
Robust Secret Sharing with Almost Optimal
Share Size and Security Against Rushing

Adversaries

Serge Fehr1,2 and Chen Yuan1

1 CWI, Amsterdam, The Netherlands
2 Mathematical Institute, Leiden University, The Netherlands

serge.fehr@cwi.nl, chen.yuan@cwi.nl

Abstract. We show a robust secret sharing scheme for a maximal thresh-
old t < n/2 that features an optimal overhead in share size, offers security
against a rushing adversary, and runs in polynomial time. Previous ro-
bust secret sharing schemes for t < n/2 either suffered from a suboptimal
overhead, offered no (provable) security against a rushing adversary, or
ran in superpolynomial time.

1 Introduction

Background. Robust secret sharing is a version of secret sharing that enables
the reconstruction of the shared secret s in the presence of incorrect shares:
given all n shares but with t of them possibly incorrect, and of course without
knowing which ones are incorrect, it should still be possible to recover s. If
t < n/3 then this can be achieved by standard error-correction techniques, while
for t ≥ n/2 the task is impossible. When n/3 ≤ t < n/2, robust secret sharing
is possible, but only if one accepts a small failure probability and an overhead
in the share size, i.e., shares of bit size larger than the bit size of s. The goal
then is to minimize the overhead in the share size for a given (negligible) failure
probability 2−k. Following up on earlier work on the topic [10, 4, 6, 5, 7, 2], Bishop
et al. proposed a scheme with optimal overhead O(k) in the share size, neglecting
polylogarithmic terms (in n and k and the bit size of s) [3]. In particular, their
scheme was the first robust secret sharing with an overhead that is independent
of n (neglecting polylog(n) terms). However, as pointed out by Fehr and Yuan [8],
the Bishop et al. scheme does not (appear to) offer security in the presence of a
rushing adversary that may choose the incorrect shares depending on the shares
of the honest parties. This is in contrast to most of the earlier schemes, which
do offer security against such rushing attacks (but are less efficient in terms of
share size).1 Towards recovering security against a rushing adversary, Fehr and

1 In order to achieve security against a rushing adversary when n/3 ≤ t < n/2,
it is necessary that the shares are disclosed part-by-part in subsequent rounds of
communication; for the adversary to be rushing then means that he can choose his
messages in each communication round depending on the parts of the shares of
the honest parties that are communicated in this round (and earlier ones), but not
depending on what the honest parties will communicate in the upcoming rounds.

Yuan [8] proposed a new robust secret sharing scheme that features security
against a rushing adversary and an overhead “almost independent” of n, i.e.,
O(nε) for an arbitrary ε > 0. Furthermore, a variation of their scheme offers
security against a rushing adversary and an overhead that is truly independent
of n (neglecting polylogarithmic terms), but this version of the scheme has a
running time that is superpolynomial.

Our Result. In this work, we close the final gap left open in [8]: we propose
and analyze a new robust secret sharing scheme that is secure against a rushing
adversary, has an overhead independent of n as in [3] (i.e., independent up to
the same poly-logarithmic O(log4 n+ log n logm) term as in [3], where m is the
bit size of the secret), and has a polynomial running time.

Our new scheme recycles several of the ideas and techniques of [8]. The basic
idea, which goes back to [3], is to have each share si be authenticated by a
small randomly chosen subset of the other parties. Following [8], our approach
here differs from [3] in that the keys for the authentication are not authenticated.
Indeed, this “circularity” of having the authentication keys authenticated causes
the solution in [3] to not allow a rushing adversary; on the other hand, by
not authenticating the authentication keys, we give the dishonest parties more
flexibility in lying, making the reconstruction harder.

The reconstruction is in terms of a careful (and rather involved) inspection
of the resulting consistency graph, exploiting that every honest party can verify
the correctness of the shares of a small but random subset of parties, and that
these choices of random “neighborhoods” become known to the adversary only
after having decided about which shares si to lie about. As a matter of fact,
in our scheme, every honest party can verify the correctness of the shares of
several randomly chosen small neighborhoods, giving rise to several global ver-
ification graphs. Furthermore, to ensure “freshness” of each such neighborhood
conditioned on the adversary’s behavior so far, these neighborhoods are revealed
sequentially in subsequent rounds of communication during the reconstruction
phase.

As in [8], in our scheme the reconstructor first learns from the consistency
graph whether the number p of “passive” parties, i.e., dishonest parties that did
not lie about the actual share si (but possibly about other pieces of information),
is “large” or “small”. For p small, we can recycle the solution from [8], which
happens to also work for the tighter parameter setting we consider here. When p
is large though, the solution in [8] is to exploit the given redundancy in the shares
si by means of applying list decoding, and then to find the right candidate from
the list by again resorting to the consistency graph. However, this list decoding
technique only works in a parameter regime that then gives rise to the O(nε)
overhead obtained in [8]. To overcome this in our solution, we invoke a new
technique for dealing with the case of a large p.

We quickly explain this new part on a very high level. The idea is to design
a procedure that works assuming the exact value of p is known. This procedure
is then repeated for every possible choice of p, leading to a list of possible candi-
dates; similarly to how the scheme in [8] finds the right candidate from the list

2

produced by the list decoding, we can then find the right one from the list. As
for the procedure assuming p is known, exploiting the fact that p is large and
known, we can find subsets V and V1 so that either we can recover the shared
secret from the shares of the parties in V ∪ V1 by standard error correction (s-
ince it happens that there is more redundancy than errors in this collection of
shares), or we can argue that the complement of V is a set for which the small-p
case applies and thus we can again resort to the corresponding technique in [8].

One technical novelty in our approach is that we also invoke one layer of
random neighborhoods that are publicly known. In this case, the adversary can
corrupt parties depending on who can verify whose share, but the topology of
the global verification graph is fixed and cannot be modified by dishonest parties
that lie about their neighborhoods.

Following [3] and [8], we point out that it is good enough to have a robust
secret sharing scheme with a constant failure probability and a (quasi-)constant
overhead; a scheme with 2−k failure probability and a (quasi-) O(k) overhead
can then be obtained by means of parallel repetition. This is what we do here as
well: at the core is a scheme where each party is given a quasi-constant number
of bits on top of the actual share si (i.e., the size of the authentication keys and
the size of the random neighborhoods are chosen to be quasi-constant), and we
show that this scheme has a constant failure probability.

Concurrent Work. In concurrent and independent work [9], a very similar
result as ours was obtained (using rather different techniques though). They al-
so show an optimal (up to poly-logarithmic terms) robust secret sharing scheme
with security against a rushing adversary. Compared to our scheme, their scheme
has a slightly better poly-logarithmic dependency on n: O(log2 n+ logm log n).
On the other hand, in a setting where the reconstruction is towards an external
reconstructor R, our scheme works simply by revealing the shares to R (over
multiple rounds) and R doing some local computation, whereas their scheme
requires interaction among the shareholders and, as far as we can see, the share-
holders will then learn the shared secret as well. For instance in the context of
robust storage, the latter is undesirable.

2 Preliminaries

2.1 Graph Notation

We follow the graph notation in [8], which we briefly recall. Let G = ([n], E) be a
graph with vertex set [n] := {1, . . . , n} and edge set E. By convention, (v, w) ∈ E
represents an edge directed from v to w is . We let G|S be the restriction of G
to S for any S ⊆ [n], i.e., G|S = (S,E|S) with E|S = {(u, v) ∈ E : u, v ∈ S}.

For vertex v ∈ [n], we set

Nout(v) = {w ∈ [n] : (v, w) ∈ E} and N in(v) = {w ∈ [n] : (w, v) ∈ E}.

3

We use Ev as a short hand for Nout(v), the neighborhood of v. For S ⊆ [n], we
set

Nout
S (v) = Nout(v) ∩ S and N in

S (v) = N in(v) ∩ S .

This notation is extended to a labeled graph, i.e., when G comes with a
function L : E → {good, bad} that labels each edge. Namely, for v ∈ [n] we set

Nout(v, good) = {w ∈ Nout(v) : L(v, w) = good},
N in(v, good) = {w ∈ N in(v) : L(w, v) = good},

and similarly Nout(v, bad) and N in(v, bad). Also, Nout
S (v, good), N in

S (v, good),
Nout
S (v, bad) and N in

S (v, bad) are defined accordingly for S ⊆ [n]. Finally, we set

nout(v) = |Nout(v)| and ninS (v, bad) = |N in
S (v, bad)|

and similarly for all other variations.

