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Abstract. Non-malleable codes were introduced by Dziembowski,
Pietrzak, and Wichs (JACM 2018) as a generalization of standard er-
ror correcting codes to handle severe forms of tampering on codewords.
This notion has attracted a lot of recent research, resulting in various
explicit constructions, which have found applications in tamper-resilient
cryptography and connections to other pseudorandom objects in theo-
retical computer science. We continue the line of investigation on explicit
constructions of non-malleable codes in the information theoretic setting,
and give explicit constructions for several new classes of tampering func-
tions. These classes strictly generalize several previously studied classes
of tampering functions, and in particular extend the well studied split-
state model which is a “compartmentalized” model in the sense that
the codeword is partitioned a prior into disjoint intervals for tampering.
Specifically, we give explicit non-malleable codes for the following classes
of tampering functions.
– Interleaved split-state tampering: Here the codeword is partitioned

in an unknown way by an adversary, and then tampered with by a
split-state tampering function.

– Affine tampering composed with split-state tampering: In this
model, the codeword is first tampered with by a split-state adver-
sary, and then the whole tampered codeword is further tampered
with by an affine function. In fact our results are stronger, and we
can handle affine tampering composed with interleaved split-state
tampering.

Our results are the first explicit constructions of non-malleable codes in
any of these tampering models. As applications, they also directly give
non-malleable secret-sharing schemes with binary shares in the split-
state joint tampering model and the stronger model of affine tampering
composed with split-state joint tampering. We derive all these results
from explicit constructions of seedless non-malleable extractors, which
we believe are of independent interest.
Using our techniques, we also give an improved seedless extractor for an
unknown interleaving of two independent sources.

Keywords: non-malleable code · tamper-resilient cryptography · ex-
tractor
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1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [36]
as an elegant relaxation and generalization of standard error correcting codes,
where the motivation is to handle much larger classes of tampering functions
on the codeword. Traditionally, error correcting codes only provide meaningful
guarantees (e.g., unique decoding or list-decoding) when part of the codeword
is modified (i.e., the modified codeword is close in Hamming distance to an
actual codeword), whereas in practice an adversary can possibly use much more
complicated functions to modify the entire codeword. In the latter case, it is easy
to see that error correction or even error detection becomes generally impossible,
for example an adversary can simply change all codewords into a fixed string.
On the other hand, non-malleable codes can still provide useful guarantees here,
and thus partially bridge this gap. Informally, a non-malleable code guarantees
that after tampering, the decoding either correctly gives the original message
or gives a message that is completely unrelated and independent of the original
message. This captures the notion of non-malleability: that an adversary cannot
modify the codeword in a way such that the tampered codeword decodes back
to a related but different message.

The original intended application of non-malleable codes is in tamper-
resilient cryptography [36], where they can be used generally to prevent an adver-
sary from learning secret information by observing the input/output behavior of
modified ciphertexts. Subsequently, non-malleable codes have found applications
in non-malleable commitments [40], non-malleable encryption [30], public-key
encryptions [31], non-malleable secret-sharing schemes [38], and privacy ampli-
fication protocols [19]. Furthermore, interesting connections were found to non-
malleable extractors [27], and very recently to spectral expanders [54]. Along
the way, the constructions of non-malleable codes used various components and
sophisticated ideas from additive combinatorics [5, 22] and randomness extrac-
tion [18], and some of these techniques have also found applications in construct-
ing extractors for independent sources [46]. As such, non-malleable codes have
become fundamental objects at the intersection of coding theory and cryptog-
raphy. They are well deserved to be studied in more depth in their own right,
as well as to find more connections to other well studied objects in theoretical
computer science.

We first introduce some notation before formally defining non-malleable
codes. For a function f : S → S, we say s ∈ S is a fixed point (of f) if f(s) = s.

Definition 1 (Tampering functions) For any n > 0, let Fn denote the set
of all functions f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering
functions.

We use the statistical distance to measure the distance between distributions.
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Definition 2 The statistical distance between two distributions D1 and D2 over
some universal set Ω is defined as |D1 −D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 =

d]|. We say D1 is ε-close to D2 if |D1 −D2| ≤ ε and denote it by D1 ≈ε D2.

To introduce non-malleable codes, we need to define a function called copy
that takes in two inputs. If the first input is the special symbol “same?”, the
copy function just outputs its second input. Else it outputs its first input. This
is useful in defining non-malleable codes where one wants to model the situation
that the decoding of the tampered codeword is either the original message or a
distribution independent of the message. Thus, we define a distribution on the
message space and the special symbol same?, where the probability that the
distribution takes on the value same? corresponds to the probability that the
tampered codeword is decoded back to the original message. More formally, we
have

copy(x, y) =

{
x if x 6= same?

y if x = same?

Following the treatment in [36], we first define coding schemes.

Definition 3 (Coding schemes) Let Enc : {0, 1}k → {0, 1}n and Dec :
{0, 1}n → {0, 1}k ∪ {⊥} be functions such that Enc is a randomized function
(i.e., it has access to private randomness) and Dec is a deterministic function.
We say that (Enc,Dec) is a coding scheme with block length n and message
length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, where the probability is
taken over the randomness in Enc.

We can now define non-malleable codes.

Definition 4 (Non-malleable codes) A coding scheme C = (Enc,Dec) with
block length n and message length k is a non-malleable code with respect to a
family of tampering functions F ⊂ Fn and error ε if for every f ∈ F there
exists a random variable Df on {0, 1}k ∪ {same?} which is independent of the
randomness in Enc and is efficiently samplable given oracle access to f(.), such
that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε.

We say the code is explicit if both the encoding and decoding can be done in
polynomial time. The rate of C is given by k/n.

Relevant prior work on non-malleable codes in the information theoretic set-
ting. There has been a lot of exciting research on non-malleable codes, and it
is beyond the scope of this paper to provide a comprehensive survey of them.
Instead we focus on relevant explicit (unconditional) constructions in the in-
formation theoretic setting, which is also the focus of this paper. One of the
most studied classes of tampering functions is the so called split-state tamper-
ing, where the codeword is divided into (at least two) disjoint intervals and
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the adversary can tamper with each interval arbitrarily but independently. This
model arises naturally in situations where the codeword may be stored in dif-
ferent parts of memory or different devices. Following a very successful line of
work [1, 2, 4, 5, 7, 18, 22, 27, 34, 41, 43, 44, 46, 47], we now have explicit construc-
tions of non-malleable codes in the 2-split state model with constant rate and
negligible error.

The split state model is a “compartmentalized” model, where the codeword is
partitioned a priori into disjoint intervals for tampering. Recently, there has been
progress towards handling non-compartmentalized tampering functions. A work
of Agrawal, Gupta, Maji, Pandey and Prabhakaran [8] gave explicit constructions
of non-malleable codes with respect to tampering functions that permute or
flip the bits of the codeword. Ball, Dachman-Soled, Kulkarni and Malkin [12]
gave explicit constructions of non-malleable codes against t-local functions for
t ≤ n1−ε. However in all these models, each bit of the tampering function only
depends on part of the codeword. A recent work of Chattopadhyay and Li [21]
gave the first explicit constructions of non-malleable codes where each bit of the
tampering function may depend on all bits of the codeword. Specifically, they
gave constructions for the classes of affine functions and small-depth (unbounded
fain-in) circuits. The rate of the non-malleable code with respect to small-depth
circuits was exponentially improved by a subsequent work of Ball, Dachman-
Soled, Guo, Malkin, and Tan [11]. In a recent work, Ball, Guo and Wichs [13]
constructed non-malleable codes with respect to bounded depth decision trees.

Given all these exciting results, a major goal of the research on non-malleable
codes remains to give explicit constructions for broader classes of tampering
functions, as one can use the probabilistic method to show the existence of non-
malleable codes with rate close to 1 − δ for any class F of tampering functions

with |F| ≤ 22
δn

[26].

