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Abstract. In a lockable obfuscation scheme [28, 39] a party takes as
input a program P , a lock value α, a message msg and produces an ob-
fuscated program P̃ . The obfuscated program can be evaluated on an
input x to learn the message msg if P (x) = α. The security of such
schemes states that if α is randomly chosen (independent of P and msg),
then one cannot distinguish an obfuscation of P from a “dummy” obfus-
cation. Existing constructions of lockable obfuscation achieve provable
security under the Learning with Errors assumption. One limitation of
these constructions is that they achieve only statistical correctness and
allow for a possible one sided error where the obfuscated program could
output the msg on some value x where P (x) 6= α.

In this work we motivate the problem of studying perfect correctness in
lockable obfuscation for the case where the party performing the obfus-
cation might wish to inject a backdoor or hole in correctness. We begin
by studying the existing constructions and identify two components that
are susceptible to imperfect correctness. The first is in the LWE-based
pseudo random generators (PRGs) that are non-injective, while the sec-
ond is in the last level testing procedure of the core constructions.

We address each in turn. First, we build upon previous work to de-
sign injective PRGs that are provably secure from the LWE assumption.
Next, we design an alternative last level testing procedure that has addi-
tional structure to prevent correctness errors. We then provide a surgical
proof of security (to avoid redundancy) that connects our construction
to the construction by Goyal, Koppula, and Waters (GKW) [28]. Specif-
ically, we show how for a random value α an obfuscation under our new
construction is indistinguishable from an obfuscation under the existing
GKW construction.

1 Introduction

In cryptographic program obfuscation a user wants to take a program P and
publish an obfuscated program P̃ . The obfuscated program should maintain the
same functionality of the original while intuitively hiding anything about the



structure of P beyond what can be determined by querying its input/output
functionality.

One issue in defining semantics is whether we demand that P̃ always match
the functionality exactly on all inputs or we relax correctness to allow for some
deviation with negligible probability. At first blush such differences in seman-
tics might appear to be very minor. With a negligible correctness error it is
straightforward for the obfsucator to parameterize an obfuscation such that the
probability of a correctness error is some minuscule value such as 2−300 which
would be much less than say the probability of dying from an asteroid strike (1
in 74 million).

The idea that statistical correctness is always good enough, however, rests
on the presumption that the obfuscator itself wants to avoid errors. Consider
for example, a party that is tasked with building a program that screens images
from a video feed and raises an alert if any suspicious activity is detected. The
party could first create a program P to perform this function and then release
an obfuscated version P̃ that could hide features of the proprietary vision recog-
nition algorithm about how the program was built. But what if the party wants
to abuse their role? For instance, they might want to publish a program P̃ that
unfairly flags a certain group or individual. Or perhaps is programmed with a
backdoor to let a certain image pass.

In an obfuscation scheme with perfect correctness, it might be possible to
audit such behavior. For example, an auditor could require that the obfuscating
party produce their original program P along with the random coins used in
obfuscating it. Then the auditor could check that the original program P meets
certain requirements as well as seeing that P̃ is indeed an obfuscation of P .5

(We emphasize that if one does not want to reveal P to an auditor that such
a proof can be done in zero knowledge or by attaching a non-interactive zero
knowledge proof to the program. This proof will certify that the program meets
some specification or has some properties; e.g. “there are at most three inputs
that result in the output ’010’.”) However, for such a process to work it is
imperative that the obfuscation algorithm be perfectly correct. Otherwise, a
malicious obfuscator could potentially start with a perfectly legitimate program
P , but purposefully choose coins that would flip the output of a program at a
particular input point.

Another important context where perfect correctness matters is when a prim-
itive serves as a component or building block in a larger cryptosystem. We
present a few examples where a difference in perfect versus imperfect correct-
ness in a primitive can manifest into fundamentally impacting security when
complied into a larger system.

1. Dwork, Naor and Reingold [25] showed that the classical transformations
of IND-CPA to IND-CCA transformations via NIZKs [33, 22] may not work
when the IND-CPA scheme is not perfectly correct. They addressed this by

5 The above argument relies on the ability of one being able to test the original program
meets a certain template or is otherwise well-formed. Our work does not address
under which circumstances this is possible.
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amplifying standard imperfect correctness to what they called almost-all-
keys correctness.

2. Bitansky, Khurana, and Paneth [10] constructed zero knowledge arguments
with low round complexity. For their work, they required lockable obfuscation
with one-sided perfect correctness.6

3. Recently, [4, 11] constructed constant-round post-quantum secure constant-
round ZK arguments. These protocols use lockable obfuscation as a means to
commit a message with pefect-binding property. Without both-sided perfect
correctness, the commitment scheme and thereby the ZK argument scheme
fails to be secure.

In this paper we study perfect correctness in lockable obfuscation, which is
arguably the most powerful form of obfuscation which is provably secure under a
standard assumption. Recall that a lockable obfuscation [28, 39] scheme takes as
input a program P , a message msg, a lock value α and produces an obfuscated
program P̃ . The semantics of evaluation are such that on input x the evalua-
tion of the program outputs msg if and only if P (x) = α. Lockable obfuscation
security requires that the obfuscation of any program P with a randomly (and
independently of P and msg) chosen value α will be indistinguishable from a
“dummy” obfuscated program that is created without any knowledge of P and
msg other than their sizes. While the power of lockable obfuscation does not
reach that of indistinguishability obfuscation [8, 26, 37], it has been shown to
be sufficient for many applications such as obfuscating conjunction and affine
testers, upgrading public key encryption, identity-based encryption [38, 14, 20]
and attribute-based encryption [36] to their anonymous versions and giving ran-
dom oracle uninstantiatability and circular security separation results, and most
recently, building efficient traitor tracing systems [15, 18].

The works of Goyal, Koppula, and Waters [28] and Wichs and Zirdelis [39]
introduced and gave constructions of lockable obfuscation provably secure under
the Learning with Errors [35] assumption. A limitation of both constructions
(inherited from the bit-encryption cycle testers of [30]) is that they provide only
statistical correctness. In particular, there exists a one-sided error in which it
is possible that there exists an input x such that P (x) 6= α yet the obfuscated
program outputs msg on input x.

Our Results. With this motivation in mind we seek to create a lockable obfus-
cation scheme that is perfectly correct and retains the provable security under
the LWE assumption. We begin by examining the GKW lockable obfuscation
for branching programs and identify two points in the construction that are sus-
ceptible to correctness errors. The first is in the use of an LWE-based pseudo
random generator that could be non-injective. The second is in the “last level
testing procedure” comprised in the core construction. We address each one in
turn. First, we build over the previous work to design and prove a new PRG con-
struction that is both injective and probably secure from the LWE assumption.

6 In this particular example perfect correctness [28, 39] was already present for the
side they needed.
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(We also create an injective PRG from the learning parity with noise (LPN)
assumption as an added bonus.) Then we look to surgically modify the GKW
construction to change the last level testing procedure to avoid the correctness
pitfall. We accomplish this by adding more structure to a final level of matrices
to avoid false matches, but doing so makes the new construction incompatible
with the existing security proof. Instead of re-deriving the entire proof of secu-
rity, we carefully show how an obfuscation under our new construction with a
random lock value is indistinguishable from an obfuscation under the previous
construction. Security then follows.

While the focus of this work has been on constructing lockable obfuscation
schemes with perfect correctness building upon the schemes of [28, 39], we believe
our techniques can also be applied to the recent obfuscation scheme by Chen,
Vaikuntanathan, and Wee [19].

1.1 Technical Overview

We first present a short overview of the statistically correct lockable obfuscation
scheme by Goyal, Koppula and Waters [29, Appendix D], (henceforth referred to
as the GKW scheme), and discuss the barriers to achieving perfect correctness.
Next, we discuss how to overcome each of these barriers in order to achieve
perfect correctness.

Overview of the GKW scheme. The GKW scheme can be broken down into
three parts: (i) constructing a lockable obfuscation scheme for NC1 circuits and
1-bit messages, (ii) bootstrapping to lockable obfuscation for poly-depth circuits,
and (iii) extending to multi-bit message space. It turns out that steps (ii) and
(iii) preserve the correctness properties of the underlying lockable obfuscation
scheme, thus in order to build a perfectly correct lockable obfuscation scheme
for poly-depth circuits and multi-bit messages, we only need to build a perfectly
correct lockable obfuscation scheme for NC1 and 1-bit messages.7 We start by
giving a brief overview of the lockable obfuscation scheme for NC1, and then
move to highlight the barriers to achieving perfect correctness.

One of the key ingredients in the GKW construction is a family of log-depth
(statistically injective) PRGs with polynomial stretch (mapping ` bits to `PRG

bits for an appropriately chosen polynomial `PRG). Consider a log-depth cir-
cuit C that takes as input `in-bits and outputs `-bits. To obfuscate circuit C
with lock value α ∈ {0, 1}` and message msg, the GKW scheme first chooses
PRG from the family and computes an “expanded” lock value β = PRG(α). It

then takes the circuit Ĉ = PRG(C(·)) that takes as input `in-bits and outputs
`PRG-bits, and generates the permutation branching program representation of
Ĉ. Let BP(i) denote the branching program that computes ith output bit of Ĉ.
Since C and PRG are both log-depth circuits, we know (due to Barrington’s

7 Strictly speaking, [29, Appendix C] shows how to extend the message space for semi-
statistically correct lockable obfuscation schemes. However, the same transformation
also works for perfectly correct schemes.
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theorem [9]) that BP(i) is of some polynomial length L and width 5.8 The ob-
fuscator continues by sampling 5`PRG matrices, for each level except the last
one, using lattice trapdoor samplers such that all the matrices at any particular

level share a common trapdoor. Let B
(i)
j,k denote the matrix corresponding to

level j, state k of the ith branching program BP(i). Next, it chooses the top level

matrices
{

B
(i)
L,1, . . . ,B

(i)
L,5

}
for each i ∈ [`PRG] uniformly at random subject to

the following “sum-constraint”:

∑
i: βi=0

B
(i)

L,rej(i)
+

∑
i: βi=1

B
(i)

L,acc(i)
=

{
0n×m if msg = 0,
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

Looking ahead, sampling the top level matrices in such a way helps to encode
the expanded lock value β such that an evaluator can test for this relation if it
has an input x such that C(x) = α.

