
Stronger Security and Constructions of
Multi-Designated Verifier Signatures ?

Ivan Damg̊ard1, Helene Haagh12, Rebekah Mercer3,
Anca Nitulescu12, Claudio Orlandi1, and Sophia Yakoubov1

1 Aarhus University {ivan, orlandi, sophia.yakoubov}@cs.au.dk,
2 {helenehaagh, anca.nitulesc}@gmail.com,

3 rebekah@o1labs.org, O(1) Labs, USA

Abstract. Off-the-Record (OTR) messaging is a two-party message au-
thentication protocol that also provides plausible deniability: there is no
record that can later convince a third party what messages were actu-
ally sent. The challenge in group OTR, is to enable the sender to sign
his messages so that group members can verify who sent a message (sig-
natures should be unforgeable, even by group members). Also, we want
the off-the-record property: even if some verifiers are corrupt and col-
lude, they should not be able to prove the authenticity of a message to
any outsider. Finally, we need consistency, meaning that if any group
member accepts a signature, then all of them do.
To achieve these properties it is natural to consider Multi-Designated
Verifier Signatures (MDVS). However, existing literature defines and
builds only limited notions of MDVS, where (a) the off-the-record prop-
erty (source hiding) only holds when all verifiers could conceivably col-
lude, and (b) the consistency property is not considered.
The contributions of this paper are two-fold: stronger definitions for
MDVS, and new constructions meeting those definitions. We strengthen
source-hiding to support any subset of corrupt verifiers, and give the
first formal definition of consistency. We build three new MDVS: one
from generic standard primitives (PRF, key agreement, NIZK), one with
concrete efficiency and one from functional encryption.

1 Introduction

Encrypted and authenticated messaging has experienced widespread adoption
in recent years, due to the attractive combination of properties offered by, for
example, the Signal protocol [Mar13]. With so many conversations happening
over the internet, there is a growing need for protocols offering security to con-
versation participants. Encryption can be used to guarantee privacy of message
contents, but authenticating messages while maintaining the properties of an

? This research was supported by: the Concordium Blockhain Research Center, Aarhus
University, Denmark; the Carlsberg Foundation under the Semper Ardens Research
Project CF18-112 (BCM); the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agree-
ment No 669255 (MPCPRO) and No 803096 (SPEC); the Danish Independent Re-
search Council under Grant-ID DFF-6108-00169 (FoCC); the NSF MACS project.

in person conversation is more involved. There are two properties of in person
conversations related to authenticity that we wish to emulate in the context of
digital conversations:

– Unforgeability, meaning that the receiver should be convinced that the mes-
sage actually came from the sender in question, and

– Off-the-record or deniability, meaning that the receiver cannot later prove to
a third party that the message came from the sender.

Off-the-record (OTR) messaging offers a solution to this in the two-party
case, enabling authentication of messages such that participants can convinc-
ingly deny having made certain statements, or even having taken part in the
conversation at all [BGB04]. The protocol deals with encrypted messages ac-
companied by a message authentication code (MAC) constructed with a shared
key. MACs work well in two-party conversations, because for parties S(ender)
and R(eciever) with a shared secret key, a MAC attests ‘this message comes from
S or R’. MACs provide unforgeability, since a party R receiving a message au-
thenticated with such a MAC knows that if this MAC verifies, the message came
from S. MACs provide off-the-record (deniable) communication as R cannot con-
vince a third party that a message and MAC originally came from S (since R
could have produced it just as easily). More generally, tools that provide unforge-
able, off-the-record two-party communication are known as Designated Verifier
Signatures (DVSs, proposed by [JSI96] and [Cha96]).

When there are multiple recipients, for example in group messaging, the situ-
ation becomes more complicated. The need for unforgeability can be generalized
as the need for all parties in the group to agree on a conversation transcript.
There are two components to this: unforgeability, as before, and consistency,
which requires that if one recipient can verify a signature, they all can. Without
the consistency property, a signer could send a message that only one recipient
could verify; that recipient would then be unable to convince the rest to ac-
cept that message, and would disagree with them about the transcript of the
conversation.

DVSs have been extended to the multiparty setting under the name of Multi-
Designated Verifier Signatures (MDVSs) (we give a number of references in Fig-
ure 1). One might hope that these schemes would work for off-the record group
messaging; however, it turns out that existing MDVS definitions and schemes
do not have the properties one would naturally ask for. In the following section,
we give a motivating example illustrating which properties we should actually
ask from an MDVS scheme, and we explain how existing schemes fall short of
providing them.

1.1 A Motivating Example for MDVS

Imagine a government official Sophia who wants to blow the whistle on some cor-
rupt government activity; e.g., perhaps her colleague, Aaron, accepted a bribe.4

4 Ring signatures [RST01] can be similarly used in this context; Sophia could use a ring
signature scheme to sign in such a way that anyone could verify that the signature

2

She wants to send a message describing this corruption to Robert, Rachel and
Rebekah, who are all Reporters at national newspapers.

Naturally, Sophia wants the Reporters to be convinced that she is the true
sender of the message. Otherwise, they would have no reason to believe — or
print — the story.

Goal 1 (Unforgeability) It is vital that each of the Reporters be able to au-
thenticate that the message came from Sophia.

In order to achieve unforgeability, Sophia produces a signature σ using an
MDVS scheme, and attaches it to her message. (In such a scheme, each sender has
a private signing key and each recipient has a private verification key.) However,
blowing the whistle and reporting on Aaron’s corrupt activity could put Sophia
in danger. If any of Robert, Rachel or Rebekah could use σ to demonstrate to
Aaron that Sophia blew the whistle on him, she could lose her position, or face
other grave consequences.

Goal 2 (Source-Hiding / Off-the-Record) It is vital that the Reporters be
unable to prove to an outsider (Aaron) that the message came from Sophia.

One way to guarantee that the Reporters cannot link Sophia to the message
is to require that the Reporters can simulate a signature σ themselves. Then, if
they try to implicate Sophia by showing σ to Aaron, he would have no reason
to believe them; as far as he is concerned, the Reporters could have produced σ
to try to frame Sophia.

All previous constructions only support off-the-record in the limited sense
that all of the Reporters must collaborate in order to produce a simulated sig-
nature.5 However, this is insufficient. Suppose, for instance, that Aaron knows
Rachel was undercover — and thus unreachable — for the entire time between
the bribery taking place, and Robert and Rebekah bringing σ to Aaron. Then he
would conclude that Rachel could not have collaborated in simulating σ, and so
it must be genuine. Even with the off-the-record definition used in prior works,
it is still possible that some subset of the Reporters would be able to impli-
cate Sophia in the eyes of Aaron. We therefore need a stronger off-the-record
defintion.

came from someone in her organization, but not that it came from her, specifically.
However, MDVS has an advantage here, since it is possible that Aaron only doubts
the trustworthiness of one of his colleagues; if Sophia uses a ring signature, that
signature would convince Aaron that she was the signer, but if she uses an MDVS
signature, Aaron wouldn’t know whether she was the true signer, or whether the
signature was just a simulation (even if Sophia was his only suspect).

In the context of a group off-the-record conversation, MDVS signatures are clearly
the right tool, as members of the group should learn the identity of the sender of
each message.

5 One previous work [Tia12] allows a single verifier to simulate a signature. However,
in this construction a simulated signature created by a malicious verifier will look
like a real signature for all other designated verifers, violating unforgeability.

3

Contribution 1 (Off-the-record For Any Subset) We give a stronger def-
inition of the off-the-record property, where any subset of Reporters must be able
to simulate a signature. A simulation looks like a genuine signature to an out-
sider, even given the verification keys of the subset that produced it (as well as
a number of other signatures that are guaranteed to be genuine).

Under our stronger definition, no set of Reporters is able to use σ to provably
tie Sophia to the message even if Aaron has side information about communi-
cation amongst the Reporters as well as guaranteed-to-be-genuine signatures.

Remark 1. (The Tension Between Off-The-Record and Unforgeability) Note that, if
Rachel did not participate in Robert and Rebekah’s signature simulation (e.g. if she was
undercover at the time), she will later be able to distinguish the simulation from a real
signature produced by Sophia. Otherwise, Robert and Rebekah would have succeeded
in producing a forgery that fools Rachel.

This means that under a sufficiently strong model of attack, we cannot have un-
forgeability and off-the-record at the same time. Namely, suppose Aaron first gets a
signature σ from Robert and Rebekah, while preventing them from communicating
with Rachel. Then he coerces Rachel into giving him her secret verification key. By
the unforgeability property, he can use this key to tell if σ is a simulation. (Note that
Aaron will be able to tell whether Rachel gives him her true verification key, since he
may have other signatures from Sophia that he knows are genuine that he can use to
test it. So, she has no choice but to hand over her real verification key.)

Given this observation, we choose to explore the model where the secret keys of all
coerced/corrupted verifiers (but not honest ones) can be used to simulate a signature,
as this is the strongest model of attack in which both unforgeability and off-the-record
can be achieved. As we shall see, even in this model, achieving both properties requires
highly non-trivial constructions and implies a lower bound on the size of signatures.

