
Succinct Garbling Schemes from
Functional Encryption through a

Local Simulation Paradigm?

Prabhanjan Ananth1 and Alex Lombardi2

1 prabhanjan@csail.mit.edu, MIT
2 alexjl@mit.edu, MIT

Abstract. We study a simulation paradigm, referred to as local sim-
ulation, in garbling schemes. This paradigm captures simulation proof
strategies in which the simulator consists of many local simulators that
generate different blocks of the garbled circuit. A useful property of such
a simulation strategy is that only a few of these local simulators depend
on the input, whereas the rest of the local simulators only depend on the
circuit.
We formalize this notion by defining locally simulatable garbling schemes.
By suitably realizing this notion, we give a new construction of succinct
garbling schemes for Turing machines assuming the polynomial hardness
of compact functional encryption and standard assumptions (such as ei-
ther CDH or LWE). Prior constructions of succinct garbling schemes
either assumed sub-exponential hardness of compact functional encryp-
tion or were designed only for small-space Turing machines.
We also show that a variant of locally simulatable garbling schemes can
be used to generically obtain adaptively secure garbling schemes for cir-
cuits. All prior constructions of adaptively secure garbling that use some-
where equivocal encryption can be seen as instantiations of our construc-
tion.

1 Introduction

Garbling schemes are ubiquitous to cryptography. Their notable applica-
tions include secure computation on the web [GHV10, HLP11], construc-
tions of functional encryption [SS10, GVW12, GKP+12], one-time pro-
grams [GKR08], delegation of computation [GGP10, AIK10], and garbled
RAMs [GHL+14, GLOS15]. In fact, there are many more applications
under the umbrella of randomized encodings, which are implied by gar-
bling schemes. These applications include parallel cryptography [AIK04,
AIK06], bootstrapping theorems in functional encryption and indistin-
guishability obfuscation [ABSV15, App14a], and key-dependent message
security [BHHI10, App14b]. More recently, garbling schemes were also
crucially used to solve two longstanding open problems in cryptogra-
phy: achieving two-round passively secure MPC [GS17, BL18, GS18c]

? The full version of this paper is available at https://eprint.iacr.org/2018/759.

https://eprint.iacr.org/2018/759

and identity-based encryption from weaker assumptions [DG17, BLSV18,
DGHM18].

A garbling scheme allows for efficiently encoding a circuit C, represented
by 〈C〉 (also referred to as garbled circuit), and separately encoding an
input x, represented by 〈x〉. We require that given 〈C〉 and 〈x〉, it is
possible to efficiently recover C(x) and moreover, the encodings should
not leak anything beyond (C,C(x))3. This notion was first introduced
by Yao [Yao82, Yao86] as a technique to solve two-party secure com-
putation (a full proof of this application was only given much later by
Lindell and Pinkas [LP09]). More than three decades later, proposing
new constructions of garbling schemes is still an active and fascinating
research direction.

While the traditional notion of garbling schemes considers encoding cir-
cuits, this notion can be generalized for other models of computation.
In particular, we consider garbling Turing machines; this notion is often
referred to as succinct garbling schemes [BGL+15, CHJV15, KLW15].
The non-triviality in this setting is to encode both the Turing machine
M and the input x in time independent of the runtime of M . In more
detail, we require that the time to garble a Turing machine M should be
polynomial in λ (security parameter) and |M | while the time to encode
an input x should be polynomial in λ and |x|. For decoding, we require
that it should only take time polynomial in λ and t to recover M(x),
where t is the runtime of M on x.

Succinct garbling schemes have been used in many applications includ-
ing time-lock puzzles [BGJ+16], concurrent zero-knowledge [CLP15], in-
distinguishability obfuscation for Turing machines [BGL+15, CHJV15,
KLW15] and delegation for deterministic computations [BGL+15, CHJV15,
KLW15]. In terms of constructions, the initial works of [BGL+15, CHJV15]
proposed succinct garbling schemes with the caveat that the size of the
garbled Turing machine grows with the maximum space taken by the
Turing machine during its execution. Subsequently, Koppula et al. [KLW15]
showed how to get rid of this caveat and presented a construction of
succinct randomized encodings (a notion where M and x are encoded
together) assuming indistinguishability obfuscation and one-way func-
tions.

It is worth noting that the approach taken by [BGL+15] differs substan-
tially from the approach taken by [CHJV15, KLW15] to obtain succinct
randomized encodings. The construction of [BGL+15] is very simple to
describe: they succinctly garble a Turing machine M (running in time at
most T) by outputting an obfuscated program that on input i ≤ T out-
puts the ith garbled table of a Yao garbled circuit [Yao82, Yao86, LP09]
associated to a circuit C representing M ’s computation. One might hope
that this already yields a fully succinct garbling scheme, but the security
proof of [BGL+15] requires hardwiring O(s) bits of information in the
obfuscated program when M requires space s, so this does not yield a
fully succinct garbling scheme (which [KLW15] does achieve).

3 In this work, we only consider the case of hiding the input x. To hide the circuit C
being garbled, we can garble an universal circuit with an encryption of C hardwired
inside it and produce an input encoding of x along with the decryption key.