Our results. We continue the line of investigation on explicit constructions of
non-malleable codes, and give explicit constructions for several new classes of
non-compartmentalized tampering functions, where in some classes each bit of
the tampering function can depend on all the bits of the codeword. In Section
1.2, we discuss motivations and applications of our new non-malleable codes in
cryptography. The new classes strictly generalize several previous studied classes
of tampering functions. In particular, we consider the following classes.

1. Interleaved 2-split-state tampering, where the adversary can divide the code-
word into two arbitrary disjoint intervals and tamper with each interval
arbitrarily but independently. This model generalizes the split-state model
and captures the situation where the codeword is partitioned into two blocks
(not necessarily of the same length) in an unknown way by the adversary be-
fore applying a 2-split-state tampering function. Constructing non-malleable
codes for this class of tampering functions was left as an open problem by
Cheraghchi and Guruswami [27].

2. Composition of tampering, where the adversary takes two tampering func-
tions and composes them together to get a new tampering function. We note
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that function composition is a natural strategy for an adversary to achieve
more powerful tampering, and it has been studied widely in other fields (e.g.,
computational complexity and communication complexity). We believe that
studying non-malleable codes for the composition of different classes of tam-
pering functions is also a natural and important direction.

We now formally define these classes and some related classes below. For nota-
tion, given any permutation π : [n] → [n] and any string x of length n, we let
y = xπ denote the length n string such that yπ(i) = xi.

– The family of 2-split-state functions 2SS ⊂ F2n: Any f ∈ 2SS comprises of
two functions f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n, and for any
x, y ∈ {0, 1}n, f(x, y) = (f1(x), f2(y)). This family of tampering functions
has been extensively studied, with a long line of work achieving near optimal
explicit constructions of non-malleable codes.

– The family of affine functions Lin ⊂ Fn: Any f ∈ Lin is an affine function
from {0, 1}n to {0, 1}n (viewing {0, 1}n as Fn2 ), i.e., f(x) = Mx+v, for some
n× n matrix M on F2 and v ∈ Fn2 .

– The family of interleaved 2-split-state functions (2, t)-ISS ⊂ Fn: Any f ∈
(2, t)-ISS comprises of two functions f1 : {0, 1}n1 → {0, 1}n1 , f2 : {0, 1}n2 →
{0, 1}n2 such that n1 + n2 = n and min{n1, n2} ≥ t (i.e both partitions are
of length at least t), and a permutation π : [n]→ [n]. For any z = (x, y)π ∈
{0, 1}n, where x ∈ {0, 1}n1 , y ∈ {0, 1}n2 , let f(z) = (f1(x), f2(y))π. In this
paper we require that t ≥ nβ for some fixed constant 0 < β < 1. Note this
includes as a special case the situation where the two states have the same
size, which we denote by 2ISS, and in particular 2SS.

– For any tampering function families F ,G ⊂ Fn, define the family F ◦G ⊂ Fn
to be the set of all functions of the form f ◦ g, where f ∈ F , g ∈ G and ◦
denotes function composition.

We now formally state our results. Our most general result is an explicit non-
malleable code with respect to the tampering class of Lin ◦ (2, nβ)-ISS, i.e, an
affine function composed with an interleaved 2-split-state tampering function.
Specifically, we have the following theorem.

Theorem 5 There exist constants β, δ > 0 such that for all integers n > 0 there
exists an explicit non-malleable code with respect to Lin ◦ (2, nβ)-ISS with rate

1/nδ and error 2−n
δ

.

We immediately have the following corollary, which records the classes of
functions for which no explicit non-malleable codes were known (for any rate)
prior to this work.

Corollary 1. There exist constants β, δ > 0 such that for all integers n > 0
there exists an explicit non-malleable code with respect to the following classes

of functions with rate 1/nδ and error 2−n
δ

:

– 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS and Lin ◦ 2SS.



6 E. Chattopadhyay, X. Li

1.2 Motivations and applications in cryptography

Just as standard non-malleable codes for split-state tampering arise from natural
cryptographic applications, our non-malleable codes for interleaved 2-split-state
tampering and affine tampering composed with interleaved split-state tampering
also have natural cryptographic motivations and applications.

It is known that any non-malleable code in the 2-split-state model gives
a 2 out of 2 secret-sharing scheme, if one views the two split states as two
shares [6]. We show that any non-malleable code in the interleaved 2-split state
model gives a non-malleable secret-sharing scheme with binary shares. Secret-
sharing schemes [14, 58] are fundamental objects in cryptography, and building
blocks for many other more advanced applications such as secure multiparty
computation. In short, a secret-sharing scheme shares a message secretly among
n parties, such that any qualified subset can reconstruct the message, while
any unqualified subset reveals nothing (or almost nothing) about the message.
Equivalently, one can view this as saying that any leakage function which leaks
the shares in an unqualified subset reveals nothing. In the standard threshold
or t out of n secret-sharing, any subset of size at most t is an unqualified subset
while any subset of size larger than t is a qualified subset. However, it is known
that in such a scheme, the share size has to be at least as large as the message
size. Thus, a natural and interesting question is whether the share size can be
smaller under some relaxed notion of secret-sharing. This is indeed possible when
one considers the notion of (r, t)-ramp secret-sharing, where r > t + 1. In this
setting, any subset of size at most t reveals nothing about the message, while
any subset of size at least r can reconstruct message. Thus t is called the privacy
threshold and r is called the reconstruction threshold. Subsets of size between
t+ 1 and r − 1 may reveal some partial information about the message. Again,
it is not hard to see that the share size in this case has to be at least as large as
m/(r− t), where m is the message length. Thus, if one allows a sufficiently large
gap between r and t, then it is possible to achieve a secret-sharing scheme even
with binary shares.

Secret-sharing schemes are also closely related to error correcting codes. For
example, the celebrated Shamir’s scheme [58] is based on Reed-Solomon codes.
Similarly, binary secret-sharing schemes are largely based on binary error cor-
recting codes, and they are studied in a series of recent works [15, 16, 25, 48] in
terms of the tradeoff between the message length, the privacy threshold t, the
reconstruction threshold r, and the complexity of the sharing and reconstruction
functions.

However, standard secret-sharing schemes only allow an adversary to pas-
sively observe some shares, thus one can ask the natural question of whether it
is possible to protect against even active adversaries who can tamper with the
shares. In this context, the notion of robust secret-sharing schemes (e.g., [17,51])
allows qualified subsets to recover the message even if the adversary can modify
part of the shares. More recently, by generalizing non-malleable codes, Goyal
and Kumar [38] introduced non-malleable secret-sharing schemes, where the ad-
versary can tamper with all shares in some restricted manner. Naturally, the
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guarantee is that if tampering happens, then the reconstructed message is ei-
ther the original message or something completely unrelated. In particular, they
constructed t out of n non-malleable secret-sharing schemes in the following two
tampering models. In the independent tampering model, the adversary can tam-
per with each share independently. In the joint tampering model, the adversary
can divide any subset of t + 1 shares arbitrarily into two sets of different size,
and tamper with the shares in each set jointly, but independently across the two
sets. Note that the adversary in the second model is strictly stronger than the
adversary in the first one, since for reconstruction one only considers subsets
of size t + 1. Several follow up works [3, 9, 39] studied different models such as
non-malleable secret-sharing schemes for general access structures, and achieved
improvements in various parameters.

However, in all known constructions of non-malleable secret-sharing schemes
the share size is always larger than 1 bit. In other words, no known non-malleable
secret-sharing scheme can achieve binary shares. This is an obstacle that results
from the techniques in all known constructions. Indeed, even if one allows (r, t)-
ramp non-malleable secret-sharing with an arbitrarily large gap between r and t,
no known constructions can achieve binary shares, because they all need to put
at least two shares of some standard secret-sharing schemes together to form a
single share in the non-malleable scheme. Thus it is a natural question to see if
one can construct non-malleable secret-sharing schemes with binary shares using
different techniques.

Our non-malleable codes for interleaved 2-split-state tampering directly give
non-malleable secret-sharing schemes with binary shares that protect against
joint tampering. We have the following theorem.