Finally, let us fast forward to the moment when Robert, Rachel and Rebekah
receive Sophia’s message. They want to print this high-profile story as soon
as possible, but of course they want to be sure they won’t make themselves
look foolish by printing the story if their colleagues — the other well-respected
Reporters listed as recipients — don’t believe it actually came from Sophia. The
concern here is that Sophia could be dishonest and her actual goal could be
to discredit the Reporters. Hence we need another property — consistency, or
designated verifier transferability.

Goal 3 (Consistency / Designated Verifier Transferability) It is desir-
able that, even if Sophia is malicious, if one of the Reporters can authenticate
that the message came from Sophia, all of them can.

Contribution 2 We provide the first formal definition of consistency.

Now that we have covered the basic storyline, let us consider a few possible
plot-twists. First, what if Aaron is tapping the wires connecting the government
building to the outside world? Then he will see Sophia’s message — together
with her signature σ — as she sends it to the Reporters. In such a situation, we
would want the signature σ not to give Sophia— or the Reporters— away.

4

Goal 4 (Privacy of Identities) It is desirable that σ shouldn’t reveal Sophia’s
or the Reporters’ identities 6. When only the signer’s — Sophia’s — identity is
hidden, this property is called privacy of signer identity (PSI).

Next, what if, at the time at which Sophia has the opportunity to send
out her message, she cannot look up Rebekah’s public key securely — perhaps
because Rebekah has not yet set up an account on the secure messaging system
Sophia uses? Then, it would be ideal for Sophia to need nothing other than
Rebekah’s identity (and some global public parameters) in order to include her
as a designated verifier. Rebekah would then be able to get the appropriate
key from a trusted authority such as the International Press Institute7 (having
proved that she is, in fact, Rebekah), and would be able to use that key to verify
Sophia’s signature.

Goal 5 (Verifier-Identity-Based (VIB) Signing) It is desirable that Sophia
should only need the Reporters’ identities, not their public keys, in order to pro-
duce her designated verifier signature.

Contribution 3 We give the first three constructions that achieve unforgeabil-
ity, off-the-record with any-subset simulation, and consistency. One of them ad-
ditionally achieves privacy of identities and verifier-identity-based signing.

The third construction achieves privacy of verifiers identities (PVI) even if
the secret signing key is leaked (but not the random coins used to produce
the signature). This is a stronger flavor of the PVI notion with more possible
applications, such as Post-Compromise Anonymity guarantees.

This last construction, may, at first glance, seem strictly better; however,
the price it pays is two-fold: It uses functional encryption (which requires strong
computational assumptions), and it requires an involved trusted setup in which
a master secret is used to derive verifier keys. Note that such a trusted setup is
clearly necessary in order to achieve verifier-identity-based signing.

In contrast, our first two constructions can be instantiated either in the ran-
dom oracle model, or with a common reference string — in both cases avoiding
the need for a master secret key. They use only standard primitives such as
pseudorandom functions, pseudorandom generators, key agreement and NIZKs.
The first construction uses these primitives in a black-box way; the second con-
struction uses specific instances of these primitives, for concrete efficiency.

6 Note that privacy of identities is related to — but very different from — off-the-
record. Neither of these definitions is strictly stronger than the other. Privacy of
identities is weaker in that it assumes that none of the Reporters help in identify-
ing Sophia as the sender, while off-the-record makes no such assumptions. However,
privacy of identities is stronger in that it requires that σ alone reveal nothing about
Sophia’s identity to anyone other than the Reporters; off-the-record allows such leak-
age, as long as it is not provable.

7 This trusted authority can also be distributed; perhaps the master secret is secret-
shared across several different institutions, who must collaborate in order to produce
a secret verification key.

5

In the following subsections, we give an overview of previous work and then
discuss our results in more detail. The main challenge of building stronger MDVS
schemes is combining the three core properties we strive for: unforgeability, off-
the-record for any subset, and consistency. This is highly non-trivial.

1.2 Flavors of Multi-Designated Verifier Signatures

There are many ways to define MDVS and its properties. Figure 1 summarizes
the approaches taken by prior work, compared to our own.

Verification There are several different flavors of verification. In some MDVS
schemes, even a single designated verifier cannot link a signature to the signer;
the designated verifiers need to work together in order to verify a signature. Thus,
we have two notions of verification: local verification and cooperative verification
(where all designated verifiers need to cooperate in order to verify the signature).

Remark 2. In the schemes with cooperative verification, we need not additionally
require consistency, since we have it implicitly: verifiers will agree on the verification
decision they reach together. The notion of consistency is non-interactive, and more
challenging to achieve in schemes with local verification.

Simulation Recall that the off-the-record property states that an outsider can-
not determine whether a given signature was created by the signer or simulated
by the designated verifiers. We have three flavors of such simulateability: one
designated verifier (out of n) can by himself simulate a signature (as done by
[Tia12])8, all designated verifiers need to collude in order to simulate a signature
(all other works on MDVS), or any subset of the designated verifiers can simu-
late a signature (this paper). Of course, the simulated signature should remain
indistinguishable from a real one even in the presence of the secrets held by the
simulating parties.

Unforgeability There is also the standard security property of signature schemes,
which is unforgeability ; no one (except the signer) should be able to construct
a signature that any verifier will accept as a valid signature from that signer.
There are two flavors of unforgeability. The first is weak unforgeability, where
designated verifiers can forge, but others cannot. The second is strong unforge-
ability, where a designated verifier can distinguish between real signatures and
signatures simulated by other verifiers; that is, even other designated verifiers
cannot fool a verifier into accepting a simulated signature.9 (In the weak un-
forgeability game, the adversary does not have access to any designated verifier

8 If only one designated verifier can simulate a signature, it must be distinguishable
from a real signature by other verifiers (by the strong unforgeability property). Two
colluding verifiers would be able to prove to an outsider that a given signature is not
a simulation by showing that it verifiers for both of them. So, any-subset simulation
gives strictly stronger off-the-record guarantees than one-verifier simulation.

9 Note that when all designated verifiers are needed for the simulation, then a des-
ignated verifier will be able to distinguish a simulation from a real signature based
on whether he participated in the simulation of the signature. However, if this is
the only way he can distinguish, then the signature scheme has weak unforgeability,
since the simulated signature is still a valid forgery.

6

keys; in the strong unforgeability game, the adversary is allowed access to some
such keys.) Since strong unforgeability is the notion of unforgeability we require,
in the rest of this paper, unforgeability refers to strong unforgeability (unless
otherwise specified).

Schemes PSI Verification Simulation Unforgeability Signature
Size

Consistency

[JSI96,Ver06] No All All Weak O(1) N/A
[Cho08] No Local All Weak O(1) Yes

[LSMP07] No Local All Weak O(1) No
[ZAYS12] No Local All Strong O(1) Yes

Our work,
from standard

primitives
No Local Any subset

C
Strong O(|D|) Yes

[NSM05,Cho06] Yes All All Weak O(|D|) N/A
[MW08,SHCL08,Cha11] Yes All All Weak O(1) N/A

[LV04] Yes Local All Weak O(1) Yes
[SKS06] Yes Local All Weak O(|D|) No

[Ver06,LV07] Yes Local All Weak O(|D|) Yes
[ZAYS12] Yes Local All Strong O(|D|) Yes
[Tia12] Yes Local One Weak O(1) Yes

Any subset
Our work, from FE Yes Local C of size

up to t
Strong O(t) Yes

Fig. 1. MDVS constructions and their properties. Let D be the set of designated veri-
fiers, and t ≤ |D| be an upper bound on the set of colluding designated verifiers C ⊆ D.

1.3 Our Contributions

We propose formal definitions of all the relevant security properties of MDVS
in the strongest flavor, including the definition of off-the-record with any-subset
simulation. We also give the first formal (game based) definition of consistency,
where a corrupt signer can collude with some of the designated verifiers to create
an inconsistent signature.

We then give several different constructions of MDVS that achieve these
properties, including local verification, off-the-record with any-subset simulation,
and strong unforgeability. Our constructions, and the tools they require, are
mapped out in Figure 2. In particular, these are the first constructions that
combine any-subset simulation and with strong unforgeability, as described in
Figure 1. We get these results at the expense of signature sizes that are larger
than in some of the earlier constructions. However, this is unavoidable, as shown
in Theorem 1 below.

Theorem 1. Any MDVS with any-subset simulation and strong unforgeability
must have signature size Ω(|D|).

Remark 3. It may seem from the table that our functional encryption based scheme
contradicts the theorem, but this is not the case. It can be instantiated such that
signatures can be simulated by collusions up to a certain maximal size t, and then
signatures will be of size Ω(|C|). However, if we want any subset to be able to simulate,
the signature size is Ω(|D|), in accordance with the theorem.