Next step in the obfuscation procedure is to encode the branching programs
using the matrices and trapdoors sampled above. The idea is to choose a set of

`PRG · L “transition matrices” {C(i,0)
j ,C

(i,1)
j }i,j such that each matrix C

(i,b)
j is

short and can be used to evaluate its corresponding state transition permutation

σ
(i)
j,b. The obfuscation of C is set to be the `PRG base-level matrices {B(i)

0,1}i and

`PRG · L transition matrices {C(i,0)
j ,C

(i,1)
j }i,j .

Evaluating the obfuscated program on input x ∈ {0, 1}`in is analogous to
evaluating the `PRG branching programs on x. For each i ∈ [`PRG], the evalua-

tion algorithm first computes Mi = B
(i)
0,1 ·

∏L
j=1 C

(i,xinp(j))

j and then sums them
together as M =

∑
i Mi. To compute the final output, it looks at the entries

of matrix M, if all the entries are small (say less than q1/4) it outputs 0, else if
they are close to

√
q it outputs 1, otherwise it outputs ⊥.

To argue correctness, they first show that the matrix M computed by the

evaluator is close to Γ ·
∑
i B

(i)

L,st(i)
where Γ is some low-norm matrix and st(i)

denotes the final state of BP(i).9 It is easy to verify that if C(x) = α, then

Ĉ(x) = β, and therefore

M ≈ Γ ·
∑
i

B
(i)

L,st(i)
=

{
0n×m if msg = 0,
√
q ·
[
Γ ||0n×(m−n)

]
if msg = 1.

As a result, if C(x) = α, then the evaluation is correct. However, it turns out
that even when C(x) 6= α the evaluation algorithm could still output 0/1 (recall

8 Recall, a permutation branching program of length L and width w can be represented
using w states, 2L permutations σj,b over states for each level j ≤ L, an input-selector
function inp(·) which determines the input read at each level, and an accepting and
rejecting state. The program execution starts at state st = 1 of level 0, and iteratively
carried out as st = σi,b(st) (where b is the input bit read at level i). Depending upon
the final state (i.e., at level L), the program either accepts or rejects.

9 That is, st(i) = acc(i) if Ĉ(x)i = 0 and rej(i) otherwise.
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that if C(x) 6= α, then the evaluation algorithm must output ⊥). There are two
sources of errors here.

Non-Injective PRGs. First, it is possible that the PRG chosen is not injective.
In this event (which happens with negligible probability if PRG is chosen
honestly), there exist two inputs y 6= y′ such that PRG(y) = PRG(y′). As a
result, if there exist two inputs x, x′ ∈ {0, 1}`in such that C(x) = y, C(x′) =
y′, then the obfuscation of C with lock y and message msg, when evaluated on
x′, outputs msg instead of ⊥. Note that this source of error can be eliminated
if we use a perfectly injective PRG family instead of a statistically injective
PRG family.

Sum-Constraints. The second source of error is due to the way we encode
the lock value in the top-level matrices. Let x 6= x′ be two distinct inputs,
and let α = C(x), α′ = C(x′), β = PRG(α) and β′ = PRG(α′). Suppose
we obfuscate C with lock value α. Recall that the obfuscator samples the
top-level matrices uniformly at random with the only constraint that the
top-level matrices corresponding to the expanded lock value β either sum
to 0 (if msg = 0), else they sum to certain medium-ranged matrix (i.e.,
entries ≈ √q). Now this corresponds to sampling all but one top-level matrix
uniformly at random (and without any constraint), and that one special
matrix such that the constraint is satisfied. Therefore, it is possible (although
with small probability) that summing together the top-level matrices for
string β′ is close to the top-level matrix sum for string β. That is,∑

i: βi=0

B
(i)

L,rej(i)
+

∑
i: βi=1

B
(i)

L,acc(i)
≈

∑
i: β′i=0

B
(i)

L,rej(i)
+

∑
i: β′i=1

B
(i)

L,acc(i)
.

As a result, if we obfuscate C with lock α and message msg, and evaluate this
on input x′, then it could also output msg instead of ⊥. This type of error is
trickier to remove as it is crucial for security in the GKW construction that
these matrices look completely random if one doesn’t know the lock value α.
To get around this issue, we provide an alternate top-level matrix sampling
procedure that guarantees perfect correctness.

We next present our solutions to remove the above sources of imperfectness.
First, we construct a perfectly injective PRG family that is secure under the
LWE assumption. This resolves the first problem. Thereafter, we discuss our
modifications to the GKW construction for resolving the sum-constraint error.
Later we also briefly talk about our perfectly injective PRG family that is secure
under the LPN assumption.

Perfectly injective PRG family. We will first show a perfectly injective PRG fam-
ily based on the LWE assumption. The construction is a low-depth PRG family
with unbounded (polynomial) stretch. The security of this construction relies on
the Learning with Rounding (LWR) assumption, introduced by Banerjee, Peik-
ert and Rosen. [7], which in turn can be reduced to LWE (with subexponential
modulus/error ratio). First, let us recall the LWR assumption. This assumption
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is associated with two moduli p, q where p < q. The modulus q is the modulus
of computation, and p is the rounding modulus. Let b·ep denote a mapping from
Zq to Zp which maps integers based on their higher order bits. The LWR as-
sumption states that for a uniformly random secret vector s ∈ Znq and uniformly

random matrix A ∈ Zn×mq , bsT · Aep looks like a uniformly random vector in
Zmp , even when given A. We will work with a ‘binary secrets’ version where the
secret vector s is a binary vector.

Let us start by reviewing the PRG construction provided by Banerjee et
al. [7]. In their scheme, the setup algorithm first chooses two moduli p < q and
outputs a uniformly random n×m matrix A with elements from Zq. The PRG
evaluation takes as input an n bit string s and outputs bsT · Aep, where bxep
essentially outputs the higher order bits of x. Assuming m is sufficiently larger
than n and moduli p, q are appropriately chosen, for a uniformly random matrix
A ← Zn×mq , the function bsT ·Aep is injective with high probability (over the
choice of A). In order to achieve perfect injectivity, we sample the public matrix
A in a special way.

In our scheme, the setup algorithm chooses a uniformly random matrix B
and a low norm matrix C. It sets D to be a diagonal matrix with medium-value
entries (D is a fixed deterministic matrix). It sets A = [B | B · C + D] and
outputs it as part of the public parameters, together with the LWR moduli p, q.
To evaluate the PRG on input s ∈ {0, 1}n, one outputs y = bsT ·Aep. Intuitively,
the D matrix acts as a error correcting code, and if s1 6= s2, then there is at
least one coordinate such that bsT1 ·Dep and bsT2 ·Dep are far apart.

Suppose s1 and s2 are two bitstrings such that bsT1 ·Aep = bsT2 ·Aep. Then
bsT1 ·Bep = bsT2 ·Bep, and as a result, bsT1 ·B ·Cep and bsT2 ·B ·Cep have close
enough entries as C has small entries. However, this implies that bsT1 ·Dep and
bsT2 ·Dep also have close enough entries, which implies that s1 = s2.

Pseudorandomness follows from the observation that A looks like a uniformly
random matrix. Once we replace [B | B · C + D] with a uniformly random
matrix A, we can use the binary secrets version of LWR to argue that sT ·A is
indistinguishable from a uniformly random vector. This is discussed in detail in
Section 3.

Relation to the perfectly binding commitment scheme of [27] : The perfectly
injective PRG family outlined above builds upon some core ideas from the per-
fectly binding commitments schemes in [27]. Below, we will describe the con-
structions from [27], and discuss the main differences in our PRG schemes.

In the LWE based commitment scheme, the sender first chooses a modulus
q, matrices B,C,D and E of dimensions n× n, where B is a uniformly random
matrix, entries in C, E are drawn from the low norm noise distribution, and D
is some fixed diagonal matrix with medium-value entries. It sets A = [B ||B ·
C + D + E]. Next, it chooses a vector s from the noise distribution, vector w
uniformly at random, vector e from the noise distribution and f from the noise
distribution. To commit to a bit b, it sets y = AT ·s+e, z = wT ·s+f+b(q/2), and
the commitment is (A,w,y, z). The opening simply consists of the randomness
used for constructing the commitment.
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The main differences between our PRG construction and their commitment
scheme are as follows: (i) we need to separate out their initial commitment step
into PRG setup and evaluation phase, (ii) since the PRG evaluation is deter-
ministic, we cannot add noise (unlike in the case of commitments). Therefore,
we need to use Learning with Rounding. Finally, we need to carefully choose the
rounding modulus p as we want to ensure that the rounding operation does not
round off the contribution from the special matrix D while still allowing us to
reduce to the LWR assumption.