While the final result has an undesirable dependence on s, the [BGL+15]
approach has the advantage of relying only on obfuscation for circuits
of input length log(T) = O(log(λ)) and hence can be proved secure as-
suming the existence of polynomially secure functional encryption [AJ15,
BV15, LZ17, LT17]. The approach of [CHJV15, KLW15] does not share
this property, and indeed there is currently no known construction of
fully succinct garbling from (poly-secure) FE. In general, there are a few
primitives (such as trapdoor permutations and non-interactive key ex-
change) known to follow from FE [GPS16, GS16, GPSZ17, LZ17] while
many others (such as NIZK [SW14, BP15], deniable encryption [SW14],
and long output secure function evaluation [HW15]) we know only how
to construct from IO (see [LZ17] for a more detailed discussion). One of
our main goals is to understand whether constructing succinct garbling
schemes requires the full power of IO in this sense.

Rather intriguingly, the progress on succinct randomized encodings fol-
lowed a similar pattern to progress on the problem of constructing adap-
tively secure circuit garbling schemes. There is a simple transforma-
tion [BHR12] from selectively secure garbling schemes to adaptively se-
cure garbling schemes in which the online complexity (that is, the size of
the input encoding) grows with the circuit size. Subsequent to [BHR12],
the work of [HJO+16] showed how to achieve adaptive schemes with on-
line complexity that only depends on the width w of the circuit (from
one-way functions) or depth d of the circuit (from 2−O(d)-secure one-way
functions). Following [HJO+16], the works of [JW16, JSW17] present
additional constructions of adaptive circuit garbling schemes. Finally, a
beautiful work of Garg and Srinivasan [GS18a] showed how to achieve
adaptive garbling schemes with online complexity |x| + poly(log(|C|, λ)
assuming either the computational Diffie-Hellman (CDH) or learning
with errors (LWE) assumption.

We note that the measure of width complexity in the case of circuits is re-
lated to the measure of space complexity in the case of Turing machines.
Indeed, we can transform a Turing machine M that requires space s on
inputs of length n into a circuit of width O(n + s); similarly, a circuit
of width w can be simulated by a Turing machine which takes space
at most O(w). Moreover, there are actually major similarities between
the security proofs of [HJO+16] (for their width-dependent adaptive gar-
bling scheme) and [BGL+15] (for their space-dependent succinct garbling
scheme). At a high level, both require opening up the [LP09] proof of
security for Yao’s garbling scheme and make use of the fact that security
is argued by a gate-by-gate hybrid argument.

These similarities present the possibility of transporting some of the tech-
niques from the adaptive garbling literature in order to construct new
and improved succinct garbling schemes. In particular, we ask: can the
ideas from [GS18a] be used to construct succinct garbling?

1.1 Our Contributions

We give a new construction of succinct garbling schemes using the ideas
of [GS18a]. Unlike the work of [KLW15]4 based on sub-exponentially
secure compact functional encryption, our construction is based on poly-
nomially secure compact functional encryption and polynomially secure
CDH/LWE. As an added advantage, our construction is conceptually
simpler. Instead of using IO/FE to compress a Yao garbled circuit as
in [BGL+15], we compress an appropriately modified [GS18a] garbled
circuit.

To prove security, we identify a property, termed as local simulation, of
selectively secure garbling schemes for circuits that when combined with
other tools yields succinct garbling schemes. To describe this property,
we first recall the security experiment of garbling schemes. To prove
that a given garbling scheme is secure, one needs to exhibit a simulator
with the following property: given just the circuit C and the output
C(x), it can output a simulated garbled circuit and input encoding that
is indistinguishable from an honest garbled circuit and input encoding.
Typically this indistinguishability is shown by a sequence of hybrids:
in every step, a hybrid simulator is defined to take an input C and x
produces the simulated garbling and input encoding. The first hybrid
defines the honest garbling of C and the honest encoding of x, while
the final hybrid defines the simulated distribution. At a bare minimum,
our notion of local simulation captures a class of such hybrid arguments
wherein the simulation of garbled circuit is divided into blocks and in
every hybrid, only a small Lsim-sized subset of blocks are simulated using
C and x while the rest are simulated only using C. We observe that
this seemingly artificial property is already satisfied by current known
schemes [Yao86, GS18a].

To make the local simulation notion useful for applications, we need
to consider strengthenings of this notion. We formalize the above in-
formal description of local simulation and call this weak local simula-
tion; correspondingly the garbling scheme will be called a weak locally
simulatable garbling scheme (weak LSGS). We consider two strengthen-
ings: (i) strong locally simulatable garbling schemes (strong LSGS) and
(ii) semi-adaptive locally simulatable garbling schemes (semi-adaptive
LSGS). Both the notions of semi-adaptive LSGS and strong LSGS imply
weak LSGS and will be parameterized by (Lsim, Linp), where Linp refers
to the online complexity of the garbling scheme.

We now state our results on succinct garbling.

Succinct Garbling. We prove the following theorem.

4 We note that [KLW15] construct succinct randomized encodings scheme and not gar-
bling schemes. However, their construction can be adapted to get succinct garbling
schemes

Theorem 1. (Main Theorem) Assuming single-key compact5 public-key
functional encryption for circuits6 and X, where X ∈ {Computational Diffie-Hellman,
Factoring, Learning with Errors}, there exists a succinct garbling scheme

for Turing machines.

Previous constructions of succinct garbling schemes were based on indis-
tinguishability obfuscation7 (implied by sub-exponentially secure com-
pact functional encryption) and one-way functions [KLW15]. This is the
first work to show the feasibility of succinct garbling schemes from fal-
sifiable assumptions. Moreover, [KLW15] is significantly more involved
whereas our construction is conceptually simpler. We note that several
works subsequent to [KLW15] use their construction to achieve various
primitives including garbled RAM [CH16, CCC+16, CCHR16, ACC+16],
constrained PRFs for Turing machines [DKW16], indistinguishability ob-
fuscation for Turing machines with constant overhead [AJS17a], patch-
able indistinguishability obfuscation [AJS17b, GP17] and so on. We hope
that our simpler construction will correspondingly yield simpler presen-
tation of these applications as well.
One new consequence of the above theorem is that we obtain collusion-
resistant functional encryption for Turing machines from collusion-resistant
functional encryption for circuits and standard assumptions; this follows
from [AS16].
We prove Theorem 1 in two steps. First, we prove the following proposi-
tion.