7

Our FE
MDVS

Our Standard
Tools MDVS

Verifiable
FE

Signatures

Our
PSDVS1

Our
PSDVS2

Our
AVPKE

Non-Interactive
Key Exchange

PRFPRG

Commitments

Paillier DDH

Σ-Protocols

NIZK-PoK

FE

AVPKE

NIZK

PSDVS

DVS

PSI

VIB Signing

MDVS

Fig. 2. Our MDVS Constructions and Building Blocks

Proof. Imagine that we give all the verifiers’ keys to a sender and a receiver;
the sender can now encode an arbitrary subset C ⊆ D by letting C construct a
simulated signature σ on some default message, and sending it to the receiver.
The receiver can infer C from σ: by strong unforgeability, all verifiers’ keys outside
C will reject σ, whereas keys in C will accept, since we require the simulation to
look convincing even given the secret keys in C. It follows that σ must consist of
enough bits to determine C, which is log2(2|D|) = |D|. ut

Why First Ideas Fail

Using MACs Black-box usage of a standard MAC scheme cannot help us com-
bine unforgeability with consistency.10 There are two straightforward ways to use
a standard MAC scheme in this context: sharing a MAC key among the entire
group, and sharing MAC keys pairwise. Sharing a single key does not provide
the desired notion of unforgeability, since any member of the group can forge
messages from any other member. Sharing keys pairwise does not provide the
desired notion of consistency. If recipients R1 and R2 are the chosen recipients
of a message, and R1 receives a message he accepts as coming from S, he cannot
be sure that R2 would also accept that message: If S is corrupt, he could include
a valid MAC for R1 and an invalid MAC for R2.

10 Note that our construction from standard primitives does make use of MAC schemes;
however, it does so in a complex, non-black-box way.

8

Using Proofs of Knowledge A standard technique for making designated verifier
signatures for a single verifier is to start from an interactive protocol that proves
knowledge of either the signer’s or the verifier’s secret key, and turn this into a
signature scheme using the Fiat-Shamir paradigm. It may seem natural to try
to build an MDVS from this. However, it turns out to be challenging to achieve
strong unforgeability using this technique; a signature cannot consist of a proof
of knowledge of the signer’s or one of the verifiers’ secret keys, since any verifier
will be able to convince other verifiers to accept a signature that did not come
from the signer. For the same reason, a signature cannot consist of a proof of
knowledge of the signer’s secret key or some subset of the verifiers’ secret keys.

MDVS from Standard Primitives Our first class of MDVS constructions
is based only on standard primitives. With one exception specified below, all
of these constructions can be instantiated in the random oracle model with no
trusted setup. (Without random oracles, we would need to set up a common
reference string.)

The idea is that the signer creates a DVS signature for each verifier individ-
ually, and then proves the consistency of those signatures.11. To support such
proofs, we define a new primitive called Publicly Simulatable Designated Veri-
fier Signatures (PSDVS) in Section 3.1, which is a single-verifier DVS equipped
with extra properties. We then show, in Section 3.2, that a PSDVS together
with a non-interactive zero knowledge proof of knowledge (NIZK-PoK) imply an
MDVS for any number of signers and verifiers. Finally, we give some construc-
tions of PSDVS. Our first PSDVS construction (in Section 3.3) uses only generic
tools, namely psedudorandom functions, non-interactive key exchange (such as
Diffie-Hellman), and non-interactive zero-knowledge proofs of knowledge. Our
second PSDVS construction (in Section 3.4) aims at better concrete efficiency.
It is based on DDH, strong RSA and Paillier encryption, is secure in the ran-
dom oracle model, and requires a constant number of exponentiations for all
operations. This scheme requires the trusted generation of an RSA modulus so
that the factorization remains unknown. We also sketch a variant that requires
no trusted setup, is secure in the random oracle model, and only requires (a
variant of) the DDH assumption. However, this version requires double discrete
log proofs, and therefore requires a non-constant number of exponentiations.

In order to support one of our constructions in which the signer sends an en-
crypted MAC key, we introduce a new tool we call Authenticated and Verifiable
Encryption (AVPKE), which may be of independent interest. This is a variant of
Paillier encryption with built-in authentication, and as such it is related to the
known primitive “signcryption” [Zhe97]. However, our AVPKE scheme has the
additional property that we can give efficient zero-knowledge proofs involving
the encrypted message, using the algebraic properties of Paillier encryption.

To sign in our PSDVS schemes, the signer and verifiers first must establish
a shared symmetric key k. In some cases they can do this non-interactively,

11 Simply proving that all of the signatures verify would violate the off-the-record
property; instead, the signer proves that either all of the signatures are real, or they
are all simulated, as described in Section 3

9

using their secret and public keys, while in other cases the signer must send an
encrypted key alongside the signature. After this, the signer sends a MAC on
the message under key k; this MAC is based on a pseudorandom function.

MDVS from Functional Encryption. Our last construction is based on
Verifiable Functional Encryption (VFE). It has the advantages of additionally
meeting the privacy of identities and verifier-identity-based signing properties.
Additionally, it can be set up to have smaller signatures if we are willing to
make a stronger assumption on the number of colluding verifiers. Namely, the
signature size is O(t), where t is the size of the largest number of colluding
verifiers we want to tolerate. The downsides are that, with current state of the
art, VFE requires non-standard computational assumptions and a trusted setup.

Remark 4. If we are going to put a bound on the size of a collusion, it may seem
we can use bounded collusion FE, which can be realized from standard assumptions
[GVW12,AV19], and then there is no need for our other constructions from standard
primitives. However, this is not true. Bounded collusion FE requires us to fix the bound
on collusion size at key generation time; a bound that may later turn out to be too
small. Additionally, ciphertext sizes in bounded collusion FE depend on the bound;
thus, choosing a large bound to make sure we can handle the application implies a
cost in efficiency. The MDVS signature sizes would depend on some upper bound on
number of corrupt parties in the system, as opposed to on the number of recipients for
the signature in question, which may be orders of magnitude smaller.

In a nutshell, the idea behind the functional encryption based construction
is to do the proof of knowledge of one of the relevant secret keys “inside the
ciphertext”. In a little more detail, the idea is to encrypt a list of t standard
signatures, where t is the maximal size of collusion we want to protect against
(that is, t ≥ |C|), and the MDVS signature will simply be this ciphertext. To sign,
the signer will generate their own standard signature σS on the message, and
then encrypt a list a signatures consisting of σS followed by t− 1 dummy values.
To verify a signature, a verifier R gets a functional decryption key that will look
at the list of signatures inside the ciphertext and output accept or reject. It will
accept if the list contains a valid signature from S or a valid signature from R.
Now, if a corrupt set of verifiers C wants to simulate a signature, they will all
sign the message and encrypt the list of these signatures. By security of the
encryption scheme, this looks like a real signature, and will indeed verify under
all verification keys belonging to verifiers in C. However, no honest verifier will
accept it as a signature from S, so we have strong unforgeability.

2 Multi-Designated Verifier Signatures

MDVS Algorithms A multi-designated verifier signature (MDVS) scheme is
defined by the following probabilistic polynomial-time algorithms:

Setup(1κ)→ (pp,msk): On input the security parameter κ ∈ N, outputs public
parameters pp and the master secret key msk.

SignKeyGen(pp,msk)→ (spk, ssk): On input the public parameter pp and the
master secret key msk, outputs the public key spk and secret key ssk for a
signer.

10

VerKeyGen(pp,msk)→ (vpk, vsk): On input the public parameter pp and the
master secret key msk, outputs the public key vpk and secret key vsk for a
verifier.

Sign(pp, sski, {vpkj}j∈D,m)→ σ: On input the public parameters pp, a secret
signing key sski, the public keys of the designated verifiers {vpkj}j∈D, and
a message m, outputs a signature σ.

Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ)→ d: On input the public parameters pp,
a public verification key spki, a secret key vskj of a verifier such that j ∈ D,
the public keys of the designated verifiers {vpkj}j∈D, a message m, and a
signature σ, outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m)→ σ′: On input public parameters pp,
a public verification key spki, the public keys of the designated verifiers
{vpkj}j∈D, the secret keys of the corrupt designated verifiers {vskj}j∈C ,
and a message m, outputs a simulated signature σ′.

The different algorithms take many different inputs, which are not all needed for
all of our constructions. Thus, to simplify the notation we exclude these inputs
in later sections whenever they are not needed.

MDVS Properties Let σ be a signature from signer i on message m and
designated for verifiers D. We ask for the following (informal) properties:

Correctness: All verifiers j ∈ D are able to verify an honestly generated sig-
nature σ.

Consistency: If there exists one verifier j ∈ D that accepts the signature σ,
then all other designated verifiers (i.e. all j′ ∈ D \ {j}) also accept σ.

Unforgeability: An adversary without knowledge of the secret key sski for
signer i cannot create a signature σ′ that is accepted by any designated
verifier as a signature from signer i.

Off-The-Record: Given a signature σ, any malicious subset of the designated
verifiers C ⊆ D cannot convince any outsider that σ is a signature from signer
i (i.e. the malicious set could have simulated the signature themselves).

(Optionally) Privacy of Identities: Any outsider (without colluding with
any designated verifiers) cannot determine the identity of the signer and/or
the identities of the designated verifiers.

(Optionally) Verifier-Identity-Based Signing: The signer should be able
to produce a signature for a set of designated verifiers without requiring
any information about them apart from their identities. In other words, we
should have vpkj = j for a verifier with identity j.

