
Information-Theoretic Broadcast
with Dishonest Majority for Long Messages

Wutichai Chongchitmate1? and Rafail Ostrovsky2??

1 Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, Thailand

wutichai.ch@chula.ac.th
2 Department of Computer Science and Department of Mathematics,

University of California, Los Angeles CA, USA
rafail@cs.ucla.edu

Abstract. Byzantine broadcast is a fundamental primitive for secure
computation. In a setting with n parties in the presence of an adversary
controlling at most t parties, while a lot of progress in optimizing commu-
nication complexity has been made for t < n/2, little progress has been
made for the general case t < n, especially for information-theoretic se-
curity. In particular, all information-theoretic secure broadcast protocols
for `-bit messages and t < n and optimal round complexity O(n) have,
so far, required a communication complexity of O(`n2). A broadcast ex-
tension protocol allows a long message to be broadcast more efficiently
using a small number of single-bit broadcasts. Through broadcast exten-
sion, so far, the best achievable round complexity for t < n setting with
the optimal communication complexity of O(`n) is O(n4) rounds.
In this work, we construct a new broadcast extension protocol for t < n
with information-theoretic security. Our protocol improves the round
complexity to O(n3) while maintaining the optimal communication com-
plexity for long messages. Our result shortens the gap between the infor-
mation-theoretic setting and the computational setting, and between the
optimal communication protocol and the optimal round protocol in the
information-theoretic setting for t < n.

? Work done while the author was at Department of Computer Science, University of
California, Los Angeles.

?? Research supported in part by NSF grant 1619348, DARPA SafeWare subcontract
to Galois Inc., DARPA SPAWAR contract N66001-15-1C-4065, US-Israel BSF grant
2012366, OKAWA Foundation Research Award, IBM Faculty Research Award, Xe-
rox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. The views expressed are
those of the authors and do not reflect position of the Department of Defense or the
U.S. Government.

1 Introduction

A (Byzantine) broadcast protocol allows a party, called “sender,” to distribute
a message among n parties such that (1) all honest parties receive the same
message, and (2) if the sender is honest, the received message is indeed sent from
the sender. This guarantee holds even in the presence of a malicious adversary
corrupting up to t parties, possibly including the sender. The adversary controls
the behavior of the corrupted parties and may divert from the protocol.

Broadcast is one of the most fundamental primitives used in cryptographic
protocols—especially secure multi-party computation (MPC). Most MPC proto-
cols assume broadcast is given by default. However, without a specific hardware
setup, broadcast must be built from point-to-point communications. While effi-
cient broadcast can be done with an honest majority, the opposite case is much
more common in applications.

Although a lot of progress has been made to improve broadcast protocol in
the honest majority case, the best-known result for any number of corruptions
has not seen any improvement since [4] for computational security and [15] for
information-theoretic security.

Traditionally, broadcast protocols are designed for single bits [13]. However,
most applications that use broadcast as a subprotocol often broadcast long mes-
sages. While any broadcast protocol can be used multiple times in parallel to
broadcast messages of any length, it leads to inefficiency, especially in commu-
nication complexity.

Broadcast extension protocol, introduced in [16], uses bit broadcast (or broad-
cast for fixed-length messages) as a subprotocol, similar to oblivious transfer
(OT) extension [1, 8, 11, 10]. The goal is to reduce the communication complexity
of broadcasting long messages, compared to trivially executing multiple broad-
cast protocols.

Broadcast with Dishonest Majority Unlike when the number of corrupted parties
t < n/3, it has been shown that broadcast for t < n cannot be achieved in the
plain model [13]. To circumvent the impossibility result, Dolev and Strong con-
sidered the broadcast protocol in the setup model [4]. They implemented broad-
cast from any public-key signature assuming public-key infrastructure (PKI) for
distributing signing and verification keys for the signature scheme. Their proto-
col achieves the lower bound Ω(n) on the round complexity, and Ω(n2) on the
number of messages exchanged.

For the information-theoretic case, Pfitzmann and Waidner introduce the no-
tion of pseudosignature [14], formalizing unconditionally secure signature in [2],
to replace the public-key signature in [4]. The resulting protocol [14, 15] is in the
correlated randomness model where each party holds a random string generated
from some joint distribution instead of PKI. Similar to the computational case,
this protocol achieves the lower bound on the round complexity and the number
of messages exchanged.

In terms of communication complexity, the broadcast protocol of [15] uses
O(`n2 +n6λ) bits of communication, while that of [4] uses O(`n2 +n3λ) bits to

2

broadcast a message of length `. In both protocols, a sender sends a message and
a corresponding signature to every party, who then sign and pass the message
to all other parties in the first two rounds.

In fact, [3] shows that any broadcast protocol must communicate at least
Ω(n2) bits. Thus, to broadcast a message of length ` directly using such protocol
requires at least Ω(`n2) bits of communication. To circumvent this limitation, an
extension protocol is designed to reduce the multiplicative factor to the length
` of the message to lower than n2 while increasing the part that is independent
of `, thus reducing the overall communication complexity when ` � λ. Since
every party must receive the message, the lower bound on the communication
complexity is Ω(`n).

Broadcast Extension While Turpin and Coan [16] introduced the construction
of a broadcast protocol for long messages from bit broadcast, their protocol tol-
erating t < n/3 has the communication complexity of O(`n2 + n(B(1))), where
B(s) is the communication complexity of s-bit broadcast. Fitzi and Hirt [5]
first showed how to achieve broadcast with communication complexity O(`n +
poly(n, λ)) in an information-theoretic setting tolerating t < n/2 with poly(n, λ) =
n3λ+nB(n+λ). Liang and Vaidya [9] later constructed perfectly secure broad-
cast tolerating t < n/3 with communication complexity O(`n +

√
`n2B(1) +

n4B(1)), and Patra [12] improved it to O(`n + n2B(1)). As mentioned earlier,
the best result for communication complexity in an information-theoretic set-
ting tolerating t < n is by Hirt and Raykov [7] with communication complexity
O(`n+(n4 +n3λ)B(1)) and round complexity O(n4). They also constructed an-
other protocol based on collision-resistant hash functions (CRHF) in the same
setting with communication complexity O(`n+ (n2 +nλ)B(1)) and round com-
plexity O(n3). The CRHF-based construction is later improved in round com-
plexity by Ganesh and Patra [6] to O(n2), while communication complexity
slightly increases to O(`n+ (nλ+ n3 log n)B(1)).