Theorem 6 There exist constants 0 < α < β < 1 such that for all integers n >
0 there exists an explicit (r, t)-ramp non-malleable secret-sharing scheme with
binary shares, where r = n, t = n−nβ and the message length is nα. The scheme

has statistical privacy with error 2−n
Ω(1)

, and is resilient with error 2−n
Ω(1)

to
joint tampering where the adversary arbitrarily partitions the r shares into two
blocks, each with at most t shares, and tampers with each block independently
using an arbitrary function.

Intuitively, any n-bit non-malleable code for interleaved 2-split-state tam-
pering gives a ramp non-malleable secret-sharing scheme with reconstruction
threshold r = n, as follows. If the code protects against an adversary who can
partition the codeword into two disjoint sets and tamper with each set arbitrarily
but independently, then each set must reveal (almost) nothing about the secret
message. Otherwise, the adversary can simply look at one set and use the leaked
information to modify the shares in this set, and make the reconstructed mes-
sage become a different but related message. In particular, the same proof in [6]
for the standard 2-split state model also works for the interleaved 2-split state
model. Since our code works for interleaved 2-split-state tampering and the size
of one set can be as large as n−nβ , this implies privacy threshold at least n−nβ ,
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with the small error in privacy coming from the error of the non-malleable code.
We refer the reader to the full version of our paper for more details.

It is an interesting open question to construct explicit non-malleable secret-
sharing schemes with binary shares where the reconstruction threshold r < n. We
note that this question is closely related to constructing non-malleable codes for
the tampering class 2SS◦Lin or 2ISS◦Lin (i.e., reverse the order of composition).
This is because to get such a scheme, one natural idea is to apply another secret-
sharing scheme on top of our non-malleable code. If one uses a linear secret-
sharing scheme as in many standard schemes, then the tampering function on
the codeword becomes 2SS ◦ Lin or 2ISS ◦ Lin.

We also note that in an (r, t)-ramp secret-sharing scheme with binary shares,
unless the message has only one bit, we must have r > t + 1. Thus in the joint
tampering model, instead of allowing the adversary to divide r shares arbitrarily
into two sets, one must put an upper bound t on the size of each set as in our
theorem. For example, one cannot allow an adversary to look at a set of shares
with size r − 1, because r − 1 > t and this set of shares may already leak some
information about the secret message.

In both standard secret-sharing and non-malleable secret-sharing, in addition
to looking at sets of shares, researchers have also studied other classes of leakage
function or tampering function. For example, the work of Goyal et al. [37] studied
secret-sharing schemes that are resilient to affine leakage functions on all shares,
and used them to construct parity resilient circuits and bounded communication
leakage resilient protocols. A recent work of Lin et. al [49] also studied non-
malleable secret-sharing schemes where the adversary can tamper with all shares
jointly using some restricted classes of functions. Specifically, [49] considered
the model of “adaptive” affine tampering, where the adversary is allowed to
first observe the shares in some unqualified subset, and then choose an affine
function based on this to tamper with all shares. In this sense, our non-malleable
codes for affine tampering composed with interleaved 2-split-state tampering
also directly give non-malleable secret-sharing schemes with binary shares that
protect against affine tampering composed with joint tampering, which is strictly
stronger than both the joint tampering model and the affine tampering model
(although our affine tampering is non-adaptive compared to [49]). Specifically,
we have the following theorem (which strictly generalizes Theorem 6).

Theorem 7 There exist constants 0 < α < β < 1 such that for all integers n >
0 there exists an explicit (r, t)-ramp non-malleable secret-sharing scheme with
binary shares, where r = n, t = n−nβ and the message length is nα. The scheme

has statistical privacy with error 2−n
Ω(1)

, and is resilient with error 2−n
Ω(1)

to an
adversary that tampers in two stages: In the first stage, the adversary partitions
the r shares arbitrarily into two blocks, each with at most t shares, and tampers
with each block independently using an arbitrary function. In the second stage,
the adversary applies an arbitrary affine tampering function jointly on all the
already tampered (from the first stage) r shares.
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We provide a formal proof of the above theorem in the full version of our
paper.

Again, it is an interesting open question to construct explicit non-malleable
secret-sharing schemes where the order of tampering is reversed.

1.3 Seedless non-malleable extractors

Our results on non-malleable codes are based on new constructions of seedless
non-malleable extractors, which we believe are of independent interest. Before
defining seedless non-malleable extractors formally, we first recall some basic
notation from the area of randomness extraction.

Randomness extraction is motivated by the problem of purifying imperfect
(or defective) sources of randomness. The concern stems from the fact that
natural random sources often have poor quality, while most applications require
high quality (e.g., uniform) random bits. We use the standard notion of min-
entropy to measure the amount of randomness in a distribution.

Definition 8 The min-entropy H∞(X) of a probability distribution X on
{0, 1}n is defined to be minx(− log(Pr[X = x])). We say X is an (n,H∞(X))-
source and the min-entropy rate is H∞(X)/n.

It turns out that it is impossible to extract from a single general weak random
source even for min-entropy n − 1. There are two possible ways to bypass this
barrier. The first one is to relax the extractor to be a seeded extractor, which takes
an additional independent short random seed to extract from a weak random
source. The second one is to construct deterministic extractors for special classes
of weak random sources.

Both kinds of extractors have been studied extensively. Recently, they have
also been generalized to stronger notions where the inputs to the extractor can
be tampered with by an adversary. Specifically, Dodis and Wichs [33] introduced
the notion of seeded non-malleable extractor in the context of privacy amplifi-
cation against an active adversary. Informally, such an extractor satisfies the
stronger property that the output of the extractor is independent of the out-
put of the extractor on a tampered seed. Similarly, and more relevant to this
paper, a seedless variant of non-malleable extractors was introduced by Cher-
aghchi and Guruswami [27] as a way to construct non-malleable codes. Apart
from their original applications, both kinds of non-malleable extractors are of
independent interest. They are also related to each other and have applications
in constructions of extractors for independent sources [46].

We now define seedless non-malleable extractors.

Definition 9 (Seedless non-malleable extractors) Let F ⊂ Fn be a family
of tampering functions such that no function in F has any fixed points. A func-
tion nmExt : {0, 1}n → {0, 1}m is a seedless (n,m, ε)-non-malleable extractor
with respect to F and a class of sources X if for every distribution X ∈ X and
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every tampering function f ∈ F , there exists a random variable that is Df,X on
{0, 1}m ∪ {same?} that is independent of X, such that

|nmExt(X),nmExt(f(X))−Um, copy(Df,X ,Um)| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists a polynomial time
sampling algorithm A that takes as input y ∈ {0, 1}m, and outputs a sample from
a distribution that is ε′-close to the uniform distribution on the set nmExt−1(y).

In the above definition, when the class of sources X is the distribution Un,
we simply say that nmExt is a seedless (n,m, ε)-non-malleable extractor with
respect to F .

Relevant prior work on seedless non-malleable extractors. The first construction
of seedless non-malleable extractors was given by Chattopadhyay and Zuckerman
[22] with respect to the class of 10-split-state tampering. Subsequently, a series of
works starting with the work of Chattopadhyay, Goyal and Li [18] gave explicit
seedless non-malleable extractors for 2-split-state tampering. The only known
constructions with respect to a class of tampering functions different from split
state tampering is from the work of Chattopadhyay and Li [21], which gave
explicit seedless non-malleable extractors with respect to the tampering class
Lin and small depth circuits, and a subsequent follow-up work of Ball et al. [10]
where they constructed non-malleable extractors against tampering functions
that are low-degree polynomials over large fields. We note that constructing
explicit seedless non-malleable extractors with respect to 2ISS was also posed as
an open problem in [27].

Our results. As our most general result, we give the first explicit constructions
of seedless non-malleable extractors with respect to the tampering class Lin ◦
(2, nβ)-ISS.

Theorem 10 There exists a constant β > 0 such that for all n > 0 there exists

an efficiently computable seedless (n, nΩ(1), 2−n
Ω(1)

)-non-malleable extractor with

respect to Lin ◦ (2, nβ)-ISS, that is 2−n
Ω(1)

-invertible.