Proposition 1 (Informal). Assuming strong (Lsim, Linp)-LSGS and com-
pact functional encryption for circuits, there exists a succinct garbling
scheme in which the complexity of garbling a Turing machine M is
poly(λ, |M |, Lsim) and the complexity of encoding x is Linp(λ, |x|,m), where
m is the output length of M .

Once we prove the above proposition, we show how to instantiate strong
LSGS from laconic oblivious transfer8 to obtain our result.

Proposition 2 (Informal). Assuming laconic oblivious transfer, there
exists a strong (Lsim, Linp)-LSGS with Lsim = poly(λ).

5 From prior works [BV15, AJS15], we can replace compact public-key FE with
collusion-resistant FE in the theorem statement.

6 A public-key functional encryption scheme is a public-key encryption scheme with
the additional key generation procedure that takes as input circuit C and produces a
functional key for C that can be used to decrypt an encryption of x to obtain C(x).
A compact functional encryption is a functional encryption scheme where the com-
plexity to encrypt a message x is a fixed polynomial in (λ, |x|) and in particular, the
encryption complexity grows only with log(|C|). A functional encryption scheme is a
single-key scheme if it satisfies {PK,Enc(PK, x0), skC} ∼=c {PK,Enc(PK, x1), skC}
for an adversarially chosen C and x and specifically, the adversary is only issued a
single key in the security experiment.

7 See the full version for a formal definition.
8 We actually use the existentially equivalent notion of appendable laconic OT, which

we define in the full version.

Since laconic oblivious transfer can be instantiated from CDH, factoring,
LWE and other assumptions [CDG+17, DG17, BLSV18, DGHM18], this
proves Theorem 1. In addition, we note (in full version) that laconic
OT9 can be constructed from IO and one-way functions; combined with
the above propositions, this says that our succinct garbling scheme can
also be instantiated from IO and OWFs alone (giving an alternative
construction to [KLW15]).
We note that the garbling scheme of Yao [Yao86] also yields a strong
(Lsim, Linp)-LSGS with Lsim proportional to the width of the circuit being
garbled. Combining this with Proposition 1, we get a succinct garbling
scheme for small space Turing machines; this is essentially the same
scheme as that of [BGL+15].

Adaptive circuit garbling. Next, we show how to construct adap-
tive circuit garbling schemes using our notion of (semi-adaptive) LSGS.
First, we recall the definition of adaptive circuit garbling schemes. In
the adaptive security experiment, an adversary can submit the circuit C
and the input x in any order; specifically, it can choose the input as a
function of the garbled circuit or vice versa. We show,

Theorem 2 (Informal). Assuming semi-adaptive (Lsim, Linp)-LSGS and
one-way functions, there exists an adaptively secure circuit garbling scheme
with online complexity Linp + poly(λ,Lsim).

This theorem can be seen as an abstraction of what the somewhere equiv-
ocal encryption-based technique of [HJO+16] can accomplish. For exam-
ple, the semi-adaptive LSGS can be instantiated from laconic oblivious
transfer, recovering the result of [GS18a]. The theorem below follows
from a previous work [GS18a].

Theorem 3 ([GS18a]). Assuming laconic oblivious transfer, there ex-
ists a semi-adaptive (Lsim, Linp)-LSGS scheme with online complexity Linp(λ
, n,m) = n+m+ poly(λ) and Lsim = poly(λ), where n and m denote the
input and output lengths for the circuit.

We note that Yao’s garbling scheme is also a semi-adaptive (Lsim, Linp)-
LSGS with Lsim being proportional to the width of the circuit and thus,
combining the above two theorems we get an adaptively secure circuit
garbling scheme with the online complexity proportional to the width of
the circuit. This construction is essentially the same as the width-based
construction of [HJO+16], with a more modular security proof.
We summarise the results in Figure 1.

1.2 Concurrent Work

In concurrent and independent work, Garg and Srinivasan [GS18b] give a
construction of succinct randomized encodings from IO (and laconic OT)

9 We can only achieve laconic OT satisfying selective security, which suffices for Propo-
sition 2.

Somewhere

Equivocal Encryption
Compact Functional

Encryption

Laconic Oblivious Transfer

Adaptive Circuit

Garbling Schemes

Semi-Adaptive

Locally Simulatable

Garbling Schemes

Strong

Locally Simulatable

Garbling Schemes

Succinct

Garbling Schemes

+ +

Fig. 1. Summary of results.

that implicitly relies on only IO for logarithmic length inputs, and hence
polynomially-secure functional encryption. While their work is phrased
differently from this work (in particular, they give a direct construction
without considering the abstraction of local simulatability), the basic
SRE constructions are essentially the same.

1.3 Technical Overview

We first recall the garbling scheme of Yao [Yao86] and describe an overview
of its security proof. Yao’s scheme will serve as a starting point to un-
derstanding the definition of locally simulatable garbling schemes.