Throughout our formal definitions we use the following six oracles:

Signer Key Generation Oracle: OSK(i)
1. If a signer key generation query has previously been performed for i,

look up and return the previously generated key.
2. Otherwise, output and store (spki, sski)← SignKeyGen(pp,msk).

Verifier Key Generation Oracle: OV K(j)

11

1. If a verifier key generation query has previously been performed for j,
look up and return the previously generated key.

2. Otherwise, output and store (vpkj , vskj)← VerKeyGen(pp,msk).
Public Signer Key Generation Oracle: OSPK(i)

1. (spki, sski)← OSK(i).
2. Output spki.

Public Verifier Key Generation Oracle: OV PK(j)
1. (vpkj , vskj)← OV K(j).
2. Output vpkj .

Signing Oracle: OS(i,D,m)
1. (spki, sski)← OSK(i).
2. For all j ∈ D: vpkj ← OV PK(j).
3. Output σ ← Sign(pp, sski, {vpkj}j∈D,m).

Verification Oracle: OV (i, j,D,m, σ)
1. spki ← OSPK(i).
2. (vpkj , vskj)← OV K(j).
3. Output d← Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ).

Definition 1 (Correctness). Let κ ∈ N be the security parameter, and let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme.
MDVS is correct if for all signer identities i, messages m, verifier identity sets
D and j ∈ D, it holds that

Pr
[
Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ) 6= 1

]
= 0,

where the inputs to Verify are generated as follows:
– (pp,msk)← Setup(1κ);
– (spki, sski)← SignKeyGen(pp,msk, i);
– (vpkj , vskj)← VerKeyGen(pp,msk, j) for j ∈ D;
– σ ← Sign(pp, sski, {vpkj}j∈D,m).

In Definition 1, we require that all the designated verifiers can verify the
signature, without considering what happens for parties that are not designated
verifiers (i.e. parties who should not be able to verify the signature). Parties that
are not designated verifiers are accounted for by the off-the-record property.

Definition 2 (Consistency). Let κ ∈ N be the security parameter, and let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme.
Consider the following game between a challenger and an adversary A:

GameconMDVS,A(κ)

1. (pp,msk)← Setup(1κ)

2. (m∗, i∗,D∗, σ∗)← AOSK,OVK,OSPK,OV PK,OV (pp)

We say that A wins the game if there exist verifiers j0, j1 ∈ D∗ such that:

Verify(pp, spki∗ , vskj0 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 0,

Verify(pp, spki∗ , vskj1 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 1,

12

where all keys are the honestly generated outputs of the key generation oracles,
and OV K is never queried on j0 or j1.
MDVS is consistent if, for all PPT adversaries A,

advconMDVS,A(κ) = Pr
[
A wins GameconMDVS,A(κ)

]
≤ negl(κ).

Definition 2 states that even a valid signer (i.e. someone who knows a secret
signing key) cannot create an inconsistent signature that will be accepted by
some designated verifiers and rejected by others. By the correctness property, an
honestly generated signature is accepted by all designated verifiers. By design,
corrupt designated verifiers can construct an inconsistent signature, since some
verifiers will accept it (i.e. those verifiers that created it), while the remaining
honest designated verifiers will reject the simulated signature. Thus, we need to
ask for j 6= j0, j1 for all queries j to the oracle OV K .

Definition 3 (Existential Unforgeability). Let κ ∈ N be the security pa-
rameter, and let MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be
an MDVS scheme. Consider the following game between a challenger and an
adversary A:

GameeufMDVS,A(κ)

1. (pp,msk)← Setup(1κ)

2. (m∗, i∗,D∗, σ∗)← AOSK,OVK,OSPK,OV PK,OS (pp)

We say that A wins the game if we have all of the following:

– for all queries i to oracle OSK , it holds that i∗ 6= i;
– for all queries (i,D,m) to oracle OS that result in signature σ, it holds that

(i∗,D∗,m∗) 6= (i,D,m);
– there exists a verifier j′ ∈ D∗ such that for all queries j to oracle OV K , it

holds that j′ 6= j and
Verify(pp, spki∗ , vskj′ , {vpkj′′}j′′∈D∗ ,m∗, σ∗) = 1,

where all keys are honestly generated outputs of the key generation oracles.
MDVS is existentially unforgeable if, for all PPT adversaries A,

adveufMDVS,A(κ) = Pr
[
A wins GameeufMDVS,A(κ)

]
≤ negl(κ).

Definition 3 states that an adversary cannot create a signature that any
honest verifier will accept as coming from a signer whose secret signing key
the adversary does not know. The adversary will always get the public keys
of the involved parties, i.e. signer with identity i∗ and the designated verifiers
D, through the key generation oracles. He is also allowed to obtain the secret
keys of every party except the signer i∗ and at least one designated verifier.
The reason why we need at least one honest verifier is that corrupt verifiers
can create a simulated signature that will look like a real signature with respect
to their own verifier secret keys. However, this simulation will be rejected by
any honest designated verifier, i.e. the simulation will be a valid forgery for the
corrupt verifiers, but not for the honest verifiers.

13

Definition 4 (Off-The-Record). Let κ ∈ N be the security parameter, let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme,
and let t be an upper bound on the number of verifiers an adversary A can cor-
rupt. Consider the following game between a challenger and a stateful adversary
A, where all keys are honestly generated outputs of the key generation oracles:

GameotrMDVS,Sim,A(κ)

1. (pp,msk)← Setup(1κ)

2. (i∗,D∗,m∗, C∗)← AOSK,OVK,OSPK,OV PK,OS,OV (pp)
3. b← {0, 1}
4. σ0 ← Sign(pp, sski∗ , {vpkj}j∈D∗ ,m

∗)

5. σ1 ← Sim(pp, spki∗ , {vpkj}j∈D∗ , {vskj}j∈C∗ ,m
∗)

6. b′ ← AOSK,OVK,OSPK,OV PK,OS,OV (σb)

We say that A wins the game if b′ = b, and all of the following hold:

– |C∗| ≤ t and C∗ ⊆ D∗;
– for all queries i to oracle OSK it holds that i∗ 6= i;
– for all queries j to oracle OV K it holds that j /∈ D∗\C∗;
– for all queries (i, j,D,m, σ) to OV it holds that σb 6= σ.

We say that an MDVS scheme is t-off-the-record if, for all PPT adversaries A,

advotrMDVS,Sim,A(κ) = Pr
[
A wins GameotrMDVS,Sim,A(κ)

]
− 1

2
≤ negl(κ).

If a scheme supports t = |D|, we say that it is off-the-record.

Definition 4 states that any adversary that corrupts a subset (of size t) of
the designated verifiers C∗ cannot determine whether the received signature was
created by real signer i∗ or simulated by the corrupt verifiers C∗. The adversary
is not allowed to see the secret keys for the designated verifiers that are in D∗\C∗.
If the adversary was allowed to get secret keys of additional parties in D∗ (which
are not in C∗), then he would be able to distinguish trivially, since any honest
designated verifiers (i.e. any j ∈ D∗\C∗) can distinguish simulated signatures
from real signatures (from the unforgeability property).

Definition 5 (Privacy of Identities). Let κ ∈ N be the security parameter,
and let MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS
scheme. Consider the following game between a challenger and a stateful adver-
sary A, where all keys are the honestly generated outputs of the key generation
oracles:

GamepriMDVS,A(κ)

1. (pp,msk)← Setup(1κ)

2. (m∗, i0, i1,D0,D1)← AOSK,OVK,OSPK,OV PK,OS,OV (pp)
3. b← {0, 1}
4. σ∗ ← Sign(pp, sskib , {vpkj}j∈Db ,m

∗)

5. b′ ← AOSK,OVK,OSPK,OV PK,OS,OV (σ∗)

We say that A wins the game if b = b′, and all of the following hold:

14

– |D0| = |D1|;
– for all queries i to OSK , it holds that i /∈ {i0, i1};
– for all gueries j to OV K , it holds that j /∈ D0 ∪ D1;
– for all queries (i, j,D,m, σ) to OV , it holds that σ∗ 6= σ.

MDVS has privacy of identities if, for all PPT adversaries A,

advpriMDVS,A(κ) = Pr
[
A wins GamepriMDVS,A(κ)

]
− 1

2
≤ negl(κ).

We say that MDVS has additional properties as follows:
– privacy of the signer’s identity (PSI) if we make the restriction that D0 = D1;
– privacy of the designated verifiers’ identities (PVI) if we make the restriction

that i0 = i1.

Definition 5 states that an adversary cannot distinguish between signatures
from two different signers (PSI) if he does not know the secret key of any of
the signers or designated verifiers (as designated verifiers are allowed to identify
the signer). Furthermore, it should not help him to see other signatures that he
knows are from the signers in question.

In addition, if we vary the verifier sets (D0 6= D1), then the MDVS scheme has
privacy of designated verifier’s identities (PVI), which means that any outsider
without knowledge of any secret keys cannot distinguish between signatures
meant for different verifiers.

Definition 6 (Verifier-Identity-Based Signing). We say that an MDVS
scheme has verifier-identity-based signing if for honestly generated verifier keys
(vskj , vpkj) for verifier with identity j, we have vpkj = j.