This immediately yields the first explicit non-malleable extractors against
the following classes of tampering functions.

Corollary 2. For all n > 0 there exists an efficiently computable seedless

(n, nΩ(1), 2−n
Ω(1)

)-non-malleable extractor with respect to the following classes
of tampering functions:

– 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS, and Lin ◦ 2SS.

We derive our results on non-malleable codes using the above explicit con-
structions of non-malleable extractors based on a beautiful connection discovered
by Cheraghchi and Gurswami [27] (see Theorem 25 for more details).
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1.4 Extractors for interleaved sources

Our techniques also yield improved explicit constructions of extractors for in-
terleaved sources, which generalize extractors for independent sources in the
following way: the inputs to the extractor are samples from a few independent
sources mixed (interleaved) in an unknown (but fixed) way. Raz and Yehuday-
off [57] showed that such extractors have applications in communication com-
plexity and proving lower bounds for arithmetic circuits. In a subsequent work,
Chattopadhyay and Zuckerman [24] showed that such extractors can also be
used to construct extractors for certain samplable sources, extending a line of
work initiated by Trevisan and Vadhan [60]. We now define interleaved sources
formally.

Definition 11 (Interleaved Sources) Let X1, . . . ,Xr be arbitrary indepen-
dent sources on {0, 1}n and let π : [rn] → [rn] be any permutation. Then
Z = (X1, . . . ,Xr)π is an r-interleaved source.

Relevant prior work on interleaved extractors. Raz and Yehudayoff [57] gave
explicit extractors for 2-interleaved sources when both the sources have min-
entropy at least (1−δ)n for a tiny constant δ > 0. Their construction is based on
techniques from additive combinatorics and can output Ω(n) bits with exponen-
tially small error. Subsequently, Chattopadhyay and Zuckerman [24] constructed
extractors for 2-interleaved sources where one source has entropy (1− γ)n for a
small constant γ > 0 and the other source has entropy Ω(log n). They achieve
output length O(log n) bits with error n−Ω(1).

A much better result (in terms of the min-entropy) is known if the extractor
has access to an interleaving of more sources. For a large enough constant C,
Chattopadhyay and Li [20] gave an explicit extractor for C-interleaved sources
where each source has entropy k ≥ poly(log n). They achieve output length kΩ(1)

and error n−Ω(1).

Our results. Our main result is an explicit extractor for 2-interleaved sources
where each source has min-entropy at least 2n/3. The extractor outputs Ω(n)

bits with error 2−n
Ω(1)

.

Theorem 12 For any constant δ > 0 and all integers n > 0, there exists an
efficiently computable function i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that
for any two independent sources X and Y, each on n bits with min-entropy at
least (2/3 + δ)n, and any permutation π : [2n]→ [2n],

|i`Ext((X,Y)π)−Um| ≤ 2−n
Ω(1)

.

2 Overview of constructions and techniques

Our results on non-malleable codes are derived from explicit constructions of
invertible seedless non-malleable extractors (see Theorem 25). In this section,
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we illustrate our main ideas used to give explicit constructions of seedless non-
malleable extractors with respect to the relevant classes of tampering functions,
and explicit extractors for interleaved sources.

We first focus on the main ideas involved in constructing non-malleable ex-
tractors against 2-split-state adversaries when the partition are of equal length
(we denote this by 2ISS). This serves to illustrate the important ideas that go
into all our explicit non-malleable extractor constructions. We refer the reader to
the full version of our paper for complete details of our non-malleable extractor
and code constructions.

2.1 Seedless non-malleable extractors with respect to interleaved
2-split-state tampering

We discuss the construction of a non-malleable extractor with respect to 2ISS. In
such settings, it was shown in [27] that it is enough to construct non-malleable
extractors assuming that at least one of f and g does not have any fixed points,
assuming that the sources X and Y have entropy at least n − nδ. Thus, we
construct a seedless non-malleable extractor nmExt : {0, 1}n×{0, 1}n → {0, 1}m,
m = nΩ(1) such that the following hold: let X and Y be independent (n, n−nδ)-
sources, for some small δ > 0. Let f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n
be arbitrary functions such that at least one of them has not fixed points, and
π : [2n]→ [2n] be an arbitrary permutation. Then,

nmExt((X,Y)π),nmExt((f(X), g(Y))π)) ≈ε Um,nmExt((f(X), g(Y))π) (1)

where ε = 2−n
Ω(1)

.
Our construction is based on the framework of advice generators and correla-

tion breakers set up in the work [18], and used in various follow-up works on non-
malleable extractors and codes. Before explaining this framework, we introduce
some notation for ease of presentation. Let Z = (X,Y)π. We use the notation
that if W = h((X,Y)π) (for some function h), then W′ or (W)′ stands for the
corresponding random variable h((f(X), g(Y))π). Thus, Z′ = (f(X), g(Y))π.

On a very high level, the task of constructing a non-malleable extractor can
be broken down into the following two steps:

1. Generating advice: the task here is to construct a function advGen :
{0, 1}2n → {0, 1}a, a ≤ nδ, such that advGen(Z) 6= advGen(Z′) with high
probability.

2. Breaking correlation: here we construct an object that can be seen as a
relaxation of a non-malleable extractor, in the sense that we supply the non-
malleable extractor with a short advice string. This object is called an advice
correlation breaker. We require that for all distinct strings s, s′ ∈ {0, 1}a,

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′).

Given the above components, the non-malleable extractor is defined as:

nmExt(Z) = ACB(Z, advGen(Z)).
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The fact that the above satisfies (1) is not direct, but relies on further proper-
ties of the function advGen. In particular, we require that with high probability
over the fixings of the random variables advGen(Z) and advGen(Z′), X and Y
remain independent high min-entropy sources.

An explicit advice generator A natural first idea to construct an advice
generator can be as follows: Take a slice (prefix) of Z, say Z1, and use this to
sample some coordinates from an encoding (using a good error correcting code)
of Z. A similar high level strategy has for example been used in [18], and other
follow-up works. The intuition behind such a strategy is that since we assume
Z 6= Z′, encoding it will ensure that they differ on a lot of coordinates. Thus,
sampling a random set of coordinates will include one such coordinate with high
probability. However, in the present case, it is not clear why this should work
since it could be that Z1 contains all bits from say X, and the set of coordinates
where the encoding of Z and Z′ differ may be a function of X, which leads to
unwanted correlations.

The next natural idea could be the following: First use the slice Z1 to sample
a few coordinates from Z. Let Z2 indicate Z projected onto the sampled coor-
dinates. Now, it is not hard to prove that Z2 contains roughly equal number
of bits from both the sources X and Y. A strategy could be to now use Z2 to
sample coordinates from an encoding of Z. However, in this case, we run into
similar problems as before: there may be unwanted correlations between the ran-
domness used for sampling, and the random variable corresponding to the set of
coordinates where the encoding of Z and Z′ differ.

It turns out that the following subtler construction works:

Let n0 = nδ
′

for some small constant δ′ > 0. We take two slices from Z, say
Z1 and Z2 of lengths n1 = nc00 and n2 = 10n0, for some constant c0 > 1. Next,
we use a good linear error correcting code (let the encoder of this code be E) to
encode Z and sample nγ coordinates (let S denote this set) from this encoding
using Z1 (the sampler is based on seeded extractors [61]). Let W1 = E(Z)S.
Next, using Z2, we sample a random set of indices T ⊂ [2n], and let Z3 = ZT.
We now use an extractor for interleaved sources, i.e., an extractor that takes as
input an unknown interleaving of two independent sources and outputs uniform
bits (see Section 1.4). Let i`Ext be this extractor (say from Theorem 12), and
we apply it to Z3 to get R = i`Ext(Z3). Finally, let W2 be the output of a
linear seeded extractor3 LExt on Z with R as the seed. The output of the advice
generator is Z1,Z2,Z3,W1,W2.