Sum-constraint on the top-level matrices. We will now discuss how the top-level
matrices can be sampled to ensure perfect correctness. In order to do so, let us
first consider the following simplified problem which captures the essence of the
issue. Given a string β ∈ {0, 1}`, we wish to sample 2` matrices {Mi,b}i∈[`],b∈{0,1}
such that they satisfy the following three constraints:

1.
∑
i Mi,βi has ‘small’ entries (say < q1/4).

2. For all β′ 6= β,
∑
i Mi,β′i

has ‘large’ entries (say greater than q1/2).
3. For a uniformly random choice of string β, the set of 2` matrices {Mi,b}i,b

‘look’ like random matrices.

In the GKW construction, the authors use a simple sampler that the sam-
pled matrices satisfy the first constraint, and by applying the Leftover Hash
Lemma (LHL) they also show that the corresponding matrices satisfy the third
constraint. However, to achieve perfect correctness, we need to build a matrix
sampler such that its output always satisfy all the three constraints. To this end,
we show that by carefully embedding LWE samples inside the output matrices
we can achieve the second constraint as well. We discuss our approach in detail
below.

We now define a sampler Samp that takes an `-bit string β as input, and
outputs 2` matrices satisfying all the above constraints, assuming the Learn-
ing with Errors assumption (in addition to relying on LHL). The sampler first
chooses 2` uniformly random square matrices {Ai,b}i∈[`],b∈{0,1} subject to the
constraint that

∑
i Ai,βi = 0n×n. This can be achieved by simply sampling

2`− 1 uniformly random n× n matrices, and setting A`,β` = −
∑
i<` Ai,βi . Let

D = q3/4
[
In ||0n×(m−2n)

]
be a n×(m−n) matrix with a few ‘large’ entries. The

sampler then chooses a low norm n×(m−n) matrix S and low-norm n×(m−n)
error matrices {Ei,b}i∈[`],b∈{0,1}. It sets the 2` output matrices as

Mi,b =

{
[Ai,b ||Ai,b · S + Ei,b] if b = βi

[Ai,b ||Ai,b · S + Ei,b + D] if b = 1− βi

In short, our sampler samples the first n columns of the output matrix in a similar
way to GKW scheme, whereas the remaining (m − n) columns are sampled in
a special way such that if we sum up the matrices corresponding to string β
then the last (m−n) columns of the summed matrix have small entries, whereas
summing up matrices corresponding to any other string β′ 6= β, the last (m−n)
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columns of the summed matrix have distinguishably large entries. Below we
briefly argue why our sampler satisfies the three properties specified initially.

1. (First property): Note that
∑
i Ai,βi = 0n×n, therefore we have that

Mβ =
∑
i

Mi,βi =

[
0n×n ||0n×n · S +

∑
i

Ei,βi

]
=

[
0n×n ||

∑
i

Ei,βi

]
.

Since the error matrices are drawn from a low-norm distribution, the entries
of Mβ are ‘small’.

2. (Second property): We need to check that Mβ′ =
∑
i Mi,β′i

has ‘large’ entries
for β′ 6= β. Suppose β and β′ differ at t positions (t > 0). Then

∑
i

Mi,β′i
=

[∑
i

Aβ′ ||Aβ′ · S + Eβ′ + t ·D

]
,

where Aβ′ =
∑
i Ai,β′i

and Eβ′ =
∑
i Ei,β′i

. If Aβ′ has large entries (greater

than q1/2), then we are done. On the other hand, if Aβ′ has small entries
(less than q1/2), then we can argue that Aβ′ · S + Eβ′ also has entries less
than q3/4, and therefore Aβ′ · S + Eβ′ + t ·D has large entries. This implies
that Mβ′ has large entries, and hence the second constraint is also satisfied.

3. (Third property): To argue about the third property, we use the LWE as-
sumption in conjunction with LHL. First, we can argue that the {Ai,b} ma-
trices look like uniformly random matrices (using the leftover hash lemma).
Next, using the LWE assumption, we can show that {[Ai,b ||Ai,b · S + Ei,b]}i,b
are indistinguishable from 2` uniformly random matrices, and hence the third
property is also satisfied.

We can also modify the above sampler slightly such that
∑
i Mi,βi has ‘medium’

entries (that is, entries within the range [q1/4, q1/2)). The sampler chooses ran-
dom matrices {Ai,b}i,b subject to the constraint that

∑
i Ai,βi = q1/4In, and

the remaining steps are same as above. Let Sampmed be the sampler for this
‘medium-entries’ variant.

We observe that if we plug in these samplers into the GKW scheme for
sampling their top-level matrices, then that leads to a perfectly correct lockable
obfuscation scheme. Specifically, let α be the lock used, PRG chosen from a
perfectly injective PRG family, and β = PRG(α) be the expanded lock value. The
obfuscation scheme chooses matrices {Mi,b}i,b using either Samp or Sampmed

depending on the message msg. That is, if msg = 0, it chooses {Mi,b}i,b ←
Samp(β), else it chooses {Mi,b}i,b ← Sampmed(β). It then sets B

(i)

L,acc(i)
= Mi,1

and B
(i)

L,rej(i)
= Mi,0 for each i ∈ [`PRG]. From the properties of Samp/Sampmed,

it follows that

Mβ =
∑
i

Mi,βi =
∑

i: βi=0

B
(i)

L,rej(i)
+

∑
i: βi=1

B
(i)

L,acc(i)
,
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which has ‘low’ or ‘medium’ norm depending on msg bit. The remaining top
level matrices are chosen uniformly at random. Everything else stays the same
as in the GKW scheme.

For completeness, we now check that this scheme indeed satisfies perfect
correctness. Consider an obfuscation of circuit C with lock α and message msg. If
this obfuscation is evaluated on input x such that C(x) = α, then the evaluation
outputs msg as expected. If C(x) = α′ 6= α, then PRG(C(x)) = β′ 6= β (since
the PRG is injective). This means the top level sum is∑

i: β′i=0

B
(i)

L,rej(i)
+

∑
i: β′i=1

B
(i)

L,acc(i)
=
∑
i

Mi,β′i
,

Using the second property of Samp/Sampmed, we know that this sum has ‘large’
entries, and therefore the evaluation outputs ⊥. This completes our perfect cor-
rectness argument. Now for proving that our modification still give a secure
lockable obfuscation, we do not re-derive a completely new security proof but
instead we show that no PPT attacker can distinguish an obfuscated program
generated using our scheme from the one generated by using the GKW scheme.
Now combining this claim with the fact that the GKW scheme is secure under
LWE assumption, we get that our scheme is also secure. Very briefly, the idea
behind indistinguishability of these two schemes is that since the lock α is chosen
uniformly at random, then PRG(α) is computationally indistinguishable from
a uniformly random string β, and thus these top level matrices also look like
uniformly random matrices for uniformly random β (using the third property of
Samp/Sampmed). Now to complete argument we show the same hold for GKW
scheme as well, thereby completing the proof. More details on this are provided
in the main body.

Perfectly Injective PRGs from the LPN assumption. Finally, we also build a
family of perfectly injective PRGs based on the Learning Parity with Noise as-
sumption. While the focus of this work has been getting an end-to-end LWE
solution for perfectly correct lockable obfuscation, we also build perfectly in-
jective PRGs based on the LPN assumption, which could be of independent
interest. Recently, there has been a surge of interest towards new constructions
of cryptographic primitives based on LPN [40–42, 23, 16, 17], and we feel that
our perfectly injective PRGs fit this theme. Our LPN solution uses a low-noise
variant (β u 1√

n
) of the LPN assumption that has been used in previous public

key encryption schemes [1]. Below we briefly sketch the main ideas behind our
PRG construction.

To build perfectly injective PRGs from LPN, we take a similar approach to
one taken in the LWE case. The starting idea is to use the PRG seed (as before)
as the secret vector s and compute the PRG evaluation as BT s) but now, unlike
the LWE case, we do not have any rounding equivalent for LPN, that is we do
not know how to avoid generating the error vector e during PRG evaluation.
Therefore, to execute the idea we provide an (efficient) injective sampler for er-
ror vectors which takes as input a bit string and outputs an error vector e of

10



appropriate dimension. (The injectivity property here states that the mapping
between bit strings and the error vectors is injective.) So now in our PRG evalu-
ation the input string is first divided in two disjoint components where the first
component is directly interpreted as the secret vector s and second component
is used to sample the error vector e using our injective sampler.

Although at first it might seem that building an injective sampler might not
be hard, however it turns out there are a couple of subtle issues that we have
taken care of while proving security as well as perfect injectivity. Concretely,
for self-composability of our PRG (i.e., building PRGs which take as input bit
strings of fixed length instead having a special domain sampling algorithm),
we require that the size of support of distribution of error vectors e used is a
‘perfect power of two’. As otherwise we can not hope to build a perfectly injective
(error vector) sampler which takes as input a fixed length bit string and outputs
the corresponding error vector. Now we know that the size of support of noise
distribution in the LPN assumption might not be a perfect power of two, thus
we might not be able to injectively sample error vectors from the fixed length
bit strings. To resolve this issue, we define an alternate assumption which we
call the ‘restricted-exact-LPN’ assumption and show that (a) it is as hard as
standard LPN, (b) sufficient for our proof to go through, and (c) has an efficiently
enumerable noise distribution whose support size is a perfect power of two (i.e.,
we can define an efficient injective error sampler for its noise distribution). More
details are provided later in Section 5.

1.2 Related Works on Perfect Correctness

In this section, we discuss some related work and approaches for achieving perfect
correctness for lockable obfuscation and its applications. First, a recent concur-
rent and independent work by Asharov et al. [6] also addresses the question of
perfect correctness for obfuscation. They show how to generically achieve perfect
correctness for any indistinguishability obfuscation scheme, assuming hardness
of LWE. Below, we discuss other related prior works.