2.2 Random Graphs

We call a graph G = ([n], E) a randomized graph if each edge in E is actu-
ally a random variable. We are particularly interested in randomized graphs
where (some or all of) the Ev’s are uniformly random and independent subsets
Ev ⊂ [n] \ {v} of a given size d. For easier terminology, we refer to such neigh-
borhoods Ev as being random and independent. G is called a random degree-d
graph if Ev is a random subset of size d in the above sense for all v ∈ [n]. The
following properties are direct corollaries of the Chernoff-Hoeffding bound: the
first follows from Chernoff-Hoeffding with independent random variables, and
the latter from Chernoff-Hoeffding with negatively correlated random variables
(see Appendix A).2

Corollary 1. Let G = ([n], E) be a randomized graph with the property that,
for some fixed v ∈ [n], the neighborhood Ev is a random subset of [n] \ {v} of
size d. Then, for any fixed subset T ⊂ [n], we have

Pr
[
noutT (v) ≥ µ+∆

]
≤ 2−

∆2

3µ and Pr
[
noutT (v) ≤ µ−∆

]
≤ 2−

∆2

2µ ,

where µ := |T |d
n .

Corollary 2. Let G = ([n], E) be a randomized graph with the property that, for
some fixed T ⊂ [n], the neighborhoods Ev for v ∈ T are random and independent
of size d (in the sense as explained above). Then, for any v 6∈ T , we have

Pr
[
ninT (v) ≥ µ+∆

]
≤ 2−

∆2

3µ and Pr
[
ninT (v) ≤ µ−∆

]
≤ 2−

∆2

2µ ,

where µ := |T |d
n .

2 We refer to [1] for more details, e.g., for showing that the random variables Xj = 1
if j ∈ Ev and 0 otherwise are negatively correlated for Ev as in Corollary 1.

4

We will also encounter a situation where the set T may depend on the graph G;
this will be in the context of a random but publicly known verification graph,
where the adversary can then influence T dependent on G. The technical issue
then is that conditioned on the set T , the neighborhood Ev may not be random
anymore, so that we cannot apply the above two corollaries. Instead, we will
then use the following properties, which require some more work to prove.

Lemma 1. Let G = ([n], E) be a random degree-d graph. Then, there exists no
γ ∈ 1

nZ ∩
[
0, 12
]

and T ⊂ [n] of size |T | ≥ (γ − α)n for α2d = 24 log n with the
property that

|{v ∈ [n] : ninT (v) < d(γ − 2α)}| ≥ γn

2
,

except with probability n1−5n.3

Proof. See appendix.

Lemma 2. Let G = ([n], E) be a random degree-d graph. Then, there exists no
γ ∈ 1

nZ ∩
[

1
logn ,

1
2

]
and T ⊂ [n] of size |T | ≤ (γ − 3α)n for α2d = 24 log n with

the property that

|{v ∈ [n] : ninT (v) ≥ d(γ − 2α)}| ≥ γn

2
,

except with probability n1−3n.

The proof goes along the very same lines as for Lemma 1.

2.3 Robust Secret Sharing

A robust secret sharing scheme consists of two interactive protocols: the sharing
protocol Share and the reconstruction protocol Rec. There are three different
roles in this scheme, a dealer D, a receiver R and n parties labeled 1, . . . , n. The
sharing protocol is executed by D and n parties: D takes as input a message
msg, and each party i ∈ {1, . . . , n} obtains as output a share. Typically, D
generates these shares locally and then sends to each party the corresponding
share. The reconstruction protocol is executed by R and the n parties: each
party is supposed to use its share as input, and the goal is that R obtains msg
as output. Ideally, the n parties simply send their shares to R— possibly using
multiple communication rounds — and R then performs some local computation
to reconstruct the message.4

We want a robust secret sharing scheme to be secure in the presence of an
active adversary who can corrupt up to t of n parties. Once a party is corrupted,
the adversary can see the share of this party. In addition, in the reconstruc-
tion protocol, the corrupt parties can arbitrarily deviate from the protocol. The
following captures the formal security requirements of a robust secret sharing
scheme.
3 We emphasize that γ and T are allowed to depend on G.
4 This is not the case in [9]; see our discussion at the very end of Section 1.

5

Definition 1 (Robust Secret Sharing). A pair (Share,Rec) of protocols is
called a (t, δ)-robust secret sharing scheme if the following properties hold for
any distribution of msg (from a given domain).

– Privacy: Before Rec is started, the adversary has no more information on
the shared secret msg than he had before the execution of Share.

– Robust reconstructability: At the end of Rec, the reconstructor R outputs
msg′ = msg except with probability at most δ.

As for the precise corruption model, we consider an adversary that can cor-
rupt up to t of the n parties (but not the dealer and receiver). We consider the
adversary to be rushing, meaning that the messages sent by the corrupt parties
during any communication round in the reconstruction phase may depend on
the messages of the honest parties sent in that round. Also, we consider the
adversary to be adaptive, meaning that the adversary can corrupt parties one
by one (each one depending on the adversary’s current view) and between any
two rounds of communication, as long as the total number of corrupt parties is
at most t. We point out that we do not allow the adversary to be “corruption-
rushing”, i.e., to corrupt parties during a communication round, depending on
the messages of (some of) the honest parties in this round, and to then “rush”
and modify this round’s messages of the freshly corrupt parties.5

2.4 Additional Building Blocks

We briefly recall a couple of techniques that we use in our construction. For more
details, see Appendix B.

Message authentication codes. The construction uses unconditionally secure
message authentication codes (MAC) that satisfy the usual authentication se-
curity, but which also feature a few additional properties: (1) an authentica-
tion tag σ is computed in a randomized way as a function MACkey(m, r) of
the message m, the key key, and freshly chosen randomness r, (2) it is en-
sured that for any ` keys key1, . . . , key` (with ` a parameter), the list of tags
MACkey1(m, r), . . . ,MACkey`(m, r) is independent of m over the choice of ran-
dom string r , and (3) for any message m and fixed randomness r, the tag
MACkey(m, r) is uniformly distributed (over the random choice of the key).
The specific construction we use is polynomial-evaluation construction

MAC(x,y) : Fa × F` → F, (m, r) 7→
a∑
i=1

mix
i+` +

∑̀
i=1

rix
i + y ,

with F a finite field of appropriate size and the key being key = (x, y) ∈ F2.

5 It is not fully clear to us what the impact would be of such a “corruption-rushing”
adversary to our scheme.

6

Robust distributed storage. Following [3, 8], the tags in the construction of our
robust secret sharing scheme will be stored robustly yet non-privately; the latter
is the reason why the extra privacy property (2) for the MAC is necessary. This
design ensures that cheaters cannot lie about the tags that authenticate their
shares to, say, provoke disagreement among honest parties about the correctness
of the share of a dishonest party.

Formally, a robust distributed storage scheme is a robust secret sharing scheme
but without the privacy requirement, and it can be achieved using a list-decodable
code (see Appendix B or [8] for more details). Important for us will be that the
share of each party i consists of two parts, pi and qi, and robustness against
a rushing adversary is achieved by first revealing pi and only then, in a sec-
ond communication round, qi. Furthermore, we can do with pi and qi that are
(asymptotically) smaller than the message by a fraction 1/n, and with correct

reconstruction except with probability 2−Ω(log2 n).

3 The Robust Secret Sharing Scheme

3.1 The Sharing Protocol

Let t be an arbitrary positive integer and n = 2t + 1. Let d = 600 log3 n.6 We
consider the message msg to be shared to be m bits long. We let F be a field
with log |F| = logm + 3 log n, and we set a := m

logm+3 logn so that msg ∈ Fa.
Our robust secret sharing scheme uses the following three building blocks. A
linear secret sharing scheme Sh that corresponds to a Reed-Solomon code of
length n and dimension t+ 1 over an extension field K over F with [K : F] = a,7

together with its corresponding error-correcting decoding algorithm Dec, the
MAC construction from Theorem 6 with ` = 10d, and the robust distributed
storage scheme from Theorem 7. On input msg ∈ Fa, our sharing protocol
Share(msg) works as follows.

1. Let (s1, . . . , sn)← Sh(msg) to be the non-robust secret sharing of msg.

2. Sample MAC randomness r1, . . . , rn ← F10d and repeat the following 5 times.

(a) For each i ∈ [n], choose a random set Ei ⊆ [n] \ {i} of size d. If there
exists j ∈ [n] with in-degree more than 2d, do it again.8

(b) For each i ∈ [n], sample a random MAC keys keyi,j ∈ F2 for each j ∈ Ei,
and set Ki = (keyi,j)j∈Ei .