Yao’s Garbling Scheme [Yao86]. Consider a boolean circuit C : {0, 1}` →
{0, 1} comprising only of NAND gates. For ease of presentation, we as-
sume that C is layered such that all gates that are at the same distance
from the output gate belong to the same layer. Moreover, every interme-
diate wire in the circuit connects two gates in adjacent layers.
The first step in the garbling of a circuit C is to generate two wire keys
K0

w and K1
w for every wire w in the circuit. Next, associate with every

gateG a garbled table consisting of four entries (CT00,CT01,CT10,CT11).

For b0, b1 ∈ {0, 1}, CTb0b1 is an encryption of K
NAND(b0,b1)
wc under the two

keys10 Kb0
wa

and Kb1
wb

. Wires wa and wb are input wires of G and wc is the
output wire ofG. Finally, permute the garbled table (CT00,CT01,CT10,CT11).

10 There are many ways of realizing an encryption scheme under two different secret
keys. One convenient method is to secret share the message and encrypt the two
shares using the two keys.

The garbling of C consists of permuted garbled tables associated with
every gate in the circuit. The input encoding of x consists of keys Kxi

wi
,

where wi is the ith input wire of C and xi is the ith bit of x. Also part
of the input encoding is a translation table that maps 0 to K0

wout
and 1

to K1
wout

, where wout is the output wire of C.

Selective Security of Yao’s Garbling Scheme: To show that Yao’s
garbling scheme is secure we need to demonstrate a probabilistic poly-
nomial time simulator Sim that given (C,C(x)) (and in particular, x is
not given) outputs a simulated garbling of C and a simulated input en-
coding. Sim is defined as follows: every wire w is only associated with a
single key Kw. Associated with every gate G is a garbled table consisting
of (CT1,CT2,CT3,CT4), where: for a randomly picked index i∗ ∈ [4], (i)
CTi∗ is an encryption of Kwc under keys Kwa and Kwb , (ii) for i 6= i∗,
CTi is an encryption of 0 under two randomly chosen secret keys (and
in particular these two keys are not used anywhere). The simulated gar-
bling of C consists of the simulated garbled tables associated with every
gate in the circuit. The input encoding consists of the keys {Kw} for
every input wire w. In addition, it consists of the translation table that
maps C(x) to Kwout and maps C(x) to K′wout

, where K′wout
is generated

afresh.

The indistinguishability of the output of Sim from an honestly generated
garbled circuit and input encoding can be argued by a hybrid argument
explicitly described in [HJO+16]. This hybrid argument will be associ-
ated with a sequence of intermediate simulators Sim1, . . . , Simq. Except
Simq, all the other simulators take as input circuit and the input; (C, x).
The final simulator Simq takes as input (C,C(x)). Sim1 computes the
garbling of C and the input encoding of x as dictated by the scheme.
The final intermediate simulator Simq is identical to Sim.

The ith intermediate simulator Simi works as follows: for every wire w
such that w is the output wire of a jth layer for j ≥ i, sample two keys
K0

w and K1
w. For any other wire w, sample a single wire key Kw. The

simulator consists of two components:

– Input-Dependent Simulation. This component takes as input
(C, x) and simulates all the garbled gates in the ith layer of C. For
every gate G (with input wires wa, wb and output wire wc) in the
ith layer, generate a garbled table (CT1,CT2,CT3,CT4), where for a

randomly picked index i∗ ∈ [4], (i) CTi∗ is an encryption of K
val(wc)
wc

under keys Kwa and Kwb , (ii) for i 6= i∗, CTi is an encryption of
0 under two randomly chosen secret keys (and in particular these
two keys are not used anywhere). Here, val(wc) denotes the value
assigned to the wire wc during the evaluation of C on x.

– Input-Independent Simulation. This component only takes as
input C and simulates the garbled gates in all the layers except the
ith layer. There are two cases:

- for a gate G in the jth layer, for j < i, the simulation of the
garbled gate for G is performed according to Sim.

- for a gate G in the jth layer, for j > i, the garbled gate for G is
generated according to the scheme.

Once the computational indistinguishability of Simi and Simi+1 is shown
for every i, the security of the scheme follows.

Complexity of Input-Dependent Simulation. Observe that the output
length of the input-dependent simulation component of every simulator
Simi is only proportional to the width of the circuit (in other words, the
maximum length of any layer in C). This observation has been crucially
exploited in two lines of work:

– The work of [HJO+16] introduced the powerful tool of somewhere
equivocal encryption (SEE) and showed how to combine it with the
garbling scheme of Yao to obtain adaptive garbling schemes with
online complexity that grows with the width of the circuit. Infor-
mally, somewhere equivocal encryption is used in conjunction with
the above proof of security for Yao’s scheme: in each step of a hybrid
argument, the input-dependent simulated gates are equivocated in
the online phase of the adaptive security game. Since the number
of input-dependent simulated gates is bounded by the width w of
the circuit, the online complexity of this garbling scheme is propor-
tional to w. Alternative proof strategies for Yao’s garbling scheme
can be used instead of our sketch above to obtain, for example, the
depth-based result of [HJO+16].

– The work of [BGL+15] showed how to combine indistinguishability
obfuscation for circuits and the garbling scheme of Yao to obtain a
succinct garbling scheme for small-space Turing machines. To garble
a Turing machine M that has worst-case runtime T , they construct
an obfuscation of a circuit that takes as input an index i and outputs
the garbled table corresponding to the ith gate of C11. Security is
argued by sequentially invoking the simulators (Sim1, . . . , Simq) of
Yao’s garbling scheme. Hardwiring the entire simulator’s output in
the obfuscated circuit would ruin the encoding complexity of the
succinct garbling scheme. However, it turns out that security can
be argued when only the input-dependent simulation component is
hardwired. This is exactly the reason why the encoding complexity
of this succinct garbling scheme grows with the maximum space
complexity of the Turing machines.