Round Complexity of Broadcast Protocols While broadcast can be accomplished
in constant round with honest majority, [4] shows that a broadcast protocol se-
cure against an adversary corrupting any number of parties requires at leastO(n)
rounds. In the t < n/3 and t < n/2 settings, the broadcast extension protocols
achieve optimal constant round complexity similar to that of bit broadcast [6].
[7] first achieved broadcast protocols for `-bit messages using O(`n) communi-
cation complexity for t < n with round complexity O(n3) for computational
security and O(n4) for information-theoretic security, respectively. They left an
open question:

Are there broadcast protocols with O(`n) communication complexity for t < n
with round complexity lower than O(n3) for computational security and lower

than O(n4) for information-theoretic security?

[6] answered the first part of the question: they constructed a computationally
secure protocol with communication complexity of O(n2). This result still leaves
the second part of the open question unsolved.

3

1.1 Our Results

We construct a broadcast extension protocol in the information-theoretic setting
against adversaries corrupting up to t < n parties. Our result improves the
current best-known result in the same setting of [7] in round complexity by a
multiplicative factor of n while maintaining the same communication complexity.
More formally, we obtain the following theorem.

Theorem 1. Assuming an oracle for broadcasting short messages, there exists a
broadcast protocol achieving information-theoretic security in t < n setting for an
`-bit message in O(n2) rounds by communicating O(`n+n3(B(λ) +nB(log n)))
bits, where B(l) is the communication complexity of broadcasting l bits.

Thus, combining the above result with the broadcast protocol of [15] gives
the following corollary.

Corollary 1. There exists a broadcast protocol achieving information-theoretic
security in t < n setting for an `-bit message in O(n3) rounds by communicating
O(`n+ n10λ) bits.

This result shortens the gap in round complexity between the information-
theoretic case and the computational case where O(n2) rounds is achieved in [6].
Closing this gap entirely is left as an open question.

1.2 Our Techniques

Block broadcast The traditional broadcast protocol of [4] for t < n prevents a cor-
rupted sender from sending different values to different receivers using signature
(or pseudosignature for information-theoretic security [14, 15]). The receivers
then send their signed values to each other. This means in order to broadcast a
message m, both m and the corresponding signature need to be sent and received
O(n2) times. Thus, the communication complexity of broadcasting a message of
length ` is at least O(`n2). Similar to the existing broadcast extension proto-
cols in literature [7, 6], a sender in our broadcast protocol cuts a long message
into multiple blocks. Each block is sent via point-to-point channels—first from
the sender, and later from any parties publicly known to hold the block. Then
a broadcast protocol for short messages (multiple times, but independent of `)
is used to verify the correctness of the blocks using a universal hash function
as in [7]. This keeps the multiplicative factor in the communication complexity
linear in n instead of n2. Similar to [7], our protocol processes one block at a
time sequentially.

Multi-party block sending In [7], each block is sent between one pair of parties
at a time. In order to improve the round complexity, we use the technique in [6]
for the computational security setting where a block is sent between multiple
pairs of parties at the same time. In each round, a block is sent to every party
not holding the block and satisfying a certain condition from a designated party
that holds the block and is still trusted by the receiving party. In particular, if
all parties are honest, they will all receive a block in one round.

4

Checking block validity In order to ensure that all honest parties receive each
message block with the same value, we use a universal hash function similar to
the protocol in [7]. Once a party receives a block from the designated party,
it will randomly generate and broadcast a universal hash function key. The
original sender Ps will respond by broadcasting the hash value of the block. All
parties holding a block will also compute the hash values of their own blocks and
compare to the value broadcast by Ps. They then broadcast whether or not the
values are the same. Unlike in [7], multiple sessions of this correspondence can
happen in parallel—one for each pair of parties transmitting a block. In order
to guarantee that blocks received by multiple honest parties in the same round
have the same value, we also require parties that just receive blocks to broadcast
their hash checking result as well.

Trust graph We combine and expand the techniques for keeping track of a party’s
interactions in [7] and [6]. As in [7], each party collectively keeps track of conflict
between each pair of parties. A conflict occurs between two parties Pa and Pb—
both holding a block with Pb receiving a block from Pa earlier in the protocol—if
one approves a hash value from Ps while another rejects it. In [6], each party
instead keeps track of a set of corrupted parties from their own perspective. In
both constructions, a party only tries to obtain a block from another party if it
is not in conflict with that party or the party is not corrupted. We expand this
idea to the concept of the public trust graph. A trust graph starts as a complete
graph where vertices are all parties. When a pair of parties are in conflict in the
same sense as in [7], an edge between them is removed. If a party publicly does
not follow the protocol, it will be isolated in the trust graph. While the conflict
set in [7] can be directly translated to our trust graph, we make additional use
of the graph property to strengthen our protocol.

Condition to forfeit a block Unlike the collision-resistant hash function used
in [6], a universal hash function cannot be computed once and for all. If an
adversary knows a hash key before it chooses whether to send a block, it can
find a different block that hashes to the same value. In order to get around this
limitation, the protocol in [7] lets the receiver choose a new hash key after it
receives a block via point-to-point channel.