(c) Compute the MACs9

σi→j = MACkeyi,j (sj , rj) ∈ F ∀j ∈ Ei

and set tagi = (σi→j)j∈Ei ∈ Fd.
6 We are not trying to optimize this constant. We specify the constant 600 for the

convenience of probability estimate.
7 So that we can identify msg ∈ Fa with msg ∈ K.
8 This is for privacy purposes.
9 The same randomness rj is used for the different i’s and the 5 repetitions.

7

Let E
(m)
i , K(m)

i and tag
(m)
i be the resulting choices in the m-th repetition.

3. Set tag = (tag
(m)
i)m∈[5],i∈[n] ∈ F5nd, and use the robust distributed storage

scheme to store tag together with E(2). Party i gets pi and qi.

4. For i ∈ [n], define si =
(
si, E

(1)
i , E

(3)
i , E

(4)
i , E

(5)
i ,K(1)

i , . . . ,K(5)
i , ri, pi, qi

)
to

be the share of party i. Output (s1, . . . , sn).

We emphasize that the topology of the graph G2, determined by the ran-

dom neighborhoods E
(2)
i , is stored robustly (yet non-private). This means that

the adversary will know G(2) but dishonest parties cannot lie about it. For
G1, G3, G4, G5 it is the other way round: they remain private until revealed

(see below), but a dishonest party i can then lie about E
(m)
i .

3.2 The Reconstruction Protocol

The reconstruction protocol Rec works as follows. First, using 5 rounds of com-
munication, the different parts of the shares (s1, . . . , sn) are gradually revealed
to the reconstructor R:

Round 1: Every party i sends (si, ri, pi) to the reconstructor R.

Round 2: Every party i sends (qi, E
(1)
i ,K(1)

i ,K(2)
i) to the reconstructor R.

Round 3: Every party i sends (E
(3)
i ,K(3)

i) to the reconstructor R.

Round 4: Every party i sends (E
(4)
i ,K(4)

i) to the reconstructor R.

Round 5: Every party i sends (E
(5)
i ,K(5)

i) to the reconstructor R.

Remark 1. We emphasize that since the keys for the authentication tags are
announced after the Shamir/Reed-Solomon shares si, it is ensured that the MAC
does its job also in the case of a rushing adversary. Furthermore, it will be crucial

that also the E
(1)
i ’s are revealed in the second round only, so as to ensure that

once the (correct and incorrect) Shamir shares are “on the table”, the E
(1)
i ’s for

the honest parties are still random and independent. Similarly for the E
(m)
i ’s

in the m-th round for m = 3, 4, 5. The graph G2 is stored robustly; hence, the
adversary knows all of it but cannot lie about it.

Then, second, having received the shares of n parties, the reconstructor R locally
runs the reconstruction algorithm given in the box below.

In a first step, this reconstruction algorithm considers the graphsG1, G2, G3, G4

and all the authentication information, and turns there graphs into labeled graphs
by marking edges as good or bad depending on whether the corresponding au-
thentication verification works out. Then, makes calls to various subroutines; we
will describe and analyze them at a time. As indicated in the description of the
reconstruction algorithm, the overall approach is to first find out if the number
p of passive parties10 is small or large, i.e., if there is either lots of redundancy

10 Formally, p is defined as t minus the number of active parties; thus, we implicitly
assume that t parties are corrupt (but some of them may behave honestly).

8

Local reconstruction algorithm

Collecting the data:

1. R collects s := (s1, . . . , sn) and (r1, . . . , rn), and, round by round, all the

authentication keys key
(m)
i,j and the graphs G1, G3, G4, G5.

2. R reconstructs all the tags σ
(m)
i→j and the graph G2 from (pi, qi)i∈[n].

3. R turns G1, . . . , G5 into labeled “consistency” graphs by marking any edge
(i, j) ∈ E(m) as good for which σ

(m)
i→j = MAC

key
(m)
i,j

(sj , rj).

Exploring the consistency graphs:

1. Estimate the number p of “passive parties” by running Check(G1,
n

logn
).

2. If the output is yes (indicating a “large” p) then compute

cγ := BigP(G1, G2, G3, G4, γ, s)

for every γ ∈ Γ := [1
logn

, 1
4
] ∩ 1

n
Z, set c1 = Dec(s), and output

c := Cand
(
{cγ}γ∈Γ ∪ {c1}, G5, s

)
.

3. Otherwise, i.e., if the output is no (indicating a “small” p), compute

ci = GraphB
(
G3, G4,

4n
logn

, i, s
)

for every i ∈ [n], and output c := maj(c1, . . . , cn), the majority.

or many errors in the Shamir shares, and then use a procedure that is tailored
to that case. Basically speaking, there are three subroutines to handle p in three
different ranges. The unique decoding algorithm Dec(s) handles the case p ≥ n

4
where there is sufficient redundancy in the shares to uniquely decode (this is
the trivial case, which we do not discuss any further below but assume for the
remainder that p ≤ n

4). The graph algorithm GraphB handles the case p ≤ 4n
logn ,

and the algorithm BigP deals with p ∈ [n
logn ,

n
4]; there is some overlap in those

two ranges as will not be able to pinpoint the range precisely.

In order to complete the description of the reconstruction procedure and to
show that it does its job (except with at most constant probability), we will
show the following in the upcoming sections.

1. An algorithm Check that distinguishes “small” from “large” p.

2. An algorithm BigP that, when run with γ = p/n and given that p is “large”,
outputs a valid codeword c for which ci = si for all honest i, and thus which
decodes to s. Given the p is not know, this algorithm is run with all possible
choices for p, and all the candidates for c are collected.

3. An algorithm Cand that finds the right c in the above list of candidates.

9

4. An algorithm GraphB that, when run with an honest party i and given that
p is “small”, outputs the codeword corresponding to the correct secret s.
This algorithm very much coincides with the algorithm used in [8] to deal
with the case of a “small” p, except for an adjustment of the parameters. We
defer description of this algorithm to our appendix as the security analysis
is quite similar to the graph algorithm in BigP.

3.3 “Active” and “Passive” Dishonest Parties

As in previous work on the topic, for the analysis of our scheme, it will be con-
venient to distinguish between corrupt parties that announce the correct Shamir
share si and the correct randomness ri in the first round of the reconstruction
phase (but may lie about other pieces of information) and between corrupt par-
ties that announce an incorrect si or ri. Following the terminology of previous
work on the topic, the former parties are called passive and the latter are called
active parties, and we write P and A for the respective sets of passive and active
parties, and we write H for the set of honest parties.

A subtle issue is the following. While the set A of active parties is determined
and fixed after the first round of communication, the set of passive parties P
may increase over time, since the adversary may keep corrupting parties as long
as |A ∪ P | ≤ t, and make them lie in later rounds. Often, this change in P is no
concern since many of the statements are in terms of H ∪ P , which is fixed like
A. In the other cases, we have to be explicit about the communication round we
consider, and P is then understood to be the set of passive parties during this
communication round.

3.4 The Consistency Graphs

As in [8], using a lazy sampling argument, it is not hard to see that after ev-
ery communication round (including the subsequent “corruption round”) in the
reconstruction procedure, the following holds. Conditioned on anything that
can be computed from the information announced up to that point, the neigh-

bourhoods E
(m)
i of the currently honest parties that are then announced in the

next round are still random and independent. For example, conditioned on the
set A of active parties and the set P of passive parties after the first round,

the E
(1)
i ’s announced in the second round are random and independent for all

i ∈ H = [n] \ (A ∪ P). Whenever we make probabilistic arguments, the ran-
domness is drawn from these random neighbourhoods. The only exception is the
graph G2, which is robustly but non-privately stored, and which thus has the

property that the E
(2)
i ’s are random and independent for all parties, but not

necessarily anymore when conditioned on, say, A and/or P .
Furthermore, by the security of the robust distributed storage of tag (The-

orem 7) and the MAC (Theorem 6) with our choice of parameters, it is ensured
that all of the labeled graphs G1, . . . , G5 satisfy the following property except
with probability O

(
log3(n)/n2

)
. For any edge (i, j) in any of these graphs Gm,

10

if i is honest at the time it announces E
(m)
i then (i, j) is labled good whenever

j is honest or passive.11 Also, (i, j) is labeled bad whenever j is active.
These observations give rise to the following definition, given a partition

[n] = H ∪ P ∪A into disjoint subsets with |H| ≥ t+ 1.

Definition 2. A randomized labeled graph G = ([n], E) is called a degree-d con-
sistency graph (w.r.t. the given partition) if the following two properties hold.

