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Abstract. The share size of general secret-sharing schemes is poorly
understood. The gap between the best known upper bound on the total
share size per party of 20.64n (Applebaum et al., STOC 2020) and the
best known lower bound of Ω(n/ logn) (Csirmaz, J. of Cryptology 1997)
is huge (where n is the number of parties in the scheme). To gain some
understanding on this problem, we study the share size of secret-sharing
schemes of almost all access structures, i.e., of almost all collections of
authorized sets. This is motivated by the fact that in complexity, many
times almost all objects are hardest (e.g., most Boolean functions require
exponential size circuits). All previous constructions of secret-sharing
schemes were for the worst access structures (i.e., all access structures)
or for specific families of access structures.

We prove upper bounds on the share size for almost all access structures.
We combine results on almost all monotone Boolean functions (Kor-
shunov, Probl. Kibern. 1981) and a construction of (Liu and Vaikun-
tanathan, STOC 2018) and conclude that almost all access structures

have a secret-sharing scheme with share size 2Õ(
√
n).

We also study graph secret-sharing schemes. In these schemes, the par-
ties are vertices of a graph and a set can reconstruct the secret if and only
if it contains an edge. Again, for this family there is a huge gap between
the upper bounds – O(n/ logn) (Erdös and Pyber, Discrete Mathematics
1997) – and the lower bounds – Ω(logn) (van Dijk, Des. Codes Crypto.
1995). We show that for almost all graphs, the share size of each party is
no(1). This result is achieved by using robust 2-server conditional disclo-
sure of secrets protocols, a new primitive introduced and constructed in
(Applebaum et al., STOC 2020), and the fact that the size of the max-
imal independent set in a random graph is small. Finally, using robust
conditional disclosure of secrets protocols, we improve the total share
size for all very dense graphs.
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1 Introduction

A dealer wants to store a string of secret information (a.k.a. a secret) on a
set of computers such that only some pre-defined subsets of the computers can
reconstruct the information. We will refer to the computers as the parties, their
number as n, and the collection of authorized sets that can reconstruct the secret
as an access structure. To achieve this goal the dealer uses a secret-sharing
scheme – a randomized function that is applied to the secret and produces n
strings, called shares. The dealer gives the i-th share to the i-th party, and any
authorized set of parties can reconstruct the secret from its shares. Nowadays,
secret-sharing schemes are used as a building box in many cryptographic tasks
(see, e.g., [10,13]). We consider schemes where unauthorized sets of parties gain
absolutely no information on the secret from their shares, i.e., the security is
information theoretic. We will mainly try to reduce the sizes of the shares given
to the parties. To understand why minimizing the share size is important, let
us consider the original secret-sharing schemes of [44] for an arbitrary access
structure; in these schemes the size of each share is greater than 2n, making
them impractical when, for example, n = 100. Even in the most efficient scheme
known today, the share size is 20.64n [5] (improving on [48,4]).

We ask the question if the above share size can be reduced for almost all
access structures. One motivation for this question is that in complexity theory,
almost all Boolean functions are often the hardest functions. For example, Shan-
non [58] showed that almost all Boolean functions require circuits of size 2Ω(n),
this lower bound applies also to other models, e.g., formulas. Furthermore, al-
most all monotone Boolean functions require monotone circuits and monotone
formulas of size 2Ω(n). Dealing with properties of almost all objects is a common
theme in combinatorics, e.g., properties of almost all graphs. A famous exam-
ple states that the size of the maximum independent set (and clique) of almost
all n-vertex graphs is approximately 2 log n [43]; we use this property in our
constructions. Using a result on almost all monotone Boolean functions [47], we
show that almost all access structures can be realized by a secret-sharing scheme

with maximum share size 2Õ(
√
n).

In this paper, we also study graph secret-sharing schemes. In a secret-sharing
scheme realizing a graph G, the parties are vertices of the graph G and a set
can reconstruct the secret if and only if it contains an edge. The naive scheme
to realize a graph is to share the secret independently for each edge; this result
implies a share of size O(n) per party. A better scheme with share size O(n/ log n)
per party is implied by a result of Erdös and Pyber [38]. Graph secret-sharing
schemes were studied in many previous works. One motivation for studying
graph secret-sharing schemes is that they are simpler than secret-sharing schemes
for general access structures and phenomena proved for graph secret-sharing
schemes were later generalized to general access structures (e.g., Blundo et al. [26]
proved that in any non-ideal access structure the share size of at least one party
is at least 1.5 times the size of the secret, a result that was later proved for
every access structure [51]). Another motivation is that, by [54, Section 6.3.1],
for every 0 < c < 1/2 any graph secret-sharing scheme with share size O(nc)
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per party implies a secret-sharing scheme for any access structure with share
size 2(0.5+c/2+o(1))n; thus, major improvement in the share size for all graphs
will result in improved schemes for all access structures. However, in spite of
the recent improvements in the share size for general access structures [48,4,5]
and for specific families of access structures (e.g., forbidden graphs [18,41,49]
and uniform access structures [2,19,4]), no such improvement was achieved for
schemes for graphs. We show that almost all graphs can be realized by a secret-
sharing scheme with share size no(1) per party.

1.1 Previous Results

We next describe the most relevant previous results. We refer the reader to Fig. 1
for a description of the maximum share size in previous constructions and our
constructions.

Share size

(one bit secret)

Share size of linear schemes

over Fq (log q-bit secret)

Inf. ratio multi-linear

schemes (long secrets)

Forbidden

graphs

no(1) [49]

Ω(1)

Õ(
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Fig. 1. A summary of the upper and lower bounds on the maximum share size for
secret-sharing schemes for forbidden graph access structures, almost all graph access
structures, graph access structures, almost all access structures, and all access struc-
tures. The results proved in this paper are in boldface.

Measures of share size. The size of a share is simply the length of the string
representing it. For a secret-sharing scheme, two measures of for the share size
were considered: (1) the maximum share size, i.e., the maximum over all parties
in the scheme of the size of the share of the party, (2) the total share size, i.e.,
the sum over all parties in the scheme of the size of the share of the party.
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For a given scheme, the maximum share size is bounded from above by the
total share size, which is bounded from above by n times the maximum share
size. The distinction between these two measures is important for graph secret-
sharing schemes, and there might be trade-offs between optimizing one measure
and optimizing the other. On the other hand, the share size in the secret-sharing
schemes considered in this paper for general access structures is larger than 2

√
n,

thus for these schemes the distinction between the measures is less important.

We will also consider the normalized total (respectively, maximum) share size,
i.e., the ratio between the sum of the share sizes (respectively, maximum share
size) and the size of the secret. This normalized maximum share size (also known
as information ratio) is similar in spirit to measures considered in information
theory and it is interesting since the length of each share is at least the length
of the secret [46]. In this work, we will consider the normalized share size for
two regimes: (1) Moderately short secrets of size Õ(n), and (2) Following [3,2],

we also consider exponentially long secrets of size 2n
2

. The latter size is not
reasonable, however, these schemes may lead to schemes with the same share
size for shorter secrets and they provide barriers for proving lower bounds via
information inequalities.

Bounds on the share size. Secret-sharing schemes were introduced by Blakely [24]
and Shamir [57] for the threshold case and by Ito, Saito, and Nishizeki [44] for
the general case. In the original secret-sharing schemes for arbitrary access struc-
tures of Ito et al. [44] the maximum share size is 2n−1. Additional constructions
of secret-sharing schemes followed, e.g., [59,29,22,45,23]. For specific access struc-
tures, the share size in these schemes is less than the share size in the scheme
of [44]; however, the share size in the above schemes for arbitrary access struc-
tures is 2n−o(n). In a recent breakthrough work, Liu, and Vaikuntanathan [48]
(using results of [50]) constructed a secret-sharing scheme for arbitrary access
structures with share size 20.944n and a linear secret-sharing scheme with share
size 20.999n. Applebaum et al. [5] (using results of [50,4]) improved these results,
constructing a secret-sharing schemes for arbitrary access structures with share
size 20.637n and a linear secret-sharing scheme with share size 20.762n. It is an
important open problem if the share size can be improved to 2o(n) (or even
smaller). Lower bounds for secret-sharing were proven in, e.g., [30,25,37,34,33].
These lower bounds are very far from the upper bounds – the best lower bound
is Ω(n2/ log n) for the normalized total share size for an explicit access structure
(proven by Csirmaz [33]).

For graph secret-sharing schemes there is also a big gap between the upper
bounds and lower bounds. Erdös and Pyber [38] have proved that every graph can
be partitioned into complete bipartite graphs such that each vertex is contained
in at most O(n/ log n) complete bipartite graphs. Blundo et al. [25] observed
that this implies that the normalized maximum share size of realizing every n-
vertex graph is O(n/ log n) (for secrets of size log n). Van Dijk [37] proved a lower
bound of Ω(log n) on the normalized maximum share size of realizing an explicit
n-vertex graph. Csirmaz [35] extended this lower bound to the n-vertex Boolean
cube. He observed that a lower bound of Ω(log n) on a specific graph implies a
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lower bound of Ω(log log n) for almost all graphs (as almost all n-vertex graphs
contain a copy of every log n-vertex graph [28]). Furthermore, Csirmaz asked
if for almost every graph there is a scheme with normalized maximum share
size o(n/ log n). We answer this question affirmatively by showing for almost all
graphs a secret-sharing scheme with maximum share size no(1).