However, the verification in [7] is done separately for each receiver. In the
situation where the sender Ps and block holders Pa and Pb collude, they can
approve two different block values for honest Pi and Pj , who receive blocks
from Pa and Pb, respectively. When Pj learns of the conflict between Pa and
Pi, it cannot tell which of Pa and Pi is corrupted. In this case, Pj removes an
edge {Pa, Pi} from its trust graph. Since the conflict is known to every honest
party via broadcast, the honest parties can maintain a consistent trust graph
locally. In [7], whenever such conflict occurs, Pj must forfeit the block it has.
Any pairs of parties in conflict do not send or receive a block from one another
ever again across all message blocks. This guarantees that any two honest parties
hold message blocks with the same value. As in [7], this means that each honest
party may need to receive a block more than once. Since the trust graph has

5

O(n2) edges, such a conflict can occur at most O(n2) times. By dividing the
message into blocks appropriately, [7] can keep the communication complexity
to the optimal O(`n + poly(n, λ)). However, our parallel block sending further
increases the number of such forfeits as more than one party may try to get
a block and fail at the same time. We solve this problem by implementing a
stronger condition for a party to forfeit a block. Namely, Pj only forfeits a block
when there is no trust path of block holders from Pj to Ps. Together with
the next technique to increase the number of such paths, we can also keep the
communication complexity the same as in [7].

Condition to receive a block In order to reduce the number of forfeits which
leads to an increase in communication complexity, we add additional conditions
for when a party is to be sent a block. The idea is to make it harder for an
adversary to force a party, who has already received a block, to forfeit it in
a later round. The protocol in [7] uses a tree with Ps as a root to represent
how a block is sent between parties. However, their protocol entirely resets this
tree whenever a conflict occurs. Doing so, along with the parallel block sending
technique, leads to an increase in both round complexity and communication
complexity by a factor of n. Our first solution is, instead of resetting the tree,
to disconnect the pair in conflict and remove those no longer connected to Ps.
Unfortunately, this does not solve the problem. An adversary can still force a
long path between Ps and honest parties, and repeatedly disconnect them from
Ps. Instead, our protocol uses a graph Hj to represent the connection for jth
block. Hj is an induced subgraph of the trust graph G on a subset of parties
that have received a block. Due to the verification via universal hash function,
all honest parties in Hj hold a block with the same value. When a party Pi is
added to Hj , we add all edges between Pi and all parties in Hj that connect
to Pi in G as well. Thus, in order for a party to be removed from Hj—which is
equivalent to forfeiting a block—all of its neighbors in Hj need to be removed
as well.

Varying block size Our protocol takes O(dj + ∆j) rounds to broadcast the jth
block, where dj is the maximum distance between the sender and receiving
parties in the trusted graph and ∆j is the number of edges removed from the
graph while broadcasting the block. If the blocks are of the same size either `/n2,
as in [7], or `/n, as in [6], the resulting protocol will provide no improvement in
round complexity. We solve this problem by using a non-constant block size of
`dj−1/n

2. Since 1 ≤ dj−1 ≤ n, our block size is between that of [7] and [6]. In
the case of an honest sender, dj = 1 for all j, we get the same block size as in [7].
Intuitively, as the corrupted parties are known and the distance from receiving
parties in G grows, we want to send a larger block because the number of edges
that can be disconnected is smaller. It is more difficult for the corrupted parties
to make the honest parties resend a block.

6

2 Definitions

Let λ denote the security parameter. A negligible function ν(λ) is a non-negative
function such that for any constant c < 0 and for all sufficiently large λ, ν(λ) <
λc. We will denote by Prr[X] the probability of an event X over coins r, and
Pr[X] when r is not specified. For a randomized algorithm A, let A(x; r) denote
running A on an input x with random coins r. If r is chosen uniformly at random
with an output y, we denote y ← A(x). Let P be a set of n parties {P1, . . . , Pn}.
For a finite subset A ⊂ U , let A denote U \A when U is clear from context. For
a vertex v of a graph G, we may use v ∈ G to denote v ∈ V (G).

Definition 1 (Byzantine Broadcast). A protocol Π for a set of n parties P,
with secure private channel between every pair of parties, and a distinguished
party Ps for some s ∈ [n], called a sender, who holds an input m ∈ M, is a
secure (Byzantine) broadcast protocol if, at the end of the protocol, the following
holds except with negligible probability:

– All honest parties output the same value m′ ∈M∪ {⊥}; and
– If the sender Ps is honest, m′ = m.

Definition 2 (Universal Hash Function). A family of functions {Hk}k∈SH
where Hk :M→ Y is ε-universal if for any two distinct m,m′ ∈M,

Pr[k ← SH : Hk(m) = Hk(m′)] ≤ ε.

A universal hash function can be constructed as follows. Let SH = Y = F =
F2λ . Let m ∈ M = {0, 1}` be represented by a polynomial m(x) over F by
cutting m in blocks of size λ. We compute Hk(m) = m(k) ∈ Y .

3 Broadcast Extension

In this section we give an overview of the broadcast constructions of [7] and [6].

3.1 Information-Theoretic Secure Broadcast in O(n4) Rounds

We first describe the broadcast extension protocol of [7]. Informally, the sender
Ps cuts a long message into blocks. The protocol broadcasts each block sequen-
tially using ITBlockBC. The subprotocol ITBlockBC works as follows. In each
loop, a party Pa who has the block sends it to another party Pb that has not re-
ceived it. Pb then generates and broadcasts a key k for information-theoretically
secure universal hash function. Next, Ps computes and broadcasts the hash value
of the block using the received key. Every party that has the block responds as
to whether the block they have gives the same hash value. If there is a pair of
parties Pc and Pd where Pd has received a block from Pc and the two disagree
on the hash value, the subprotocol is restarted and {Pc, Pd} is added to a “dis-
pute set” where they will not interact again. This set is kept across multiple

7

executions of ITBlockBC—one for each block. Thus, the conflict can only occur
at most O(n2) times across the executions. When no such conflict occurs, each
execution of ITBlockBC takes O(n) rounds with oracle access to (short) broad-
cast. By cutting the message into n2 blocks, the protocol gives O(n3) rounds
with the oracle access, and O(n4) rounds when the oracle is substituted by an
O(n)-round broadcast protocol of [15].