(Randomness) The neighborhoods Ei = {j | (i, j) ∈ E} of the vertices i ∈ H are
uniformly random and independent subsets of [n] \ {i} of size d.

(Labelling) For any edge (i, j) ∈ E with i ∈ H, if j ∈ H ∪P then L(i, j) = good

and if j ∈ A then L(i, j) = bad.

In order to emphasize the randomness of the neighborhoods Ei given the
partition [n] = H ∪P ∪A (and possibly of some other information X considered
at a time), we also speak of a fresh consistency graph (w.r.t. to the partition
and X). When we consider a variant of a consistency graph that is a random
degree-d graph, i.e., the randomness property holds for all i ∈ [n], while the
partition [n] = H ∪P ∪A (and possibly of some other information X considered
at a time) may depend on the choice of the random edges, we speak of a random
but non-fresh consistency graph.

Using this terminology, we can now capture the above remarks as follows:

Proposition 1. The graphs G1, G3, G4, G5, as announced in the respective com-
munication rounds, are fresh consistency graphs w.r.t. the partition [n] = H ∪
P ∪ A given by the active and (at that time) passive parties and w.r.t. any in-
formation available to R or the adversary prior to the respective communication
round, except that the labeling property may fail with probability O

(
log3(n)/n2

)
(independent of the randomness of the edges). On the other hand, G2 is a ran-
dom but non-fresh consistency graph (where, again, the labeling property may
fail with probability O

(
log3(n)/n2

)
).

In the following analysis we will suppress the O
(
log3(n)/n2

)
failure proba-

bility for the labeling property; we will incorporate it again in the end. Also, we
take it as understood that the partition [n] = H ∪ P ∪ A always refers to the
honest, the passive and the active parties, respectively.

3.5 The Check Subroutine

Let A be the set of active parties (well defined after the first communication
round), and let p := t − |A|, the number of (potential) passive parties. The
following subroutine distinguishes between p ≥ n

logn and p ≤ 4n
logn . This very

subroutine was already considered and analyzed in [8]; thus, we omit the proof.
The intuition is simply that the number of good outgoing edges of the honest
parties reflects the number of active parties.

11 Note that we are exploiting here the fact that the authentication tags are robustly
stored; thus, passive parties cannot lie about them.

11

Check(G, ε)

Output yes if

|{i ∈ [n] : nout(i, good) ≥ d

2
(1 + ε)}| ≥ t+ 1 ;

otherwise, output no.

Proposition 2 ([8]). Except with probability εcheck ≤ 2−Ω(εd), Check(G, ε) out-
puts yes if p ≥ εn and no if p ≤ εn/4 (and either of the two otherwise).

3.6 The Cand Subroutine

For simplicity, we next discuss the algorithm Cand. Recall that the set of correct
Shamir sharings form a (Reed-Solomon) code with minimal distance t, and s
collected by R is such a codeword, but with the coordinates in A (possibly)
altered. The task of Cand is to find “the right” codeword c, i.e., the one with
ci = si for all i 6∈ A, out of a given list L of codewords. The algorithm is
given access to a “fresh” consistency graph, i.e., one that is still random when
conditioned on the list L, and it is assumed that p is not too small.

Cand(L, G, s)

For each codeword c ∈ L, set

S := {i ∈ [n] | ci = si} and T := {v ∈ S : nout[n]\S(v, good) = 0}

until |T | ≥ t+ 1, and output c then.

Proposition 3. If p ≥ n
logn , L is a set of codewords of cardinality O(n2) for

which there exists c ∈ L with ci = si for all i ∈ H ∪ P , and G is a fresh
consistency graph, then Cand(L, G, s) outputs this c ∈ L except with probability

εcand ≤ e−Ω(log2 n).

Proof. Consider first a codeword c ∈ L for which ci 6= si for some i ∈ H ∪ P .
Then, due to the minimal distance of the code, |(H ∪ P) ∩ S| ≤ t. Therefore,

|(H ∪ P) \ S| ≥ |H ∪ P | − t > p ≥ n

log n
.

By the properties of G and using Corollary 1, this implies that for any v ∈ H

Pr[nout[n]\S(v, good) = 0] ≤ Pr[nout(H∪P)\S(v, good) = 0] ≤ 2−Ω(d
logn) ,

which is 2−Ω(log2 n) by the choice of d. Taking a union bound over all such c ∈ L
does not affect this asymptotic bound.

Next, if c ∈ L with ci = si for all i ∈ H ∪ P , i.e., [n] \ S ⊆ A, then, by the
properties of G,

nout[n]\S(v, good) ≤ noutA (v, good) = 0

for any v ∈ H ⊆ S. This proves the claim. ut

12

4 The Algorithm for Big p

We describe and discuss here the algorithm BigP, which is invoked when p is
large. We show that BigP works, i.e., outputs a codeword c for which ci = si
for all i ∈ H ∪ P , and thus which decodes to the correct secret s, if it is given
p as input. Since, p is not known, in the local reconstruction prodecure BigP is
run with all possible choices for p, producing a list of codewords, from which the
correct one can be found by means of Cand, as shown above.

BigP(G1, G2, G3, G4, γ, s)

1. Find V with no active parties and many honest parties:

V := Filter(G1, γ) .

2. Find a correct codeword assuming V ∩ P to be small or V to be large:

c := Find(G2, V, γ, s) .

3. Find a list of candidate codewords otherwise: Let W := [n] \ V and

ci := Graph(G3, G4,W, γ, i) for i ∈W .

4. Output {c} ∪ {c1, . . . , c|W |}.

Below, we describe the different subroutines of BigP and show that they do
what they are supposed to do. Formally, we will prove the following.

Theorem 1. If the number p := t−|A| of passive parties satisfies n
logn ≤ p ≤

n
4 ,

and γ := p
n , then BigP will output a list that contains the correct codeword except

with probability εbigp ≤ O(n−3). Moreover, it runs in time poly(n,m).

For the upcoming description of the subroutines of BigP, we define the global
constant

α :=
1

5 log n
so that α2d =

600 log3 n

25 log2 n
= 24 log n .

Also, recall that 1
logn ≤ γ = p

n ≤
1
4 .

4.1 Filter out Active Parties

The goal of the algorithm Filter is to find a set V with no active parties and
many honest parties. It has access to γ and to a fresh consistency graph.

13

Filter(G, γ)

Compute

T :=
{
v ∈ [n] : nout[n] (v, bad) ≤ d(1−2γ+α)

2

}
and

V :=
{
v ∈ T : ninT (v, bad) ≤ d(1−α)

2

}
and output V .

Proposition 4. If γ = (t − |A|)/n and G is a fresh consistency graph then
Filter(G, γ) outputs a set V that satisfies

|V ∩H| ≥ |H| − t+ (γ − α)n ≥ (γ − α)n and V ∩A = ∅ (1)

except with probability O(n−3).

We point out that the statement holds for the set of honest parties H as it is
before Round 2 of the reconstruction procedure, but lower bound (γ − α)n will
still hold after Round 2, since |H| remains larger than t.

Proof. By the property of G and using Corollary 1, recalling that |A|n ≤
1−2γ

2 ,
we have

Pr
[
nout(v, bad) ≥ d(1−2γ+α)

2

]
= Pr

[
noutA (v, bad) ≥ d(1−2γ+α)

2

]
≤ 2−α

2d/6 = n−4

for all v ∈ H. Taking a union bound over all honest parties, we conclude that
all v ∈ H are contained in T , except with probability n−3.

In order for an honest party v ∈ H to fail the test for being included in V ,
there must be d(1 − α)/2 bad incoming edges, coming from dishonest parties
in T . However, there are at most t dishonest parties in T , each one contributing
at most d(1− 2γ + α)/2 bad outgoing edges; thus, there are at most

td(1− 2γ + α)

d(1− α)
≤ t(1− 2γ + 2α) = t− (γ − α)n

honest parties excluded from V , where the inequality holds because

1− 2γ + α

1− 2γ + 2α
≤ (1− 2γ + α) + 2(γ − α)

(1− 2γ + 2α) + 2(γ − α)
= 1− α ,

using γ − α ≥ 0. This proves the claim on the number of honest parties in V .
For an active party v ∈ A, again by the properties of G but using Corollary 2

now, it follows that

Pr
[
ninT (v, bad) ≤ d(1−α)

2

]
≤ Pr

[
ninH(v, bad) ≤ d(1−α)

2

]
≤ 2−α

2d/4 = n−6 ,

recalling that |H|n ≥
1
2 and H ⊆ T . Taking the union bound, we conclude that

V contains no active party, except with probability O(n−5).