Linear secret-sharing schemes. Linear secret-sharing schemes, introduced
by [29,45], are schemes in which the random string is a vector of elements over
some finite field Fq, the domain of secrets is also Fq, and the shares are com-
puted as a linear map over Fq. Many known schemes are linear, e.g., [57,24,22]
and the schemes for graphs implied by [38]. They are equivalent to a linear-
algebraic model of computation called monotone span programs [45]. Linear
secret-sharing schemes are useful as they are homomorphic: given shares of two
secrets s, s′, each party can locally add its shares and obtain a share of s+s′. For
many applications of secret sharing, linearity is essential, e.g., [32,8,61], hence,
constructing linear secret-sharing schemes is important. The size of the shares in
the best known linear secret-sharing scheme is 20.76n [5] (improving upon [48]).
Pitassi and Robere [55] proved an exponential lower bound of 2cn log q on the
share in linear secret-sharing schemes over Fq for an explicit access structure
of (where 0 < c < 1/2 is a constant). Babai et al. [9] proved a lower bound of
2n/2−o(n)

√
log q on the share in linear secret-sharing schemes over Fq for almost

all access structures.

Multi-linear secret-sharing schemes, introduced by [23], are a generalization
of linear secret-sharing schemes in which the domain of secrets is F`q for some
integer `. In [2,5], such schemes improve the normalized maximum share size
compared to the linear secret-sharing schemes constructed in those papers (i.e.,
the multi-linear schemes share a longer secret while using the same share size as
the linear schemes). Beimel et al. [11] proved that every lower bound proved for
linear secret-sharing schemes using the Gal-Pudlák criteria [40] also applies to
multi-linear secret-sharing schemes. In particular, this implies that the nΩ(logn)

lower bound of [9] for the normalized maximum share size for an explicit access
structure and the Ω(

√
n) lower bound of [17] for the normalized maximum share

size for an explicit graph access structure hold also for multi-linear secret-sharing
schemes. We note that it is not clear if multi-linear secret-sharing schemes can
replace linear secret-sharing schemes in many applications, e.g., in the MPC
protocols of [32] that are secure against general adversarial structures.

Conditional disclosure of secrets (CDS) protocols [42]. A CDS protocol for a
Boolean function f involves k servers and a referee. Each server holds a common
secret s, a common random string r, and a private input xi; using these r, s,
and xi the i-th server computes one message (without seeing any other input or
message) and sends it to the referee. The referee, knowing the inputs x1, . . . , xk
and the messages, should be able to compute s iff f(x1, . . . , xk) = 1. CDS pro-
tocols were used in many cryptographic applications, such as symmetric private
information retrieval protocols [42], attribute based encryption [41,8,61], priced
oblivious transfer [1], and secret-sharing schemes [48,4,5]. Applebaum et al. [5]
defined robust CDS protocols (see Definition 2.10) and used them to construct
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secret-sharing schemes for arbitrary access structures. We use robust CDS pro-
tocols to construct schemes for almost all graphs and for all very dense graphs.

The original construction of k-server CDS protocols for general k-input func-
tions, presented in [42], has message size O(Nk) (where N is the input domain
size of each server). This construction is linear. Recently, better constructions of
CDS protocols for general functions have been presented. Beimel et al. [18] have
shown a non-linear 2-server CDS protocol with message size O(N1/2) and Gay
et al. [41] constructed a linear 2-server CDS protocol with the same message size.
Then, Liu et al. [49] have designed a 2-server non-linear CDS protocol with mes-

sage size 2O(
√
logN log logN) and Liu et al. [50] have constructed a k-server CDS

protocol with message size 2Õ(
√
k logN). Beimel and Peter [20] and Liu et al. [50]

have constructed a linear CDS protocol with message size O(N (k−1)/2); by [20],
this bound is optimal for linear CDS protocols (up to a factor of k). Applebaum
and Arkis [2] (improving on Applebaum et al. [3]) have showed that there is a

CDS protocol with long secrets – of size Θ(2N
k

) – in which the message size is
4 times the secret size. Lower bounds on the message size in CDS protocols and
in linear CDS protocols have been proven in [41,3,6,7].

Forbidden graph access structures. In a forbidden-graph secret-sharing scheme
for a graph G, introduced by Sun and Shieh [60], the parties are the vertices
of the graph G and a set is authorized if it is an edge or its size is at least
3. A a forbidden-graph secret-sharing scheme for a graph G is not harder than
a graph secret-sharing realizing G: Given a secret-sharing scheme realizing a
graph, one can construct a forbidden-graph secret-sharing scheme for G by giv-
ing a share of the graph secret-sharing scheme and a share of a 3-out-of-n thresh-
old secret-sharing schemes. Furthermore, forbidden graph secret-sharing schemes
are closely related to 2-server CDS protocols: Beimel et al. [18] have described a
transformation from a CDS protocol for a function describing the graph G to a
forbidden graph secret-sharing scheme for G in which the maximum share size of
the scheme is O(log n) times the message size of the CDS protocol. Furthermore,
by [18,2], if we consider secrets of size at least O(log2 n), then there is a trans-
formation in which the normalized maximum share size is a constant times the
message size of the CDS protocol. As a result, we get that every forbidden graph
G can be realized by a secret-sharing with maximum share size no(1) (using the
CDS protocol of [49]), by a linear secret-sharing scheme over Fq with maximum

share size Õ(
√
n log q) for every prime power q (using the CDS protocol of [41]),

and a multi-linear secret-sharing scheme with normalized maximum share size
O(1) for secrets of length 2n

2

[2]. We nearly match these bounds for graph access
structures for almost all graphs.

1.2 Our Results and Techniques

We next describe the results we achieve in this paper. We again refer the reader
to Fig. 1 for a description of the maximum share size in previous constructions
and our constructions.
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Almost all access structures. We prove upper bounds on the share size for almost
all access structures, namely almost all access structures have a secret-sharing

scheme with share size 2Õ(
√
n), a linear secret-sharing scheme with share size

2n/2+o(n), and a multi-linear secret-sharing scheme with maximum share size
Õ(log n) for secrets of size 2n

2

. Our linear secret-sharing scheme for almost all
access structures are optimal (up to a factor of 2o(n)) for a one-bit secret (by a
lower bound of Babai et al. [9]).

The construction for almost all access structures is a simple combination of
previous results. The first result, proved by Korshunov [47] in 1981, is that in
almost all access structures with n parties all minimum authorized sets are of size
between n/2−1 and n/2+2, i.e., all sets of size at most n/2−2 are unauthorized
and all sets of size at least n/2 + 3 are authorized. The second result we use,
proved by Liu and Vaikuntanathan [48], is that such access structures can be
realized by secret-sharing schemes with share size as above. These results are
presented in Section 3.

We also prove lower bounds on the normalized share size in linear secret-
sharing schemes for almost all access structures. Rónyai et al. [56] proved that
for every finite field Fq for almost all access structures the normalized share size
of linear secret-sharing schemes over Fq realizing the access structure is at least
Ω(2n/3−o(n)). The result of Rónyai et al. [56] does not rule-out the possibility
that for every access structures there exists some finite field Fq (possibly with a
large q) such that the access structure can be realized by a linear secret-sharing
schemes over Fq with small normalized share size. This could be plausible since
we know that there are access structures that can be realized by an efficient
linear secret-sharing scheme over one field, but require large shares in any linear
secret-sharing scheme over fields with a different characteristic [21,55]. Pitassi
and Robere [55] proved that there exists an explicit access structure for which
this is not true, i.e., there exists a constant c > 0 such that in any linear secret-
sharing scheme realizing it the normalized share size is 2cn. In Theorem 3.10, we
prove that this is not true for almost all access structures, namely, for almost
every access structure the normalized share size in any linear secret-sharing
scheme realizing the access structure is Ω(2n/3−o(n)). Our proof uses a fairly
recent result on the number of representable matroids [53].

(G, t)-graph secret-sharing schemes and robust CDS. We define a hierarchy of
access structures between forbidden graph access structures and graph access
structures. In a (G, t)-secret-sharing scheme, every set containing an edge is
authorized and, in addition, every set of size t+ 1 is authorized. In other words,
the unauthorized sets are independent sets in G of size at most t. We show that
(G, t)-secret-sharing schemes are equivalent to 2-server t-robust CDS protocols.
As a result, using the robust CDS protocols of [5], we get efficient (G, t)-secret-
sharing schemes, e.g., schemes with maximum share size no(1)t. These results
are presented in Section 4. We note that, for an arbitrary graph G, our (G,n)-
secret-sharing scheme, which is a graph secret-sharing scheme realizing G, the
share size does not improve upon the scheme of [38].
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Almost all graph secret-sharing schemes. We show that for almost all graphs,
there exists a secret-sharing scheme with maximum share size no(1), a linear
secret-sharing scheme with normalized maximum share size Õ(

√
n) (for moder-

ately short secrets), and a multi-linear secret-sharing scheme with normalized
maximum share size Õ(log n) for exponentially long secrets. By [17,11], there
exists a graph such that in every multi-linear secret-sharing scheme realizing the
graph the normalized maximum share size is Ω(

√
n), thus, we get a separation

for multi-linear secret-sharing schemes between the normalized maximum share
size for almost all graphs and the maximum share size of the worst graph. These
results are presented in Section 5.