Perfect Correctness via Derandomization. Bitansky and Vaikuntanathan [13]
showed how to transform any obfuscation scheme (and a large class of cryptosys-
tems) to remove correctness errors using Nisan-Wigderson (NW) PRGs [34]. In
their scheme, the obfuscator runs the erroneous obfuscation algorithm sufficiently
many times, and for each execution of the obfuscator, the randomness used is
derived pseudorandomly (by adding the randomness derived from the NW PRGs
and the randomness from a standard cryptographic PRG). As the authors show,
such a transformation leads to a perfectly correct scheme as long as certain
circuit lower bound assumptions hold (in particular, they require that the NW-
PRGs can fool certain bounded-size circuits). Our solution, on the other hand,
does not rely on additional assumptions as well as it is as efficient as existing
(imperfect) lockable obfuscation constructions [28, 39].

11



Using a Random Oracle for generating randomness. A heuristic approach to
prevent the obfuscator from using malicious randomness is to generate the ran-
dom coins using a hash function H applied on the circuit. Such a heuristic might
suffice for some applications such as the public auditing example discussed pre-
viously, but it does not seem to provide provable security in others. Note that
our construction with perfect correctness is proven secure in the standard model,
and does not need rely on ROs or a CRS.

Lastly, we want to point out that in earlier works by Bitansky and Vaikun-
tanathan [12], and Ananth, Jain and Sahai [3], it was shown how to transform
any obfuscation scheme that has statistical correctness on (1/2+ε) fraction of in-
puts (for some non-negligible ε) into a scheme that has statistical correctness for
all inputs. However, this does not achieve perfect correctness. It is an interesting
question whether their approach could be extended to achieve perfect correct-
ness. Similar correctness amplification issues were also addressed by Ananth et
al.[2].

2 Preliminaries

In this section, we review the notions of injective pseudorandom generators with
setup and Lockable Obfuscation [28, 39]. Due to space constraints, we review
fundamentals of lattices and homomorphic encryption in the full version of the
paper.

2.1 Injective Pseudorandom Generators with Setup

We will be considering PRGs with an additional setup algorithm that outputs
public parameters. The setup algorithm will be important for achieving injec-
tivity in our constructions. While this is weaker than the usual notion of PRGs
(without setup), it turns out that for many of the applications that require
injectivity of PRG, the setup phase is not an issue.

Setup(1λ) : The setup algorithm takes as input the security parameter λ and
outputs public parameters pp, domain D and co-domain R of the PRG. Let
params denote (pp,D,R).

PRG(params, s ∈ D) : The PRG evaluation algorithm takes as input the public
parameters and the PRG seed s ∈ D, and outputs y ∈ R.

Perfect Injectivity. A pseudorandom generator with setup (Setup,PRG) is said
to have perfect injectivity if for all (pp,D,R)← Setup(1λ), for all s1 6= s2 ∈ D,
PRG(params, s1) 6= PRG(params, s2).

Pseudorandomness. A pseudorandom generator with setup (Setup,PRG) is said
to be secure if for any PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Pr

A(params, tb) = b :
params← Setup(1λ)

s← D, t0 ← R, b← {0, 1}
t1 = PRG(params, s)

 ≤ 1

2
+ negl(λ).
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2.2 Lockable Obfuscation

In this section, we recall the notion of lockable obfuscation defined by Goyal et
al. [28]. Let n,m, d be polynomials, and Cn,m,d(λ) be the class of depth d(λ)
circuits with n(λ) bit input and m(λ) bit output. Let M be the message space.
A lockable obfuscator for Cn,m,d consists of algorithms Obf and Eval with the
following syntax.

– Obf(1λ, P,msg, α) → P̃ . The obfuscation algorithm is a randomized algo-
rithm that takes as input the security parameter λ, a program P ∈ Cn,m,d,
message msg ∈M and ‘lock string’ α ∈ {0, 1}m(λ). It outputs a program P̃ .

– Eval(P̃ , x) → y ∈ M ∪ {⊥}. The evaluator is a deterministic algorithm

that takes as input a program P̃ and a string x ∈ {0, 1}n(λ). It outputs
y ∈M∪ {⊥}.

Correctness For correctness, we require that if P (x) = α, then the obfuscated

program P̃ ← Obf(1λ, P,msg, α), evaluated on input x, outputs msg, and if

P (x) 6= α, then P̃ outputs ⊥ on input x. Formally,

Definition 1 (Perfect Correctness). Let n,m, d be polynomials. A lockable
obfuscation scheme for Cn,m,d and message spaceM is said to be perfectly correct
if it satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d
and messages msg ∈M, if P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d
and messages msg ∈M, if P (x) 6= α, then

Eval(Obf(1λ, P,msg, α), x) = ⊥ .

Remark 1 (Weaker notions of correctness). We would like to point out that
GKW additionally defined two weaker notions of correctness - statistical and
semi-statistical correctness. They say that lockable obfuscation satisfies statisti-
cal correctness if for any triple (P,msg, α), the probability that there exists an x
s.t. P (x) 6= α and the obfuscated program outputs msg on input x is negligible
in security parameter. The notion of semi-statistical correctness is even weaker
where each obfuscated program could potentially always output message msg
for some input x s.t. P (x) 6= α, but if one fixes the input x before obfuscation,
then the probability of the obfuscated program outputting msg on input x is
negligible.

Security We now present the simulation based security definition for Lockable
Obfuscation.
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Definition 2. Let n,m, d be polynomials. A lockable obfuscation scheme (Obf,
Eval) for Cn,m,d and message space M is said to be secure if there exists a PPT
simulator Sim such that for all PPT adversaries A = (A0,A1), there exists a
negligible function negl(·) such that the following function is bounded by negl(·):∣∣∣∣∣∣∣∣Pr

A1(P̃b, st) = b :

(P ∈ Cn,m,d,msg ∈M, st)← A0(1λ)
b← {0, 1}, α← {0, 1}m(λ)

P̃0 ← Obf(1λ, P,msg, α)

P̃1 ← Sim(1λ, 1|P |, 1|msg|)

− 1

2

∣∣∣∣∣∣∣∣
3 Perfectly Injective PRGs from LWR

In this construction, we will present a construction based on the Learning With
Rounding (LWR) assumption. At a high level, the construction works as follows:
the setup algorithm chooses a uniformly random matrix A ∈ Zn×2mq , where m

is much greater than n. The PRG evaluation outputs bxT ·Aep, where p = 2`out .
Note that this already gives us a PRG with statistical injectivity. However, to
achieve perfect injectivity, we need to ensure that the matrix A is full rank, and
that injectivity is preserved even after rounding. In order to achieve this, we
need to make some modifications to the setup algorithm.

The new setup algorithm chooses a uniformly random matrix B, a random
matrix R with ±1 entries. Let D be a fixed full rank matrix with ‘medium sized’
entries. It then outputs A = [B | BR + D]. The PRG evaluation is same as
described above.

We will now describe the algorithms formally.

Setup(1λ) The setup algorithm first sets the parameters n,m, q, `out, ρ in terms
of the security parameter. These parameters must satisfy the following con-
straints.

– n = poly(λ)
– q ≤ 2n

ε

– m > 2n log q
– p = 2`out

– n < m · `out
– (q/p)m < ρ < q

One particular setting of parameters which satisfies the constraints above is
as follows: set n = poly(λ), q = 2n

ε

, p =
√
q, m = n2 and ρ = q/4.

Next, it chooses a matrix B ← Zn×mq , matrix R ← {+1,−1}m×m. Let

D = ρ · [In | 0n×(m−n)] and A = [B | B · R + D]. The setup algorithm
outputs A as the public parameters. It sets the domain D = {0, 1}n and
co-domain R = {0, 1}m·`out .

PRG(A, s): The PRG evaluation algorithm takes as input the matrix A and
the seed s ∈ {0, 1}n. It computes y = sT ·A. Finally, it outputs byep ∈ Zmp
as a bit string of length 2m · `out.
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Depth of PRG Evaluation Circuit and PRG Stretch. First, note that the the
PRG evaluation circuit only needs to perform a single matrix-vector multiplica-
tion followed by discarding the dlog2 q/pe least significant bits of each element.
Clearly such a circuit can be implemented in TC0, the class of constant-depth,
poly-sized circuits with unbounded fan-in and threshold gates (which is a subset
of NC1). Additionally, the stretch provided by the above PRG could be arbi-
trarily set during setup. Thus, the above construction gives a PRG that provides
a polynomial stretch with a TC0 evaluation circuit.

We now prove the following theorem where we show that our PRG construc-
tion satisfies perfect injectivity property. Due to space constraints, we argue the
pseudorandomness property of the construction in the full version of the paper.

Theorem 1. If the LWR assumption with parameters n,m, p and q holds, then
the above construction is a perfectly injective PRG.

Due to space constraints, we prove the Theorem in the full version of the paper.

4 Lockable Obfuscation with Perfect Correctness

4.1 Construction

In this section, we present our perfectly correct lockable obfuscation scheme.
We note that the construction is similar to the statistically correct lockable
obfuscation scheme described in Goyal et al. [28]. A part of the description
has been taken verbatim from [28]. For any polynomials `in, `out, d such that
`out = ω(log λ), we construct a lockable obfuscation scheme O = (Obf,Eval) for
the circuit class C`in,`out,d. The message space for our construction will be {0, 1},
although one can trivially extend it to {0, 1}`(λ) for any polynomial ` [28].