Locally Simulatable Garbling Schemes. We introduce the notion of a
locally simulatable garbling scheme as an abstraction that connects the
above proofs of adaptive security and succinctness for garbling schemes.
We give a brief overview of the security property associated with a locally
simulatable garbling scheme. The security property is parameterized by
an integer Lsim and a sequence of simulators (Sim1, . . . , Simq) for some
polynomial q. Every simulator Simi consists of an input-dependent com-
ponent and an input-independent component.

11 Their actual scheme instead outputs an entire layer of garbled tables at once, but
this variant has the same efficiency and security proof.

– The input-dependent component of Simi takes as input circuit C and
input x to be simulated. We require that this component of Simi is
of size at most Lsim · poly(λ) for some fixed polynomial poly.

– The input-independent component of Simi takes as input only the
circuit C.

We require that the output distribution of Sim1 is computationally in-
distinguishable from an honest generated garbling of C and honestly
generated encoding of x. The output distributions of Simi and Simi+1

are required to be computationally indistinguishable. Finally, we require
that the final simulator Simq does not have any input-dependent compo-
nent and in particular, Simq can simulate the garbled circuit and input
encoding on input (C,C(x)). We refer to this security property as weak
local simulation security.
Note that Yao’s garbling scheme, using the security proof given in our
outline, is a particular instantiation of a locally simulatable garbling
scheme with Lsim set to be the width of the circuit being garbled. The
depth-based analysis of Yao’s garbling scheme given in [HJO+16] can
also be seen as an instantiation of weak local simulation, albeit with
q = 2O(d) hybrids.
While the above security property captures the essence of local simula-
tion, it does not suffice for either the application of adaptively secure
garbling schemes or the application of succinct garbling schemes. To get
around this, we strengthen the security definition in two ways, resulting
in notions of semi-adaptive locally simulatable garbling schemes and
strong locally simulatable garbling schemes.

Succinct Garbling from Strong LSGS. We define the notion of a strong
locally simulatable garbling scheme and use it as an intermediate tool to
construct a succinct garbling scheme. To motivate our definition, we will
consider a candidate succinct garbling scheme (and proof strategy) from
IO and a weak LSGS, and see what additional properties are required
from the LSGS.
Generalizing the approach of [BGL+15], our candidate succinct garbling
scheme is as follows: garbling a Turing machine M with a runtime bound
T consists of computing an indistinguishability obfuscation of a circuit
HM,T,MSK with hardwired valuesM , T and a master secret key MSK. This
circuit takes as input an index i ≤ T , constructs the ith gate of C, where
C is the circuit representing T steps of M ’s computation on inputs of
length n, and then outputs a garbling of this gate computed with respect
to MSK. Encoding x consists of computing the input encoding of x with
respect to the LSGS. Decoding proceeds by evaluating the obfuscated
circuit on all indices ranging from 1 to T to obtain the different gate
encodings. These encodings are then decoded to obtain the result.
We are already implicitly assuming some properties of the underlying
LSGS in order for the above construction to make any sense at all. Specif-
ically,
– Our candidate implicitly assumes that a garbling of C is computed

in a gate-by-gate fashion. To enable this, we introduce the notion of
a local encoding of an LSGS, which guaratees that a garbling of C

consists of components that are each computed in time independent
of |C|; in particular, it must be computable from a small amount of
information about C. In fact, we further require that this information
about C is efficiently computable from M . In the case of Yao, this
amounts to saying that an individual gate of C can be computed
very efficiently from M .

– A priori, the master secret key MSK could be as large as |C| =
poly(T). Strictly speaking, this means that the above candidate is
not succinct. To overcome this, we think of MSK = (sk1, . . . , skN)
and define a local key generation procedure that takes as input an
index j and only generates the local secret key skj . Then, the pro-
gram H in our scheme takes as input an index i, determines the keys
skj that are necessary to encode the ith component of C, and then
computes the ith garbled component.

– To identify the subset of keys to be locally generated for the ith com-
ponent, we define a key list generation procedure that takes as input
i and outputs a list Li. This allows us to compress the potentially
large MSK using a pseudorandom function key.

– The size of the input encoding of the succinct garbling candidate is
exactly the same as the online complexity of the underlying strong
LSGS scheme. Thus, in order for our scheme to be succinct, the
online complexity of the underling LSGS scheme will have to be
independent of T .

By carefully defining the above notions, we can guarantee that the pro-
gram H is sufficiently small (polynomial in λ) so that the candidate
garbling scheme is succinct. What remains is to prove security in a way
such that programs H ′ that are obfuscated in the security proof are also
small. This is the most subtle step; in particular, this is the step where
[BGL+15] is limited to achieving succinctness that depends on the space
of the Turing machine.
To prove the security of the above scheme, a naive approach would be
to hardwire the entire simulated garbled circuit inside the obfuscation
of HM,T,MSK; however, this would violate succinctness. Instead, we want
to leverage local simulation in the following way: in each of a sequence
of hybrid circuits (H1, . . . , Hq), only hardwire the input-dependent com-
ponents of Simi, and instead include the code of the input-independent
components of Simi (which naively contains all of MSK) inside Hi. We
would then hope to argue using some combination of IO security and
LSGS security that adjacent hybrid programs in this sequence are indis-
tinguishable.
If the size of the input-dependent portion is small, meaning polynomial
in λ, then we can hope to achieve succinctness using this proof strategy.
This approach again implicitly assumes properties of the LSGS; namely,
that the input-independent local simulators each require only a small
portion of the master secret key (just as in the honest garbling case).
This is required so that the hybrid circuit Hi is still small.
Unfortunately, the security argument above is flawed. The problem is
that information about the master secret key MSK is contained within
the obfuscated program H̃, so it is unclear how to argue that the input-
dependent components of Simi and Simi+1 (i.e. the components that are

hardwired) are indistinguishable. Indeed, if the above strategy is not
carefully implemented (e.g. if the program Hi actually reveals the entire
MSK), they will be distinguishable.