To construct our scheme for almost all graphs, we use the fact that if the size
of every independent set in a graph G is at most t, then a (G, t)-secret-sharing
scheme is a graph secret-sharing scheme realizing G. Our construction follows
from the fact that for almost every graph, the size of the maximal independent
set in a random graph is O(log n) [43].

We also consider the maximum share size of random n-vertex graphs drawn
from the Erdös-Rényi [39] distribution G (n, p), that is, each pair of vertices is
independently connected by an edge with probability p. For example, G (n, 1/2)
is the uniform distribution over the n-vertex graphs. On one hand, with prob-
ability nearly 1 the size of the maximum independent set in a graph drawn
from G (n, p) is at most O( 1

p log n), thus, using (G, t)-secret-sharing schemes with

t = O( 1
p log n), we realize a graph in G (n, p) with normalized maximum share size

no(1)/p. On the other hand, with probability nearly 1 the degree of all vertices
in the graph drawn from G (n, p) is O(pn), thus, it can be realized by the trivial
secret-sharing scheme with maximum share size O(pn). Combining these two
schemes, the hardest distribution in our construction is G (n, 1/

√
n) for which

the normalized maximum share size is
√
n. We do not know if there is a better

secret-sharing scheme for graphs drawn from G (n, 1/
√
n) or this distribution

really requires shares of size nΩ(1).

Dense graph secret-sharing schemes. Following [14], we study graph secret-
sharing schemes for very dense graphs, i.e., graphs with at least

(
n
2

)
−n1+β edges

for some constant β. For these graphs, Beimel et al. [14] have constructed a linear
secret-sharing scheme with maximum share size Õ(n1/2+β/2) and another linear
secret-sharing scheme with total share size Õ(n5/4+3β/4). We improve on the lat-
ter result and show that all very dense graphs can be realized by a secret-sharing
scheme with normalized total share size of n1+β+o(1) for moderately short secrets
of size Õ(n). To put this result in perspective, this total share size matches (up
to a factor of no(1)) to the total share size of the naive secret-sharing scheme for
sparse graphs with n1+β edges. These schemes are presented in Section 6.

We next describe the high-level ideas of our construction realizing a graph G
with at least

(
n
2

)
− n1+β edges. If every vertex in G has degree at least n− nβ ,

then the size of every independent set in G is at most nβ + 1, and we can
use a (G,nβ + 1)-secret-sharing schemes, resulting in normalized total share size
O(n1+β+o(1)). While in a graph with at least

(
n
2

)
−n1+β edges the average degree

is at least n − O(nβ), the graph can contain vertices whose degree is small. To
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overcome this problem, we use an idea of [14]. We consider the set of vertices A
whose degree is smallest in G and execute a secret-sharing scheme realizing the
graph restricted to this set (denoted G′). We choose the size of this set such that:
(1) the size of the set is small, thus, the total share size in realizing G′ is small,
and (2) the degree of the each vertex not in A is big, thus, we can realize the
graph without the edges between vertices in A by a (G, t)-secret-sharing scheme
for a relatively small t. We apply the above construction iteratively to get our
scheme.

Hypergraph secret-sharing schemes. A secret-sharing realizes a hypergraph H if
the parties of the scheme are the vertices of H and a set of parties can recon-
struct the secret if and only if it contains a hyperedge. In this work, we construct
schemes for k-hypergraphs, that is, hypergraphs whose hyperedeges are all of
size k. The access structures of these schemes are also called k-homogeneous.
The best secret-sharing scheme for k-hypergraphs known to date is the origi-
nal scheme of [44], which have maximum share size O(

(
n
k−1
)
). Extending the

results explained above, we show a connection between k-hypergraph secret-
sharing schemes and k-server t-robust CDS protocols. For any constant k, we
show that for almost every k-hypergraph there exists a secret-sharing scheme
with maximum share size is no(1), a linear secret-sharing scheme with normal-
ized maximum share size Õ(n(k−1)/2), and a multi-linear secret-sharing scheme
with normalized maximum share size Õ(logk−1 n) for exponentially long secrets.
These schemes are presented in the full version of this paper [13].

Interpretation of our results. In this work we have shown that for almost all
access structures there exist secret-sharing schemes that are more efficient than
the known secret-sharing schemes for the worst access structures. Similarly, we
have constructed for almost every graph G a secret-sharing schemes realizing G
that are more efficient than the known secret-sharing schemes realizing the worst
graph. One possible conclusion from this result is that in secret-sharing schemes
almost all access structures might not be the hardest access structures. Another
possible interpretation is that our results may be generalized to all access struc-
tures. We note that in one case we know that the former interpretation is true:
there is a graph for which the normalized maximum share size for multi-linear
schemes is at least Ω(

√
n) (for every size of secrets) [11,17], while we show an

upper bound for almost all graphs of Õ(log n) (for long secrets).

Open problems. Can the normalized share size of almost all access structures
can be improved? We do not have any non-trivial lower-bound on the normalized
share size for them. Recall that an access structure is n/2-uniform if all sets of size
less than n/2 are unauthorized, all sets of size greater than n/2 are authorized,
and sets of size exactly n/2 can be either authorized or unauthorized. By [4]
(using results of [2]), every n/2-uniform access structure can be realized by a
scheme with normalized maximum share size O(n2) (with exponentially long
secrets). Since almost all access structures somewhat resemble uniform access
structures (see Theorem 3.2), one can hope that almost every access structure
can be realized by a scheme with polynomial normalized share size.
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Another research problem is to study the complexity of almost all functions
for other primitives with information-theoretic security, for example, private si-
multaneous messages (PSM) protocols, MPC protocols, MPC protocols with
constant number of rounds, and private information retrieval (PIR) protocols
for almost all databases. For all these primitives there is a huge gap between
the known upper bounds and lower bounds on the message size. Are there more
efficient protocols for any of these primitives for almost all functions than the
protocols for all functions?

2 Preliminaries

In the section, we present the preliminary results needed for this work. First, we
define secret-sharing schemes, linear secret-sharing schemes, graph secret-sharing
schemes, and homogeneous access structures. Second, we define conditional dis-
closure of secrets (CDS) protocols, and robust CDS protocols. We also present
several CDS and robust CDS protocols from [2,20,49,50] that are used in this
work. Finally, we present a short introduction to random graphs and random
access structures.

Secret-Sharing Schemes. We present the definition of secret-sharing scheme
as given in [31,12]. For more information about this definition and secret-sharing
in general, see [10].

Definition 2.1 (Access Structures). Let P = {P1, . . . , Pn} be a set of par-
ties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called forbidden.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π with
domain of secrets S, such that |S| ≥ 2, is a mapping from S×R, where R is some
finite set called the set of random strings, to a set of n-tuples S1×S2×· · ·×Sn,
where Sj is called the domain of shares of Pj. A dealer distributes a secret s ∈ S
according to Π by first sampling a random string r ∈ R with uniform distribution,
computing a vector of shares Π(s, r) = (s1, . . . , sn), and privately communicating
each share sj to party Pj. For a set A ⊆ P , we denote ΠA(s, r) as the restriction
of Π(s, r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access struc-
ture Γ if the following two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of par-
ties. That is, for any set B =

{
Pi1 , . . . , Pi|B|

}
∈ Γ there exists a reconstruction

function ReconB : Si1 × · · · × Si|B| → S such that ReconB (ΠB(s, r)) = s for
every secret s ∈ S and every random string r ∈ R.
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Privacy. Any forbidden set cannot learn anything about the secret from its
shares. Formally, for any set T =

{
Pi1 , . . . , Pi|T |

}
/∈ Γ and every pair of secrets

s, s′ ∈ S, the distributions ΠT (s, r) and ΠT (s′, r) are identical, where the distri-
butions are over the choice of r from R at random with uniform distribution.

Given a secret-sharing scheme Π, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, the maximum share size as max1≤j≤n {log |Sj |},
and the total share size as

∑n
j=1 log |Sj |.

A secret-sharing scheme is multi-linear if the mapping that the dealer uses to
generate the shares given to the parties is linear, as we formalize at the following
definition.

Definition 2.3 (Multi-Linear and Linear Secret-Sharing Schemes). Let
Π be a secret-sharing scheme with domain of secrets S. We say that Π is
a multi-linear secret-sharing scheme over a finite field F if there are integers
`d, `r, `1, . . . , `n such that S = F`d , R = F`r , S1 = F`1 , . . . , Sn = F`n , and the
mapping Π is a linear mapping over F from F`d+`r to F`1+···+`n . We say that a
scheme is linear over F if S = F (i.e., when `d = 1).