Let {Hk}k∈SH be a family of universal hash functions with seeds in SH . Let
P = {P1, . . . , Pn} be a set of all parties. We describe the protocol ITBlockBC in
Figure 1.

ITBlockBC(Ps,m)
For each party Pi on input dispute set ∆.

1. Initialize a set H = {Ps} and T = ∅.
2. While ∃Px, Py ∈ P such that Px ∈ H, Py ∈ H and {Px, Py} /∈ ∆ do the

following:
Round 1: Px sends mx to Py via point-to-point channel. Py sets my := mx. Add

(Px, Py) to T .
Round 2: Py generates and broadcasts k ← SH .
Round 3: Ps broadcasts h := Hk(m).
Round 4: ∀Pi ∈ H ∪ {Py} \ {Ps} if h = Hk(mi) broadcasts 1; otherwise, 0.
Round 5: If all parties broadcast 1, add Py to H. Else,

• for all (Pi, Pj) ∈ T such that Pi broadcast 1 or Pi = Ps and Pj

broadcast 0, add {Pi, Pj} to ∆; and
• set H = {Ps} and T = ∅.

3. ∀Pi ∈ P, if Pi ∈ H, output mi; otherwise, output ⊥.

Fig. 1. Information-Theoretic Block Broadcast of [7]

The broadcast protocol can be obtained by running ITBlockBC n2 times as
shown in Figure 2

Theorem 2 ([7]). Assuming an oracle for broadcasting short messages, there
exists a broadcast protocol LongBC achieving information-theoretic security in
t < n setting for an `-bit message in O(n3) rounds by communicating O(`n +
n3(B(λ) + nB(1))) bits.

Corollary 2 ([7]). There exists a broadcast protocol achieving information-
theoretic security in t < n setting for an `-bit message in O(n4) rounds by
communicating O(`n+ n10λ) bits.

3.2 Computationally Secure Broadcast in O(n2) Rounds

The construction of [6] improves on the computational case of [7]. In [7] a long
message is broadcast in blocks similar to the information-theoretic case above.

8

LongBC(Ps,m)
1. Parties initialize dispute set ∆ = ∅.
2. Sender Ps cuts m into n2 equal pieces m1, . . . ,mn2

(padding if required).
3. For c = 1, . . . , n2, invoke ITBlockBC(Ps,m

c) and let mc
i be the output of Pi.

4. For each Pi ∈ P, if mj
i = ⊥ for some j, output ⊥. Otherwise, output

m1
i || . . . ||mn2

i .

Fig. 2. Broadcast Extension Using ITBlockBC

Instead of generating a new key for universal hash function every time a party re-
ceives a block, the sender Ps broadcasts a hash value of the block using collision-
resistant hash function (CRHF) at the beginning of the subprotocol. When a
party Pb receives a block from Pa, he can verify it locally with no additional
interaction. If the verification fails, Pb knows that Pa is corrupted. Thus, the
failure can occur at most O(n) times. By cutting the message into n blocks, the
protocol gives O(n2) rounds with the oracle access, and O(n3) rounds when the
oracle is substituted by O(n)-round broadcast protocol of [15].

In [6] this protocol is improved by allowing multiple parties to send and
receive a block in the same round. Several checks are added to ensure that
this parallel process does not break the correctness and security. This technique
speeds up the protocol by a factor of n.

Let Hash be a collision-resistant hash function. We describe the protocol
CryptoBC in Figure 3.

Theorem 3 ([6]). Assuming an oracle for broadcasting short messages and
CRHFs, there exists a broadcast protocol CryptoBC against a PPT adversary
corrupting t < n parties for an `-bit message in O(n) rounds by communicating
O(`n+ (nλ+ n3 log n)B(1)) bits.

Corollary 3 ([6]). Assuming CRHFs, there exists a broadcast protocol against
a PPT adversary corrupting t < n parties for an `-bit message in O(n2) rounds
by communicating O(`n+ n6λ log n) bits.

4 Our Construction

In this section we show how to improve information-theoretic secure broadcast
for long messages in [7]. In [6], Ganesh et al. show that it is possible to broad-
cast a message of arbitrary length ` using O(n) rounds having O(n) black-box
access to a broadcast protocol for single bit, assuming CRHF. Thus, combining
the result with [4] gives a broadcast protocol for a message of arbitrary length
in O(n2) rounds under the same assumption. On the other hand, the best re-
sult for information-theoretic broadcast for arbitrary long messages by [7] uses

9

CryptoBC(Ps,m)
Hash Agreement phase:

1. Ps cuts m into n equal pieces m1, . . . ,mn (padding if required).
2. For c = 1, . . . , n, Ps computes and broadcasts hc = Hash(mc) to all parties.

Block Agreement phase: For each party Pi

1. Initialize
– Ci = ∅, ci = 1, r = 1;
– T k

i [j, l] = 1 for j, l, k ∈ [n];
– Hk

i = {Ps} for k ∈ [n];
2. While r ≤ n+ t do

(a) If Pi ∈ H
ci
i , ∃Pj ∈ Hci

i \ Ci and |Hci
i ∪ Ci| ≥ r − ci + 1, broadcast

(send, j, ci).
(b) Let (send, x, y) be the output of the broadcast from Pj /∈ Ci.

i. if T y
i [x, j] = 1 and there is only one broadcast from Pj , then set

T y
i [x, j] = 0, and if x = i and Pi ∈ Hy

i , send my
i to Pj via point-to-

point channel;
ii. else, add Pj to Ci.