Note that, in order to achieve verifier-identity-based signing, verifier key gen-
eration must require a master secret key msk. Otherwise, any outsider would be
able to generate a verification key for verifier j, and use it to verify signatures
meant only for that verifier.

Relation to Previous Definitions Our definition of MDVS is consistent with pre-
vious work in this area, but with some differences. Our MDVS syntax closely
follows the one introduced by [LV04], but we allow for a master secret key in the
case where the keys are generated by a trusted party (like in our construction
based on functional encryption). Our security definitions are adapted from those
in [LV04,ZAYS12] to capture the flexibility introduced by allowing any subset
of designated verifiers to simulate a signature, thus providing better deniabil-
ity properties. Finally, we formalize consistency as an additional and desirable
requirement.

3 Standard Primitive-Based MDVS Constructions

In this section we show how to create an MDVS scheme that uses only standard
primitives, such as key exchange, commitments, pseudorandom functions and
generators, and non-interactive zero knowledge proofs.

On a high level, one way to build an MDVS is for the signer to use a sepa-
rate DVS with each verifier; the MDVS signature would then consist of a vector

15

of individual DVS signatures. This gives us almost everything we need — the
remaining issue is consistency. Each verifier can verify one of the DVS signa-
tures, but is not convinced that all of the other verifiers will come to the same
conclusion.

A solution to this consistency issue is to include as part of the MDVS signa-
ture a zero knowledge proof that all of the DVS signatures verify. However, this
introduces a new issue with off-the-record. Now, a colluding set of verifiers will
not be able to simulate a signature unless all of the verifiers collude. In order to
produce such a convincing zero knowledge proof as part of the signature, they
would need to forge signatures for the other verifiers in the underlying DVS
scheme, which they should not be able to do.

So, instead of using a zero knowledge proof of knowledge that all of the DVS
signatures verify, we use a proof that either all of the DVS signatures verify, or
they are all simulated. Then, a corrupt set of verifiers can simulate all of the
underlying DVS signatures — with the caveat that the signatures they simulate
for themselves should be convincing simulations even in the presence of their
secret keys — and, instead of proving that all of the signatures verify, they
prove that all of the signatures are simulations.

3.1 New Primitive: Provably Simulatable Designated-Verifier
Signatures (PSDVS)

Designated Verifier Signatures (DVS) have a simulation algorithm Sim which
is used to satisfy the off-the-record property. Given the signer’s public key, the
verifier’s secret key and a message m, Sim should return a signature which is
indistinguishable from a real signature. A Provably Simulatable DVS (PSDVS)
has some additional properties:

Definition 7. A PSDVS must satisfy the standard notions of correctness and
existential unforgeability. Additionally, it should satisfy PubSigSim indstinguisha-
bility (Definition 8), PubSigSim correctness (Definition 9), PubSigSim sound-
ness (Definition 10), VerSigSim indstinguishability (Definition 11), VerSigSim
correctness (Definition 12), VerSigSim soundness (Definition 13), provable sign-
ing correctness (Definition 14), and provable signing soundness (Definition 15).

Provable Public Simulation As in PSI (Definition 5), anyone should be able
to produce a signature that is indistinguishable from a real signature. Addi-
tionally, the party simulating the signature should be able to produce a proof
that this is not a real signature. This proof will be incorporated into the MDVS
proof of consistency; the colluding verifiers, when producing a simulation, need
to prove that all underlying PSDVS signatures are real, or that they are all fake.

In other words, we require two additional algorithms, as follows:

1. PubSigSim(pp, spk, vpk,m)→ (σ, π)
2. PubSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

The colluding verifiers will produce a public simulation in the underlying
PSDVS for verifiers outside their coalition, and use PubSigSim to prove that this
simulation is not a real signature. π will not be explicitly included in the proof

16

of “the underlying PSDVS signatures are all real or all fake,” of course, as it
would give away the fact that all underlying signatures are fake, as opposed to
all being real; rather, it will be wrapped in a larger zero knowledge proof.

Definition 8 (PubSigSim Indistinguishability). We say that the PSDVS
has PubSigSim Indistinguishability if PubSigSim produces a signature σ that is
indistinguishable from real. More formally, an adversary should not be able to
win the following game with probability non-negligibly more than half:

GamePubSigSim-Ind
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)

4. m∗ ← AOS,OV (spk, vpk)
5. b← {0, 1}
6. σ0 ← Sign(pp, ssk, vpk,m∗)
7. (σ1, π)← PubSigSim(pp, spk, vpk,m∗)

8. b′ ← AOS,OV (pp, spk, vpk,m∗, σb)

We say that A wins the PubSigSim-Ind game if b = b′ and for all queries
(m,σ) to OV , it holds that (m,σ) 6= (m∗, σb).

Definition 9 (PubSigSim Correctness). We say that the PSDVS has Pub-
SigSim Correctness if for all pp ← Setup(1κ); (spk, ssk) ← SignKeyGen(pp);
(vpk, vsk)← VerKeyGen(pp); m ∈ {0, 1}∗; (σ, π)← PubSigSim(pp, spk, vpk,m);

Pr[PubSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 10 (PubSigSim Soundness). We say that the PSDVS has Pub-
SigSim Soundness if it is hard to construct a signature σ which is accepted by the
verifier algorithm and at the same time can be proven to be a simulated signa-
ture. More formally, an adversary should not be able to win the following game
with non-negligible probability:

GamePubSigSim-Sound
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)
4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

We say that A wins the PubSigSim-Sound game if Verify(pp, vsk,m∗, σ∗) = 1
and PubSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.

Provable Verifier Simulation As in off-the-record (Definition 4), a verifier
should be able to produce a signature that is indistinguishable from a real signa-
ture, even given its secret key. Additionally, the verifier should be able to produce
a proof that the signature is not a real signature (that is, that the verifier, and
not the signer, produced it). This proof will be incorporated into the MDVS
proof of consistency.

In other words, we require two additional algorithms, as follows:

17

1. VerSigSim(pp, spk, vpk, vsk,m)→ (σ, π)
2. VerSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

The colluding verifiers will produce a verifier simulation in the underlying
PSDVS for verifiers inside their coalition, and use VerSigSim to prove that this
simulation is not a real signature.

Definition 11 (VerSigSim Indistinguishability). We say that the PSDVS
has VerSigSim Indistinguishability if VerSigSim produces a signature σ that is
indistinguishable from real. More formally, an adversary should not be able to
win the following game with probability non-negligibly more than half:

GameV erSigSim-Ind
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)

4. m∗ ← AOS (pp, spk, vpk, vsk)
5. b←$ {0, 1}
6. σ0 ← Sign(pp, ssk, vpk,m∗)
7. (σ1, π)← VerSigSim(pp, spk, vsk,m∗)

8. b′ ← AOS (pp, spk, vpk, vsk,m∗, σb)

We say that A wins the VerSigSim-Ind game if b = b′.

Definition 12 (VerSigSim Correctness). We say that the PSDVS has Ver-
SigSim Correctness if for all pp ← Setup(1κ), (spk, ssk) ← SignKeyGen(pp),
(vpk, vsk)← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π)← VerSigSim(pp, spk, vpk, vsk,m),

Pr[VerSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 13 (VerSigSim Soundness). We say that the PSDVS has Ver-
SigSim Soundness if the signer is not able to produce σ and π that pass the val-
idation check VerSigVal, i.e. π is a proof that σ was not produced by the signer.
More formally, an adversary should not be able to win the following game with
non-negligible probability:

GameV erSigSim-Sound
PVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)
4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

A wins the VerSigSim-Sound game if VerSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.

Provable Signing Lastly, we require a provable variant of signing, so that the
signer is able to produce a proof that a signature is real. In other words, we
require the signing algorithm Sign(pp, spk, ssk, vpk,m) → (σ, π) to output π as
well. We also require one additional validation algorithm, as follows:

RealSigVal(pp, spk, vpk,m, σ, π)→ d ∈ {0, 1}

18

Definition 14 (Provable Signing Correctness). We say that the PSDVS
has Provable Signing Correctness if ∀pp← Setup(1κ), (spk, ssk)← SignKeyGen
(pp), (vpk, vsk) ← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π) ← Sign(pp, spk, ssk,
vpk,m),

Pr[RealSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 15 (Provable Signing Soundness). We say that the PSDVS has
Provable Signing Soundness if the proof of correctness π produced by Sign does
not verify unless σ verifies. More formally, an adversary should not be able to
win the following game with non-negligible probability:

GameSign-SoundPVDVS,A (κ)

1. pp← Setup(1κ)
2. (spk, ssk)← SignKeyGen(pp)
3. (vpk, vsk)← VerKeyGen(pp)
4. (m∗, σ∗, π∗)← A(pp, ssk, spk, vpk)

We say that A wins the Sign-Sound game if RealSigVal(pp, spk, vpk,m∗, σ∗, π∗) =
1 and Verify(pp, spk, vsk,m∗, σ∗) = 0.