Definition 2.4 (Graph secret-sharing schemes). Let G = (V,E) be an
undirected graph with |V | = n; for simplicity we assume that E 6= ∅. We de-
fine ΓG as the access structure whose minimal authorized subsets are the edges
in G, that is, the unauthorized sets are independent sets in the graph. A secret-
sharing scheme realizing an access structure ΓG is said to be a secret-sharing
scheme realizing the graph G and is called a graph secret-sharing schemes.

These schemes are one of the main topics in this work. In this paper, we study
very dense graphs, graphs with at least

(
n
2

)
− n1+β edges for some 0 ≤ β < 1.

We also study k-homogeneous access structures, which are access structures
whose minimal authorized subsets are of the size k. For example, graph access
structures are 2-homogeneous access structures. For k > 2, it is convenient to
define k-homogeneous access structures from hypergraphs. A hypergraph is a
pair H = (V,E) where V is a set of vertices and E ⊆ 2V \ {∅} is the set of
hyperedges. A hypergraph is k-uniform if |e| = k for every e ∈ E. A k-uniform
hypergraph is complete if E =

(
V
k

)
= {e ⊆ V : |e| = k}. Observe that there is a

one-to-one correspondence between uniform hypergraphs and homogeneous ac-
cess structures, and that complete uniform hypergraphs correspond to threshold
access structures. Given a hypergraph H = (V,E), we define ΓH as the access
structure whose minimal authorized sets are the hyperedges of H.

We contrast homogeneous access structures with uniform access structures
(studied, e.g., in [60,19,2,4]). A k-uniform access structures is also described by
a k-uniform hyper-graph and its authorized sets are all the hyper-edges and all
sets of size at least k + 1. Thus, k-homogeneous access structures are harder to
realize as they might contain forbidden sets of size much larger than k.3

3 For example, given a secret-sharing realizing the k-homogeneous access structures of
a hyper-graph H, we can realize the k-uniform access structures of H by additionally
sharing the secret in a (k + 1)-out-of-k secret-sharing scheme.
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Conditional Disclosure of Secrets. We define k-server conditional disclosure
of secrets protocols, originally defined in [42].

Definition 2.5 (Conditional Disclosure of Secrets Protocols). Let f :
X1 × · · · ×Xk → {0, 1} be a k-input function. A k-server CDS protocol P for f
with domain of secrets S consists of:

1. A finite domain of common random strings R, and k finite message domains
M1, . . . ,Mk,

2. Deterministic message computation functions Enc1, . . . ,Enck, where Enci :
Xi × S × R → Mi for every i ∈ [k] (we also say that Enci(xi, s, r) is the
message sent by the i-th server to the referee), and

3. A deterministic reconstruction function Dec : X1×· · ·×Xk×M1×· · ·×Mk →
{0, 1}.

We denote Enc(x, s, r) = (Enc1(x1, s, r), . . . ,Enck(xk, s, r)). We say that a
CDS protocol P is a CDS protocol for a function f if the following two require-
ments hold:

Correctness. For any input (x1, . . . , xk) ∈ X1 × · · · × Xk for which
f(x1, . . . , xk) = 1, every secret s ∈ S, and every common random string r ∈ R,

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

Privacy. For any input x = (x1, . . . , xk) ∈ X1 × · · · × Xk for which
f(x1, . . . , xk) = 0 and for every pair of secrets s, s′, the distributions Enc(x, s, r)
and Enc(x, s′, r) are identical, where the distributions are over the choice of r
from R at random with uniform distribution.

The message size of a CDS protocol P is defined as the size of largest message
sent by the servers, i.e., max1≤i≤k {log |Mi|}.

Next, we present the properties of three CDS protocols that are used in this
work. The CDS protocol presented in Theorem 2.6 has linear properties: the
messages are generated from the secret and the randomness with linear map-
pings. Theorem 2.6 is a particular case of Theorem 6 of [2], while Theorem 2.7
is from [49].

Theorem 2.6 ([2]). For any 2-input function f : [n] × [n] → {0, 1} there is a
2-server CDS protocol in which, for sufficiently large secrets, i.e., secrets of size
2n

2

, each server communicates at most 3 bits per each bit of the secret.

Theorem 2.7 ([49]). For any 2-input function f : [n]× [n]→ {0, 1} there is a

2-server CDS protocol with a one bit secret and message size nO(
√

log logn/ logn) =
no(1).

Theorem 2.8 ([50]). For any k-input functions f : [n]k → {0, 1} there is a k-

server CDS protocol with a one bit secret and message size nO(
√
k/ logn log(k logn)).
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Robust Conditional Disclosure of Secrets. In a recent work [5], Applebaum
et al. define a stronger notion of CDS protocols that is useful for constructing
secret-sharing schemes. In a k-server CDS protocol, we assume that each server
sends one message to the referee. Therefore, the referee only has access to k
messages. In a robust k-server CDS protocol, we consider the case that the
referee can have access to more than one message from some servers (generated
with the same common random string), and privacy is guaranteed even if an
adversary sees a bounded number of messages from each server.

Definition 2.9 (Zero sets). Let f : X1 × · · · × Xk → {0, 1} be a k-input
function. We say that a set of inputs Z ⊆ X1 × · · · × Xk is a zero set of f
if f(x) = 0 for every x ∈ Z. For sets Z1, . . . , Zk, we denote Enci(Zi, s, r) =
(Enci(xi, s, r))xi∈Zi

, and

Enc(Z1 × · · · × Zk, s, r) = (Enc1(Z1, s, r), . . . ,Enck(Zk, s, r)).

Definition 2.10 (Robust conditional disclosure of secrets (RCDS) pro-
tocols). Let P be a k-server CDS protocol for a k-input function f : X1 × · · · ×
Xk → {0, 1} and Z = Z1 × · · · × Zk ⊆ X1 × · · · × Xk be a zero set of f . We
say that P is robust for the set Z if for every pair of secrets s, s′ ∈ S, it holds
that Enc(Z, s, r) and Enc(Z, s′, r) are identically distributed. Let t1, . . . , tk be
integers. We say that P is a (t1, . . . , tk)-robust CDS protocol if it is robust for
every zero set Z1 × · · · × Zk such that |Zi| ≤ ti for every i ∈ [k] and it is a
t-robust CDS protocol if it is (t, . . . , t)-robust.

In this work we use several constructions of robust CDS protocols presented
in [4], which are based on non-robust CDS protocols. Theorem 2.11 presents
linear and multi-linear robust CDS protocols in which the underlying CDS pro-
tocol is from [41]. Then, Theorem 2.12 presents a generic transformation from
non-robust CDS protocols to robust CDS protocols. In this transformation, if
the original CDS is linear, then the resulting robust CDS is multi-linear.

Theorem 2.11 ([5, Theorem D.5]). Let f : [N ]× [N ]→ {0, 1} be a function.
Then, for every finite field Fq and every integer t ≤ N/(2 log2N), there is a
linear 2-server (t,N)-robust CDS protocol for f with one element secrets in which
the message size is O((t log2 t+

√
N)t log t log2N log q). Furthermore, there is p0

such that for every prime-power q > p0 there is a multi-linear 2-server (t,N)-
robust CDS protocol for f over Fq with secrets of size Θ(t2 log q log t log3N) in

which the normalized message size is O(t log2 t+
√
N).

Theorem 2.12 ([5, Theorem E.2]). Let f : [N ]k → {0, 1} be a k-input func-

tion, for some integer k > 1, and t ≤ min{kN/2, 2
√
N/k} be an integer. Assume

that for some integer m ≥ 1, there is a k-server CDS protocol P for f with
secrets of size m in which the message size is c(N,m). Then, there is a k-server
t-robust CDS protocol for f with secrets of size m in which the message size is

O
(
c(N,m)k3k−12ktk log2k−1 t log2(N)

)
. If P is a linear protocol over F2m , then

the resulting protocol is also linear. Furthermore, there is a k-server t-robust CDS
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protocol for f with secrets of size Θ(mk2t log t log2(N)) in which the normalized

message size is O
(
c(N,m)
m k3k−32ktk−1 · log2k−2 t

)
.

Random Graphs and Access Structures. In this work, we use several results
on random graphs to construct secret-sharing schemes for almost all graphs
with improved share size. First, we present the Erdös-Rényi model for random
graphs [39]. For an introduction to this topic see, e.g., [27].

Let Gn be the family of graphs with the vertex set V = {1, . . . , n}. Given
0 < p < 1, the model G (n, p) is a probability distribution over Gn in which each
edge is chosen independently with probability p, that is, if G is a graph with m

edges, then Pr[{G}] = pm(1−p)(
n
2)−m. Note that when p = 1/2, any two graphs

are equiprobable.
We say that almost every graph in G (n, p) has a certain property Q if Pr[Q]→

1 as n→∞. For p = 1/2, saying that almost every graph in G (n, p) has a certain
property Q is equivalent to saying that the number of graphs in Gn satisfying Q
divided by |Gn| tends to 1 as n → ∞. In this case, we will say that almost all
graphs satisfy Q.

Analogously, we will use the same expression for any family of access struc-
tures Fn. We say that almost all access structures in Fn satisfy Q if the number
of access structures in Fn satisfying Q divided by |Fn| tends to 1 as n→∞. In
particular, we study the family of homogeneous access structures and the family
of all access structures.