The tools required for our construction are as follows:

- A compact leveled homomorphic bit encryption scheme (LHE.Setup, LHE.Enc,
LHE.Eval, LHE.Dec) with decryption circuit of depth dDec(λ) and ciphertexts
of length `ct(λ).

- A perfectly injective pseudorandom generator scheme (PRG.Setup,PRG.Eval),
where PRG.Eval has depth dPRG(λ), input length `out(λ) and output length
`PRG(λ).

For notational convenience, let `in = `in(λ), `out = `out(λ), `PRG = `PRG(λ),
dDec = dDec(λ), dPRG = dPRG(λ) and d = d(λ).

Fix any ε < 1/2. Let χ be a B-bounded discrete Gaussian distribution with
parameter σ such that B =

√
m · σ. Let n,m, `, σ, q,Bd be parameters with the

following constraints:

- n = poly(λ) and q ≤ 2n
ε

(for LWE security)
- m ≥ c̃ · n · log q for some universal constant c̃ (for SamplePre)
- σ = ω(

√
n · log q · logm) (for Preimage Well Distributedness)

- `PRG = n ·m · log q + ω(log n) (for applying Leftover Hash Lemma)
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- `PRG · (L+ 1) · (m2 · σ)L+1 < q1/8 (where L = `out · `ct · 4dDec+dPRG) (for
correctness of scheme)

It is important that L = λc for some constant c and `PRG · (L + 1) · (m2 ·
σ)L+1 < q1/8. This crucially relies on the fact that the LHE scheme is compact
(so that `ct and `PRG are bounded by a polynomial independent of the size of
the circuits supported by the scheme, and that the LHE decryption and PRG
computation can be performed by a log depth circuit (i.e, have poly length
branching programs). The constant c depends on the LHE scheme and PRG.

One possible setting of parameters is as follows: n = λ4c/ε, m = n1+2ε,
q = 2n

ε

, σ = n and `PRG = n3ε+3.
We will now describe the obfuscation and evaluation algorithms.

– Obf(1λ, P,msg, α): The obfuscation algorithm takes as input a program P ∈
C`in,`out,d, message msg ∈ {0, 1} and α ∈ {0, 1}`out . The obfuscator proceeds
as follows:
1. It chooses the LHE key pair as (lhe.sk, lhe.ek)← LHE.Setup(1λ, 1d log d).10

2. Next, it encrypts the program P . It sets ct← LHE.Enc(lhe.sk, P ).11

3. It runs pp← PRG.Setup(1λ), and assigns β = PRG.Eval(pp, α).
4. Next, consider the following circuit Q which takes as input `out · `ct

bits of input and outputs `PRG bits. Q takes as input `out LHE cipher-
texts {cti}i≤`out

, has LHE secret key lhe.sk hardwired and computes
the following — (1) it decrypts each input ciphertext cti (in parallel)
to get string x of length `out bits, (2) it applies the PRG on x and
outputs PRG.Eval(pp, x). Concretely, Q(ct1, . . . , ct`out) = PRG.Eval

(
pp,

LHE.Dec(lhe.sk, ct1) || · · · || LHE.Dec(lhe.sk, ct`out)
)
.

For i ≤ `PRG, we use BP(i) to denote the fixed-input selector permutation
branching program that outputs the ith bit of output of circuit Q. Note
that Q has depth dtot = dDec + dPRG. In the full version of the paper, we
show that each branching program BP(i) has length L = `out · `ct · 4dtot
and width 5.

5. The obfuscator creates matrix components which enable the evaluator to
compute msg if it has an input strings (ciphertexts) ct1, . . . , ct`out such
that Q(ct1, . . . , ct`out

) = β. Concretely, it runs the (randomized) routine
Comp-Gen (defined in Figures 1, 2). This routine takes as input the circuit

Q in the form of `PRG branching programs {BP(i)}i, string β and message

msg. Let

({
B

(i)
0,1

}
i
,
{

C
(i,0)
j ,C

(i,1)
j

}
i,j

)
← Comp-Gen({BP(i)}i, β,msg).

10 We set the LHE depth bound to be d log d, where the extra log factor is to account
for the constant blowup involved in using a universal circuit. In particular, we can
set the LHE depth bound to be c · d where c is some fixed constant depending on
the universal circuit.

11 Note that LHE scheme supports bit encryption. Therefore, to encrypt P , a multi-bit
message, the FHE.Enc algorithm will be run independently on each bit of P . However,
for notational convenience throughout this section we overload the notation and
use FHE.Enc and FHE.Dec algorithms to encrypt and decrypt multi-bit messages
respectively.

16



Comp-Gen

Input: {BP(i)}i, β ∈ {0, 1}`PRG , msg ∈ {0, 1}
Output: Components

({
B

(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level )}i≤`PRG,level≤L

)
.

(a) Let BP(i) =

({
σ
(i)
j,b : [5]→ [5]

}
j∈[L],b∈{0,1}

, acc(i) ∈ [5], rej(i) ∈ [5]

)
for all i ≤ `PRG.

(b) First, it chooses a matrix for each state of each branching program.
Recall, there are `PRG branching programs, and each branching pro-
gram has L levels, and each level has 5 states. For each i ≤ `PRG,
j ∈ [0, L− 1], it chooses a matrix of dimensions 5n×m along with its

trapdoors (independently) as (B
(i)
j , T

(i)
j ) ← TrapGen(15n, 1m, q). The

matrix B
(i)
j can be parsed as follows

B
(i)
j =


B

(i)
j,1

.

..

B
(i)
j,5


where matrices B

(i)
j,k ∈ Zn×mq for k ≤ 5. The matrix B

(i)
j,k corresponds

to state k at level j of branching program BP(i).
(c) Let D = q3/4 ·

[
In ||0n×(m−2·n)]. For the top level, it first chooses the

matrices A
(i)
L,k (of dimension n×n) for each i ≤ `PRG, k ≤ 5, uniformly

at random, subject to the following constraint:∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= 0n×n if msg = 0.

∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= q1/4 · In if msg = 1.

It then samples a matrix S ← χn×(m−n), and matrices E
(i)

L,rej(i)
←

χn×(m−n),E
(i)

L,acc(i)
← χn×(m−n) for each i ≤ `PRG. It then chooses

matrices F
(i)
L,k as follows

F
(i)

L,acc(i)
= A

(i)

L,acc(i)
· S + E

(i)

L,acc(i)
+ (1− βi) ·D

F
(i)

L,rej(i)
= A

(i)

L,rej(i)
· S + E

(i)

L,rej(i)
+ βi ·D

F
(i)
L,k ← Zn×(m−n)

q if k /∈ {acc(i), rej(i)}

The top level matrices B
(i)
L,k for each i ≤ `PRG, k ≤ 5 are given by

B
(i)
L,k =

[
A

(i)
L,k ||F

(i)
L,k

]
.

The algorithm continues in Figure 2.

Fig. 1: Routine Comp-Gen

6. The final obfuscated program consists of the LHE evaluation key ek =

lhe.ek, LHE ciphertexts ct, together with the components
({

B
(i)
0,1

}
i
,{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
.
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Comp-Gen

(d) Next, it generates the components for each level. For each level level ∈
[1, L], do the following:

i. Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m

for i ≤ `PRG. If either S
(0)
level or S

(1)
level has determinant zero, then set

it to be In.

ii. For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix

blocks of B
(i)
level according to the permutation σ

(i)
level,b(·). More for-

mally, for i ≤ `PRG, set

D
(i,b)
level =


B

(i)

level,σ
(i)
level,b

(1)

...

B
(i)

level,σ
(i)
level,b

(5)

 .

iii. Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

iv. Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level )

(e) Output
({

B
(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level )}i≤`PRG,level≤L

)
.

Fig. 2: Routine Comp-Gen Continued

– Eval(P̃ , x): The evaluation algorithm takes as input P̃ =
(
ek, ct,

{
B

(i)
0,1

}
i
,{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
and input x ∈ {0, 1}`in . It performs the following steps.

1. The evaluator first constructs a universal circuit Ux(·) with x hardwired
as input. This universal circuit takes a circuit C as input and outputs
Ux(C) = C(x). Using the universal circuit of Cook and Hoover [21], it
follows that Ux(·) has depth O(d).

2. Next, it performs homomorphic evaluation on ct using circuit Ux(·). It
computes c̃t = LHE.Eval(ek, Ux(·), ct). Note that `ct · `out denotes the
length of c̃t (as a bitstring), and let c̃ti denote the ith bit of c̃t.

3. The evaluator then obliviously evaluates the `PRG branching programs
on input c̃t using the matrix components. It calls the component evalu-

ation algorithm Comp-Eval (defined in Figure 3). Let y = Comp-Eval
(
c̃t,({

B
(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

))
. The evaluator outputs y.

4.2 Correctness

We will prove that the lockable obfuscation scheme described above satisfies
the perfect correctness property (see 1). To prove this, we need to prove that
if P (x) = α, then the evaluation algorithm always outputs the message, and if
P (x) 6= α, then it always outputs ⊥.

First, we will prove the following lemma about the Comp-Gen and Comp-Eval
routines. For any z ∈ {0, 1}`in(λ), let BP(z) = BP(1)(z) || . . . ||BP(`PRG)(z). Intu-

itively, this lemma states that for all fixed input branching programs {BP(i)}i,
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Comp-Eval

Input: Input string z, Components({
B

(i)
0,1

}
i
, {(C(i,0)

level ,C
(i,1)
level )}i≤`PRG,level≤L

)
.

Output: y ∈ {0, 1,⊥}.