(c) If Pi broadcast (send, j, ci) in Step 2(a), let mci
j be the message block

received from Pj

i. if hci = Hash(mci
j), then increment ci by 1, set mci

i = mci
j and broad-

cast (happy, Hci
i , Ci, ci);

ii. else, broadcast (unhappy, ci) and add Pj to Ci.
(d) Let v be the output of the broadcast from Pj /∈ Ci in Step 2(c) who

broadcast (send, ?, ?) in Step 2(a) this round
i. if v = (happy, Hx

j , Cj , x), Hx
j ∪Cj ⊆ Hx

i ∪Ci and |Hx
j ∪Cj | ≥ r−x+1,

then add Hx
j ∪ {Pj} to Hx

i ;
ii. if v = (unhappy, x) do nothing;

iii. else, add Pj to Ci.
(e) If r = ci + t and Pi ∈ H

ci
i , then exit while loop.

3. If mk
i = ⊥ for some k ∈ [n], output ⊥. Otherwise, output m1

i || . . . ||mn
i .

Fig. 3. Computationally Secure Broadcast of [6] against t < n corruption

10

O(n3) rounds having O(n3) black-box access to a broadcast protocol for sin-
gle bit. Thus, combining the result with [14, 15] gives a broadcast protocol in
O(n4) rounds. We show that several techniques, including parallel block broad-
cast in [6], can be used to improve this result to O(n3) rounds.

We first describe a protocol ImprovedBlockBC that broadcasts a block of a
long message using an oracle broadcasting short messages. Besides the message
block as an input of the sender, each party Pi maintains a trust graph Gi across
executions of ImprovedBlockBC for all message blocks. While our trust graph
and the dispute set in [7] provide similar information, our protocol takes into
account some properties of graph such as the length of a shortest path between
a pair of nodes. Finally, we describe our broadcast protocol ImprovedLongBC
running ImprovedBlockBC as a subprotocol. This protocol is similar to LongBC
(in Section 3) but with a varying number of blocks depending on the state of
the trust graph at the end of each execution of ImprovedBlockBC.

4.1 Improved Block Broadcast

The protocol ImprovedBlockBC modifies ITBlockBC (in Section 3) using several
techniques. Similar to ITBlockBC, each party uses a universal hash function to
verify whether a block it receives is “correct”—meaning that all honest parties
agree on the value of the message block. To speed up the protocol, it also em-
ploys some of the parallel processing technique in [6]. Similar to CryptoBC of [6],
ImprovedBlockBC allows multiple pair of parties to send and receive blocks at the
same time. Additional conditions are checked to ensure that all honest parties
agree on which parties sending and receiving blocks at all time. When all par-
ties follow the protocol honestly, every party receives the block concurrently and
ImprovedBlockBC terminates in O(1) round (with oracle access to short broad-
cast). On the other hand, ImprovedBlockBC operates on one block at time, unlike
CryptoBC where different pairs of parties may send and receive different blocks
at the same time. This is unavoidable due to the weaker guarantee of universal
hash functions compared to that of collision-resistant hash functions.

We replace the dispute set ∆, the set H of parties that have already received
a block, and the history set T with a trust graph Gi and a graph Hi. While
they contain the same information, we utilize the graph properties including
connectivity and path length in our protocol. Similar to ITBlockBC, a party
may forfeit a block due to conflict in universal hash value. Instead of resetting
the block broadcast entirely as in ITBlockBC—which can lead to larger round
complexity—we minimize the number of such forfeits using two techniques. First,
a party Pj is only sent a block when all of its neighbors in the trust graph that
are closer to the sender already have the block. (In that case, we say Pj is “ready
to receive a block.”) Second, Pj only forfeits a block if it is disconnected to Ps

in Hi, which only occurs when all of the neighbors above are also disconnected.
Let {Hk}k∈SH be a family of universal hash functions with seeds in SH . Let

P = {P1, . . . , Pn} be a set of all parties with fixed ordering, e.g., P1 > P2 > . . . >
Pn. Each party Pi keeps its trusted graph Gi, where each node represents a party
in P, throughout ImprovedBlockBC for all message blocks. In the beginning of

11

the first block, Gi is initialized to a complete graph Cn. If a broadcast protocol
from Pa fails, Pi isolates Pa in Gi by removing all edges connecting to Pa. Let
G(Ps) denote the connected component of G containing Ps. We describe the
protocol ImprovedBlockBC in Figure 4. Note that all broadcasts in the same step
can be done in parallel. Pi ignores all messages it does not expect as specified
by the protocol.

Definition 3. Let G be a graph on P and H ⊆ G(Ps). We say Pj is ready to
receive a block from Pi with respect to (H,G,Ps) if all of the following holds:

– Pj is a neighbor of Pi in Gi;
– Pj /∈ H;
– For every shortest path from Pj to Ps, (Pj , Pjk , . . . , Ps), Pjk ∈ H;
– Pi is the maximal such Pjk (with respect to the ordering given above).

Now we prove the following properties of ImprovedBlockBC. The following
lemma shows that Gi and Hi of honest parties are the same as they are only
updated using information that is broadcast.

Lemma 1. Suppose all honest parties hold the same Gi at the beginning of
ImprovedBlockBC. Then, at the end of each while loop, all honest parties hold
the same Gi and Hi.