Notation: Define x = (x, 0n)π and y = (0n, y)π. Similarly, define f(x) =
(f(x), 0n)π and g(y) = (0n, g(y))π. Thus, (x, y)π = x + y and (f(x), g(y))π =
f(x)+g(y). Let Xi be the bits of X in Zi for i = 1, 2, 3 and X4 be the remaining
bits of X. Similarly define Yi’s, i = 1, 2, 3, 4.

3 A linear seeded extractor is a seeded extractor where for any fixing of the seed, the
output is a linear function of the source.
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We now proceed to argue the correctness of the above construction. Note
that the correctness of advGen is direct if Zi 6= Z′i for some i ∈ {1, 2, 3}. Thus,
assume Zi = Z′i for i = 1, 2, 3. It follows that S = S′,T = T′ and R = R′.

Recall that (X,Y)π = X + Y and (f(X), g(Y)π) = f(X) + g(Y). Since E is a
linear code and LExt is a linear seeded extractor, the following hold:

W1 −W′
1 = (E(X + Y − f(X)− g(Y)))S,

W2 −W′
2 = LExt(X + Y − f(X)− g(Y),R).

Suppose that Z1 contains more bits from X than Y, i.e., |X1| ≥ |Y1| (where
|α| denotes the length of the string α).

Now the idea is the following: Either (i) we can fix X − f(X) and claim
that X1 still has enough min-entropy, or (ii) we can claim that X − f(X) has
enough min-entropy conditioned on the fixing of (X2,X3). Let us first discuss
why this is enough. Suppose we are in the first case. Then, we can fix X− f(X)
and Y and argue that Z1 is a deterministic function of X and contains enough
entropy. Note that X + Y − f(X) − g(Y) is now fixed, and in fact it is fixed
to a non-zero string (using the assumption that at least one of f or g has no
fixed points). Thus, E(X+Y−f(X)−g(Y)) is a string with a constant fraction
of the coordinates set to 1 (since E is an encoder of a linear error correcting
code with constant relative distance), and it follows that with high probability
(E(X + Y − f(X) − g(Y)))S contains a non-zero entry (using the fact that S
is sampled using Z1, which has enough entropy). This finishes the proof in this
case since it implies W1 6= W′

1 with high probability.

Now suppose we are in case (ii). We use the fact that Z2 contains entropy to
conclude that the sampled bits Z3 contain almost equal number of bits from X
and Y (with high probability over Z2). Now we can fix Z2 without loosing too
much entropy from Z3 (by making the size of Z3 to be significantly larger than
Z2). Next, we observe that Z3 is an interleaved source, and hence R is close
to uniform. We now fix X3, and argue that R continues to be uniform. This
follows roughly from the fact that any extractor for an interleaving of 2-sources
is strong. Thus, R now becomes a deterministic function of Y while at the same
time, X−f(X) still has enough min-entropy. Hence, LExt(X−f(X),R) is close
to uniform even conditioned on R. We can now fix R and LExt(Y − g(Y),R)
without affecting the distribution LExt(X−f(X),R), since LExt(Y− g(Y),R)
is a deterministic function of Y while LExt(X − f(X),R) is a deterministic
function of X conditioned on the previous fixing of R. It follows that after these
fixings, W2 −W′

2 is close to a uniform string and hence W2 −W′
2 6= 0 with

probability 1− 2−n
Ω(1)

, which completes the proof.

The fact that it is enough to consider case (i) and case (ii) relies on a careful
convex combination analysis based on the pre-image size of the function f(x)−x.
In addition, for the above argument to work we need to carefully adjust the sizes
of Z1, Z2 and Z3. We skip the details here, and refer the interested reader to
later parts of the paper for more details.
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An explicit advice correlation breaker We now discuss the other crucial
component in the construction, the advice correlation breaker ACB : {0, 1}2n ×
{0, 1}a → {0, 1}m. Informally, the advice correlation breaker we construct takes 2
inputs, the interleaved source Z (that contains some min-entropy) and an advice
string s ∈ {0, 1}a, and outputs a distribution on {0, 1}m with the following
guarantee. If s′ ∈ {0, 1}a is another advice such that s 6= s′, then

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′) (2)

Our construction crucially relies on an explict advice correlation breaker
constructed in [21] that satisfies the following property: Let A be an (n, k)-
source, and A′ = f(A) be a tampered version of A. Further let B be a uniform
random variable, and B′ = g(B). Finally, let C,C′ be arbitrary random variables
such that {A,A′} is independent of {B,B′,C,C′}. Then [21] constructed an
advice correlation breaker ACB1 such that for advice strings s 6= s′,

ACB1(B,A + C, s),ACB1(B′,A′ + C′, s′) ≈ Um,ACB1(B′,A′ + C′, s′). (3)

The construction of ACB1 is based on the powerful technique of alternating
extraction introduced by Dziembowski and Pietrzak [35], and later used in almost
all recent works on non-malleable extractors. In particular, the construction
in [21] relies on linear seeded extractors and an elegant primitive known as the
flip-flop alternating extraction, which was introduced by Cohen [29].

Recall that since Z = X + Y and Z′ = f(X) + g(Y), (2) can be stated as

ACB(X + Y, s),ACB(f(X) + g(Y), s′) ≈ε Um,ACB(f(X) + g(Y), s′)

Our main idea of reducing (2) to (3) is as follows: we again take a short slice
from Z, say Z4 (larger than the size of {Z1,Z2,Z3}), and use a linear seeded
extractor LExt to convert Z4 into a somewhere random source (i.e, a matrix,
where some rows are uniform). This can be done by defining row i of the matrix
to be Wi = LExt(Z4, i). The idea now is to simply apply ACB1 on each row Wi,
using the source Z, and the concatenation of s and the index of the row as the
new advice string, i.e., compute ACB1(Wi,Z, s, i). By appealing to a slightly
more general version of (3), where we allow multiple tampering, it follows that
the output of ACB1 corresponding to some uniform row is now independent of
the output of ACB1 on all other rows (including tampered rows). Thus, we can
simply output ⊕i(ACB1(Wi,Z, s, i)).

This almost works, modulo a technical caveat–the somewhere random source
constructed out of Z4 is a tall matrix, with more rows than columns, but the
parameters of ACB1 require us to work with a fat matrix, with more columns
that rows. This is roughly because, we want the uniform row to have more
entropy than the total size of all tampered random variables. To fix this, we use
another linear seeded extractor on the source Z with each row Wi as the seed
to obtain another somewhere random source of the right shape.
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2.2 From non-malleable extractors to non-malleable codes

To obtain our non-malleable codes, the decoding function corresponds to com-
puting the extractor, which is already efficient. On the other hand, the encoding
function corresponds to sampling from the pre-image of any given output of the
non-malleable extractor. Thus we need to find an efficient way to do this, which
is quite non-trivial. We suitably modify our extractor to support efficient sam-
pling. Here we briefly sketch some high level ideas involved and refer the reader
to the full version of our paper for more details.

Recall Z = (X,Y)π. The first modification is that in all applications of
seeded extractors in our construction, we specifically use linear seeded extractors.
This allows us to argue that the pre-image we are trying to sample from is in
fact a convex combination of distributions supported on subspaces. The next
crucial observation is the fact that we can use smaller disjoint slices of Z to
carry out various steps outlined in the construction. This is to ensure that the
dimensions of the subspaces that we need to sample from, do not depend on the
values of the random variables that we fix. For the steps where we use the entire
source Z (in the construction of the advice correlation breaker), we replace Z
by a large enough slice of Z. However this is problematic if we choose the slice
deterministically, since in an arbitrary interleaving of two sources, a slice of
length less than n might have bits only from one source. We get around this by
pseudorandomly sampling enough coordinates from Z (by first taking a small
slice of Z and using a sampler that works for weak sources [61]).