Next, we present some properties of the maximum independent sets of graphs
in G (n, p). Lemma 2.13 was presented by Grimmett and McDiarmid in [43]. Sev-
eral subsequent results gave more accurate bound on the size of maximum inde-
pendent sets, but it is enough for our purposes. In Lemma 2.14 we give bounds
to the maximum independent sets in G (n, p) for non-constant p. In Lemma 2.15
and Lemma 2.16 we present further properties of almost all graphs. The proofs
of Lemma 2.14 and Lemma 2.15 are in the full version of this paper [13].

Lemma 2.13 ([43]). Let 0 < p < 1 be a constant. Then the size of a
maximum independent set in almost every graph in G (n, p) is smaller than
2 log n/ log( 1

1−p ) + o(log n).

As a consequence of Lemma 2.13, the size of a maximum independent set in
almost every graph in Gn is smaller than (2 + o(1)) log n.

Lemma 2.14. The size of a maximum independent set in almost every graph

in G (n, p) is O( logn
p ) if 1/n ≤ p ≤ 1/2, and 1 + 2+o(1)

α if p = 1− n−α for some

1/ log n ≤ α ≤ 1.

With a similar proof, we can also show that for every 0 ≤ β ≤ 1 − 1
logn ,

almost all graph with n1+β edges have maximal independent sets of size at most
O(n1−β log n), and almost all graphs with

(
n
2

)
−n1+β have maximal independent

sets of size at most 1 + 2+o(1)
1−β .
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Lemma 2.15. Almost all graphs in G (n, p) with p = ω(log n/n) have degree at
most 2pn.

Lemma 2.16 ([28, Theorem 1]). Almost every graph with n = dr22r/2e ver-
tices contains every graph of r vertices as an induced subgraph.

3 Secret-sharing Schemes for Almost All Access
Structures

This section is dedicated to the study of general access structures. Combining
results on monotone Boolean functions by Korshunov [47] and secret-sharing
schemes from [48,2], we obtain secret-sharing schemes for almost all access struc-
tures. Then, we present lower bounds on the maximum share size for almost all
access structures.

3.1 Upper Bounds for Almost All Access Structures

First, we define the family of slice access structures. These access structures have
a special role in the general constructions presented in [48,4,5]. In Theorem 3.2,
we present a family of slice access structures that contains almost all access
structures. It is direct consequence of the results in [47] for monotone Boolean
functions (also presented in [62, Page 99]).

Definition 3.1. Let a, b be two integers satisfying 1 ≤ a < b ≤ n. We define
Sa,b as the family of access structures Γ satisfying that, for every A ⊆ P : if
|A| > b, then A ∈ Γ , and if |A| < a, then A /∈ Γ .

Theorem 3.2 ([47]). Let ` = bn/2c. Almost all access structures (i.e., mono-
tone collections of sets) are in S`−1,`+1 if n is even, and in S`−1,`+2 if n is
odd.

Theorem 3.3. Almost all access structures can be realized by the following
secret-sharing schemes.

1. A secret-sharing scheme with maximum share size 2O(
√
n logn).

2. A linear secret-sharing scheme with maximum share size 2n/2+o(n).
3. A multi-linear secret-sharing scheme with normalized maximum share size

2O(
√
n logn) for secrets of size 2n

2

.

Proof. By Theorem 3.2, constructing secret-sharing schemes for access structures
in S`−1,`+2 suffices for constructing secret-sharing schemes for almost all access
structures.

Assume that for every k-input function f : [N ]k → {0, 1} and secret of size
m there is a k-server CDS protocol for f in which the message size is c(N,m).
By [48], for every k there is a secret-sharing scheme for Γ ∈ Sa,b with maximum
share size at most

c(N,m)2(b−a+1)n/kO(n)

(
n

a

)
/

(
n/k

a/k

)k
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for N =
(
n/k
a/k

)
. In our case, a = bn2 c − 1 and b = bn2 c+ 2. Choosing k =

√
n

logn ,

we have

c(N,m)24n/kO(n)

(
n

n/2− 1

)
/

(
n/k

(n− 2)/2k

)k
=

= c(N,m)24
√
n lognO(poly(n))

(n
k

) k
2

= c(N,m)2O(
√
n logn).

Taking the k-server CDS protocol with message size c(N,m) =

2O(
√
logN log logN ≤ 2O(

√
n logn) from [50], we get the first secret-sharing

scheme. If we take the linear k-server CDS protocol from [20,50] with message
size O(N (k−1)/2) ≤ 2n/2+o(n), we get the second secret-sharing scheme. The
third secret-sharing scheme is obtained by using the k-server CDS protocol with
message size c(N,m) ≤ 4m from [2]. ut

As a consequence of this result, Hypotheses 1 and 3 in [2] are true for almost
all access structures:

Hypothesis 3.4 (SS is short). Every access structure over n parties is real-
izable with small information ratio (say 2o(n)).

Hypothesis 3.5 (SS is amortizable). For every access structure over n par-
ties, and every sufficiently long secret s, there exists a secret-sharing scheme with
small information ratio (e.g., sub-exponential in n).

3.2 Almost All Access Structures Require Long Shares in Linear
secret-sharing Schemes

Rónyai et al. [56] proved that for every finite field Fq for almost every access
structure Γ the normalized total share size of linear secret-sharing schemes over
Fq realizing Γ is at least 2n/3−o(n). We reverse the order of quantifiers and prove
that for almost every access structure Γ , for every finite field Fq the normalized
total share size of linear secret-sharing schemes over Fq realizing Γ is at least
2n/3−o(n).

The rest of the section is organized as follows. We start by defining monotone
span program and representable matroids; these notions are used to prove the
lower bounds. Thereafter, we prove our new lower bound on the normalized total
share size of linear secret-sharing schemes. More details about these results can
be found in [13].

Definitions. A linear secret-sharing scheme with total share size m can be
described by a matrix M with m rows such that the shares are computed by
multiplying M by a vector whose first coordinate is the secret s and the other
coordinates are random field elements. It is convenient to describe a linear secret-
sharing scheme by a monotone span program, a computational model introduced
by Karchmer and Wigderson [45]. The reader is referred to [10] for more back-
ground on monotone span programs and their connections to secret sharing.
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Definition 3.6 (Monotone Span Program [45]). A monotone span program
is a triple M = (F,M, ρ), where F is a field, M is an d× b matrix over F, and
ρ : {1, . . . , d} → {p1, . . . , pn} labels each row of M by a party.4 The size of M is
the number of rows of M (i.e., d). For any set A ⊆ {p1, . . . , pn}, let MA denote
the sub-matrix obtained by restricting M to the rows labeled by parties in A. We
say that M accepts B if the rows of MB span the vector e1 = (1, 0, . . . , 0). We
say that M accepts an access structure Γ if M accepts a set B if and only if
B ∈ Γ .

Theorem 3.7 ([45]). There exists a linear secret-sharing scheme over Fq real-
izing an access structure Γ with secrets of size log q and total share size d log q
if and only if there exists a monotone span program M = (Fq,M, ρ) accepting
the access structure Γ such that M is an d× d matrix.

We next define representable matroids and quote the result of [53]. For our
proof, we do not need the definition of matroids; we note that they are an
axiomatic abstraction of linear independency.

Definition 3.8. A matroid representable over a field F is a pair (A, r), where
A is a finite set, called a ground set, and r : 2A → {0, 1, . . . , |A|} is a function,
called a rank function, such that there are vectors {va}a∈A in F|A| for which for
every B ⊆ A

r(B) = rank({va}a∈B),

where rank(V ) is the linear-algebraic rank of vectors, i.e., the maximum num-
ber of linearly independent vectors in V . A representable matroid is a matroid
representable over some field.

Theorem 3.9 ([53]). For every d ≥ 12, there are at most 2d
3/4 representable

matroids with ground set [d].

The following theorem generalize the lower bounds of of [9,56].

Theorem 3.10. For almost every access structure Γ with n parties the following
property holds: For every prime-power q, the normalized total share size in every
linear secret-sharing scheme realizing Γ over the field Fq is at least 2n/3−o(n).

Proof. The proof is similar to the proof of [9], with a more complex upper bound
on the number of access structure that can be realized with a monotone span
program of size d.