Proof. Assuming all honest parties hold the same Gi and Hi at the beginning
of a while loop. Then in Round 1,2 and 3, all honest parties agree whether Py is
ready to receive a block from Px. Then, by the agreement property of broadcast,
all honest parties agree on edge removal of Gi in Round 3 and hold the same
recording (ky, Px, Py)’s. Also by the agreement property, all honest parties agree
on edge removal of Gi in Round 4 and 5. Finally, by the agreement property and
the consistency of GI , they also agree on modification of Hi in Round 5. Since
the honest parties hold the same Gi and initialize the same Hi at the beginning
of the protocol, the consistency of Gi and Hi holds at the end of each while
loop. ut

From this point onward, we assume all honest parties hold the same Gi at
the beginning of ImprovedBlockBC, and denote the same Gi and Hi for all honest
Pi by G and H, respectively. The following lemma shows the consistency of the
values hold by honest parties. We use the property of universal hash functions
when the keys are chosen uniformly at random by honest parties.

Lemma 2. Except with negligible probability, at the end of each while loop, all
honest parties in H hold the same value m.

Proof. Assume that at the beginning of a loop, all honest parties in H hold
the same value m. Suppose Pi is an honest party added to H in this loop.
The statement holds trivially if there is no other honest party in H at the
end of the loop. Suppose there is another honest party Pj in H at the end
of the loop. Then Pi broadcasts (kj , Pa) for some Pa ∈ H in Round 2 and

12

ImprovedBlockBC(Ps,m)
For each party Pi on input a trust graph Gi.

1. Initialize a graph Hi ⊆ Gi(Ps) with only one vertex Ps and no edge.
2. While Pi ∈ Gi(Ps) and |V (Hi)| < |V (Gi(Ps))|, clear all records and do
Round 1: If Pi ∈ Hi, for each Pj ready to receive a block from Pi with respect

to (Hi, Gi, Ps) Pi sends mi to Pj via point-to-point channel.
Round 2: If Pi /∈ Hi and is ready to receive a block from Pj with respect to

(Hi, Gi, Ps),
(a) if Pi does not receive mj or receive more than one block from Pj

in Round 1, broadcast (fail, Pj) and remove {Pi, Pj} from E(Gi);
(b) else, sample k ← SH and broadcast (k, Pj) and record (k, Pj , Pi).

Round 3: When Pi outputs (Ay, Px) broadcast by Py, if {Px, Py} /∈ E(Gi) or Py

is not ready to receive a block from Px with respect to (Hi, Gi, Ps),
isolate Py in Gi. Else
(a) if Ay = fail, remove {Px, Py} from E(Gi);
(b) if Ay = ky, record (ky, Px, Py);
(c) if Pi = Ps, broadcast (Hky (m), Py);
(d) if Pi receives multiple broadcast messages from Py this round or

Ay is not one of the above, isolate Py in Gi.
Round 4: When Pi outputs (hy, Py) broadcast by Ps, if (ky, Px, Py) is not

recorded, output ⊥ and abort; else if Pi ∈ Hi or received mj in Round
1, check if Hky (mi) = hy or Hky (mj) = hy, respectively. Broadcast
(true, Py) or (false, Py) accordingly. If there exists a record (ky, Px, Py)
without (hy, Py) broadcast, output ⊥ and abort.

Round 5: When Pi outputs (true, Py) or (false, Py) with (ky, Px, Py) recorded
broadcast by Pb either in Hi or with (kb, Pa, Pb) recorded, Pi appends
(Pb, true/false) to the recording (ky, Px, Py). Isolate any Pb broadcast-
ing both (true, Py) and (false, Py), or Pb either in Hi or with (kb, Pa, Pb)
recorded broadcasting neither. At the end of this round, Pi processes
each recorded (ky, Px, Py, . . .) one by one in the order of Py as follows.
(a) For each Pb ∈ Hi whose (Pb, false) is appended,

i. for each Pa, Pb’s neighbor in Gi, if (Pa, true) is appended (or
Pa = Ps), remove {Pa, Pb} from E(Gi) and E(Hi);

ii. remove Pb from Hi.
(b) For each Pb with (kb, Pa, Pb, . . .) recorded, if (Pa, true) is appended

(or Pa = Ps), remove {Pa, Pb} from E(Gi) and append fail to
(kb, Pa, Pb, . . .).

(c) Ignore Pb that is removed from Hi earlier this round.
After processing all records, remove any Pa no longer connected to Ps

in Hi from Hi. For each recorded (ky, Px, Py, . . .), if Px is still in Hi,
{Px, Py} is still in E(Gi) and no fail appended, add Py to V (Hi) and
{Px, Py} to E(Hi) and if Pi = Py, set mi = my.

3. If Pi ∈ Hi, output mi. Otherwise, output ⊥.

Fig. 4. Improved Block Broadcast

13

Ps broadcasts (hi, Pi) in Round 3. Also, Pj broadcasts (true, Pi) in Round 4;
otherwise, Pj would be removed from or not added to Hi. Since Pi and Pj are
honest Hki(ma) = Hki(mj) = hi. By the property of universal hash function,
since ki is chosen honestly independent of the messages, except with negligible
probability, ma = mj = m. The result follows as the first loop has V (H) = {Ps}.

ut

Let Good be the event that, at the end of each while loop, all honest parties
in H hold the same value m.

Lemma 3. Assuming the event Good occurs, for any two different honest parties
Pi and Pj, {Pi, Pj} ∈ E(G) at any point in the protocol. Furthermore, at the
end of the protocol, either all honest parties are in H and output the same m,
or output ⊥.

Proof. An honest Pa removes {Pi, Pj} from E(G) when one of the following
holds:

1. Pj is ready to receive a block from Pi but does not get one or get more than
one in Round 1 and broadcasts (fail, Pi) in Round 2;

2. Pj broadcasts malformed or multiple messages in Round 2;
3. Pi and Pj broadcast different (true/false, Py) with (ky, Px, Py) recorded in

Round 4.

By Lemma 1, the first two conditions do not occur for honest Pi and Pj . By
Lemma 2, the last condition does not occur for honest Pi and Pj . Thus, {Pi, Pj}
is never removed from E(G).