We now use an elegant trick introduced by Li [46] where the output of the
non-malleable extractor described above (with the modifications that we have
specified) is now used as a seed in a linear seeded extractor applied to an even
larger pseudorandom slice of Z. The linear seeded extractor that we use has the
property that for any fixing of the seed, the rank of the linear map corresponding
to the extractor is the same, and furthermore one can efficiently sample from
the pre-image of any output of the extractor. The final modification needed is a
careful choice of the error correcting code used in the advice generator. For this
we use a dual BCH code, which allows us to argue that we can discard some
output bits of the advice generator without affecting its correctness (based on
the dual distance of the code). This is crucial in order to argue that the rank
of the linear restriction imposed on the free variables of Z does not depend on
the values of the bits fixed so far. We refer the reader to the full version of
our paper where we provide more intuition and complete details of the modified
non-malleable extractor and sampling procedure.

2.3 Extractors for interleaved sources

Here we give a sketch of our improved extractor for interleaved sources Z =
(X,Y)π. We refer the reader to the full version of our paper for more details.
We present our construction and also explain the proof along the way, as this
gives more intuition to the different steps of the construction. The high level
idea is the following: transform Z into a matrix of random variables (called
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a somewhere random source) such that at least one of the random variables is
uniform, and the matrix is of the right shape, i.e, a fat matrix with more columns
than rows. Once we have such a matrix, the idea is to use the advice correlation
breaker from [21] mentioned above to break the correlation among the rows of
the matrix. The final output will just be a bit-wise XOR of the output of the
advice correlation breaker on each row of the matrix. We now give some more
details on how to make this approach work.

Let Z = (X,Y)π. We start by taking a large enough slice Z1 from Z (say,
of length (2/3 + δ/2)n). Let X have more bits in this slice than Y. Let X1 be
the bits of X in Z1 and X2 be the remaining bits of X. Similarly define Y1

and Y2. Notice that X1 has linear entropy and also that X2 has linear entropy
conditioned on X1. We fix Y1 and use a condenser (from work of Raz [55]) to
condense Z1 into a matrix with a constant number of rows such that at least
one row is close to a distribution with entropy rate at least 0.9. Notice that this
matrix is a deterministic function of X. The next step is to use Z and each row
of the matrix as a seed to a linear seeded extractor to get longer rows. This
requires some care for the choice of the linear seeded extractor since the seed
has some deficiency in entropy. After this step, we use the advice correlation
breaker from [21] on Z and each row of the somewhere random source, with the
row index as the advice (similar to what is done in the construction of non-
malleable extractors sketched above). Finally we compute the bit-wise XOR of
the different outputs that we obtain. Let V denote this random variable. To
output Ω(n) bits, we use a linear seeded extractor on Z with V as the seed. The
correctness of various steps in the proof exploits the fact that Z can be written
as the bit-wise sum of two independent sources, and the fact that we use linear
seeded extractors.

2.4 Organization

We use Section 3 to introduce some background and notation. We present our
seedless non-malleable extractors with respect to interleaved split-state tamper-
ing in Section 4. We conclude with some open problems in Section 5.

3 Background and notation

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the
projection of y to the coordinates indexed by S.
We use bold capital letters for random variables and samples as the correspond-
ing small letter, e.g., X is a random variable, with x being a sample of X.
For strings x, y ∈ {0, 1}n, we use x + y (or equivalently x − y) to denote the
bit-wise xor of the two strings.
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3.1 Probability lemmas

The following result on min-entropy was proved by Maurer and Wolf [50].

Lemma 1. Let X,Y be random variables such that the random variable Y takes
at most ` values. Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X)− log `− log(1/ε)] > 1− ε.

The following lemma is useful in bounding statistical distance of distributions
after conditionings.

Lemma 2. Let D1 and D2 be distributions on some universe Ω such that |X −
Y | ≤ ε. Let E be some event some that Pr[D1 ∈ E ] ≥ δ. Then, |(D1|E)−(D2|E)| ≤
ε/δ.

3.2 Conditional min-entropy

Definition 13 The average conditional min-entropy of a source X given a ran-
dom variable W is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et
al. [32].

Lemma 3 ( [32]). For any ε > 0,

Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥ 1− ε.

Lemma 4 ( [32]). If a random variable Y has support of size 2`, then

H̃∞(X|Y) ≥ H∞(X)− `.

3.3 Seeded Extractors

Definition 14 A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded
extractor if for any source X of min-entropy k, |Ext(X,Ud)−Um| ≤ ε. Ext is
called a strong seeded extractor if |(Ext(X,Ud),Ud)−(Um,Ud)| ≤ ε, where Um

and Ud are independent.
Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function,

then Ext is called a linear seeded extractor.

We require extractors that can extract uniform bits when the source only has
sufficient conditional min-entropy.

Definition 15 A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m for min-entropy k and error ε satisfies the following property:
For any source X and any arbitrary random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.
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It was shown in [32] that any seeded extractor is also an average case extractor.

Lemma 5 ( [32]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is
also a (k + log(1/δ), ε+ δ)-seeded average case extractor.

We record a folklore lemma, and include a proof for completeness.

Lemma 6. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε) strong seeded. Then,
for any source (n, k)-source X and any independent (d, d− λ)-source Y,

|Ext(X,Y),Y −Um,Y| ≤ 2λε.

Proof. Suppose Y is uniform over a set A ⊂ {0, 1}d of size 2d−λ. We have,

|Ext(X,Y),Y −Um,Y| =
1

2d−λ
·
∑
y∈A
|Ext(X, y)−Um|

≤ 1

2d−λ
·
∑

y∈{0,1}d
|Ext(X, y)−Um|

=
1

2d−λ
· 2d · |Ext(X,Ud),Ud −Um,Ud|

= 2λ · ε,

where the last inequality follows from the fact that Ext is a (k, ε) strong seeded
extractor.

3.4 Samplers and extractors

Zuckerman [61] showed that seeded extractors can be used as samplers given
access to weak sources. This connection is best presented by a graph theoretic
representation of seeded extractors. A seeded extractor Ext : {0, 1}n×{0, 1}d →
{0, 1}m can be viewed as an unbalanced bipartite graph GExt with 2n left vertices
(each of degree 2d) and 2m right vertices. Let N (x) denote the set of neighbors
of x in GExt.

Theorem 16 ( [61]) Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded extractor
for min-entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 17 ( [61]) Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded extractor
for min-entropy k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define
Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}. Let X be an (n, 2k)-source. Then for
any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.
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3.5 Explicit extractors from prior work

We recall an optimal construction of strong-seeded extractors.

Theorem 18 ( [42]) For any constant α > 0, and all integers n, k > 0 there
exists a polynomial time computable strong-seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m = (1− α)k.

The following are explicit constructions of linear seeded extractors.

Theorem 19 ( [56,59]) For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n,
there exists an explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d →
{0, 1}m for min-entropy k and error ε, where d = O

(
log2(n/ε)/ log(k/m)

)
.

A drawback of the above construction is that the seeded length is ω(log n) for
sub-linear min-entropy. A construction of Li [45] achieves O(log n) seed length
for even polylogarithmic min-entropy.

Theorem 20 ( [45]) There exists a constant c > 1 such that for every n, k ∈
N with c log8 n ≤ k ≤ n and any ε ≥ 1/n2, there exists a polynomial time
computable linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-
entropy k and error ε, where d = O(log n) and m ≤

√
k.

A different construction achieves seed length O(log(n/ε)) for high entropy
sources.

Theorem 21 ( [18,46]) For all δ > 0 there exist α, γ > 0 such that for all
integers n > 0, ε ≥ 2−γn, there exists an efficiently computable linear strong
seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}αd, d = O(log(n/ε)) for min-
entropy δn. Further, for any y ∈ {0, 1}d, the linear map LExt(·, y) has rank
αd.

The above theorem is stated in [46] for δ = 0.9, but it is straightforward to see
that the proof extends for any constant δ > 0.

We use a property of linear seeded extractors proved by Rao [53].

Lemma 7 ( [53]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear seeded
extractor for min-entropy k with error ε < 1

2 . Let X be an affine (n, k)-source.
Then

Pr
u∼Ud

[|Ext(X,u)− Um| > 0] ≤ 2ε.

We recall a two-source extractor construction for high entropy sources based
on the inner product function.