Fix some labeling function ρ0 : [d]→ {p1, . . . , pn} and assume that there is a
monotone span programM = (Fq,M, ρ0) accepting an access structure Γ where
M is matrix over some field Fq of size d × d. Let Mi be the i-th row of M and
M0 = e1 and define a representable matroid with a ground set A = {0, . . . , d}
and a rank function r(B) = rank {Mi : i ∈ B}. We next show that the rank

4 For simplicity, in this paper we label a row by a party pj rather than by a variable
xj as done in [45].
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function r together with ρ0 determines the access structure Γ accepted by M.
Indeed, B ∈ Γ if and only if e1 ∈ span

{
Mi : pρ0(i) ∈ B

}
if and only if

rank(
{
Mi : pρ0(i) ∈ B

}
) = rank(

{
Mi : pρ0(i) ∈ B

}
∪ {e1})

if and only if r(
{
i : pρ0(i) ∈ B

}
= r(

{
i : pρ0(i) ∈ B

}
∪ {0}). Thus, the number

of access structures that can be realized by a linear scheme with normalized
total share size is upper-bounded by the number of labeling functions ρ times
the number of representable matroids with ground set {0, . . . , d}, i.e., by nd ×
2(d+1)3/4 ≤ 2d

3/2. To conclude, for d = 2n/3/n1/6, almost all access structures do
not have a linear secret-sharing scheme with normalized total share size smaller
than d. ut

A Lower Bound on the Share Size in Linear Secret-Sharing Schemes
with a One Bit Secret. Finally, for a one-bit secret, we obtain in Theorem 3.11
a lower bound of 2n/2−o(n) on the total share size of linear secret-sharing schemes
over any field realizing almost all access structures, even if the secret is a bit.
Notice that this lower bound is on the total share size (and not on the normalized
total share size). When we share a bit using a linear secret-sharing scheme over
Fq for q > 2, we only use the scheme to share the secrets 0, 1 ∈ Fq. Since we are
proving a lower bound the total share size, assuming that the secret is a bit only
makes the result stronger.

The constant in the exponent in Theorem 3.11 is 1/2 (compared to a constant
1/3 in Theorem 3.10), matching the construction of linear secret-sharing schemes
for almost all access structures in Theorem 3.3 (up to lower order terms). This
theorem is a special case of [4, Theorem 5.5], however, the proof of this special
case is simpler.

Theorem 3.11. For almost every access structure Γ with n parties the fol-
lowing property holds: For every prime-power q, the total share size in every
linear secret-sharing scheme over Fq realizing Γ with a one bit secret is at least
2n/2−o(n).

Proof. There are at most ndqd
2

monotone span programs of size d over Fq (as

there are qd
2

matrices and n ways to label each row by a party). For d > log n,

ndqd
2

< q2d
2

. The total share size in the linear secret-sharing scheme constructed
from such monotone span program is D = d log q. Thus, the number of linear
secret-sharing schemes over Fq with total share size D is at most q2(D/ log q)

2

<

22D
2

. Furthermore, when q > 2D, the share size of each party is at least log q > D
as each share contains at least on element from Fq. Thus, the number of linear
secret-sharing schemes with total share size D is at most∑

q : q≤2D,q is a prime power

22D
2

≤ 2D · 22D
2

≤ 23D
2

.

Taking D = 0.4·2n/2−0.25 logn, the number of access structures that have a linear
secret-sharing scheme over any field with total share size at most D is less than
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23·0.16·2
n/
√
n, i.e., almost all access structures require total share size larger than

D in all linear secret-sharing schemes. ut

4 (G, t)-Secret-Sharing Schemes

In this section, we present a new family of schemes that we call (G, t)-secret-
sharing schemes. We show that there is a close bi-directional connection between
these schemes and 2-server robust CDS protocols, generalizing the connection be-
tween (non-robust) CDS protocols and forbidden graphs secret-sharing schemes.
These schemes will be later used to construct graph secret-sharing schemes.

4.1 The Definition of (G, t)-Secret-Sharing Schemes

Definition 4.1. Let G = (V,E) be an undirected graph with |V | = n such that
E 6= ∅ and let ΓG be the graph access structure determined by G (that is, each
edge is a minimal authorized set and each independent set is forbidden). For
any 0 ≤ t ≤ n − 1, define Γt as the t-out-of-n threshold access structure on V
(that is, Γt = {A ⊆ X : |A| ≥ t}) and define the access structure ΓG,t on V
as ΓG,t = ΓG ∪ Γt+1. We say a secret-sharing scheme is a (G, t)-secret-sharing
scheme if it realizes the access structure ΓG,t.

Next, we present some properties of these schemes. If Π is a (G, t)-secret-
sharing scheme, then all subsets containing edges are authorized, independent
subsets of G of size at most t are forbidden, and subsets of size greater than t are
authorized. If t = 2, then ΓG,t is a forbidden graph access structure determined by
a graph G (for an introduction to these access structures, see [16], for example).
If the size of a largest independent set of G is µ, then every subset of size
µ + 1 is authorized in ΓG. Therefore, ΓG,t = ΓG for every t ≥ µ. In particular,
ΓG,n−1 = ΓG for every graph G.

4.2 (G, t)-Secret-Sharing Schemes from Robust CDS Protocols

We now present constructions of (G, t)-secret-sharing schemes. First, we present
a transformation from robust CDS protocols to (G, t)-secret-sharing schemes.
Then, using the robust CDS schemes presented in Section 2, we provide explicit
(G, t)-secret-sharing schemes.

Lemma 4.2. Let G = (V,E) be a graph with |V | = n, and let 0 < t < n. If there
exists a 2-server t-robust CDS protocol with secrets of size m and messages of
size c(n,m) for functions f : [n]2 → {0, 1}, then there is a (G, t)-secret-sharing
scheme with secrets of size m and shares of size 2 · c(n,m) + max {m,O(log n)}.
Moreover, if CDS protocol is linear, then the secret-sharing scheme is also linear.

Proof. We construct the (G, t)-secret-sharing scheme using the scheme in Fig. 2.
Next we prove the correctness and privacy properties.
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Correctness: Let A ⊆ [n] be a minimal authorized subset in ΓG,t. Then A
is either in E or A is of size t + 1. If A = {i, j} is in E, then f(i, j) = 1, i.e.,
the message of Alice (the first server) on i and the message of Bob (the second
server) on j determines s, so the pair {i, j} can recover s. If |A| = t+ 1, then A
can recover s using the (t+ 1)-out-of-n secret-sharing scheme.

Privacy: Let A be a maximal forbidden subset. Then A does not contain any
edge in E and |A| ≤ t. The shares received from the threshold secret-sharing
scheme do not provide any information about s. Now we analyze the information
provided by the messages of P. The parties in A receive Alice’s messages for A
and Bob’s messages for A. Observe that the set A × A does not contain edges
of G, thus, A × A is a zero-set of f and the t-robustness of P guarantees the
privacy of the scheme.

The maximum share size of the resulting scheme is twice the message size of
P plus the share size of the (t+ 1)-out-of-n secret-sharing scheme.

If P is a linear protocol over Fq, we can choose a Shamir (t + 1)-out-of-n
secret-sharing scheme over a finite field Fq` with q` > n. Since this scheme is
also linear over Fq, the resulting secret-sharing scheme is also linear over Fq. ut

The secret: An element s ∈ S.
The parties: V = {1, . . . , n}.
The access structure: ΓG,t for some graphG = (V,E) and 0 ≤ t ≤ n−1.
The scheme:

– Let f : [n]× [n]→ {0, 1} be the function defined as f(i, j) = 1 if and
only if (i, j) ∈ E.

– Let P be a 2-server t-robust CDS protocol with secrets from {0, 1}m
for the function f ; denote its servers by Alice and Bob.

Then,

1. Execute the protocol P for the secret s.
2. Share s independently among V with a (t+1)-out-of-n secret-sharing

scheme.
3. The share of party i ∈ V is the message of Alice on the input i, the

message of Bob on the input i, and the share of i in the (t+1)-out-of-n
secret-sharing scheme.

Fig. 2. A (G, t)-secret-sharing scheme Π for a graph G = (V,E).

In Lemma 4.2, we showed a way to construct (G, t)-secret-sharing schemes
from t-robust CDS protocols. Conversely, we can also construct robust CDS
protocols from (G, t)-secret-sharing schemes, as shown in Lemma 4.3.

Lemma 4.3. Let f : [n]× [n] → {0, 1} be a function and let 0 < t < n. Define
G = (([n]×{1})∪ ([n]×{2}), E) as the bipartite graph with E = {((i, 1), (j, 2)) :
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i ∈ [n], j ∈ [n], f(i, j) = 1}. If there exists a (G, 2t)-secret-sharing scheme with
secrets of size m and maximum share size c(2n,m), then there exists a 2-server
t-robust CDS protocol for f with message size c(2n,m).

Proof. Let Π be a (G, 2t)-secret-sharing scheme. We define a 2-server t-robust
CDS protocol P for f as follows. The message spaces M1 and M2 of the servers
are the spaces of shares of parties [n] × {1} and [n] × {2}, respectively. The
common randomness r is the randomness of the dealer in Π. The function
Enci(j, s, r) for i ∈ {1, 2} outputs the share of party (j, i) with the secret s
and randomness r, and Dec is the reconstruction function of Π.

The correctness of P is guaranteed because every pair in E is authorized in
Π. The t-robustness of P is guaranteed because every zero-set Z1 × Z2 where
|Z1|, |Z2| ≤ t corresponds to an independent set (Z1×{1})∪ (Z2×{2}) of size at
most 2t in G, thus the messages of the inputs in Z1∪Z2 are shares of a forbidden
set in Π. ut

Now that we showed the connection between (G, t)-secret-sharing schemes
from t-robust CDS protocols, we present (G, t)-secret-sharing schemes that use
Theorem 2.12 and Theorem 2.11.