By the agreement property of broadcast, honest parties agree on the abort
condition in Round 4. If the abort condition does not occur, the protocol ends
when Pi /∈ G(Ps) or |V (H)| = |V (G(Ps))|. Since honest parties are connected
in G, they agree on the first condition. The honest parties also agree on the
second condition by Lemma 1, and if the first condition does not hold, it implies
Pi ∈ H = G(Ps) for all honest Pi. By Lemma 2, they all output m. ut

Let G∗ be the trust graph G at the end of the protocol. Let H∗ = G∗(Ps).
We let d(Pi) denote the length of the shortest path from Pi to Ps in H∗ and
d = maxi d(Pi). For j = 1, . . . , d, let ∆j be the number of edges removed from G
when all parties Pi with d(Pi) ≤ j are last added to H (i.e., not removed later
in the protocol). We have 0 ≤ ∆1 ≤ ∆2 ≤ . . . ≤ ∆d ≤ ∆

Lemma 4. Suppose a party Pi is in H at the end of the protocol, then Pi is
last added to H in ti = t(Pi) ≤ d(Pi) +∆d(Pi) loops. In particular, assuming the
event Good occurs, the protocol ends in 5(d+∆) rounds.

Proof. We prove the statement by induction on d(Pi). Clearly, when d(Pi) = 1,
(Pi, Ps) ∈ E(G∗) and Ps sends a block to Pi every loop until Pi is added to H. If
Pi fails to be added, a neighbor of Pi broadcasts (false, Pi), and thus there must
be an edge (Pa, Pb) that gets removed from E(G). Thus, ti = t(Pi) ≤ d(Pi)+∆1.

14

Suppose any Pj with d(Pj) = d(Pi)−1 is last added to H in tj ≤ d(Pj)+∆d(Pj) =
d(Pi)+∆d(Pj)−1 loops. In the (tj +1)th loop, either Pi ∈ H or Pi /∈ H. Suppose
Pi ∈ H. Then Pi is not removed in or after this loop as Pj is not. Otherwise,
a neighbor Pj of Pi on the shortest path will have to be added after tjth loop,
which is a contradiction. Thus, ti ≤ tj ≤ d(Pi) + ∆d(Pi). Now suppose Pi /∈ H.
Then Pi is ready to receive a block from one of its neighbors every loop after tj as
all of its neighbors on the shortest path are in H and have never been removed.
Thus, in every loop after tj , either Pi gets a block or an edge gets removed from
E(G). Therefore, ti = tj + 1 + (∆d(Pi) −∆d(Pi)−1) ≤ d(Pi) +∆d(Pi).

Now assume that the event Good occurs. If an honest party is in H at the
end of the protocol, then by Lemma 3, all honest parties are in H at the end
of the protocol. The last honest party is last added to H in d + ∆ loops, i.e.,
5(d + ∆) rounds. Otherwise, suppose all honest parties are not in H at the
end of the protocol. By Lemma 3 and the agreement property of broadcast,
honest parties terminate at the same time. Let t∗ be the last loop before the
termination. Suppose that every party follows the protocol correctly from the
next loop onward. Then an honest party Pi will stay in Gi(Ps) and be added to
H within t′ ≤ d+∆ loops. We have t∗ ≤ t′ ≤ d+∆ as well. ut

Lemma 5. Let d0 be the maximum length of the shortest path from any honest
party to Ps at the beginning of the protocol. Let d1 be the maximum length of the
shortest path from any honest party to Ps at the end of the protocol. The number
of times a block is sent to and from honest parties is at most O(n+∆+n(d1−d0)).

Proof. Every party in G∗(Ps) must receive a block at least once. Thus, we need
n times. A party receives a block more than once under two conditions:

1. Pj /∈ H is ready to receive a block from Pi but fails due to

(a) Pi does not send a block; or
(b) (Pi, Pj) is removed from E(G); or
(c) Pi is removed from H.

2. Pj ∈ H is removed from H.

For 1(a) and 1(b), |E(G)| decreases by 1. For 1(c) and 2, the shortest path of
some party increases by at least 1. Thus, the number of additional times a party
needs to get a block is bounded by ∆+ n(d1 − d0). ut

4.2 Improved Broadcast Extension

Now we are ready to describe our main construction of broadcast extension
using block broadcast ImprovedBlockBC as a subprotocol. As in [7], in order to
broadcast a message m of arbitrary length `, we cut m into q blocks. Unlike
in [7], the block size will vary depending on the trust graph G at the end of the
previous block. In particular, each block mj has length `j = `dj−1/n

2 where dj
is the maximum length of the shortest path from Ps to any Pi connected to Ps

at the end of jth execution of ImprovedBlockBC. We let d0 = 1 and allow the

15

ImprovedLongBC(Ps,m)
1. Each party Pi initializes a trust graph Gi = Cn, a complete graph on V = P.
2. Sender Ps initializes m1, the first `1 bits of m where `1 = `/n2 (padding if `

is not divisible by n2), and sets c = 1.
3. While

∑c
j=1 `j < `, do the following:

(a) Invoke ImprovedBlockBC(Ps,mc) and let mi
c be the output of Pi.

(b) If |mi
c| 6= `c, Pi aborts.

(c) Compute dc the maximum length of the shortest path from Ps to any Pi

connected to Ps.
(d) Let `c+1 = `dc/n

2 and mc+1 be the next `c+1 bits of m.
(e) increase c by 1.

4. For each Pi, if mi
j = ⊥ for some j, output ⊥. Otherwise, output mi

1|| . . . ||mi
q

where q is the number of ImprovedBlockBC invoked.

Fig. 5. Broadcast Extension Using ImprovedBlockBC

last block to be shorter so that the length of all q blocks add up to `. We then
run ImprovedBlockBC in Figure 4 q times sequentially as shown in Figure 5.