Note that none of these proofs π are parts of the signature. If included in
the signature, such proofs would allow an adversary to distinguish a simulation
from a real signature.

3.2 Standard Primitive-Based MDVS Construction

Given a PSDVS, as defined in Section 3.1, we can build an MDVS. The transfor-
mation is straightforward: the signer uses the PSDVS to sign a message for each
verifier, and proves consistency using a non-interactive zero knowledge proof of
knowledge. The proof of consistency will claim that either all of the PSDVS
signatures verify, or all of them are simulated.

Construction 1 Let PSDVS = (Setup, SignKeyGen, VerKeyGen, Sign,Verify,
RealSigVal,PubSigSim,PubSigVal,VerSigSim,VerSigVal) be a provably simulatable
designated verifier signature scheme, and NIZK-PoK = (Setup,Prove,Verify) be
a non-interactive zero knowledge proof of knowledge system and Rcons a relation
that we will define later in the protocol.

Setup(1κ):
1. crs← NIZK-PoK.Setup(1κ,Rcons).
2. PSDVS.pp← PSDVS.Setup(1κ).

Output (crs,PSDVS.pp) as the public parameters pp.
SignKeyGen(pp): (spki, sski)← PSDVS.SignKeyGen(PSDVS.pp).

Output (spki, sski) as signer i’s public/secret key pair.
VerKeyGen(pp): (vpkj , vskj)← PSDVS.VerKeyGen(PSDVS.pp).

Output (vpkj , vskj) as verifier j’s public/secret key pair.
Sign(pp, sski, {vpkj}j∈D,m):

1. For every verifier j ∈ D, compute a signature and proof of signature
validity as (σj , πj)← PSDVS.Sign(PSDVS.pp, sski, vpkj ,m).

19

2. Create a proof π of consistency, i.e a proof of knowledge of {πj}j∈D such
that either all signatures are real (as demonstrated by {πj}j∈D), or all
signatures are fake (as could be demonstrated by the proofs produced
by PSDVS.PubSigSim or PSDVS.VerSigSim).

3. σ = ({σj}j∈D, π).
Output σ as the signature.

Verify(pp, spki, vskj ,m, σ = ({σj}j∈D, π)):
1. Let dπ ← NIZK-PoK.Verify(crs, u = (PSDVS.pp, spki, {vpkj}j∈D, {σj}j∈D), π).
2. Let d← PSDVS.Verify(PSDVS.pp, spki, vskj ,m, σj) ∧ dπ.

Output d as the verification decision.
Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m):

1. For j ∈ D ∩ C: (σj , πj)← VerSigSim(PSDVS.pp, spki, vpkj , vskj ,m).
2. For j ∈ D\C: (σj , πj)← PubSigSim(PSDVS.pp, spki, vpkj ,m).
3. Use these signatures and proofs to produce the NIZK π for consistency.
4. σ = ({σj}j∈D, π).

Output σ as the signature.

Theorem 2. Assume PSDVS is a secure provably simulatable designated verifier
signature scheme and NIZK-PoK is a secure non-interactive zero knowledge proof
of knowledge system. Then Construction 1 is a correct and secure MDVS scheme
(without privacy of identities (Definition 5)).

Due to space limitations, the proof of Theorem 2 is deferred to the full version.

3.3 Standard Primitive-Based PSDVS Construction

We can build a PSDVS from a special message authentication code (MAC)
which looks uniformly random without knowledge of the secret MAC key —
such a MAC can be built from any pseudorandom function. A signature on a
message m will be a MAC on (m, t), where t is some random tag. Proving that
the signature is real simply involves proving knowledge of a MAC key that is
consistent with the MAC and some global public commitment to the MAC key.
A public proof that the signature is simulated and does not verify would involve
proving that the MAC was pseudorandomly generated. A verifier’s proof that
the signature is simulated would involve proving that the tag was generated in a
way that only the verifier could use (e.g. from a PRF to which only the verifier
knows the key).

Of course, this is not ideal, since MACs require knowledge of a shared key; in
order to use MACs, we would need to set up shared keys between every possible
pair of signer and verifier. However, we can get around this using non-interactive
key exchange (NIKE). Each signer and verifier publishes a public key, and any
pair of them can agree on a shared secret key by simply using their own secret
key and the other’s public key. The construction is as follows:

Construction 2 Let:

– COMM = (Setup,Commit,Open) be a commitment scheme,
– PRF = (KeyGen,Compute) be a length-preserving pseudorandom function,
– PRG be a length-doubling pseudorandom generator,

20

– NIZK = (Setup,Prove,Verify) be a non-interactive zero knowledge proof sys-
tem, and

– NIKE = (KeyGen,KeyExtract,KeyMatch) be a non-interactive key exchange
protocol. KeyMatch is an additional algorithm that checks if a public key and
a secret key match. KeyMatch is not typically defined as a part of a NIKE
scheme; however, such an algorithm always exists.

Setup(1κ):
1. crsi ← NIZK.Setup(1κ,Ri), i = 1, 2, 3.
2. ck ← COMM.Setup(1κ).

Output ({crs1, crs2, crs3}, ck) as the public parameters pp.
SignKeyGen(pp):

1. (NIKE.pkS,NIKE.skS)← NIKE.KeyGen(1κ).
2. ssk = NIKE.skS.
3. spk = NIKE.pkS.

Output ssk as the signer’s secret key and spk as the signer’s public key.
VerKeyGen(pp):

1. (NIKE.pkR,NIKE.skR)← NIKE.KeyGen(1κ).
2. kR ← PRF.KeyGen(1κ). (Informally, this key will be used by the verifier

to simulate signatures using VerSigSim.)
3. Choose randomness (i.e. decommitment value) rR at random.
4. cR = COMM.Commit(ck, kR; rR). (Informally, this commitment will be

used by the verifier to support its proofs of fake-ness.)
5. vsk = (NIKE.skR, kR, rR).
6. vpk = (NIKE.pkR, cR).

Output vsk as the verifier’s secret key and vpk as the verifier’s public key.
Sign(pp, ssk = NIKE.skS, vpk = (NIKE.pkR, cR),m):

The signer computes a shared key with the designated verifier and proceeds
to sign the message m:
1. kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkR). (Informally, this key

will be used as a MAC key.)
2. Choose t at random.
3. σ = (σ1, σ2)← (t,PRFkshared((m, t))).
4. π ← NIZK.Prove(crs1, u, w) where u = ((σ1, σ2),NIKE.pkS,NIKE.pkR,m)

and w = (NIKE.skS, kshared))
We define the relation R1 indexed by NIKE public parameters and PRF
for a statement u and witness w:

R1 = {(u = (σ1, σ2,NIKE.pkS,NIKE.pkR,m), w = (NIKE.skS, kshared)) :

KeyMatch(NIKE.pkS,NIKE.skS) = 1

∧ kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkR)

∧ σ2 = PRFkshared((m,σ1))}
Output σ as the signature, and π as the proof of real-ness.

Verify(pp, spk = NIKE.pkS, vsk = (NIKE.skR, kR, rR),m, σ = (σ1, σ2)):
1. kshared = NIKE.KeyExtract(NIKE.skR,NIKE.pkS). (Informally, this key

will be used as a MAC key.)
2. If PRFkshared((m,σ1)) = σ2, set d = 1. Otherwise, set d = 0.

21

Output d as the verification decision.
RealSigVal(pp, spk, vpk,m, σ, π):

Output d← NIZK.Verify(crs1, σ, π) as the validation decision.
PubSigSim(pp,m):

1. Choose a PRG seed seed.
2. Choose σ1 and σ2 pseudorandomly by running PRG on seed.
3. σ ← (σ1, σ2).
4. Let π ← NIZK.Prove(crs2, u = σ,w = seed).

We define the relation R̃2 indexed by the PRG for a statement u = (σ =
(σ1, σ2)) and the witnesses w = seed:

R̃2 = {(u = σ;w = seed) : u = PRG(w)} (1)
Output σ as the simulated signature, and π as the proof of fake-ness.

PubSigVal(pp, spk, vpk,m, σ = (σ1, σ2), π):
Output d← NIZK.Verify(crs2, σ, π) as the validation decision.

VerSigSim(pp, spk = NIKE.pkS, vpk = (NIKE.pkR, cR), vsk = (NIKE.skR, kR, rR),m):
The verifier can fake a signature using its PRF key kR.
1. kshared = NIKE.KeyExtract(NIKE.skR,NIKE.pkS).
2. Choose r at random.
3. t← PRFkR(r).
4. σ ← (t,PRFkshared((m, t))).
5. Let π ← NIZK.Prove(crs3, u = (cR, σ1), w = (kR, rR, r)).

We define the relation R̃3 indexed by the c public parameters and PRF
for statements u and witnesses w:

R̃3={(u = (cR, σ1), w = (kR, rR, r)): kR = COMM.Open(cR, rR)∧ σ1 = PRFkR(r)}
Output σ as the simulated signature and π as the proof of fake-ness.

VerSigVal(pp, spk, vpk,m, σ, π):
Output d← NIZK.Verify(crs3, (cR, σ1), π) as the validation decision.