(a) For each i ∈ [1, `PRG], do the following

i. Set M(i) = B
(i)
0,1.

ii. For j = 1 to L, do the following
- If zinp(j) = 0, set M(i) = M(i) · C(i,0)

j . Else, set M(i) =

M(i) ·C(i,1)
j .

(b) Compute M =
∑
iM

(i) and do the following

- If ‖M‖∞ ≤ q
1/8, output 0.

- Otherwise, if ‖M‖∞ ≤ q
1/2, output 1.

- Else output ⊥.

Fig. 3: Routine Comp-Eval

strings β, input z, and messages msg, if BP(z) = β, then the component evalu-
ator outputs msg.

Lemma 1. For any set of branching programs {BP(i)}i≤`PRG
,

string β ∈ {0, 1}`PRG , message msg ∈ {0, 1} and input z,

1. if BP(z) = β, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = msg.
2. if BP(z) 6= β, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = ⊥ .

Proof. Recall that the component generation algorithm chooses matrices B
(i)
j

for each i ≤ `PRG, j ≤ L, S
(0)
j ,S

(1)
j for each j ≤ L and E

(i,0)
j ,E

(i,1)
j for each

i ≤ `PRG, j ≤ L. Note that the S
(b)
j and E

(i,b)
j matrices have l∞ norm bounded

by σ · m3/2 since they are chosen from truncated Gaussian distribution with
parameter σ.

We start by introducing some notations for this proof.

– st
(i)
j : the state of BP(i) after j steps when evaluated on z

– Sj = S
(zinp(j))

j , E
(i)
j = E

(i,zinp(j))

j , C
(i)
j = C

(i,zinp(j))

j for all j ≤ L
– Γj∗ =

∏j∗

j=1 Sj for all j∗ ≤ L

– ∆
(i)
j∗ = B

(i)
0,1 ·

(∏j∗

j=1 C
(i)
j

)
, ∆̃

(i)

j∗ = Γj∗ ·B(i)

j∗,st
(i)

j∗
, Err

(i)
j∗ = ∆

(i)
j∗ − ∆̃

(i)

j∗

for all j∗ ≤ L
– For any string x ∈ {0, 1}`PRG ,Ax =

∑
i:xi=0 A

(i)

L,rej(i)
+
∑
i:xi=1 A

(i)

L,acc(i)

– Similarly, Bx =
∑
i:xi=0 B

(i)

L,rej(i)
+
∑
i:xi=1 B

(i)

L,acc(i)
& Fx =

∑
i:xi=0 F

(i)

L,rej(i)
+∑

i:xi=1 F
(i)

L,acc(i)
& Ex =

∑
i:xi=0 E

(i)

L,rej(i)
+
∑
i:xi=1 E

(i)

L,acc(i)
.

Observe that the Comp-Eval algorithm computes matrix M =
∑`PRG

i=1 ∆
(i)
L .

First, we show that for all i ≤ `PRG, j∗ ≤ L, Err
(i)
j∗ is small and bounded. This

19



would help us in arguing that matrices M =
∑`PRG

i=1 ∆
(i)
L and M̃ =

∑`PRG

i=1 ∆̃
(i)

L

are very close to each other. We then prove the below bounds on M by proving

the corresponding bounds on M̃ in each of the cases.

‖M‖∞


< q1/8 when BP(z) = β and msg = 0

∈ (q1/8, q1/2) when BP(z) = β and msg = 1

> q1/2 when BP(z) 6= β

First, we show that Err
(i)
j∗ is bounded with the help of the following claim.

Claim 1 ([28, Claim 4.1]) ∀ i ∈ {1, . . . , `PRG} , j∗ ∈ {1, . . . , L} ,∥∥∥Err
(i)
j∗

∥∥∥
∞
≤ j∗ ·

(
m2 · σ

)j∗
.

The remaining proof of the lemma will have two parts, (1) when BP(z) = β
and (2) when BP(z) 6= β. Recall that the Comp-Eval algorithm computes matrix

M =
∑`PRG

i=1 ∆
(i)
L . Let M̃ =

∑`PRG

i=1 ∆̃
(i)

L and Err =
∑`PRG

i=1 Err
(i)
L . Also, we

parse these matrices as M =
[
M(1) ||M(2)

]
, M̃ =

[
M̃

(1)
|| M̃

(2)
]

and Err =[
Err(1) ||Err(2)

]
, where M(1), M̃

(1)
and Err(1) are n× n (square) matrices.

First, note that M = M̃ + Err. Using Claim 1, we can write that

‖Err‖∞ =

∥∥∥∥∥
`PRG∑
i=1

(
∆

(i)
L − ∆̃

(i)

L

)∥∥∥∥∥
∞

≤
`PRG∑
i=1

∥∥∥∥∆(i)
L − ∆̃

(i)

L

∥∥∥∥
∞
≤ `PRG·L·

(
m2 · σ

)L
= Bd.

(1)

Next, consider the following scenarios.

Part 1: BP(z) = β. First, recall that the top level matrices always satisfy the
following constraints during honest obfuscation:

`PRG∑
i=1

B
(i)

L,st
(i)
L

= Bβ = [Aβ ||Aβ · S + Eβ ] =

{[
0n×n ||Eβ

]
if msg = 0[

q1/4 · In || q1/4 · S + Eβ

]
if msg = 1

Note that

M̃ =

`PRG∑
i=1

∆̃
(i)

L =

`PRG∑
i=1

ΓL ·B(i)

L,st
(i)
L

= ΓL ·
`PRG∑
i=1

B
(i)

L,st
(i)
L

=

{[
0n×n ||ΓL ·Eβ

]
if msg = 0

ΓL ·
[
q1/4 · In || q1/4 · S + Eβ

]
if msg = 1.

Next, we consider the following two cases dependending upon the message being
obfuscated — (1) msg = 0, (2) msg = 1.
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Case 1 (msg = 0). In this case, we bound the the l∞ norm of the output matrix
M (computed during evaluation) by q1/8. We do this by bounding the norm

of M̃ and using the error bound in Equation 1. Recall that when msg = 0,

M̃ =
[
0n×n ||ΓL ·Eβ

]
. First, we bound the norms of ΓL and Eβ as follows.

‖Eβ‖∞ =

∥∥∥∥∥∥
∑
i:βi=0

E
(i)

L,rej(i)
+
∑
i:βi=1

E
(i)

L,acc(i)

∥∥∥∥∥∥
∞

≤
∑
i:βi=0

∥∥∥E(i)

L,rej(i)

∥∥∥
∞

+
∑
i:βi=1

∥∥∥E(i)

L,acc(i)

∥∥∥
∞
≤ `PRG · σ ·m3/2

< `PRG · σ ·m2.

(2)

The last inequality follows from the fact that the matrices E
(i)

L,acc(i)
,E

(i)

L,rej(i)
are

sampled from truncated gaussian distribution. We can also write that,

‖ΓL‖∞ =

∥∥∥∥∥∥
L∏
j=1

Sj

∥∥∥∥∥∥
∞

≤
L∏
j=1

‖Sj‖∞ ≤ (σ · n ·
√
m)L < (σ ·m2)L. (3)

This implies,∥∥∥M̃∥∥∥
∞

= ‖ΓL ·Eβ‖∞ ≤ ‖ΓL‖∞·‖Eβ‖∞ < (σ·m2)L·`PRG·σ·m2 = `PRG·(σ·m2)L+1.

Now we bound the l∞ norm of M. Recall that, ‖Err‖∞ ≤ `PRG · L · (σ ·m2)L.
Therefore,

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≤
∥∥∥M̃∥∥∥

∞
+ ‖Err‖∞ < `PRG · L · (σ ·m2)L+1 + `PRG · L · (σ ·m2)L

< `PRG · (L+ 1) · (σ ·m2)L+1 < q1/8.

The last inequality follows from the constraints described in the construction.
Thus, matrix M (computed during evaluation) always satisfies the condition that
‖M‖∞ < q1/8 if msg = 0.

Case 2 (msg = 1). In this case, we prove that the l∞ norm of the output
matrix M (computed during evaluation) lies in (q1/8, q1/2). We do this by first

computing upper and lower bounds on
∥∥∥M̃∥∥∥

∞
and using the bound on Err from

Equation 1. Recall that when msg = 1, M̃ =
[
q1/4 · ΓL || q1/4 · ΓL · S + ΓL ·Eβ

]
.

To prove a bound on
∥∥∥M̃∥∥∥

∞
, we first prove bounds on individual components

of M̃ : ΓL,S,Eβ .
By Equation 3, we have ‖ΓL‖∞ < (σ ·m2)L. Note that during obfuscation we

sample secret matrices S
(b)
level (for each level and bit b) such that they are short and

always invertible. Therefore, matrix ΓL (which is product of L secret matrices)
is also invertible. Thus, we can write that ‖ΓL‖∞ ≥ 1. The lower bound of 1
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follows from the fact that ΓL is non-singular (and integral) matrix. By Equation
2, we know that ‖Eβ‖∞ < `PRG · σ ·m2. Also, ‖S‖∞ ≤ σ · n ·

√
m < σ ·m2 as S

is sampled from truncated gaussian distribution.