Lemma 4.4. Let G = (V,E) be a graph with |V | = n, and let 1 ≤ t < n/2. If
there exist a 2-server CDS protocol with message size c(n,m) for functions with
domain size n and secrets of size m, then there exists a (G, t)-secret-sharing
scheme with maximum share size O(t2 log3 t log2 n · c(n,m)), and a (G, t)-secret-
sharing scheme with secrets of size Θ(mt log t log2 n) and normalized maximum
share size O(t log2 t · c(n,m)/m).

Proof. Theorem 2.12 guarantees that there exists a 2-server t-robust CDS pro-
tocol with message size `(n) = O(t2c(n,m) log3 t log2 n), and a 2-server t-robust
CDS protocol with secrets of size m′ = Θ(mt log t log2 n) with normalized mes-
sage size `(n)/m′ = O(t log2 t · c(n,m)/m). Using these 2-server t-robust CDS
protocols and Lemma 4.2 we obtain the lemma. ut

We conclude this section presenting different (G, t)-secret-sharing schemes
that are obtained from robust CDS schemes applying Lemma 4.2 and Lemma 4.4.

Theorem 4.5. Let G = (V,E) be a graph with |V | = n and let 1 < t < n.

1. There exists a (G, t)-secret-sharing scheme with moderately-short secrets of
size O(t log3 n), normalized maximum share size

nO(
√

log logn/ logn)t log2 n = no(1)t log2 n,

and normalized total share size n1+O(
√

log logn/ logn)t log2 n = n1+o(1)t log2 n;

2. For every prime power q, there exists a linear (G, t)-secret-sharing scheme
over Fq with and maximum share size O

(
(t log2 t+

√
n)t log t log2 n log q

)
;
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3. There exists an integer p0 such that for every prime power q > p0, there exists
a multi-linear (G, t)-secret-sharing scheme over Fq with moderately-short se-
crets of size Θ(t2 log t log2 n log n log q) and normalized maximum share size
O(t log2 t+

√
n);

4. There exists a multi-linear (G, t)-secret-sharing scheme over F2 with secrets

of size 2n
2

and normalized maximum share size O(t log2 t).

Proof. Scheme 1: By Theorem 2.7, for any function f : [n]2 → {0, 1} there
exists a 2-server CDS protocol with secret of size m = 1 and messages size

c(n, 1) = nO(
√

log logn/ logn). Applying Theorem 2.12 with the CDS protocol
from Theorem 2.7 results in a 2-server t-robust CDS protocol with secrets of

size O(t log t log2 n) = O(t log3 n), message size O(nO(
√

log logn/ logn)t2 log5 t),

and normalized message size O(nO(
√

log logn/ logn)t log2 t). By Lemma 4.2,
there is a (G, t)-secret-sharing with secrets of size O(t log3 n) and maxi-

mum share size O(nO(
√

log logn/ logn)t2 log5 t), thus with normalized maximum

share size O(nO(
√

log logn/ logn)t log2 n) and with normalized total share size

O(n1+O(
√

log logn/ logn)t log2 n).

Scheme 2: Theorem 2.11 guarantees that for t ≤ n/(2 log2 n) there
exists a linear 2-server t-robust CDS protocol over Fq with message size
O
(
(t log2 t+

√
n)t log t log2 n log q

)
. Thus, by Lemma 4.2 there is a (G, t)-secret-

sharing scheme where the maximum share size is the above message size. For
t > n/(2 log2 n), the upper bound also holds because there is always a linear
(G, t)-secret-sharing with maximum share size O(n/ log n) [38].

Scheme 3: Theorem 2.11 also guarantees, for a large enough q, a 2-server
(t, n)-robust CDS protocol with secrets of size Θ(t2 log t log2 n log q) and nor-
malized message size O(t log2 t +

√
n). Again, we construct the desired (G, t)-

secret-sharing with from the robust CDS protocol applying Lemma 4.2.

Scheme 4: By Theorem 2.6, there exists a multi-linear CDS protocol over F2

with normalized message size c(n,m)/m = 3 for secrets of size 2n
2

. Applying
Lemma 4.4, we obtain a multi-linear (G, t)-secret-sharing over F2 with normal-
ized maximum share size O(t log2 t · c(n,m)/m) = O(t log2 t). ut

5 Secret-sharing Schemes for Almost All Graphs

In this section we study the maximum share size of secret-sharing schemes for
almost all graphs and for almost all graphs in G (n, p) for different values of p.
The previous and new results for almost all graphs are summarized in Fig. 1,
while the results for G (n, p) are summarized in Fig. 4.

Schemes presented in this section rely on the properties of almost all graphs
shown in the end of Section 2, and use the (G, t)-secret-sharing schemes presented
in Section 4. In order to understand the share size of secret-sharing schemes
for almost all graphs, we provide lower bounds for them in Theorem 5.5 and
Theorem 5.7.
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5.1 Schemes for Almost all Graphs

As a consequence of Lemma 2.13, the size of every independent set in almost ev-
ery graph in Gn is O(log n). We observed in Section 4 that a (G, t)-secret-sharing
scheme is also a secret-sharing scheme realizing G when t is bigger than the size
of a largest independent set of G. Hence, we consider the four constructions pre-
sented in Theorem 4.5 for t = O(log n). In Theorem 5.1 we present the resulting
schemes.

Theorem 5.1. Almost all graphs with n vertices can be realized by the following
schemes.

1. A secret-sharing scheme with maximum share size nO(
√

log logn/ logn) =
no(1),

2. A linear secret-sharing scheme over Fq with maximum share size Õ(
√
n log q)

for every prime power q,
3. A multi-linear secret-sharing scheme over Fq with normalized maximum

share size O(
√
n) and moderately-short secrets of size Θ(log q log3 n log log n)

for a large enough q, and
4. A multi-linear secret-sharing scheme over F2 with normalized maximum

share size O
(
log n(log log n)2

)
for secrets of size 2n

2

.

5.2 Secret-sharing Schemes for G (n, p)

In order to study properties of sparse graphs, we study G (n, n−α) for a constant
0 < α < 1. Almost all graphs in G(n, n−α) have maximal independent sets
of size at most t = O(nα log n). Following the procedure we developed in the
previous section, we can construct secret-sharing schemes for almost all graphs in
G(n, n−α) using Theorem 4.5. Similar bounds can be obtained for linear schemes
and multi-linear schemes. They are presented in Fig. 4.

Theorem 5.2. Let 0 < α < 1 be a constant. Almost every graph in G (n, n−α)
can be realized by a secret-sharing scheme with normalized maximum share size
nmin(α,1−α)+o(1) and secret of size Õ(

√
n).

Proof. We present two schemes Π1 and Π2 for almost all graphs in G (n, n−α).
The scheme Π1 consists on sharing the secret for each edge independently. By
Lemma 2.15, almost every graph in G (n, n−α) has maximum degree of at most
2n1−α. Therefore, the maximum share size of Π1 is 2n1−α for almost all graphs
in G (n, n−α).

The second scheme Π2 is obtained from Theorem 4.5. For almost every
graph in G (n, n−α) the size of a maximum independent set is O(nα log n) (by
Lemma 2.14). Thus, we let Π2 be the (G,O(nα log n))-secret-sharing scheme
of Theorem 4.5 with secret of size Θ(t log3 n) = Θ(nα log4 n) and normalized
maximum share size O(no(1)t log2 n) = O(nα+o(1) log3 n) = nα+o(1).

Therefore, almost every graph in G (n, n−α) can be realized by a secret-
sharing scheme with normalized maximum share size min(2n1−α, nα+o(1)) ≤
nmin(1−α,α)+o(1). ut
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For α ≤ 1/2, the best choice is Π1, and for α > 1/2, the best choice is Π2. For
α = 1/2, the normalized maximum share size of almost all graphs in G (n, n−α)
in our scheme is O(

√
n). This is the constant α that gives the worst upper bound

on the normalized maximum share size of secret-sharing schemes for G (n, n−α).
Finally, we study properties of very dense graphs by analyzing G (n, 1−n−α)

for a constant 0 < α < 1. By Lemma 2.14, the size of a maximum independent
set for almost all graphs in G (n, 1− n−α) is constant. As we saw above, graphs
with small independent sets admit more efficient schemes. In Theorem 5.4 we
present secret-sharing schemes for almost all graphs in G (n, 1−n−α). Two of the
schemes we present in Theorem 5.4 follow quite easily from our previous results.
In contrast, the linear scheme we construct in Theorem 5.4 does not follow from
previous results on robust CDS protocols. Rather, it follows from the following
theorem of [16] on the total share size for forbidden graph secret sharing schemes
and the techniques of [5].

Theorem 5.3 ([16, Theorem 6]). Let G = (V,E) graph with n vertices and
at least

(
n
2

)
−n1+β edges, for some 0 ≤ β < 1. Then for every prime-power q > n

there is a linear (G, 2)-secret-sharing scheme over Fq that with total share size

Õ(n1+β/2 log q).