Theorem 3. If the schemes COMM,PRF,PRG,NIZK,NIKE are secure, then Con-
struction 2 is a correct and secure PSDVS scheme as per Definition 7.

Due to space limitations, the proof of Theorem 3 is deferred to the full version.

3.4 DDH and Paillier-Based PSDVS Construction

The goal of this section is to construct a PSDVS scheme based on DDH and
the security of Paillier encryption. The idea in the PSDVS construction is that
the authenticator for a message m will be H(m, t)k in a group G where t is a
nonce, k is a key known to both parties and H is a hash function modeled as
a random oracle. The construction requires that certain properties of the key
can be proved in zero-knowledge, and we can do this efficiently using standard
Σ-protocols because the key is in the exponent. However, naive use of this idea
would mean that a sender needs to store a key for every verifier he talks to, and
the set-up must generate correlated secret keys for the parties. To get around
this, we will instead let the sender choose k on the fly and send it to the verifier,
encrypted using a new variant of Paillier encryption. In the following subsection
we describe and prove this new encryption scheme, and then we specify the
actual PSDVS construction. Paillier-style encryption comes in handy since its
algebraic properties are useful in making our zero knowledge proofs efficient.

22

Paillier-based Authenticated and Verifiable Encryption An authenti-
cated and verifiable encryption scheme (AVPKE) involves a sender S and a
receiver R. Such a scheme comes with the following polynomial time algorithms:

Setup(1κ)→ pp: A probabilistic algorithm for setup which outputs public pa-
rameters.

KeyGenS(pp)→ (skS, pkS): A probabilistic sender key generation algorithm.
KeyGenR(pp)→ (skR, pkR): A probabilistic receiver key generation algorithm.
Encpp,skS,pkR(k)→ c: A probabilistic encryption algorithm for message k.
Decpp,skR,pkS(c)→ {k,⊥}: A decryption algorithm that outputs either reject or

a message.

We require, of course, that Decpp,skR,pkS(Encpp,skS,pkR(k)) = k for all messages k.
Intuitively, the idea is that given only the receiver public key pkR and his

own secret key skS, the sender S can encrypt a message k in such a way that on
receiving the ciphertext, R can check that k comes from S, no third party knows
k and finally, the encryption is verifiable in that it allows S to efficiently prove
in zero-knowledge that k satisfies certain properties.

Our AVPKE scheme adds an authentication mechanism on top of Paillier
encryption:

Construction 3 Let:

– Ggen be a Group Generator, a probabilistic polynomial time algorithm which
on input 1κ outputs the description of a cyclic group G and a generator g,
such that the order of G is a random κ-bit RSA modulus n, which is the
product of so-called safe primes. (That is, n = pq where p = 2p′ + 1, q =
2q′ + 1 and p′, q′ are also primes.) Finally, we need the algorithm to output
an element ĝ ∈ Z∗n of order p′q′.

– NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero
knowledge proof system. In this section, we will use Σ-protocols made non-
interactive using the Fiat-Shamir heuristic, so in this case Setup is empty
and there is no common reference string.

Ggen can be constructed using standard techniques. For instance, first gener-
ate n using standard techniques, then repeatedly choose a small random number
r until P = 2rn + 1 is a prime. Let g′ be a generator of Z∗P . Then let G be the
subgroup of Z∗P generated by g = g′2r mod P .12 Finally, to construct the element
ĝ, let u∈R Zn and set ĝ = u2 mod n. Indeed, this is a random square, and since
the subgroup of squares modulo n has only large prime factors in its order (p′

and q′), a random element is a generator with overwhelming probability13.

Setup(1κ): Run Ggen to generate a modulus n and ĝ ∈ Z∗n as explained above.
Output pp = (n, ĝ).

12 The group G will be used in the construction of the PSDVS scheme.
13 This set-up need to keep the factorization of n secret. Hence, to avoid relying on

a trusted party, the parties can use an interactive protocol to generate n securely,
there are several quite efficient examples in the literature.

23

KeyGenS(pp): Pick skS∈R Zn, and set pkS = ĝskS . Output (skS, pkS).
KeyGenR(pp): Pick α1, α2∈R Zn, set skR = (α1, α2), and set pkR = (β1, β2) =

(ĝα1 , ĝα2).

The public key values are statistically indistinguishable from random elements
in the group generated by ĝ since n is a sufficiently good “approximation” to the
order p′q′ of ĝ.

Encpp,skS,pkR(k; r, b1, b2):
1. The randomness should have been picked as follows: r∈R Zn and b1, b2∈R {0, 1}.
2. Set c1 = (−1)b1 ĝr mod n.
3. Set c2 = (n+ 1)k((−1)b2βskS1 βr2 mod n)n mod n2.
4. Let πvalid be a non-interactive zero-knowledge proof of knowledge wherein

given public data (n, ĝ, (c1, c2)), the prover shows knowledge of a witness
w = (k, r, b1, v) such that c1 = (−1)b1 ĝr and c2 = (n + 1)kvn mod n2.
An honest prover can use v = (−1)b2βskS1 βr2 mod n. The factor (−1)b1 is
only in the ciphertext for technical reasons: it allows πvalid to be efficient.

Output c = (c1, c2, πvalid).
Decpp,skR=(α1,α2),pkS

(c = (c1, c2, πvalid)):
1. Check that c1, c2 have Jacobi symbol 1 modulo n, and check πvalid. Output

reject if either check fails.
2. Let u = pkα1

S cα2
1 mod n and check that (c2u

−n)n mod n2 = ±1. Z∗n2

contains a unique subgroup of order n, generated by n + 1. So here we
are verifying that – up to a sign difference – c2u

−n mod n2 is in the
subgroup generated by n+ 1. If the check fails, output reject.

3. Otherwise, compute k such that (n+ 1)k = ±c2u−n mod n2.14

An AVPKE scheme should allow anyone to make “fake” ciphertexts that
look indistinguishable from real encryptions, given only the system parameters.
Furthermore, the receiver R should be able to use his own secret key skR and
the public key pkS of the sender to make ciphertexts with exactly the same
distribution as real ones. This is indeed true for our scheme:

Fake Encryption: Let r∈R Zn, b, b′∈R {0, 1} and v ∈ Z∗n be a random square.

Then, Encpp,fake(k; r, b, b′, v) = ((−1)bĝr mod n, (n+1)k((−1)b
′
v)n mod n2), πvalid

where πvalid is constructed following the NIZK prover algorithm.

R’s Equivalent Encryption: Encpp,skR,pkS(k; r, b1, b2) =

((−1)b1 ĝr mod n, (n+ 1)k(−1)b2(pkα1

S ĝrα2 mod n)n mod n2), πvalid
where r∈R Zn, b1, b2∈R {0, 1} and πvalid is constructed following the NIZK prover
algorithm.
In the following, we will sometimes suppress the randomness from the notation
and just write, e.g., Encpp,skS,pkR(k).

By simple inspection of the scheme it can be seen that:

14 k can be computed using the standard “discrete log” algorithm from Paillier decryp-
tion.

24

Lemma 1. For all k, Decpp,skR,pkS(Encpp,skS,pkR(k)) = k. Furthermore, encryp-
tion by S and by R returns the same ciphertexts: for all messages k and random-
ness r, b1, b2, we have Encpp,skS,pkR(k; r, b1, b2) = Encpp,skR,pkS(k; r, b1, b2).

Lemma 2. If DDH in 〈ĝ〉 is hard, then (k,Encpp,skS,pkR(k; r, b1, b2)) is computa-
tionally indistinguishable from (k,Encpp,fake(k; r′, b, b′, v)) for any fixed message
k and randomness r, b1, b2, r

′, b, b′, v, as long as the discrete log of β2 to the base
ĝ is unknown.

Definition 16. Consider the following experiment for an AVPKE scheme and
a probabilistic polynomial time adversary A: Run the set-up and key generation
and run AOE ,OD (pp, pkR, pkS). Here, OE takes a message k as input and returns
Encpp,skS,pkR(k), while OD takes a ciphertext and returns the result of decrypting
it under pkS, skR (which will be either reject or a message). A wins if it makes
OD accept a ciphertext that was not obtained from OE. The scheme is authentic
if any PPT A wins with negligible probability.

Lemma 3. If the DDH problem in 〈ĝ〉 is hard, the AVPKE scheme defined above
is authentic.
Due to space limitations, the proof of Lemma 3 is deferred to the full version.

We proceed to show that the AVPKE scheme hides the message encrypted
even if adversary knows the secret key of the sender, and even if a decryption
oracle is given. This is essentially standard CCA security.

Definition 17. Consider the following experiment for an AVPKE scheme and
a probabilistic polynomial time adversary A: Run the set-up and key generation
and run AOE (pp, pkR, skS). Here, OE takes two messages k0, k1 as input, selects
a bit η at random and returns c∗ = Encpp,skS,pkR(kη). OD takes a ciphertext and
returns the result of decrypting it under pkS, skR (which will be either reject or
a message). A may submit anything other than c∗ to OD, and must output a bit
η′ at the end. It wins if η′ = η. The scheme is private if any PPT A wins with
negligible advantage over 1

2 .