To circumvent these issues, we require that the input-dependent por-
tion of the garbled circuit output by Simi is indistinguishable from the
corresponding input-dependent portion of the garbled circuit output by
Simi+1 even in the presence of {skj}j∈S, where S consists of all indices
accessed by the input-independent portion of the garbled circuit. In fact,
we define a stronger property that allows the adversary to choose the
keys {skj}j∈S .

In order to complete the hybrid argument, our proof strategy then works
in two steps: first switch the input-dependent components of the simu-
lated circuit from Simi to Simi+1 (using the above strong LSGS security),
and then switch the input-independent components from Simi to Simi+1.
Since we are actually including the code of these input-independent sim-
ulators within the obfuscated circuit, we must require that the input-
independent components of Simi and Simi+1 are functionally equivalent
to invoke IO security.

To summarize, a strong LSGS must satisfy two main properties in order
for the security of our succinct garbling scheme to be proved:

– The input-dependent components of Simi and Simi+1 must be in-
distinguishable even given all of the local secret keys necessary to
compute the input-independent components of Simi.

– The algorithms computing the input-independent components of
Simi and Simi+1 must be functionally equivalent.

Indeed, the security proof of [BGL+15] can be retroactively seen as invok-
ing the above properties of Yao’s garbling scheme. For completeness, we
sketch a proof (see the full version) that Yao’s garbling scheme satisfies
this definition with Lsim proportional to the width of the circuit.

Constructing Strong LSGS from Laconic OT. In order to complete
the proof of Theorem 1, we show that the garbling scheme of [GS18a] can
be adapted to satisfy our strong LSGS notion with Lsim = poly(λ). We
begin by giving a high level description of the [GS18a] garbling scheme:

– An encoding of an input x consists of (1) a somewhere equivocal
encryption secret key, (2) a one-time pad encryption r ⊕ x of x, (3)
a hash value h0 = H(r ⊕ x||0|C|−n) of an initial memory state for
the computation, (4) a signature on h0, and (5) the one-time pads
corresponding to each output gate. The hash functionH is associated
to a laconic OT scheme (we omit a discussion of laconic OT from
this overview).

– An encoding of a circuit C consists of s = |C| “garbled programs”
maintaining the following invariant: after executing i such programs,
the evaluator will have obtained a one-time pad encryption of the
first n + i gates of C evaluated on the input x along with a hash
of this one-time padded state and a signature on this hash value.
The garbled programs are then jointly encrypted using a somewhere
equivocal encryption scheme.

– Simulation security is argued by a sequence of hybrid simulators; in
a hybrid simulator, each garbled program is either computed via an
input-independent simulator or an input-dependent simulator, and
moreover only poly(λ) garbled programs require input-dependent
simulation. To prove adaptive security, the input-dependent simu-
lated gates are equivocated as part of the input encoding.

We interpret the scheme of [GS18a] – after removing the somewhere
equivocal encryption layer – as a LSGS by thinking of each garbled pro-
gram above as one component of the LSGS. Indeed, we show that each
garbled program in the [GS18a] scheme only requires a small amount
of the garbling secret key and that the input-dependent components of
Simi and Simi+1 are indistinguishable even in the presence of adversari-
ally chosen secret keys used for the other components. In fact, all but one
of the properties of a strong LSGS as defined earlier can be demonstrated
to hold for the [GS18a] scheme without modification.
The only problem with using the [GS18a] scheme as a strong LSGS
is that computation of the initial hash value H(r ⊕ x||0|C|−n) requires
O(|C|) time. Naively, this means that computing even the input encoding
would take O(|C|) time, but [GS18a] note that if H is computed via
a Merkle tree, the computation of H(0|C|−n) can be delegated to the
garbled circuit and only H(r ⊕ x) need be computed during the input
encoding. However, computing H(0|C|−n) cannot be done locally (i.e.
distributed in pieces to local components of the garbled circuit), which
violates the local encoding property of a strong LSGS.
To circumvent this problem, we modify the [GS18a] scheme so that the
initial hash value h0 = H(r⊕x) is a hash of only an n-bit string, and we
redesign the garbled programs so that each step updates the one-time
padded computation state by appending the next value. Instantiating this
corresponds to a new notion of appendable laconic OT, which we define
and construct generically from laconic OT. The local simulators for our
new scheme remain essentially the same, and our previous security proof
carries over to this modified version. We note that the same modification
could be made to the [GS18a] adaptive garbled circuit construction, with
the advantage that the more complicated notion of updatable laconic
OT is not required, and hence the [GS18a] scheme can be somewhat
simplified.
Combining this construction of strong LSGS from laconic OT with our
construction of succinct garbling from FE and strong LSGS, we obtain
Theorem 1.