14

4.2 Find the correct codeword — in some cases

On input the set V as produced by Filter above, the goal of Find is to find
the correct decoding of s. Find is given access to γ and to a modified version
of a consistency graph G. Here, the consistency graph has uniformly random
neighbourhoods Ei for all parties, but the set V as well as the partition of [n]
into honest, passive and active parties may depend on the topology of G. Indeed,
this is the property of the graph G2, on which Find is eventually run.

Find(G,V, γ, s)

If |V | < (2γ + 2α)n then set

V1 :=
{
v ∈ [n] \ V : ninV (v, good) ≥ d(γ − 2α)

}
,

while
V1 :=

{
v ∈ [n] \ V : ninV (v, good) ≥ d(γ + 2α)

}
otherwise. Then, run the unique decoding algorithm on the shares si
for i ∈ V1 ∪ V , and output the resulting codeword c.

We will show that the algorithm Find succeeds as long as

|V ∩ P | ≤ (γ − 3α)n or |V | ≥ (2γ + 2α)n . (2)

This condition implies that honest parties outnumber passive parties by at least
2αn in V . We notice that 2αn is a very narrow margin which may become
useless if passive parties in V can lie about their neighbours by directing all
their outgoing edges to active parties. This behaviour may result in many active
parties admitted to V1. To prevent passive parties in V from lying about their
neighbours, we introduce a non-fresh consistency graph G whose topology is
publicly known but can not be modified. With the help of this graph G, we first
prove that under condition (2), V ∪V1 contains many honest and passive parties
with high probability. Then, we further prove that under the same condition,
V ∪ V1 contains very few active parties with high probability.

We stress that in the following statement, the partition [n] = H ∪P ∪A (and
thus γ) and the set V may depend on the choice of the (random) edges in G.

Lemma 3. For γ = (t− |A|)/n, V ⊆ [n] and G a random but non-fresh consis-
tency graph, the following holds except with probability 2−Ω(n). If

|V ∩H| ≥ (γ − α)n and |V | < (2γ + 2α)n ,

or

|V | ≥ (2γ + 2α)n ,

then V1 produced by Find(G,V, γ) satisfies |(H ∪ P) \ (V ∪ V1)| ≤ γn
2 .

15

Proof. Consider T := V ∩H. Note that for v ∈ H ∪ P

ninT (v) = ninV ∩H(v) = ninV ∩H(v, good) ≤ ninV (v, good) ,

and thus

B :=
{
v ∈ H∪P : ninV (v, good) < d(γ−3α)

}
⊆
{
v ∈ H∪P : ninT (v) < d(γ−3α)

}
.

By Lemma 1 the following holds, except with probability 2−Ω(n). If |V ∩H| ≥
(γ − α)n then |B| < γn

2 . But also, by definition of V1 in case |V | < (2γ + 2α)n,
(H ∪P) \ (V ∪ V1) ⊆ B. This proves the claim under the first assumption on V .

The proof under the second assumption goes along the same lines, noting
that the lower bound on |V | then implies that |V ∩H| ≥ |V | − |P | ≥ (γ + 2α)n,
offering a similar gap to the condition ninV (v, good) < d(γ + α) in the definition
of V1 then.

We proceed to our second claim.

Lemma 4. For γ = (t− |A|)/n, V ⊆ [n] and G a random but non-fresh consis-
tency graph, the following holds except with probability 2−Ω(n). If V ∩A = ∅, as
well as

|V ∩ P | ≤ (γ − 3α)n and |V | < (2γ + 2α)n

or
|V | ≥ (2γ + 2α)n ,

then V1 produced by Find(G,V, γ) satisfies |V1 ∩A| ≤ γn
2 .

Proof. Consider T := V ∩ P . Note that for v ∈ A

ninT (v) = ninV ∩P (v) ≥ ninV ∩P (v, good) = ninV (v, good) ,

and thus

C :=
{
v ∈ A : ninV (v, good) ≥ d(γ − 2α)

}
⊆
{
v ∈ A : ninT (v) ≥ d(γ − 2α)

}
.

By Lemma 2 the following holds, except with probability 2−Ω(n). If |V ∩ P | ≤
(γ − 3α)n then |C| < γn

2 . But also, by definition of V1 in case |V | < (2γ + 2α)n,
V1 ∩A ⊆ C. This proves the claim under the first assumption on V .

The proof under the second assumption goes along the same lines, noting that
|V ∩P | ≤ |P | ≤ γn offers a similar gap to the condition ninV (v, good) < d(γ +α)
in the definition of V1 then.

The following theorem is a consequence of Lemma 3 and Lemma 4. The
statement holds for P and H after Round 2 in the reconstruction procedure.

Proposition 5. The following holds except with probability 2−Ω(n). If (1) is
satisfied, i.e., |V ∩H| ≥ (γ − α)n and V ∩A = ∅, and additionally

|V ∩ P | ≤ (γ − 3α)n or |V | ≥ (2γ + 2α)n

holds, and if G is a non-fresh consistency graph, then Find(G,V, γ, s) will output
the correct codeword (determined by the si for i ∈ H).

16

Proof. It follows from Lemma 3 and Lemma 4 that, except with the claimed
probability, |(V ∪V1)∩A| ≤ γn

2 and |(V ∪V1)∩ (P ∪H)| ≥ t+1+ γn
2 . Therefore,

the punctured codeword, obtained by restricting to the coordinates in V ∪ V1,
has more redundancy than errors, thus unique decoding works and produces the
correct codeword.

Remark 2. Given that (1), i.e., |V ∩H| ≥ (γ − α)n and V ∩A = ∅, is promised
to be satisfied (except with small probability), the only case when Find fails is
|V | < (2γ + 2α)n yet |V ∩ P | > (γ − 3α)n, where P is the set of passive parties
before the third communication round. These conditions together with (1) imply
that

|V | = |V ∩H|+ |V ∩ P | ≥ (γ − α)n+ (γ − 3α)n = (2γ − 4α)n

and

|V ∩H| = |V | − |V ∩ P | ≤ |V | − |V ∩ P | ≤ (2γ + 2α)n− (γ − 3α)n ≤ (γ + 5α)n

This holds for set of honest parties H even before Round 4 as the set of honest
parties before Round 4 is a subset of that before Round 3. Combine this observa-
tion with Proposition 4, we come to conclusion that |V ∩H| ∈ [(γ−α)n, (γ+5α)n]
holds for the set of honest parties H before Round 4, i.e., the number of honest
parties within V is in the above range.

We can thus conclude that if Find fails then the set W := [n] \ V satisfies

(1− 2γ − 2α)n ≤ |W | ≤ (1− 2γ + 4α)n

and, given that |W ∩H| = t+ 1− |V ∩H|,

(
1

2
− γ − 5α)n ≤ |W ∩H| ≤ (

1

2
− γ + α)n+ 1 .

As we mention before, this holds for the set of honest parties H before Round
4. Moreover,

|W ∩ P | = |P | − |V ∩ P | = |P ∪H| − |H| − |V ∩ P | ≤ γn− (γn− 3αn) ≤ 3γn.

as |P | ≤ γn. We point out that the statement |W ∩P | ≤ 3γn holds even for the
set of passive parties P before Round 4 as |P ∪ H| = t + 1 + γn, |H| remains
bigger than t + 1 and |V ∩ P | remains bigger than γ − 3αn. In the following
section we show that if W satisfies the above constraints then the algorithm
Graph finds the correct decoding of s (when initiated with an honest party v
and two fresh consistency graphs).

4.3 Graph Algorithm

Recall that n′
out
W refers to noutW but for the graph G′ rather than G, and similarly

for n′
in
W . This graph algorithm resembles the one in [8], due to that they share

17

the same goal of finding a subset of parties that contains all honest parties and a
few dishonest parties whose majority are the passive parties. The differences lie
in the range of parameters due to that the graph algorithm in this paper takes
the subset of n parties as an input instead of n parties and honest parties may
not be a majority in this subset.

The algorithm Graph(G,G′,W, γ, v)

i. Set X := {v}.
ii. Expand X to include more honest parties:

While |X| ≤ αt

2d
do X := Expan(G,W,X, 12 − γ).

iii. Include all honest parties into V :

V := V ∪
{
v ∈W \X : ninX(v, good) ≥ d|X|

2n

}
.

iv. Remove all active parties from V (and maybe few honest parties):

U :=
{
v ∈ X : ninX(v, bad) ≥ d

10

}
and X := X \ U.

v. 1. Bound the degree of parties in X:

V := V \
{
v ∈ X : n′

out
U (v) ≥ d

8

}
.