We finally prove bounds on
∥∥∥M̃∥∥∥

∞
. We know that M̃

(1)
= q1/4 · ΓL and

M̃
(2)

= q1/4 · ΓL · S + ΓL ·Eβ .∥∥∥M̃∥∥∥
∞
≥
∥∥∥∥M̃(1)

∥∥∥∥
∞

= q1/4 · ‖ΓL‖∞ ≥ q
1/4∥∥∥∥M̃(1)

∥∥∥∥
∞
≤ q1/4 · ‖ΓL‖∞ < q1/4 · (σ ·m2)L∥∥∥∥M̃(2)
∥∥∥∥
∞
≤ q1/4 · ‖ΓL‖∞ · ‖S‖∞ + ‖ΓL‖∞ · ‖Eβ‖∞

< q1/4 · (σ ·m2)L+1 + `PRG · (σ ·m2)L+1

< q1/4 · (`PRG + 1) · (σ ·m2)L+1

This implies,∥∥∥M̃∥∥∥
∞
≤
∥∥∥∥M̃(1)

∥∥∥∥
∞

+

∥∥∥∥M̃(2)
∥∥∥∥
∞
< q1/4 · (σ ·m2)L + q1/4 · (`PRG + 1) · (σ ·m2)L+1

< q1/4 · (`PRG + 2) · (σ ·m2)L+1 < q1/4 · q1/8 < q3/8

The last inequality follows from the constraints described in the construction.
Next, we show that matrix M(1) has large entries. In other words, matrix M has
high l∞ norm. Concretely,

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≤
∥∥∥M̃∥∥∥

∞
+ ‖Err‖∞ = q3/8 + Bd < q3/8 + q1/8 < q1/2.

‖M‖∞ =
∥∥∥M̃ + Err

∥∥∥
∞
≥
∥∥∥M̃∥∥∥

∞
− ‖Err‖∞ ≥

∥∥∥∥M̃(1)
∥∥∥∥
∞
− ‖Err‖∞

≥ q1/4 − Bd > q1/4 − q1/8 > q1/8.

Hence if msg = 1, ‖M‖∞ ∈ (q1/8, q1/2) and the evaluation always outputs 1.

Part 2: BP(z) 6= β. In this case, we prove that the l∞ norm of output ma-
trix M is at least q1/2. Let x = BP(z) and δx be the edit distance between

x and β, which is clearly greater than 0 if x 6= β. By construction, M̃ =

ΓL · [Ax ||Ax · S + Ex + δx ·D] and M = M̃ + Err. We now split this case into

two subcases: 1)
∥∥∥M(1)

∥∥∥
∞
> q1/2 and 2)

∥∥∥M(1)
∥∥∥
∞
≤ q1/2.

Case 1.
∥∥∥M(1)

∥∥∥
∞
> q1/2. In this case, ‖M‖∞ > q1/2 and the evaluator always

outputs ⊥.

Case 2.
∥∥∥M(1)

∥∥∥
∞
≤ q1/2. In this case, we prove that M(2) has high l∞ norm.

Recall that ‖S‖∞ ≤ σ ·n ·
√
m < σ ·m2 as S is sampled from truncated gaussian
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distribution and ‖Ex‖∞ ≤ `PRG · σ ·m2 by an analysis similar to Equation 2.
Also, ‖ΓL‖∞ < (σ ·m2)L by Equation 3. We now prove an upper bound on norm
of ΓL · [Ax · S + Ex].

‖ΓL ·Ax‖∞ ≤
∥∥∥M(1)

∥∥∥
∞

+
∥∥∥Err(1)∥∥∥

∞
≤ q1/2 + Bd

‖ΓL ·Ax · S + ΓL ·Ex‖∞ ≤ ‖ΓL ·Ax‖∞ · ‖S‖∞ + ‖ΓL‖∞ · ‖Ex‖∞
≤ (q1/2 + Bd) · σ ·m2 + `PRG · (σ ·m2)L+1

≤ q1/2 · σ ·m2 + `PRG · L · (σ ·m2)L+1 + `PRG · (σ ·m2)L+1

< q1/2 · σ ·m2 + `PRG · (L+ 1) · (σ ·m2)L+1

< q1/2 · q1/8 + q1/8 < 1/2 · q3/4

(4)

The last 2 inequalities follow from the constraints described in the construction.

As ΓL ·D =
[
q3/4 · ΓL ||0n×(m−2·n)

]
, we know that ‖ΓL ·D‖∞ = q3/4 · ‖ΓL‖∞,

which lies in [q3/4, q3/4 · (σ ·m2)L] as discussed earlier. This along with Equation

4 implies the following upper bound on

∥∥∥∥M̃(2)
∥∥∥∥
∞

.

∥∥∥∥M̃(2)
∥∥∥∥
∞

= ‖ΓL · [Ax · S + Ex + δx ·D]‖∞

≤ ‖ΓL ·Ax · S + ΓL ·Ex‖∞ + δx · ‖ΓL ·D‖∞
< 1/2 · q3/4 + `PRG · ‖ΓL ·D‖∞ ≤ 1/2 · q3/4 + q3/4 · `PRG · (σ ·m2)L

< q3/4 · q1/8 = q7/8

The last inequality follows from the constraints described in the construction.

We can also prove the following lower bound on

∥∥∥∥M̃(2)
∥∥∥∥
∞

.

∥∥∥∥M̃(2)
∥∥∥∥
∞

= ‖ΓL · [Ax · S + Ex + δx ·D]‖∞

≥ −‖ΓL ·Ax · S + ΓL ·Ex‖∞ + ‖ΓL ·D‖∞ > −1/2 · q3/4 + q3/4 = 1/2 · q3/4

Now, we prove upper and lower bounds on M(2) = M̃
(2)

+ Err(2).

q1/2 < 1/2·q3/4−q1/8 < 1/2·q3/4−Bd ≤
∥∥∥M(2)

∥∥∥
∞
≤ q7/8+Bd < q7/8+q1/8 < q/2

This implies,
∥∥∥M(2)

∥∥∥
∞
> q1/2 in this case. Therefore, ‖M‖∞ > q1/2 and the

evaluator always outputs ⊥.

Using the above lemma, we can now argue the correctness of our scheme.
First, we need to show correctness for the case when P (x) = α.
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Claim 2 For any security parameter λ ∈ N, any input x ∈ {0, 1}`in , any pro-
gram P ∈ C`in,`out,d and any message msg ∈ {0, 1}, if P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

Proof. First, the obfuscator encrypts the program P using an LHE secret key
lhe.sk, and sets ct← LHE.Enc(lhe.sk, P ). The evaluator evaluates the LHE cipher-
text on universal circuit Ux(·), which results in an evaluated ciphertext c̃t. Now,
by the correctness of the LHE scheme, decryption of c̃t using lhe.sk outputs α.
Therefore, PRG.Eval(pp, LHE.Dec(lhe.sk, c̃t)) = β, where pp← PRG.Setup(1λ).12

Then, using Lemma 1, we can argue that Comp-Eval outputs msg, and thus Eval
outputs msg.

Claim 3 For all security parameters λ, inputs x ∈ {0, 1}`in , programs P ∈
C`in,`out,d, α ∈ {0, 1}`out such that P (x) 6= α and msg ∈ {0, 1},

Eval(Obf(1λ, P,msg, α), x) = ⊥

Proof. Fix any security parameter λ, program P , α, x such that P (x) 6= α and
message msg. The evaluator evaluates the LHE ciphertext on universal circuit
Ux(·), which results in an evaluated ciphertext c̃t. Now, by the correctness of
the LHE scheme, decryption of c̃t using lhe.sk does not output α. Therefore,
by the perfect injectivity of PRG scheme, for all pp← PRG.Setup(1λ), we have
PRG.Eval(pp, LHE.Dec(lhe.sk, c̃t)) 6= β. Then, using Lemma 1, we can argue that
Comp-Eval outputs ⊥, and thus Eval outputs ⊥.

4.3 Security

In this subsection, we prove the security of the above construction. Concretely,
we prove the following theorem.

Theorem 2. Assuming that LHE is a secure leveled homomorphic encryption
scheme, and PRG is a secure perfectly injective pseudorandom generator, lattice
trapdoors are secure and (n, 2n ·`PRG,m−n, q, χ)-LWE-ss, (n, 5m ·`PRG, n, q, χ)-
LWE-ss assumptions hold, the lockable obfuscation construction described in Sec-
tion 4.1 is secure as per Definition 2.

Proof. We prove the above theorem by proving that our construction is com-
putationally indistinguishable from the construction provided in [28, Appendix
D] that uses perfectly injective PRGs. Note that Goyal et al. [28] construct a
simulator Sim(1λ, 1|P |, 1|α|) and prove that their construction is computation-
ally indstinguishable from the simulator. By a standard hybrid argument, this
implies that our construction is computationally indstinguishable from the sim-
ulator. Formally, we prove the following theorem.

12 As before, we are overloading the notation and using LHE.Dec to decrypt multiple
ciphertexts.

24



Theorem 3. Assuming that PRG is a secure perfectly injective pseudorandom
generator and (n, 2n·`PRG,m−n, q, χ)-LWE-ss assumption holds, the lockable ob-
fuscation construction described in Section 4.1 is computationally indistinguish-
able13 from [28, Appendix D] construction that uses perfectly injective PRGs.

We prove the theorem using the following sequence of hybrids. The first hybrid
corresponds to the security game in which the challenger uses our lockable ob-
fuscation scheme (Section 4.1) for obfuscating the challenge program. The last
hybrid corresponds to the security game in which the challenger uses lockable
obfuscation scheme provided in [28]. We note that some portions of the proof
are similar to those used in [28].

Game 0. This game correponds to the challenger using our lockable obfuscation
scheme for obfuscating the challenge program.

1. The adversary sends a program P and message msg to the challenger.
2. The challenger first chooses the LWE parameters n, m, q, σ, χ and `PRG.