Adaptive Garbling from Semi-Adaptive LSGS. In order to construct
adaptive garbling schemes, it turns out that the notion of strong LSGS
does not capture the essence of the adaptive security proof. We define a
notion of semi-adaptive LSGS and show that a semi-adaptive LSGS can
be used to construct adaptive circuit garbling schemes. We define the
notion below.
The semi-adaptive security property is associated with a sequence of
simulators (Sim1, . . . , Simq) for some polynomial q = q(λ). As before, the
output of Simi consists of an input-dependent component and an input-
independent component. However, in this security definition, we allow

the adversary to choose the input after he receives the input-independent
component of the garbled circuit from the challenger. In particular, the
adversary can choose the instance as a function of the input-independent
component.
Our transformation from semi-adaptive LSGS to adaptive garbling is
inspired by the work of [HJO+16]. In particular, our transformation ab-
stracts out the usage of somewhere equivocal encryption in this and other
prior works. In this transformation, the size of the input-dependent com-
ponent (i.e. Lsim) determines the size of the secret key in a somewhere
equivocal encryption scheme, and hence plays a role in determining the
online complexity of the adaptive garbling scheme. The online complex-
ity of the resulting adaptively secure garbling scheme is the sum of
poly(λ,Lsim) and the online complexity Linp of the semi-adaptive LSGS.
This can be used to recover the result of [GS18a] (as well as that of
[HJO+16]).

Acknowledgements

We thank Huijia Lin and Vinod Vaikuntanathan for useful discussions.
We also thank the anonymous reviewers for their helpful feedback.

References

ABSV15. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod
Vaikuntanathan. From selective to adaptive security in func-
tional encryption. In Annual Cryptology Conference, pages
657–677. Springer, 2015.

ACC+16. Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia
Lin, and Wei-Kai Lin. Delegating ram computations with
adaptive soundness and privacy. In Theory of Cryptography
Conference, pages 3–30. Springer, 2016.

AIK04. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryp-

tography in nc0. In 45th Symposium on Foundations of
Computer Science (FOCS 2004), 17-19 October 2004, Rome,
Italy, Proceedings, pages 166–175, 2004.

AIK06. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Com-
putationally private randomizing polynomials and their ap-
plications. Computational Complexity, 15(2):115–162, 2006.

AIK10. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From
secrecy to soundness: Efficient verification via secure com-
putation. In International Colloquium on Automata, Lan-
guages, and Programming, pages 152–163. Springer, 2010.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability
obfuscation from compact functional encryption. In Annual
Cryptology Conference, pages 308–326. Springer, 2015.

AJS15. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. In-
distinguishability obfuscation from functional encryption for
simple functions. Eprint, 730:2015, 2015.

AJS17a. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. In-
distinguishability obfuscation for turing machines: Constant
overhead and amortization. In Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part II, pages 252–279, 2017.

AJS17b. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Patch-
able indistinguishability obfuscation: io for evolving soft-
ware. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 127–
155. Springer, 2017.

App14a. Benny Applebaum. Bootstrapping obfuscators via fast pseu-
dorandom functions. In International Conference on the The-
ory and Application of Cryptology and Information Security,
pages 162–172. Springer, 2014.

App14b. Benny Applebaum. Key-dependent message security: Generic
amplification and completeness. Journal of Cryptology,
27(3):429–451, 2014.

AS16. Prabhanjan Ananth and Amit Sahai. Functional encryption
for turing machines. In Theory of Cryptography Conference,
pages 125–153. Springer, 2016.

BGJ+16. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer
Paneth, Vinod Vaikuntanathan, and Brent Waters. Time-
lock puzzles from randomized encodings. In Proceedings
of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 345–356. ACM, 2016.

BGL+15. Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sid-
dartha Telang. Succinct randomized encodings and their ap-
plications. In STOC, 2015.

BHHI10. Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval
Ishai. Bounded key-dependent message security. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 423–444. Springer, 2010.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foun-
dations of garbled circuits. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages
784–796. ACM, 2012.

BL18. Fabrice Benhamouda and Huijia Lin. k-round multiparty
computation from k-round oblivious transfer via garbled in-
teractive circuits. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages
500–532. Springer, 2018.

BLSV18. Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod
Vaikuntanathan. Anonymous ibe, leakage resilience and cir-
cular security from new assumptions. In Advances in Cryp-
tology - EUROCRYPT 2018, 2018.

BP15. Nir Bitansky and Omer Paneth. Zaps and non-interactive
witness indistinguishability from indistinguishability obfus-
cation. In Theory of Cryptography Conference, pages 401–
427. Springer, 2015.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishabil-
ity obfuscation from functional encryption. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual Sym-
posium on, pages 171–190. IEEE, 2015.

CCC+16. Yu-Chi Chen, Sherman SM Chow, Kai-Min Chung, Rus-
sell WF Lai, Wei-Kai Lin, and Hong-Sheng Zhou. Cryptogra-
phy for parallel ram from indistinguishability obfuscation. In
Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, pages 179–190. ACM, 2016.

CCHR16. Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana
Raykova. Adaptive succinct garbled ram or: How to dele-
gate your database. In Theory of Cryptography Conference,
pages 61–90. Springer, 2016.

CDG+17. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta,
Peihan Miao, and Antigoni Polychroniadou. Laconic obliv-
ious transfer and its applications. In Annual International
Cryptology Conference, pages 33–65. Springer, 2017.

CH16. Ran Canetti and Justin Holmgren. Fully succinct garbled
ram. In Proceedings of the 2016 ACM Conference on In-
novations in Theoretical Computer Science, pages 169–178.
ACM, 2016.