Now we prove the round complexity and communication complexity of Im-
provedLongBC. Let dj be the maximum length of the shortest path from Ps to
any Pi connected to Ps at the end of jth execution of ImprovedBlockBC, and ∆i

be the decrease in number of edges of G.

Lemma 6. Assuming an oracle for broadcasting short messages, ImprovedLongBC
takes at most O(n2) rounds.

Proof. The round complexity of LongBC is the sum of the round complexity of
ImprovedBlockBC. By Lemma 4, the round complexity is

q∑
j=1

5(dj +∆j) = 5

 q∑
j=1

dj +

q∑
j=1

∆j

Since ` =

∑q
j=1 `j = `(1 +

∑q−1
j=1 dj)/n

2,

q∑
j=1

dj = n2 − 1 + dq ≤ n2 + n− 1

and
∑q

j=1∆j ≤ |E(Cn)| ≤ n2/2. We have the round complexity O(n2). ut

Let d′j be the maximum length of the shortest path from Ps to any honest
Pi connected to Ps at the end of jth execution of ImprovedBlockBC. Let B(l) be
the communication complexity of broadcasting l bits.

16

Lemma 7. The number of bits sent and received by honest parties in Improved
LongBC is at most O(`n+ n3(B(λ) + nB(log n))).

Proof. The communication complexity of ImprovedLongBC is the sum of the
communication complexity of ImprovedBlockBC.

By Lemma 5, the number of blocks communicated is bj ≤ n+∆j+n(dj−dj−1)
where each block incurs the communication of `j+B(|k|+log n)+B(|h|+log n)+
nB(1 + log n). Thus, the communication complexity is

q∑
j=1

bj`j +

q∑
j=1

bj (B(|k|+ log n) +B(|h|+ log n) + nB(1 + log n))

The first sum is
q∑

j=1

dj`j ≤
q∑

j=1

(n+∆j + n(dj − dj−1))
`dj−1
n2

= `

(∑q
j=1 dj−1

n
+

∑q
j=1∆jdj−1

n2
+

∑q
j=1 dj−1(d′j − d′j−1)

n

)

≤ `

n2
n

+
n
∑q

j=1∆j

n2
+

(∑q
j=1 dj−1

)(∑q
j=1(d′j − d′j−1)

)
nq

≤ `

(
n+ n+

n3

nq

)
≤ 3`n.

as d′j ≤ dj ≤ n and q ≥ n. Since
∑q

j=1 bj ≤ nq+
∑q

j=1∆j +nd′q ≤ n3 + 2n2, the
communication complexity is

3`n+ (n3 + 2n2) (B(|k|+ log n) +B(|h|+ log n) + nB(1 + log n))

= O(`n+ n3(B(λ) + nB(log n))).

ut
Since the correctness of ImprovedLongBC follows directly from the correctness

of ImprovedBlockBC from Lemma 2 and 3, we get the following theorem.

Theorem 4. Assuming an oracle for broadcasting short messages, there exists a
broadcast protocol achieving information-theoretic security in t < n setting for an
`-bit message in O(n2) rounds by communicating O(`n+n3(B(λ) +nB(log n)))
bits.

Combining the above result with the broadcast protocol of [15] gives the
following corollary.

Corollary 4. There exists a broadcast protocol achieving information-theoretic
security in t < n setting for an `-bit message in O(n3) rounds by communicating
O(`n+ n10λ) bits.

This result improves round complexity from instantiating the broadcast ex-
tension protocol in [7] with the broadcast protocol in [15] while maintaining the
communication complexity.

17

5 Conclusion

We studied the broadcast protocols for long messages in the t < n setting with
the information-theoretic security. We modify and improve the broadcast exten-
sion protocol in [7], with the previously best-known round complexity of O(n3)
assuming an oracle for short messages. Our broadcast extension protocol has
round complexity of O(n2) while maintaining the same communication com-
plexity. Combining our result with the broadcast protocol of [15] gives a broad-
cast extension protocol in the t < n setting that achieves the communication
complexity O(`n+ n10λ) and the round complexity of O(n3). We leave an open
question on how to further improve the round complexity to O(n2) matching
the computational case in [6] or to the optimal round complexity of O(n).

References

1. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing. pp. 479–488. ACM (1996)

2. Chaum, D., Roijakkers, S.: Unconditionally-secure digital signatures. In: Confer-
ence on the Theory and Application of Cryptography. pp. 206–214. Springer (1990)

3. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM) 32(1), 191–204 (1985)

4. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing 12(4), 656–666 (1983)

5. Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In: Pro-
ceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing. pp. 163–168. ACM (2006)

6. Ganesh, C., Patra, A.: Optimal extension protocols for byzantine broadcast and
agreement. IACR Cryptology ePrint Archive 2017, 63 (2017)

7. Hirt, M., Raykov, P.: Multi-valued byzantine broadcast: The t < n case. In: Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. pp. 448–465. Springer (2014)

8. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Annual International Cryptology Conference. pp. 145–161. Springer
(2003)

9. Liang, G., Vaidya, N.: Error-free multi-valued consensus with byzantine failures. In:
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles
of distributed computing. pp. 11–20. ACM (2011)

10. Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer. In:
Theory of Cryptography, pp. 519–538. Springer (2013)

11. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Advances in Cryptology–CRYPTO 2012,
pp. 681–700. Springer (2012)

12. Patra, A.: Error-free multi-valued broadcast and byzantine agreement with op-
timal communication complexity. In: International Conference On Principles Of
Distributed Systems. pp. 34–49. Springer (2011)

13. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2), 228–234 (1980)

18

14. Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number
of faulty processors. STACS 92 pp. 337–350 (1992)

15. Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine
agreement for t > n/3. IBM (1996)

16. Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued
byzantine agreement. Information Processing Letters 18(2), 73–76 (1984)

19

