G′ = (V ′, E′) such that Ps(G

′, s, |T |) = s.

If D = Θ(s) and s = O(
√
|V |), then |V ′| = Θ(s2 + |V |) which has a better

sustained time guarantee than our cylinder construction.
We first note that the sustained memory graphs presented in [ABP17a] do not

achieve optimal local memory hardness because X ∪D (as defined in Definition 6)
is Θ(n) (since the sources are the ones that remain pebbled in their construction).
Thus, we would like to provide a construction of a shortcut-free DAG where
|X ∪D| = Θ(s). Note that the size of X ∪D will always be Ω(s), trivially. We
now provide a definition of a shortcut-free graph class G that can be transformed
using Definition 6.

Graph Construction 8 (Illustrated in Fig. 3). Let G = (V,E) be a graph
defined by parameter s and in-degree 2 with the following set of vertices and
edges:

1. Create a height s pyramid. Let ri be the root of a subpyramid (i.e. a pyramid
that lies in the original height s pyramid) with height i ∈ [2, s]. One can pick
any set of these subpyramids.
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2. Topologically sort the vertices in each level and create a path through the
vertices in each level (see Fig. 3). Replace any in-degree-3 nodes with a
pyramid of height 3, with a 6-factor increase in the number of vertices.

3. Create c1s additional nodes for some constant c1 ≥ 2 (in Fig. 3, c1 = 6).
Label these nodes vj for all j ∈ [1, c1s].

4. Create directed edges (rs, v1) and (ri, vk(i−1)) for all k ∈ [1, s].
5. Create s− 1 additional nodes. Let these nodes be wl for all l ∈ [1, s− 1].
6. Create directed edges (vc1s, w1) and (ri, wi−1) for all i ∈ [2, s].
7. The target node is ws−1.

Fig. 3: Example of a time optimal graph family construction as defined in Def. 8.
Here, s = 5.

Lemma 8. Given a DAG G = (V,E) and a parameter s where G is defined by
Definition 8, Ps(G,T ) = s.

Before we prove that G = (V,E) created by Definition 8 with parameter s
is shortcut-free, we first prove the following stronger lemma which will help us
prove that G is shortcut-free.

Lemma 9. Let G = (V,E) be a graph created using Definition 8 with parameter
s. Given a normal strategy P to pebble G, when vq for q ∈ [1, c1s] is pebbled
at some time step, black pebbles are present on all nodes in [ri, rs] where i =
(q mod s− 1) + 1 from the time when v1 is pebbled to when vq is pebbled.

Lemma 10. Given a DAG G = (V,E) and a parameter s where G is defined by
Definition 8, G is shortcut-free.

Theorem 9. s pebbles are necessary for at least Θ(s2) parallel steps to pebble
any target of G′.
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We create G′ = (V ′, E′) from G (as constructed using Definition 8) using
Definition 6 , resulting in a graph with Θ(s2) total nodes.

Theorem 10. Ps(G
′, s, T ) = s.

By the proof that G′ is shortcut-free, we obtain the following corollary that
G′ is also incrementally hard. Moreover, Corollary 4 follows directly from the
proof of Theorem 7.

Corollary 3. Given a graph G = (V,E) as constructed in Graph Construction 8,
G is incrementally hard: Ps(G, |C| − 1, C) ≥ |T | for any subset C ⊆ T .

The following corollary about the graph-optimal sustained time complexity
is proven directly from the proof of Lemma 9 and Theorem 9 that if less than
s
2 magic pebbles are on the pyramid, then half the pyramid must be rebuilt
resulting in Θ(s2) time-steps in which s pebbles are on the graph; thus proving
for the cases when |C| − 1 < s

2 . We now prove the case when |C| − 1 ≥ s
2 .

Corollary 4. Given a graph G = (V,E) as constructed in Graph Construction 8,
Popt-ss(G, |C| − 1, C) = Θ(|V |) for all subsets of C ⊆ T .

5.2 H2 construction

Our construction of H2 is presented in Algorithm 1.

Algorithm 1 H2

On input (1κ, x) and given oracle access to SeekR (where R is the string outputted by
H1):

1. Let 8R8 = |R|/w be the length of R in words.
2. Query the random oracle to obtain ρ0 = O(x) and ρ1 = O(x+ 1).
3. Use ρ0 to sample a random ι ∈ [8R8].
4. Query the SeekR oracle to obtain y′ = SeekR(ι).
5. Output y′ ⊕ ρ1.

Lemma 11. For any R, the output distribution of H2 is uniform over the choice
of random oracle O ← O.