Theorem 22 ( [28] ) For all m, r > 0, with q = 2m, n = rm, let X,Y be
independent sources on Frq with min-entropy k1, k2 respectively. Let IP be the
inner product function over the field Fq. Then, we have:

|IP(X,Y),X−Um,X| ≤ ε, |IP(X,Y),Y −Um,Y| ≤ ε

where ε = 2−(k1+k2−n−m)/2.
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Rao [52] (based on an argument by Boaz Barak) proved that every two-source
extractor is strong. It is easy to observe that the proof generalizes to the case
of interleaved two-source extractors. We record this below in a slightly more
general setting of unequal length sources.

Theorem 23 ( [52]) Suppose i`Ext : {0, 1}n1+n2 → {0, 1}m be an interleaved
source extractor that satisfies the following: if X is a (n1, k1)-source, Y is an
independent (n2, k2)-source, and π : [n1 + n2] → [n1 + n2] is an arbitrary per-
mutation, then

|i`Ext((X,Y)π)−Um| ≤ ε.
Then, in fact i`Ext satisfies the following stronger properties:

– Let X be a (n1, k)-source, Y be an independent (n2, k2)-source, and π :
[n1 + n2]→ [n1 + n2] be an arbitrary permutation. Then,

|i`Ext((X,Y)π),X−Um,X| ≤ 2m · (2k−k1 + ε).

– Let X be a (n1, k1)-source, Y be an independent (n2, k)-source, and π :
[n1 + n2]→ [n1 + n2] be an arbitrary permutation. Then,

|2i`Ext(X,Y),Y −Um,Y| ≤ 2m · (2k−k2 + ε).

3.6 Advice correlation breakers

We use a primitive called ‘correlation breaker’ in our construction. Consider
a situation where we have arbitrarily correlated random variables Y1, . . . ,Yr,
where each Yi is on ` bits. Further suppose Y1 is a ‘good’ random variable
(typically, we assume Y1 is uniform or has almost full min-entropy). A corre-
lation breaker CB is an explicit function that takes some additional resource
X, where X is typically additional randomness (an (n, k)-source) that is inde-
pendent of {Y1, . . . ,Yr}. Thus using X, the task is to break the correlation
between Y1 and the random variables Y2, . . . ,Yr, i.e., CB(Y1,X) is indepen-
dent of {CB(Y2,X), . . . ,CB(Yr,X)}. A weaker notion is that of an advice cor-
relation breaker that takes in some advice for each of the Yi’s as an additional
resource in breaking the correlations. This primitive was implicitly constructed
in [18] and used in explicit constructions of non-malleable extractors, and has
subsequently found many applications in explicit constructions of extractors for
independent sources and non-malleable extractors.

We recall an explicit advice correlation breaker constructed in [20]. This
correlation breaker works even with the weaker guarantee that the ‘helper source’
X is now allowed to be correlated to the sources random variables Y1, . . . ,Yr in
a structured way. Concretely, we assume the source to be of the form X+Z, where
X is assumed to be an (n, k)-source that is uncorrelated with Y1, . . . ,Yr,Z. We
now state the result more precisely.

Theorem 24 ( [20]) For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0,
such that d = O(log2(n/ε)), k1 ≥ 2d+ 8tdh+ log(1/ε), n1 ≥ 2d+ 10tdh+ (4ht+
1)n22 + log(1/ε), and n2 ≥ 2d+ 3td+ log(1/ε), let
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– X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 − λ)-source,
Z,Z′ are r.v’s on n bits, and Y2, . . . ,Yt be r.v’s on n1 bits each, such that
{X,X′} is independent of {Z,Z′,Y1, . . . ,Yt},

– id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 6= idi.

Then there exists an efficient algorithm ACB : {0, 1}n1 × {0, 1}n × {0, 1}h →
{0, 1}n2 which satisfies the following: let

– Y1
h = ACB(Y1,X + Z, id1),

– Yi
h = ACB(Yi,X′ + Z′, idi), i ∈ [2, t]

Then,

Y1
h,Y

2
h, . . . ,Y

t
h,X,X

′ ≈O((h+2λ)ε) Un2
,Y2

h, . . . ,Y
t
h,X,X

′.

3.7 A connection between non-malleable codes and extractors

The following theorem proved by Cheraghchi and Guruswami [27] that connects
non-malleable extractors and codes.

Theorem 25 ( [27]) Let nmExt : {0, 1}n → {0, 1}m be an efficient seedless
(n,m, ε)-non-malleable extractor with respect to a class of tampering functions
F acting on {0, 1}n. Further suppose nmExt is ε′-invertible. Then there exists
an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε+ ε′.

4 NM extractors for interleaved split-state adversaries

The main result of this section is an explicit non-malleable extractor for inter-
leaved 2-split-state tampering families with equal length partitions, which we
denote by 2ISS ⊂ F2n.

Theorem 26 For all integers n > 0 there exists an explicit function nmExt :
{0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds: for arbitrary
tampering functions f, g ∈ Fn, any permutation π : [2n]→ [2n] and independent
uniform sources X and Y each on n bits, there exists a distribution Df,g,π on
{0, 1}m ∪ {same?}, such that

|nmExt((X,Y)π),nmExt((f(X), g(Y))π))−Um, copy(Df,g,π,Um)| ≤ 2−n
Ω(1)

.

In such settings, it was shown in [27] that it is enough to construct non-
malleable extractors assuming that at least one of f and g does not have any
fixed points, assuming that the sources X and Y have entropy at least n − nδ.
We thus prove the following theorem, from which Theorem 26 is direct.



Title Suppressed Due to Excessive Length 23

Theorem 27 There exists a δ > 0 such that for all integers n, k > 0 with
n ≥ k ≥ n − nδ, there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: for arbitrary tampering functions f, g ∈
Fn, any permutation π : [2n] → [2n] and independent (n, k)-sources X and Y,
the following holds:

|nmExt((X,Y)π),nmExt((f(X), g(Y))π))−Um,nmExt((f(X), g(Y))π)| ≤ 2−n
Ω(1)

.

We will prove a slightly more general result which is a direct by-product of
our proof technique for proving the above theorem, and lets us re-use this non-
malleable extractor for the class of linear adversaries composed with split-state
adversaries. We prove the following theorem.

Theorem 28 There exists a δ > 0 such that for all integers n, k > 0 with
n ≥ k ≥ n − nδ, there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: Let X and Y be independent (n, n−nδ)-
sources, π : [2n] → [2n] any arbitrary permutation and arbitrary tampering
functions f1, f2, g1, g2 ∈ Fn that satisfy the following condition:

– ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

– ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

Then,

|nmExt((X,Y)π),nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)−

Um,nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)| ≤ 2−n
Ω(1)

.

Clearly, Theorem 27 follows directly from the above theorem by setting g1(y) = 0
for all y and f2(x) = 0 for all x. We use the rest of the section to prove Theorem
28.

Our high level ideas in constructing the non-malleable extractor is via the
framework set up in [18] of using advice generators and correlation breakers.
We give intuition behind our construction in Section 2. We use Section 4.1 to
construct an advice generator and Section 4.2 to construct an advice correla-
tion breaker. Finally, we present the non-malleable extractor construction in
Section 4.3.

Notation:

– If W = h((X,Y)π) (for some function h), then we use W′ or (W)′ to denote
the random variable h(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π).

– Define X = (X, 0n)π, Y = (0n,Y)π, f1(X) = (f1(X), 0n)π, f2(X) =
(0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) = (0n, g2(Y))π.

– Finally, define Z = X + Y and Z′ = f1(X) + g1(Y) + f2(X) + g2(Y).
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4.1 An advice generator

Lemma 8. There exists an efficiently computable function advGen : {0, 1}n ×
{0, 1}n → {0, 1}n4 , n4 = nδ, such that with probability at least 1 − 2−n

Ω(1)

over the fixing of the random variables advGen((X,Y)π), advGen(((f1(X) +
g1(Y)), (f2(X) + g2(Y)))π), the following hold:

– {advGen((X,Y)π) 6= advGen(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)},
– X and Y are independent,

– H∞(X) ≥ k − 2nδ, H∞(Y) ≥ k − 2nδ.