2. Include the honest parties from U (and perhaps few active
parties):

X := X ∪
{
v ∈ U : n′

in
V (v, good) ≥ d

6

}
.

3. Error correction:
Run the unique decoding algorithm algorithm on the shares
of parties in X ∪ ([n] \W) and output the result.

In this section, we assume that the graph algorithm Graph(G,G′,W, ε, v)
starts with an honest party v. Set c = 1

2 − γ and we have c ∈ [14 ,
1
2] as γ ≤ 1

4 .
Note that P and H now become the set of passive parties and honest parties
before Round 3. According to Remark 2, it suffices to prove the correctness of
this graph algorithm under the condition that

|W | ∈ [(2c−2α)n, (2c+4α)], |W ∩H| ∈ [c−5α, c+α], |W ∩P | ≤ 3αn . (3)

Recall that α = 1
5 logn and α2d = 24 log n. We also note that by Remark 2, the

above condition also holds for the set of passive parties and honest parties before
Round 4. In what follows, when we claim that some event happens with high
probability, we mean this holds for all set W,P and H in above range.

18

Let HW = H ∩W and PW = P ∩W . The subset of active parties in W is

still A. The out-degree of vertices in G|W and G′|W is expected to be d |W |n ∈
[(2c − 2α)d, (2c + 4α)d] and that (due to the MAC’s) the edges from honest
parties to active parties are labeled bad, and the edges from honest parties to
honest or passive parties are labeled good.

We also recall that whether a corrupt party i is passive or active, i.e., in P or
in A, depends on si and ri only, as announced in the first communication round
in the reconstruction phase. Note that a passive party may well lie about, say, his
neighborhood Ei. Our reasoning only relies on the neighborhoods of the honest
parties, which are random and independent conditioned on the adversary’s view,
as explained in Proposition 1.

Theorem 2. Under the claim of Proposition 1, and assuming that v is honest
and W satisfies (3), the algorithm will output a correct codeword except with
probability εgraph ≤ n−15. Moreover, it runs in time poly(m,n).

The proof follows almost literally the one of [8] adjusted to the parameter regime
considered here. For completeness, we provide the proof of this theorem. The
proof of Theorem 2 consists of the analysis of Step ii to Step v and the Graph
expansion algorithm. The analysis of Step ii to Step v is deferred to the Ap-
pendix.

4.4 Graph Expansion

We start by analyzing the expansion property of G|HW , the subgraph of G
restricted to the set of honest parties HW .

Lemma 5 (Expansion property of G|HW). If H ′ ⊂ HW is so that |H ′| ≤
α|HW |

2d and the Ev’s for v ∈ H ′ are still random and independent in G when
given H ′ and H, then

noutH (H ′) :=

∣∣∣∣ ⋃
v∈H′

Nout
H (v)

∣∣∣∣ ≥ (c− 7α)d|H ′|

except with probability O(n−23).

Graph expansion algorithm Expan(G,W,X, c)

Set X ′ = ∅. For each vertex v ∈ X do the following:

if noutW (v, good) ≤ d(c+ 5α) then X ′ := X ′ ∪Nout
W (v, good).

Then, output X ′ ∪X.

Proof. By Remark 2, we know that the size of HW is at least (c − 5α)n. By
assumption on the Ei’s and by Corollary 1, for any vertex v ∈ H ′, Pr[noutHW

(v) <

(c−6α)d] ≤ 2−α
2d/2c = O(n−24) as α2d = 24 log n and c ≤ 1/2. Taking the union

19

bound, this hold for all v ∈ H ′ except with probability O(n−23). In the remainder
of the proof, we may thus assume that Nout

HW
(v) consist of d′ := (c−6α)d random

outgoing edges.
Let N := |HW |, N ′ := |H ′|, and let v1, . . . , vd′N ′ denote the list of neighbours

of all v ∈ H ′, with repetition. To prove the conclusion, it suffices to bound the
probability pf that more than αdN ′ of these d′N ′ vertices are repeated.

The probability that a vertex vi is equal to one of v1, . . . , vi−1 is at most

i

N − 1
≤ d′N ′

N − 1
= (c− 6α)d · α|N |

2d
· 1

N − 1
≤ α

4
.

as c ≤ 1
2 .

Taking over all vertex sets of size αdN ′ in these d′N ′ neighbours, the union
bound shows that pf is at most(

d′N ′

αdN ′

)(α
4

)αdN ′

≤
(
dN ′

αdN ′

)(α
4

)αdN ′

≤ 2dN
′H(α)+αdN ′(logα−2)

≤ 2αdN
′(1

ln 2−2+O(α)) ≤ 2−Ω(αdN ′) ≤ 2−Ω(log2 n).

The first inequality is due to that
(
n
k

)
≤ 2nH(kn) and the second due to

H(α) = −α logα− (1− α) log(1− α) = −α logα+
α

ln 2
+O(α2)

for α = 1
5 logn and the Taylor series ln(1− α) = α+O(α2).

5 Parallel Repetition

The failure probability δ of our local reconstruction scheme includes the failure
probability of recovering tag εtag, the failure probability of labelling of consis-
tency graph εmac, the failure probability of algorithm GraphB εgraph, the failure
probability of algorithm BigP εbigP , the failure probability of algorithm Cand
εCand and the failure probability of Check εcheck. Therefore, we have

δ = εmac + εtag + εcheck + (t+ 1)εgraph + εbigP + εcand = O(
log3 n

n2
).

Note that our graph has degree d = Ω(log3 n) and F is a finite field with
mn3 elements. The total share size is m+O(d(log n+ logm)) = m+O(log4 n+
logm log3 n). We summarize our result as follows.

Theorem 3. The scheme (Share, Rec) is a 2t + 1-party (t, O(log3 n
n2))-robust

secret sharing scheme with running time poly(m,n) and share size m+O(log4 n+
logm log3 n).

20

The error probability can be made arbitrarily small by several independent
executions of (Share, Rec), except that the same Shamir shares si would be
used in all the instances. This could be done in a same manner in [8] or [3]. We
skip the details but refer interested reader to [8] or [3]. In conclusion, we obtain
the following main result.

Theorem 4. For any set of positive integers t, n, κ,m with t < n/2, there ex-
ists a n-party (t, 2−κ)-robust secret sharing scheme against rushing adversary
with secret size m, share size m+O(κ(log4 n+ log3 n logm)), and running time
poly(m,n).

Acknowledgments

Chen Yuan has been supported by ERC ADG project No 74079 (ALGSTRONGCRYP-
TO).

References

1. Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics.
WORLD SCIENTIFIC, 2011.

2. Allison Bishop and Valerio Pastro. Robust secret sharing schemes against local
adversaries. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-
Yin Yang, editors, Public-Key Cryptography – PKC 2016, pages 327–356. Springer
Berlin Heidelberg, 2016.

3. Allison Bishop, Valerio Pastro, Rajmohan Rajaraman, and Daniel Wichs. Essen-
tially optimal robust secret sharing with maximal corruptions. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
pages 58–86. Springer Berlin Heidelberg, 2016.

4. Marco Carpentieri, Alfredo De Santis, and Ugo Vaccaro. Size of shares and prob-
ability of cheating in threshold schemes. In Tor Helleseth, editor, Advances in
Cryptology — EUROCRYPT ’93, pages 118–125. Springer Berlin Heidelberg, 1994.

5. Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani.
Unconditionally-secure robust secret sharing with compact shares. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, pages 195–208. Springer Berlin Heidelberg, 2012.

6. Ronald Cramer, Ivan Damg̊ard, and Serge Fehr. On the cost of reconstructing a
secret, or vss with optimal reconstruction phase. In Joe Kilian, editor, Advances in
Cryptology — CRYPTO 2001, pages 503–523. Springer Berlin Heidelberg, 2001.

7. Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and Gabriele
Spini. Linear secret sharing schemes from error correcting codes and universal hash
functions. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015, pages 313–336. Springer Berlin Heidelberg, 2015.

8. Serge Fehr and Chen Yuan. Towards optimal robust secret sharing with security
against a rushing adversary. In Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, pages
472–499, 2019.

21

9. Pasin Manurangsi, Akshayaram Srinivasan, and Prashant Nalini Vasudevan. Near-
ly optimal robust secret sharing against rushing adversaries. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages
156–185, Cham, 2020. Springer International Publishing.

10. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,
pages 73–85, 1989.

22

A Chernoff Bound

Like for [3], much of our analysis relies on the Chernoff-Hoeffding bound, and
its variation to “sampling without replacement”. Here and throughout, [n] is a
short hand for {1, 2, . . . , n}.

Definition 3 (Negative Correlation [1]). Let X1, . . . , Xn be binary random
variables. We say that they are negatively correlated if for all I ⊂ [n]:

Pr[Xi = 1 ∀ i ∈ I] ≤
∏
i∈I

Pr[Xi = 1] and Pr[Xi = 0 ∀ i ∈ I] ≤
∏
i∈I

Pr[Xi = 0].

Theorem 5 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be random vari-
ables that are independent and in the range 0 ≤ Xi ≤ 1, or binary and negatively
correlated, and let u = E

[∑n
i=1Xi

]
. Then, for any 0 < δ < 1:

Pr

[
n∑
i=1

Xi ≤ (1− δ)u

]
≤ 2−δ

2u/2 and Pr[

[
n∑
i=1

Xi ≥ (1 + δ)u

]
≤ 2−δ

2u/3.

B Building Blocks

B.1 MAC Construction

We adopt the definition as well as the construction of message authentication
codes (MAC) from [8].

Definition 4. A message authentication code (MAC) for a finite message space
M consists of a family of functions {MACkey :M×R→ T }key∈K. This MAC
is said to be (`, ε)-secure if the following three conditions hold.

1. Authentication security: For all (m, r) 6= (m′, r′) ∈M×R and all σ, σ′ ∈ T ,

Pr
key←K

[MACkey(m′, r′) = σ′|MACkey(m, r) = σ] ≤ ε.

2. Privacy over Randomness: For all m ∈ M and key1, . . . , key` ∈ K, the
distribution of ` values σi = MACkeyi(m, r) is independent of m over the
choice of random string r ∈ R, i.e.,

Pr
r←R

[(σ1, . . . , σ`) = c|m] = Pr
r←R

[(σ1, . . . , σ`) = c]

for any c ∈ T `.
3. Uniformity: For all (m, r) ∈M×R, the distribution of σ = MACkey(m, r)

is uniform at random over the random element key ∈ K.

The following variation of the standard polynomial-evaluation MAC construction
meets the requirements.

23

Theorem 6 (Polynomial Evaluation [8]). Let F be a finite field. Let M =
Fa, R = F` and T = F such that a+`

|F| ≤ ε. Define the family of MAC functions

{MAC(x,y) : Fa × F` → F}(x,y)∈F2 such that

MAC(x,y)(m, r) =

a∑
i=1

mix
i+` +

∑̀
i=1

rix
i + y

for all m = (m1, . . . ,ma) ∈ Fa, r = (r1, . . . , r`) ∈ F` and (x, y) ∈ F2. Then, this
family of MAC functions is (`, ε)-secure.

B.2 Robust Distributed Storage

Following [3] and [8], the authentication tags in the construction of our robust
secret sharing scheme will be stored robustly yet non-privately; indeed, the latter
is the reason why the extra privacy property 2 in Definition 4 is necessary. The
purpose of this design is to make sure that dishonest parties can not lie about the
tags that authenticate their share e.g., to provoke disagreement among honest
parties about the correctness of the share of a dishonest party.

Formally, a robust distributed storage scheme is a robust secret sharing scheme
as in Definition 1 but without the privacy requirement. Such a scheme can easily
be obtained as follows; we refer the interested readers to [3] or [8] for details.
First of all, a list-decodable code is used to store the messages robustly. Then,
the share of each party i consists of pi and qi, where pi is the i-th component of
list-decodable encoding of the message, and qi is a hash-key and the hash of the
message. Reconstruction works in the obvious way: a list of candidate messages
is obtained by applying list decoding, and the correct message is then filtered out
by means of checking the hashes. The robustness against a rushing adversary is
achieved by first revealing pi and only then, in a second communication round,
qi.

The following summarizes the result obtained by adapting the scheme in [8]
to our parameter setting.

Theorem 7. For any n = 2t + 1 and u = O(log3 n), there exists a robust dis-
tributed storage against rushing adversary with messages of length m = Ω(nu),

shares of length O(u) that can recover the message with probability 1−2−Ω(log2 n)

up to t corruptions.

C Graph Algorithm for Small p

The graph algorithm GraphB that is invoked for small p is exactly the same as
that in [8] (for completeness, we recall it below); GraphB is also very similar to
the graph algorithm Graph appearing inside the algorithm BigP. Thus, we omit
the analysis of GraphB and rely on Theorem 8 from [8], re-stated below using
our terminology and instantiated with our choice of parameters. Note that n′

out
W

refers to noutW but for the graph G′ rather than G, and similarly for n′
in
W .

24

Theorem 8 (Theorem 8, [8]). If G is a fresh consistency graph, and G′ is a
fresh consistency graphy w.r.t. G′, and if |P | ≤ 4 logn

n and v is an honest party,
then GraphB(G,G′, ε, v, s) will output the correct secret except with probability

εgraph ≤ 2−Ω(d/ log2 n) = O(n−3). Moreover, it runs in time poly(n,m).

The algorithm GraphB(G,G′, ε, v, s) for small p

i. Input G = ([n], E, L), G′ = ([n], E′, L′), d, ε and v ∈ [n].

ii. Expand set V = {v} to include more honest parties:

While |V | ≤ εt

d
do T = {v ∈ V : nout(v, good) ≤ d

2
(1 + 3ε)}

and V := V ∪
⋃
v∈T

N out(v, good).

iii. Include all honest parties into V :

V := V ∪
{
v /∈ V : nin

V (v, good) ≥ d|V |
2n

}
.

iv. Remove all active parties from V (and maybe few honest parties
as well):

W :=
{
v ∈ V : nin

V (v, bad) ≥ d
4

}
and V := V \W.

v. 1. Bound the degree of parties in V :

V := V \
{
v ∈ V : n′ out

W (v) ≥ d
8

}
.

2. Include the honest parties from W (and perhaps few active
parties):

V := V ∪
{
v ∈W : n′ in

V (v, good) ≥ d
4

}
.

3. Error correction: run the unique decoding algorithm algorith-
m on the shares si of parties in V and output the result.

D Proof of Lemma 1

For fixed γ ∈ 1
nZ ∩

[
0, 12
]

and T ⊆ [n] with |T | = (γ − α)n, by Corollary 2,

Pr[ninT (v) < d(γ − 2α)] ≤ 2−
α2d
2γ .

Thus, setting Σ(T) := {v ∈ [n] : ninT (v) < d(γ − 2α)} and considering another
arbitrary but fixed subset S ⊆ [n], we have (by negative correlation)

Pr[S ⊆ Σ(T)] = Pr[ninT (v) < d(γ − 2α) ∀ v ∈ S] ≤ 2−
α2d
2γ |S| .

25

Therefore, noting that Σ(T) ⊆ Σ(T ′) for T ′ ⊆ T ,

Pr
[
∃ γ, T : |T | ≥ (γ − α)n ∧ |Σ(T)| ≥ γn

2

]
= Pr

[
∃ γ, T : |T | = (γ − α)n ∧ |Σ(T)| ≥ γn

2

]
= Pr

[
∃ γ, T, S : |T | = (γ − α)n ∧ |S| = γn

2 ∧ S ⊆ Σ(T)
]
.

Taking union bound by summing over all γ ∈ 1
nZ ∩

[
0, 12
]

and T, S ⊆ [n] with
|T | = (γ − α)n ∧ |S| = γn

2 , this is bounded by

≤
∑
γ

∑
S,T

Pr[S ⊆ Σ(T)] ≤
∑
γ

(
n
γn
2

)(
n

(γ − α)n

)
2−

α2d
4 n

≤
∑
γ

n
γn
2 · nγn · n−6n ≤ n1−5n ,

proving the claim. ut

E Analysis of Step ii to Step v

E.1 Analysis of Step ii

Set ε = 1
log logn and recall that α = 1

5 logn . The following shows that after Step ii,

at most an O(ε)-fraction of the parties in X is dishonest.

Proposition 6. At the end of Step ii, with probability at least 1−O(n−15), X is
a set of size Ω(εn) with |HW ∩X| ≥ (1−O(ε))|X| and |(P ∪A)∩X| ≤ O(ε|X|).