Theorem 5.4. Let 0 ≤ β < 1 be a constant. Almost all graphs in G (n, 1−nβ−1)
can be realized by a secret-sharing scheme with maximum share size no(1), a
linear secret-sharing scheme over Fq with total share size Õ(n1+β/2 log q) for
every prime-power q > n, and a multi-linear secret-sharing scheme over F2 with
exponentially long secrets of size 2n

2

and normalized maximum share size O(1).

Proof. By Lemma 2.14, the size of a maximum independent set for almost all
graphs in G (n, 1−n−α) is some constant c. The non-linear secret-sharing scheme
and the secret-sharing scheme with long secrets are obtained by applying The-
orem 4.5 with t = O(1).

To construct the linear secret-sharing scheme we note that the maximum de-
gree of almost every graph G in G (n, 1−nβ−1) is at least n−2nβ (by Lemma 2.15
applied to G), thus the number of edges in G is at least

(
n
2

)
− n1+β . The lin-

ear scheme is derived by using the technique of [5] to transform the (G, 2)-
secret-sharing scheme from Theorem 5.3 to a (G, c)-secret-sharing scheme: Let
H =

{
hi : [n]→ [c2] : 1 ≤ i ≤ `

}
be a family of perfect hash functions,5 where

|H| = ` = O(log n). The (G, c)-secret-sharing scheme, denoted Π, is as follows:

– Input: a secret s ∈ Fq.
– Choose ` − 1 random elements s1, . . . , s`−1 from Fq and let s` = s − (s1 +
· · ·+ s`−1).

5 A family H is a family of perfect hash functions for sets of size at most c if for
every B ⊂ {1, . . . , n} such that |B| ≤ c, there exists a function h ∈ H such that h
is one-to-one on B, that is, h(u) 6= h(v) for every distinct u, v ∈ B. By a standard
probabilistic argument, such family of size O(c logn) exists. For a constant c, the
size of the family is O(logn).
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– For every i ∈ {1, . . . , `} and every a, b ∈
{

1, . . . , c2
}

, independently share si
using the (G, 2)-secret-sharing scheme and give the share of vertex v to v if
and only if hi(v) ∈ {a, b}.

For the correctness of the scheme Π, let (u, v) be an edge in G (i.e., an
authorized set). For every i, the parties u, v can reconstruct si from the scheme
for a = h(u), b = h(v). For the privacy of Π, let B be an independent set in
G (i.e., a forbidden set). By Lemma 2.14, we can assume that the size of B is
at most c, thus, there exists a hash function hi ∈ H such that hi(u) 6= hi(v)
for every distinct u, v ∈ B. Therefore, in any sharing of si for some values a, b
the parties in B hold at most 2 shares, and these shares are of a forbidden set.
The privacy of the (G, 2)-secret-sharing scheme implies that the parties in B do
not get any information on si from this execution. Since all executions of the
(G, 2)-secret-sharing scheme are executed with an independent random string,
the parties in B do not get any information on si from the shares of Π, hence
they get no information on s. Note that the total share size in Π is O(log n)
times the total share size of the (G, 2)-secret-sharing scheme. ut

5.3 Lower Bounds for the Share Size for Almost All Graphs

Next, we present lower bounds for the maximum share size of secret-sharing
schemes for almost all graphs. This question was first addressed by Csirmaz
in [35], where he proved a lower bound which we include in Theorem 5.5.

Theorem 5.5. For almost every graph G, the normalized maximum share size
of every secret-sharing scheme realizing G is Ω(log log n), and the normalized
maximum share size of every multi-linear secret-sharing scheme realizing G is
Ω(log1/2 n).

Proof. (Sketch) Both bounds are a consequence of Lemma 2.16 (which says
that almost all n-vertex graphs contain all graphs of size log n as an induced
graph), taking different graphs with log n vertices. The first bound was proved
by Csirmaz in [35], taking the family of hypercube graphs (or the graphs of [37]).
The second bound is a consequence of the results in [17,11]. The complete proof
is in the full version of this paper [13]. ut

Remark 5.6. Lemma 2.16 provides a connection between the maximum share
size of schemes for every graph access structure with r = log n vertices and the
maximum share size of schemes for almost all graph access structures with n ver-
tices. In Theorem 5.5 we used it in one direction, but it could also be used in the
converse direction. For instance: if there exist secret-sharing schemes for almost
all n-vertex graphs with (normalized) maximum share size� logn

log logn , then there

exist secret-sharing schemes realizing every r-vertex graph with (normalized)
maximum share size � r/ log r, which is currently the best upper bound [38].

In Theorem 5.7, we quote a lower bound on the maximum share size for
linear graph secret-sharing schemes, proved in [52,15]. Notice, however, that this
bound does not grow as a function of the size of the secrets.
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Theorem 5.7 ([52,15]). For almost every graph G, the maximum share size
of every linear secret-sharing scheme realizing G is Ω(

√
n).

6 Secret-sharing Schemes for Very Dense Graphs

In this section we study secret-sharing schemes for very dense graphs, i.e., graphs
with n vertices and at least

(
n
2

)
− n1+β edges for some 0 ≤ β < 1. This problem

was originally studied in [14], and the best previously known upper bounds on
the maximum share size and the total share size are presented in Theorems 6.1
and 6.2.

Theorem 6.1 ([14]). Let G = (V,E) be a graph with |V | = n and |E| ≥(
n
2

)
−n1+β for some 0 ≤ β < 1. Then, there exists a linear secret-sharing scheme

realizing G with maximum share size Õ(n1/2+β/2), total share size Õ(n3/2+β/2),
and secret of size O(log n).

The above theorem hides poly-logarithmic factors in the share size. It was also
shown in [14] that these poly-logarithmic factors can be avoided if we consider
multi-linear secret-sharing schemes and normalized share size: for the graphs
considered in Theorem 6.1, there exists a multi-linear secret-sharing scheme with
normalized maximum share size O(n1/2+β/2) and secret of size O(log2 n).

In [14], there is another secret-sharing construction for very dense graphs,
presented in Theorem 6.2. The total share size of this scheme is smaller than the
one in Theorem 6.1, but the maximum share size may be larger.

Theorem 6.2 ([14]). Let G = (V,E) be a graph with |V | = n and |E| ≥(
n
2

)
− n1+β for some 0 ≤ β < 1. There exists a linear secret-sharing scheme

realizing G with total share size Õ(n5/4+3β/4).

As an observation, notice that as a direct implication of the results in previous
sections we can construct a scheme whose maximum share size is similar to the
maximum share size as in the scheme of Theorem 6.2 (see the full version of this
paper [13]).

We use (G, t)-secret-sharing schemes, described in the Section 4, to construct
secret-sharing schemes for all very dense graphs. Our main result for dense
graphs is Theorem 6.4, where we show that graphs with at least

(
n
2

)
− n1+β

edges admit secret-sharing schemes with normalized total share size n1+β+o(1).
This result nearly matches the best total share size for sparse graphs with at
most n1+β edges (for which we share the secret independently for each edge).
The construction follows the ideas described in the introduction.

In Fig. 3, we present a secret-sharing scheme Πdense realizing very dense
graphs. In Theorem 6.4, we use Πdense recursively to obtain our improved secret-
sharing scheme for dense graphs. The proofs of Lemma 6.3 and Theorem 6.4 are
presented in the full version of this paper [13].

Lemma 6.3. Let G = (V,E) be a graph with |V | = n and |E| ≥
(
n
2

)
− n1+β

for some 0 ≤ β < 1. The scheme described in Fig. 3 is a secret-sharing scheme
realizing G.
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The secret: An element s ∈ S.
The parties: V = {1, . . . , n}
The scheme:

1. Let β < α < (1 + β)/2 and n′ = n1+β−α.
2. Let A ⊆ V be a subset of n′ vertices of lowest degree and G′ =

(A,E ∩ (A×A)).
3. Share s among A using Π1, a secret-sharing scheme realizing G′.
4. Choose r ∈ S uniformly at random.
5. Share r using Π2, a (G, 2nα + 1)-secret-sharing scheme.
6. Share r + s using Π3, a secret-sharing scheme where A is the only

maximal forbidden subset (that is, give r + s to every party not in
A).

Fig. 3. A secret-sharing scheme Πdense realizing a graph G = (V,E) with |E| ≥(
n
2

)
− n1+β for some 0 ≤ β < 1.

Theorem 6.4. Let G = (V,E) be a graph with |V | = n and |E| ≥
(
n
2

)
− n1+β

for some 0 ≤ β < 1. Then G can be realized by a secret-sharing schemes with
secrets of size O(n log3 n) and normalized total share size n1+β+o(1).

Remark 6.5. In Theorem 6.4, we combine the secret-sharing scheme for very
dense graphs in Theorem 6.1 with several instances of the first scheme of Theo-
rem 4.5. Instead, if we replace the former by the fourth scheme of Theorem 4.5,
we obtain a multi-linear secret-sharing scheme with secrets of exponential size
and normalized total share size Õ(n1+β) for exponentially long secrets.

In Fig. 4, we summarize the current bounds on the total share size for graphs
with at most n1+β edges, graphs with at least

(
n
2

)
−n1+β edges, G (n, nβ−1), and

G (n, 1 − nβ−1), for constant 0 < β < 1. Additional remarks and observations
are presented in the full version of this paper [13].
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