Recall L denotes the length of the branching programs.
3. The challenger then chooses (sk, ek)← LHE.Setup(1λ, 1d log d) and sets ct←

LHE.Enc(sk, P ).
4. Next, it chooses a uniformly random string α ← {0, 1}`out , runs pp ←

PRG.Setup(1λ) and sets β = PRG.Eval(pp, α).
5. Next, consider the following program Q. It takes as input an LHE ciphertext

ct, has sk hardwired and does the following: it decrypts the input ciphertext
ct to get string x and outputs PRG.Eval(pp, x). For i ≤ `PRG(λ), let BP(i)

denote the branching program that outputs the ith bit of PRG.Eval(pp, x).

6. For i = 1 to `PRG and j = 0 to L−1, it chooses (B
(i)
j , T

(i)
j )← TrapGen(15n, 1m, q).

7. Let D = q3/4 ·
[
In ||0n×(m−2·n)

]
.

(a) For the top level, it first chooses the matrices A
(i)
L,k (of dimension n×n)

for each i ≤ `PRG, k ≤ 5, uniformly at random, subject to the following
constraints:∑

i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= 0n×n if msg = 0.

∑
i:βi=0

A
(i)

L,rej(i)
+
∑
i:βi=1

A
(i)

L,acc(i)
= q1/4 · In if msg = 1.

(b) It then samples a matrix S ← χn×(m−n), and matrices E
(i)

L,rej(i)
←

χn×(m−n),E
(i)

L,acc(i)
← χn×(m−n) for each i ≤ `PRG. Next, it chooses

13 Consider a game in which the adversary sends a program P and message msg to the
challenger, which either obfuscates (P,msg) using [28] construction or our construc-
tion and sends back the obfuscated program. No PPT adversary can distinguish the
two scenarios with non-negligible advantage.
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matrices F
(i)
L,k as follows

F
(i)

L,acc(i)
= A

(i)

L,acc(i)
· S + E

(i)

L,acc(i)
+ (1− βi) ·D

F
(i)

L,rej(i)
= A

(i)

L,rej(i)
· S + E

(i)

L,rej(i)
+ βi ·D

F
(i)
L,k ← Zn×(m−n)q if k /∈ {acc(i), rej(i)}

(c) The top level matrices B
(i)
L,k for each i ≤ `PRG, k ≤ 5 are set to B

(i)
L,k =[

A
(i)
L,k ||F

(i)
L,k

]
.

8. Next, it generates the components for each level. For each i ∈ [1, `PRG] and
each level level ∈ [1, L], do the following:

(a) Choose matrices S
(0)
level,S

(1)
level ← χn×n and E

(i,0)
level ,E

(i,1)
level ← χ5n×m for i ≤

`PRG. If either S
(0)
level or S

(1)
level has determinant zero, then set it to be In.

(b) For b ∈ {0, 1}, set matrix D
(i,b)
level as a permutation of the matrix blocks

of B
(i)
level according to the permutation σ

(i)
level,b(·).

(c) Set M
(i,b)
level =

(
I5 ⊗ S

(b)
level

)
·D(i,b)

level + E
(i,b)
level for i ≤ `PRG.

(d) Compute C
(i,b)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,M

(i,b)
level )

9. The challenger sends the final obfuscated program which consists of the
LHE evaluation key ek, LHE encryption ct, together with the components({

B
(i)
0,1

}
i
,
{

(C
(i,0)
j ,C

(i,1)
j )

}
i,j

)
to the adversary.

10. The adversary outputs a bit b′.

Game 1: In this hybrid, the string β is chosen uniformly at random.

4. Next, it chooses a uniformly random string β ← {0, 1}`PRG .

Game 2: In this hybrid, the matrices A
(i)
L,k are chosen uniformly at random

without any constraints.

7. (a) For the top level, it first chooses the matrices A
(i)
L,k (of dimension n×n)

for each i ≤ `PRG, k ≤ 5, uniformly at random without any constraints.

Game 3: In this hybrid, all the matrices F
(i)
L,k are chosen uniformly at random.

7. (b) It then samples matrices R
(i)

L,rej(i)
← Zn×(m−n)q ,R

(i)

L,acc(i)
← Zn×(m−n)q

for each i ≤ `PRG. Next, it chooses matrices F
(i)
L,k as follows.

F
(i)

L,acc(i)
= R

(i)

L,acc(i)
+ (1− βi) ·D, F

(i)

L,rej(i)
= R

(i)

L,rej(i)
+ βi ·D

F
(i)
L,k ← Zn×(m−n)q if k /∈ {acc(i), rej(i)}
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Game 4: In this hybrid, all the top level matrices B
(i)
L,k are chosen uniformly at

random.

7. For the top level, for each i ≤ `PRG and k ≤ 5, it chooses the matrices B
(i)
L,k

uniformly at random from Zn×mq .

Game 5: In this hybrid, the top level matrices B
(i)
L,k are chosen according to

GKW17 construction.

7. For the top level, for each i ≤ `PRG and k ≤ 5, it chooses the matrices B
(i)
L,k

uniformly at random from Zn×mq subject to the following constraints.

∑
i : βi=0

B
(i)

L,rej(i)
+

∑
i : βi=1

B
(i)

L,acc(i)
=

{
0 if msg = 0.
√
q ·
[
In ||0n×(m−n)

]
if msg = 1.

Game 6: This hybrid corresponds to challenger using GKW17 lockable obfusca-
tion scheme for obfuscating the challenge program.

4. Next, it chooses a uniformly random string α ← {0, 1}`out , runs pp ←
PRG.Setup(1λ) and sets β = PRG.Eval(pp, α).

Due to space constraints, we prove that Game 0 is indistinguishable from
Game 6 in the full version of the paper.

5 Perfectly Injective PRGs from LPN

In this section, we give our construction of (perfectly) injective PRGs (with
Setup) from the Learning Parity with Noise assumption.14

Overview. Let the input length of PRG be n+ `. We parse input x ∈ {0, 1}n+`
as x = y || z, where |y| = n and |z| = `. Now, string y is parsed as s, and z will
be used to sample the error vector e. Note that for injectivity argument to go
through, it is important that the mapping between input y, z and vectors s, e is
also injective. Now both y and s are already of length n, thus we only need to
make sure that our error vector sampling procedure is injective. Before describing
our sampling procedure, we would like to point out that, in the PRG security
game, the PRG seed is sampled uniformly at random, thus the distribution over
error vectors will be a uniform distribution as well. This suggests that for basing
pseudorandomness security we can’t rely on the standard LPN assumption as

14 Our PRG construction bears some resemblance to the IND-CCA secure encryption
schemes provided by Döttling et al. [24] and Kiltz et al. [31], but requires new ideas.
We point that if we try to build PRGs using the techniques from [24, 31], then that
only gives ‘statistically injective’ PRGs, whereas in this paper our goal is to get
perfectly injective PRGs.
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the noise distribution is not Bernoulli, but uniform. However, we could instead
rely on the exact-LPN assumption (or xLPN) which is polynomially related to
standard LPN assumption, and in which the noise distribution is uniform as the
error vectors are sampled such that they have fixed hamming weight.

Next, we observe that the size of support of noise distribution in the the xLPN
assumption need not be a perfect power of two, thus we might not be able to
injectively sample error vectors from the fixed length binary string z. To resolve
this issue, we simply truncate the noise distribution to contain only lexically
smallest error vectors such that the size of truncated set is equal to the nearest
power of two. However, with this modification we need to rely on an alternate
assumption which we call the restricted-exact-LPN assumption (or rxLPN). It
turns out that the sample-preserving reduction of [5] also holds for rxLPN. This
suggests that rxLPN and LPN assumptions are (polynomially) equivalent, there-
fore we could still reduce the security to the LPN assumption. Now to injectively
map vectors with a fixed hamming weight to bitstrings, we employ a simple
combinatorial trick to give a total ordering over vectors with efficient recursive
sampling procedure. First, note that a total ordering over vectors can be trivially
defined by denoting each vector with its corresponding integer representation.
Now, our sampling procedure works as follows — let x ∈ {0, 1}` and we want to
sample vector v ∈ Zm2 such that HW(v) = k. The sampling algorithm first checks
whether int(x) > m−1Ck (where int(x) is the integer corresponding to string x).
If the check succeeds, then it sets the first position in v to be 1, else it sets it 0,
and continues. Also, if the check succeeds, then it updates x = x − m−1Ck. In
other words, each vector v ∈ Zm2 with HW(v) = k is uniquely ranked from 0 to
mCk−1, and the sample algorithm outputs vector v with rank int(x). For exam-
ple, 0m−k1k has rank 0 and 1k0m−k has rank mCk − 1. The sampling procedure
has been formally described later in the full version of the paper.

Finally, to sample matrix B as a generator matrix of some good but random
code, we employ ideas similar to that used in our LWE solution. To sample B
in this special way, we simply choose a uniformly random matrix A, a matrix
C with low hamming weight rows and set B = [A | AC + G], where G is the
generator matrix of an error correcting code. Here the role of G is similar to the
role of D in the previous solution, that is to map any non-zero vector to a high
hamming weight vector. A crucial point here is that the rows of C must have low
hamming weight. This is because if AT s has low hamming weight, then so does
CTAT s, and later this will be crucial in arguing that B is a generator matrix of
a good code. Finally, for pseudorandomness of our construction, we want that
B should look like a random matrix to any computationally bounded adversary.
To this end, we use the Knapsack LPN assumption which was also shown to be
(polynomially) equivalent to LPN assumption [32].15 Due to space constraints,
we defer the formal description of the construction to the full version of the
paper.

15 The Knapsack LPN assumption states that for a uniformly random matrix A and
a matrix E such that each entry is 1 with probability p and A has fewer rows than
columns, then (A,AE) look like uniformly random matrices.
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