We present the construction of our advice generator and refer the reader to the
full version of our paper for the proof. We claim that the function advGen com-
puted by Algorithm 1 satisfies the above lemma. We first set up some parameters
and ingredients.

– Let C be a large enough constant and δ′ = δ/C.

– Let n0 = nδ
′
, n1 = nc00 , n2 = 10n0, for some constant c0 that we set below.

– Let E : {0, 1}2n → {0, 1}n3 be the encoding function of a linear error cor-
recting code C with constant rate α and constant distance β.

– Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}log(n3) be a (n1/20, β/10)-seeded ex-
tractor instantiated using Theorem 18. Thus d1 = c1 log n1, for some con-
stant c1. Let D1 = 2d1 = nc11 .

– Let Samp1 : {0, 1}n1 → [n3]D1 be the sampler obtained from Theorem 17
using Ext1.

– Let Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}log(2n) be a (n2/20, 1/n0)-seeded ex-
tractor instantiated using Theorem 18. Thus d2 = c2 log n2, for some con-
stant c2. Let D2 = 2d2 . Thus D2 = 2d2 = nc22 .

– Let Samp2 : {0, 1}n2 → [2n]D2 be the sampler obtained from Theorem 17
using Ext2.

– Set c0 = 2c2.

– Let i`Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 12.

– Let LExt : {0, 1}2n×{0, 1}n0 → {0, 1}n0 be a linear seeded extractor instan-
tiated from Theorem 22 set to extract from min-entropy n1/100 and error
2−Ω(

√
n0) .

4.2 An Advice Correlation Breaker

We recall the setup of Theorem 28. X and Y are independent (n, k)-sources,
k ≥ n − nδ, π : [2n] → [2n] is an arbitrary permutation and f1, f2, g1, g2 ∈ Fn
satisfy the following conditions:

– ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

– ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.
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Algorithm 1: advGen(z)

Input: Bit-string z = (x, y)π of length 2n, where x and y are each n
bit-strings and π : [2n]→ [2n] is a permutation.
Output: Bit string v of length n4.

1 Let z1 = Slice(z, n1), z2 = Slice(z, n2).
2 Let S = Samp1(z1).
3 Let T = Samp2(z2) and z3 = zT .
4 Let r = i`Ext(z3).
5 Let w1 = (E(z))S .
6 Let w2 = LExt(z, r).
7 Output v = z1, z2, z3, w1, w2.

Further, we defined the following: X = (X, 0n)π, Y = (0n ◦ Y)π, f1(X) =
(f1(X), 0n)π, f2(X) = (0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) =
(0n, g2(Y))π. It follows that Z = X+Y and Z′ = f1(X)+g1(Y)+f2(X)+g2(Y).
Thus, for some functions f, g ∈ F2n, Z′ = f(X) + g(Y). Let X′ = f(X) and
Y′ = g(Y).

The following is the main result of this section. Assume that we have
some random variables such that X and Y continue to be independent, and
H∞(X), H∞(Y) ≥ k − 2nδ.

Lemma 9. There exists an efficiently computable function ACB : {0, 1}2n ×
{0, 1}n1 → {0, 1}m, n1 = nδ and m = nΩ(1), such that

ACB(X + Y, w),ACB(f(X) + g(Y), w′) ≈ε Um,ACB(f(X) + g(Y), w′),

for any fixed strings w,w′ ∈ {0, 1}n1 with w 6= w′.

We present the construction of our advice correlation breaker, and refer the
reader to the full version of our paper for the proof. We prove that the function
ACB computed by Algorithm 2 satisfies the conclusion of Lemma 9.

We start by setting up some ingredients and parameters.

– Let δ > 0 be a small enough constant.

– Let n2 = nδ1 , where δ1 = 2δ.

– Let LExt1 : {0, 1}n2 × {0, 1}d → {0, 1}d1 , d1 =
√
n2, be a linear-seeded

extractor instantiated from Theorem 19 set to extract from entropy k1 =
n2/10 with error ε1 = 1/10. Thus d = C1 log n2, for some constant C1. Let
D = 2d = nδ2 , δ2 = 2C1δ.

– Set δ′ = 20C1δ.

– Let LExt2 : {0, 1}2n × {0, 1}d1 → {0, 1}n4 , n4 = n8δ3 be a linear-seeded
extractor instantiated from Theorem 19 set to extract from entropy k2 =

0.9k with error ε2 = 2−Ω(
√
d1) = 2−n

Ω(1)

, such that the seed length of the
extractor LExt2 (by Theorem 19) is d1.
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– Let ACB′ : {0, 1}n1,acb′ × {0, 1}nacb′ × {0, 1}hacb′ → {0, 1}n2,acb′ , be the ad-
vice correlation breaker from Theorem 24 set with the following parame-
ters: nacb′ = 2n, n1,acb′ = n4, n2,acb′ = m = O(n2δ2), tacb′ = 2D,hacb′ =

n1 + d, εacb′ = 2−n
δ

, dacb′ = O(log2(n/εacb′)), λacb′ = 0. It can be checked
that by our choice of parameters, the conditions required for Theorem 24
indeed hold for k1,acb′ ≥ n2δ2 .

Algorithm 2: ACB(z, w)

Input: Bit-strings z = (x, y)π of length 2n and bit string w of length n1,
where x and y are each n bit-strings and π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let z1 = Slice(z, n2).
2 Let v be a D × n3 matrix, with its i’th row vi = LExt1(z1, i).
3 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z, vi).
4 Let s be a D ×m matrix, with its i’th row si = ACB′(ri, z, w, i).

5 Output ⊕D
i=1si.

4.3 The non-malleable extractor

We are now ready to present the construction of i`NM that satisfies the require-
ments of Theorem 28.

– Let δ > 0 be a small enough constant, n1 = nδ and m = nΩ(1).
– Let advGen : {0, 1}2n → {0, 1}n1 , n1 = nδ, be the advice generator from

Lemma 8.
– Let ACB : {0, 1}2n × {0, 1}n1 → {0, 1}m be the advice correlation breaker

from Lemma 9.

Algorithm 3: i`NM(z)

Input: Bit-string z = (x, y)π of length 2n, where x and y are each n
bit-strings, and π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let w = advGen(z).
2 Output ACB(z, w)

The function i`NM computed by Algorithm 3 satisfies the conclusion of Theorem
28 as follows: Fix the random variables W,W′. By Lemma 8, it follows that X

remains independent of Y, and with probability at least 1− 2−n
Ω(1)

, H∞(X) ≥
k − 2n1 and H∞(Y) ≥ k − 2n1 (recall k ≥ n − nδ). Theorem 28 is now direct
using Lemma 9.
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5 Open questions

Non-malleable codes for composition of functions. Here we give efficient con-
structions of non-malleable codes for the tampering class Lin ◦ 2ISS. Many nat-
ural questions remain to be answered. For instance, one open problem is to
efficiently construct non-malleable codes for the tampering class 2SS ◦ Lin or
2ISS ◦ Lin, which as explained before is closely related to the question of con-
structing explicit (r, t)-ramp non-malleable secret-sharing schemes with binary
shares, where t < r. It looks like one needs substantially new ideas to give such
constructions. More generally, for what other interesting classes of functions F
and G can we construct non-malleable codes for the composed class F ◦ G? Is
it possible to efficiently construct non-malleable codes for any tampering class
F ◦ G as long as we have efficient non-malleable codes for the classes F and G?

Other applications of seedless non-malleable extractors. The explicit seedless
non-malleable extractors that we construct satisfy strong pseudorandom prop-
erties. A natural question is to find more applications of these non-malleable
extractors in explicit constructions of other interesting objects.

Improved seedless extractors. We construct an extractor for 2-interleaved sources
that works for min-entropy rate 2/3. It is easy to verify that there exists extrac-
tors for sources with min-entropy as low as C log n, and a natural question here
is to come up with such explicit constructions. Given the success in construct-
ing 2-source extractors for low min-entropy [23,47], we are optimistic that more
progress can be made on this problem.
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