Proof. First of all, we observe that for every honest party v, the number of its

good outgoing edges is expected to be |PW∪HW |dn ≤ (c+ 4α)d since only honest
parties and passive parties can pass the verification of v. By assumption on the
Ev’s and by Corollary 1, we have

Pr[noutW (v, good) ≥ d(c+ 5α)] ≤ 2α
2d/3c = O(n−16).

Taking an union bound over all v ∈ HW leads to the claim that except with
probability O(n−15), all honest parties in X will be included in the expansion
of Expan(G,W,X, c).

Recall that Expan(G,W,X, c) has been invoked multiple times. Let Xi be the
set X after Expan has been invoked i times, X0 = {v}, X1 = Expan(G,W,X0, c)
etc., and let H0 = {v} and H1 = Expan(G,W,H0, c)∩H, etc. be the correspond-
ing sets when we include only honest parties into the sets.

Using a similar lazy-sampling argument as for Proposition 1, it follows that
conditioned on H0, H1, . . . ,Hi, the Ev’s for v ∈ Hi \ Hi−1 are random and
independent for any i.Therefore, we can apply Lemma 5 to H ′i = Hi \Hi−1 to
obtain that |Hi+1| ≥ |H ′i|d(c − 7α). It follows that |Hi| ≥ (d(1 − 7α))i except

26

with probability O(n−23). Our algorithm jumps out of Step ii when X is of size
Ω(αn). We next bound the number of rounds in this step. For i = logn

log logn , noting

that d ≥ log3 n and c ≥ 1
4 , it thus follows that

|Xi| ≥ |Hi| ≥
(
d(c− 7α)

)i
≥ (log3 n)

logn
log logn (c− 7α)

logn
log logn

≥ n3 · c
logn

log logn ≥ Ω(n3).

This means Expan(G,W,X, c) is invoked r ≤ logn
log logn times assuming n is large

enough.
On the other hand, we trivially have |Xr| ≤ (d(c+ 5α))r by specification of

Expan. Thus,

|Xr| − |Hr| ≤
(
d(c+ 5α)

)r
−
(
d(c− 7α)

)r
= 12αd

(
r−1∑
i=0

(
(d(c+ 5α)

)i(
d(c− 7α)

)r−1−i) ≤ 12αrd
(

(d(c+ 5α)
)r−1

= O(
1

log log n
|Xr|) = O(ε|Xr|),

as ε = 1
log logn . The first equality is due to an − bn = (a − b)(

∑n−1
i=0 a

ibn−1−i)

and the last one is due to r ≤ logn
log logn and α = 1

5 logn .

This upper bound implies that there are at least |Xr|(1−O(ε)) honest parties
in Xr while the number of dishonest parties is at most O(ε|Xr|).

E.2 Analysis of Step iii

The analysis of Step iii is based on the intuition that every honest party v outside
HW \X will get sufficient support from parties in X as X consists almost entirely
of honest parties in HW . In particular, any such v is expected have have close
to d

n |X| good incoming edges from the parties in X.

Proposition 7. At the end of Step iii, with probability at least 1− 2−Ω(αd), X
contains all honest parties in HW and O(εn) dishonest parties.

Proof. Recall that conditioned on Hr, the Ev’s for v ∈ Hr \ Hr−1 are random
and independent.

Set H̃ := Hr \ Hr−1 and d1 := |X|d
n = Ω(αd). This implies |H̃| = (1 −

o(1))|Hr| = (1 − o(1))|X| as Hr−1 = o(Hr) and X contains at most O(ε|X|) =

O(|X|
log logn) dishonest parties. Using Corollary 2 for the final bound, it follows

that for a given honest party v ∈ HW /H̃,

Pr
[
ninX(v, good) <

d1
2

]
≤ Pr

[
nin
H̃

(v, good) <
d1
2

]
= Pr

[
nin
H̃

(v) <
d1
2

]
≤ 2−Ω(αd).

27

By union bound over all honest parties in HW \ H̃, all these honest parties are
added to X except with probability at most 2−Ω(αd).

On the other hand, Admitting any active party w outside X requires at least
d1
2 good incoming edges. Recall that only dishonest party can verify active party.

Therefore, these edges must be directed from dishonest parties in X. Since there
are at most O(ε)|X| dishonest parties in X and each of them contributes to at
most d good incoming edges, the number of active parties admitted to X is at

most O(ε)|X|d
d1/2

= O(εn) = O(n
log logn).

E.3 Analysis of Step iv

The goal of Step iv is to remove all active parties from X. This can be done by
exploiting the fact that the vast majority of X are honest parties.

Proposition 8. At the end of Step iv, with probability at least 1 − 2−Ω(d), X
consists of |HW | −O(εn) honest parties and no active parties, and U consists of
the rest of honest parties in HW and O(εn) dishonest parties.

Proof. Observe that |HW |dn ≥ (c− 5α)d ≥ d
5 as c ≥ 1

4 and α = 1
5 logn . It follows,

again using Corollary 2, that for an active party v in X, we have

Pr
[
ninX(v, bad) <

d

10

]
≤ Pr

[
ninHW (v, bad) <

d

10

]
= Pr

[
ninHW (v) <

d

10

]
≤ 2−Ω(d).

By union bound over all active parties in X, all of them are removed from X
with probability at least 1− t2−Ω(d) = 1− 2−Ω(d).

On the other hand, if the honest party v is removed from X, v must receive
at least d

10 bad incoming edges from dishonest parties in X. Since the number of

dishonest parties is at most a := O(εn), there are at most ad
d/10 = O(εn) honest

parties removed from X.

E.4 Analysis of Step v

From the analysis of Step iv, we learn that |U | = O(εn) and X has size |HW | −
O(εn) = cn − O(εn). In order to analyze this step, we introduce the following
notation. Let P and H be the set of passive parties and honest parties before the
fourth communication round respectively. According to Remark 2, the condition
(3) still holds. Then, HW = H∩W has size cn−O(αn) and HP = P ∩W has size
at most 3αn. By Proposition 8, this implies that X consists of cn−O(εn) honest
parties and a few passive parties and U is as set of size O(ε) which contains all
honest parties in HW \X. Let X = XH ∪XP where XH is a of honest parties
and XP is a set of passive parties. Let U = UH ∪UC where UH is a set of honest
parties and UC is a set of dishonest parties. Then, we have XH ∪UH = HW and
|UH | ≤ |U | = O(εn) as U and X together contains all honest parties in HW .

Note that in Step v, we introduce a new fresh consistency graph G′. Given the
adversary’s strategy, all the previous steps of the graph algorithm are determined

28

by the graph G and thus independent of the new fresh consistency graph G′.
Therefore, by Proposition 1, at this point in the algorithm the E′v’s for v ∈ HW

are still random and independent conditioned on XH , XP , UC , UH .

Proposition 9. Except with probability 2−Ω(d), after Step v the set X will con-
tain all honest parties in HW and at least as many passive parties as active
ones. Therefore, Step v will output the correct codeword with probability at least
1− 2−Ω(d).

Proof. Step v.1. For any i ∈ XH , n′
out
U (i) is expected to be |U |dn = O(εd). By

Corollary 1 we thus have

Pr
[
n′

out
U (i) ≥ d

8

]
≤ 2−Ω(d) .

Hence, by union bound, all honest parties in X remain in X except with prob-
ability 2−Ω(d).

LetX ′P be the set of passive parties left inX after this step, and set p := |X ′P |.
Note that noutU (v) ≤ d/8 for every v ∈ X.

Step v.2. Observe that d|XH |
n = (c − O(ε))d ≥ (1

4 − O(ε))d as d ≤ 1
4 . It

follows from Corollary 2 that for any honest party i ∈ UH ,

Pr
[
n′

in
X (i, good) ≤ d

6

]
≤ Pr

[
n′

in
XH (i, good) ≤ d

6

]
= Pr

[
n′

in
XH (i) ≤ d

6

]
≤ 2−Ω(d) .

Thus, all honest parties in U are added to X, except with probability 2−Ω(d).
On the other hand, the good incoming edges of the active parties must be

directed from passive parties in X ′P . Observe that each party in X is allowed
to have at most d

8 outgoing neighbours in U . This implies there are at most
|XP |d/8
d/6 = 3|XP |

4 active parties admitted to X in this step, proving the first part

of the statement.
Step v.3.
Observe that the set [n]\W consists of the rest of honest parties and passive

parties. This implies that ([n] \W) ∪X contains all honest parties and is a set
where the number of active parties is less than the number of passive parties.
The shares of the parties in ([n] \W)∪X form a Reed-Solomon code. Since the
number of errors is less than the redundancy of this code, the unique decoding
algorithm will output a correct codeword.

29