Remark 6. Lemma 11 is important as an indication that our SHF construction
“behaves like a random oracle.” The memory-hardness guarantee alone does not
assure that the hash function is suitable for cryptographic hashing: e.g., a modified
version of H2 which directly outputted y′ instead of y′ ⊕ ρ1 would still satisfy
memory-hardness, but would be an awful hash function (with polynomial size
codomain). The inadequacy of existing memory-hardness definitions for assuring
that a function “behaves like a hash function” is discussed by [AT17].
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5.3 Proofs of hardness of SHF Constructions

We now prove the hardness of our graph constructions given earlier in Section 5.
We begin by stating two supporting lemmata. The first is due to Erdős and

Rényi [ER61], on the topic of the Coupon Collector’s Problem.

Lemma 12 ([ER61]). Let Zn be a random variable denoting the number of
samples required, when drawing uniformly from a set of n distinct objects with
replacement, to draw each object at least once. Then for any c, limn→∞ Pr[Zn <

n log n+ cn] = e−e
−c

.

Corollary 5. Let Zn,k be a random variable denoting the number of samples
required, when drawing uniformly from a set of n distinct objects with replacement,
to have drawn at least k ∈ [n] distinct objects. Let q ∈ ω(k log k). Then Pr[Zn,k <
q] is overwhelming (in k).

Theorems 11–14 state the static-memory-hardness of our SHF constructions
based on Graph Constructions 2 and 8.

Theorem 11. Define a static-memory hash function family (H1,H2) as follows:
let H1 be the graph function family FΠCh (Graph Construction 2), and let H2

be as defined in Algorithm 1. Let H = {hκ}κ∈N be the static-memory hash
function family described by (H1,H2). Let κ̂ = κ− ξ log(κ) for any ξ ∈ ω(1), let

Λ̂, τ ∈ Θ(
√
n), and let q ∈ ω(Λ logΛ). Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Theorem 12. Define a static-memory hash function family (H1,H2) as follows:
let H1 be the graph function family FG (Graph Construction 8), and let H2 be

as defined in Algorithm 1. Let κ̂ = κ− ξ log(κ) for any ξ ∈ ω(1), let Λ̂ ∈ Θ(
√
n),

let τ ∈ Θ(n), and let q ∈ ω(Λ logΛ). Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

The parameter q is suboptimal in Theorems 11 and 12. We can achieve
optimality (i.e., q = 8|R|8) by the following alternative construction of H2: make
q′ = ω(log(κ)) random calls instead of just one call to the Seek oracle in Step 4.
To preserve the output size of hκ, it may be useful to reduce the size of node
labels by a corresponding factor of q′. This can be achieved by truncating the
random oracle outputs used to compute labels in Definition 20. The description

of this altered Hq
′

2 and the definition of graph function family Fq′G with shorter
labels are given in our full version [DLP18].

Theorem 13. Define a static-memory hash function family (H1,H2) as follows:

let H1 be the graph function family Fκ/q
′

ΠCh
(Graph Construction 2), and let

H2 be Hq
′

2 as defined in our full version [DLP18] for some q′ ∈ ω(logΛ). Let

κ̂ = κ − ξ log(κ) for any ξ ∈ ω(1), let Λ̂, τ ∈ Θ(
√
n), and let q = Λ. Then

(H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Theorem 14. Define a static-memory hash function family (H1,H2) as follows:

let H1 be the graph function family Fκ/q
′

G (Graph Construction 8), and let

H2 be Hq
′

2 as defined in our full version [DLP18] for some q′ ∈ ω(logΛ). Let

κ̂ = κ− ξ log(κ) for any ξ ∈ ω(1), let Λ̂ ∈ Θ(
√
n), let τ ∈ Θ(n), and let q = Λ.

Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.



30 Thaddeus Dryja, Quanquan C. Liu, and Sunoo Park

Acknowledgements

We are grateful to Jeremiah Blocki, Krzysztof Pietrzak, and Joël Alwen for
valuable feedback on earlier versions of this paper. We thank Ling Ren for helpful
technical discussions. We also thank Erik D. Demaine and Shafi Goldwasser
for their advice on this paper. Finally, we thank our anonymous reviewers for
insightful comments.

Sunoo’s research is supported by NSF MACS (CNS-1413920), DARPA IBM
(W911NF-15-C-0236), SIMONS Investigator Award Agreement Dated June 5th,
2012, and the Center for Science of Information (CSoI), an NSF Science and
Technology Center, under grant agreement CCF-0939370.

References
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ABH17. Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal
side-channel resistant memory-hard functions. In CCS, pages 1001–1017.
ACM, 2017.
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