CHJV15. Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod
Vaikuntanathan. Indistinguishability obfuscation of iterated
circuits and RAM programs. In STOC, 2015.

CLP15. Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round
concurrent zero-knowledge from indistinguishability obfus-
cation. In Annual Cryptology Conference, pages 287–307.
Springer, 2015.

DG17. Nico Döttling and Sanjam Garg. Identity-based encryption
from the diffie-hellman assumption. In Annual International
Cryptology Conference, pages 537–569. Springer, 2017.

DGHM18. Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and
Daniel Masny. New constructions of identity-based and key-
dependent message secure encryption schemes. In IACR In-
ternational Workshop on Public Key Cryptography. Springer,
2018.

DKW16. Apoorvaa Deshpande, Venkata Koppula, and Brent Waters.
Constrained pseudorandom functions for unconstrained in-
puts. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 124–
153. Springer, 2016.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-
interactive verifiable computing: Outsourcing computation to
untrusted workers. In Annual Cryptology Conference, pages
465–482. Springer, 2010.

GHL+14. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mar-
iana Raykova, and Daniel Wichs. Garbled ram revisited. In
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 405–422. Springer,
2014.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop
homomorphic encryption and rerandomizable yao circuits.
In Annual Cryptology Conference, pages 155–172. Springer,
2010.

GKP+12. Shafi Goldwasser, Yael Tauman Kalai, Raluca A Popa, Vinod
Vaikuntanathan, and Nickolai Zeldovich. Succinct functional
encryption and applications: Reusable garbled circuits and
beyond. IACR Cryptology ePrint Archive, 2012:733, 2012.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N Roth-
blum. One-time programs. In Annual International Cryp-
tology Conference, pages 39–56. Springer, 2008.

GLOS15. Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra
Scafuro. Garbled ram from one-way functions. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, pages 449–458. ACM, 2015.

GP17. Sanjam Garg and Omkant Pandey. Incremental program ob-
fuscation. In Annual International Cryptology Conference,
pages 193–223. Springer, 2017.

GPS16. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan.
Revisiting the cryptographic hardness of finding a nash equi-
librium. In Annual Cryptology Conference, pages 579–604.
Springer, 2016.

GPSZ17. Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and
Mark Zhandry. Breaking the sub-exponential barrier in ob-
fustopia. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 156–
181. Springer, 2017.

GS16. Sanjam Garg and Akshayaram Srinivasan. Single-key to
multi-key functional encryption with polynomial loss. In
Theory of Cryptography Conference, pages 419–442. Springer,
2016.

GS17. Sanjam Garg and Akshayaram Srinivasan. Garbled protocols
and two-round mpc from bilinear maps. FOCS 2017, 2017.

GS18a. Sanjam Garg and Akshayaram Srinivasan. Adaptively se-
cure garbling with near optimal online complexity. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 535–565. Springer, 2018.

GS18b. Sanjam Garg and Akshayaram Srinivasan. A simple con-
struction of io for turing machines. In Theory of Cryptogra-
phy Conference. Springer, 2018.

GS18c. Sanjam Garg and Akshayaram Srinivasan. Two-round mul-
tiparty secure computation from minimal assumptions. In
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 468–499. Springer,
2018.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption with bounded collusions via multi-
party computation. In Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, pages 162–179,
2012.

HJO+16. Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky,
Alessandra Scafuro, and Daniel Wichs. Adaptively secure
garbled circuits from one-way functions. In CRYPTO, 2016.

HLP11. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure com-
putation on the web: Computing without simultaneous in-
teraction. In Annual Cryptology Conference, pages 132–150.
Springer, 2011.

HW15. Pavel Hubacek and Daniel Wichs. On the communication
complexity of secure function evaluation with long output. In
Proceedings of the 2015 Conference on Innovations in Theo-
retical Computer Science, pages 163–172. ACM, 2015.

JSW17. Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs.
Adaptively indistinguishable garbled circuits. In Theory of
Cryptography Conference, pages 40–71. Springer, 2017.

JW16. Zahra Jafargholi and Daniel Wichs. Adaptive security of
yao’s garbled circuits. In TCC, 2016.

KLW15. Venkata Koppula, Allison Bishop Lewko, and Brent Waters.
Indistinguishability obfuscation for turing machines with un-
bounded memory. In STOC, 2015.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s
protocol for two-party computation. Journal of Cryptology,
22(2):161–188, 2009.

LT17. Huijia Lin and Stefano Tessaro. Indistinguishability obfus-
cation from trilinear maps and block-wise local prgs. In
Annual International Cryptology Conference, pages 630–660.
Springer, 2017.

LZ17. Qipeng Liu and Mark Zhandry. Exploding obfuscation: A
framework for building applications of obfuscation from poly-
nomial hardness. IACR Cryptology ePrint Archive, 2017:209,
2017.

SS10. Amit Sahai and Hakan Seyalioglu. Worry-free encryption:
functional encryption with public keys. In Proceedings of
the 17th ACM conference on Computer and communications
security, pages 463–472. ACM, 2010.

SW14. Amit Sahai and Brent Waters. How to use indistinguishabil-
ity obfuscation: deniable encryption, and more. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages
475–484. ACM, 2014.

Yao82. Andrew C Yao. Protocols for secure computations. In Foun-
dations of Computer Science, 1982. SFCS’08. 23rd Annual
Symposium on, pages 160–164. IEEE, 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract). In FOCS, pages 162–167, 1986.

	Succinct Garbling Schemes from Functional Encryption through a Local Simulation Paradigm