In the following we will use the assumption underlying the Paillier encryp-
tion scheme, sometimes known as the composite degree residuosity assumption
(CDRA): a random element x in Z∗n2 where x mod n has Jacobi symbol 1 is
computationally indistinguishable from yn mod n2 where y ∈ Z∗n is random of
Jacobi symbol 115.)

Lemma 4. Assume that DDH in 〈ĝ〉 is hard and that CDRA holds. Then the
AVPKE scheme satisfies Definition 17.

Due to space limitations, the proof of Lemma 4 is deferred to the full version.
We say that an AVPKE scheme is secure if it is authentic, private, supports

equivalent encryption by R and indistinguishable fake encryption.

15 The original CDRA assumption does not have the restriction to Jacobi symbol 1,
but since the Jacobi symbol is easy to compute without the factors of n, the two
versions are equivalent.

25

Construction 4 (PSDVS Scheme) Let:

– Ggen be a Group Generator, a probabilistic polynomial time algorithm which
on input 1κ outputs G, g, n, ĝ exactly as in the previous AVPKE construction.

– H be a hash function which we model as a random oracle. We assume it
maps onto the group G.

– NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero
knowledge proof system. In this section, we will use Σ-protocols made non-
interactive using the Fiat-Shamir heuristic, so in this case Setup is empty
and there is no common reference string.

Setup(1κ): Let (G, g, ĝ, n) ← Ggen(1κ) and let h∈R G. Set pp = (G, g, ĝ, n, h).
Return pp as the public parameters.

SignKeyGen(pp): Run key generation for the AVPKE scheme as defined above
to get keys ssk = skS, spk = pkS for the signer S. Output ssk as the signer’s
secret key and spk as the signer’s public key.

VerKeyGen(pp):

1. Run key generation for the AVPKE scheme as defined above to get keys
skR, pkR for the verifier R. (These keys will be used to sign messages and
verify signatures.)

2. Choose kR∈R Zn. (This key will be used by the verifier to simulate sig-
natures using VerSigSim.)

3. Choose rR∈R Zn and let cR = gkRhrR . (This commitment will be used by
the verifier to support its proofs of fake-ness.)

4. vsk = (skR, kR, rR), vpk = (pkR, cR).

Output vsk as the verifier’s secret key and vpk as the verifier’s public key.
Sign(pp, ssk = skS, pkR,m):

1. Choose t∈R G, r∈R Zn, b1, b2∈R {0, 1}, s∈R Z∗n, ks∈R Zn.
2. Let σ ← (t,H(m, t)ks ,Encpp,skS,pkR(ks; r, b1, b2)).
3. π ← NIZK.Prove(u = (σ = (σ1, σ2, σ3), pkV , pkS ,m), w = (skS , ks, r, b1, b2))

be a zero knowledge proof of knowledge of witness w such that:

σ2 = H(m,σ1)ks ∧ σ3 = Encpp,skS,pkR(ks; r, b1, b2)

Output σ as the signature, and π as the proof of real-ness.
Verify(pp, spk = pkS, vsk = (skR, kR, rR),m, σ = (σ1, σ2, σ3)):

1. Decrypt σ3 as ks = Decpp,skR,pkS(σ3). If this fails, set d = 0 and abort.
2. If σ2 = H(m,σ1)ks , set d = 1. Otherwise, set d = 0.

Output d as the verification decision.
PubSigSim(pp,m):

1. Choose k, k′∈R Zn, such that k 6= k′.
2. Choose t∈R G, r∈R Zn, b, b′∈R {0, 1}, v∈R Zn, such that v has Jacobi

symbol 1.
3. σ ← (t,H(m, t)k,Encpp,fake(k

′; r, b, b′, v)).
4. Let π ← NIZK.Prove(u = σ = (σ1, σ2, σ3), w = (k, k′)) be a zero-

knowledge proof of knowledge such that:

σ2 = H(m,σ1)k ∧ σ3 = Encpp,fake(k
′; ·, ·, ·, ·) ∧ k 6= k′.

26

Output σ as the simulated signature, and π as the proof of fake-ness. The
notation Encpp,fake(k

′; ·, ·, ·, ·) means that the proof only has to establish that
the plaintext inside the encryption is some value k′ different from k.

VerSigSim(pp, spk = pkS, vpk = (pkR, cR), vsk = (skR, kR, rR),m):
1. Choose rt∈R Zn, t = gkRhrt , ks∈R Zn, b1, b2∈R {0, 1} and v∈R Z∗n of

Jacobi symbol 1.
2. σ ← (t,H(m, t)ks ,Encpp,skR,pkS(ks; r, b1, b2)).
3. Let π ← NIZK.Prove(u = ((σ1, σ2, σ3), cR,m), w = (kR, rR, rt)) be a zero-

knowledge proof of knowledge of witness w = (kR, rR, rt) such that:

σ1 = gkRhrt ∧ cR = gkRhrR .

Output σ as the simulated signature and π as the proof of fake-ness.

Theorem 4. If the AVPKE scheme is secure, and under the DDH assumption,
Construction 4 is a secure PSDVS scheme.

Due to space limitations, the proof of Theorem 4 is deferred to the full version.
In the full version we describe a PSDVS scheme based on prime order groups.
It gets around the need to generate a Paillier modulus securely, at the cost of
requiring double discrete log proofs.

4 FE-based Construction

In this section, we present an MDVS scheme based on functional encryption. One
disadvantage of this scheme is that it requires a trusted setup; secret verification
keys must be derived from a master secret key. However, the accompanying
advantage is that this scheme has verifier-identity-based signing; verifiers’ public
keys consist simply of their identity, allowing any signer to encrypt to any set of
verifiers without needing to retrieve their keys from some PKI first.

At a high level, we are first given a digital signature scheme (DS) and a
functional encryption scheme (FE). The keys of the signer with identity i are
a secret DS signing key ski and corresponding public DS verification key vki.
An MDVS signature c is a FE ciphertext obtained by encrypting the plaintext
that consists of the message m, the signer’s DS verification key vki, a set of
designated verifier identities D, and the signer’s DS signature σ on the message
using the secret DS signing key ski. That is, c = FE.Enc(pp, (m, vki,D, σ)).
Verifier j’s public key is simply their identity j (that is, vpkj = j). Their secret
key consists of a DS key pair (skj , vkj), and an FE secret key dkj . dkj is the
secret key for a function that checks whether j is among the specified designated
verifiers, and then checks whether the DS signature σ inside the ciphertext c
is either a valid signature under the signer’s verification key vki, or under the
verifier’s verification key vkj . However, this basic scheme does not give us the
off-the-record property; we therefore tweak it slightly, as we describe below.

From One to Many DS Signatures In order to ensure that any subset of
valid verifiers cannot convince an outsider of the origin of the MDVS signature,
we need to replace the one DS signature in the ciphertext with a set of DS
signatures. The reason is that, if only one signature is contained in the ciphertext,
any designated verifier can prove to an outsider that “it was either me or the

27

signer that constructed the signature”. If more than one verifier proves this about
the same MDVS signature, then the signature must have come from the signer.

To prevent this kind of “intersection attack”, we allow the ciphertext to
contain a set Σ of DS signatures, and change the corresponding FE secret keys
to check if there exists a DS signature in the set that either verifies under the
signer’s or the verifier’s DS verification key. Now, an outsider will no longer
be convinced that it was the signer who constructed the MDVS signature, since
each of the colluding verifiers could have constructed a DS signature that verifies
under their own verification key, and then encrypted this set together with the
public verification key of the signer.

Achieving Consistency In order to achieve consistency, we need security
against malicious encryption in the underlying FE scheme. We need to ensure
that any (possibly maliciously generated) ciphertext is consistent with one spe-
cific message across decryption with different functions. Otherwise, a malicious
MDVS signer may be able to construct a ciphertext (i.e. a signature) that will be
valid for one designated verifier but not valid for another, thereby breaking the
consistency property. Security against a malicious encryption is a property of ver-
ifiable functional encryption (VFE), which was introduced by Badrinarayanan
et. al [BGJS16]. However, it turns out that we do not need the full power of
VFE, which also includes precautions against a malicious setup. Thus, we define
a weaker notion of VFE, and substitute the standard FE scheme with this new
scheme allowing us to achieve the MDVS consistency property.

4.1 Ciphertext Verifiable Functional Encryption

The formal definition of Functional Encryption and Ciphertext Verifiable FE and
the security notions can be found in the full version. Informally, the ciphertext
verifiability property states that for all ciphertexts c, it must hold that if c passes
the verification algorithm, then there exists a unique plaintext x asociated with
c, meaning that for all functions f ∈ F the decryption of c will yield f(x).

4.2 The MDVS Construction

Construction 5 Let SIGN = (KeyGen,Sign,Verify) be a standard digital sig-
nature scheme and let VFE = (Setup,KeyGen,Enc,Dec,Verify) be a functional
encryption scheme secure with ciphertext verifiability. Then we define a MDVS
scheme FEMDVS = (Setup,KeyGen,Sign,Verify,Sim) as follows:

Setup(1κ): (ppFE,mskFE)← VFE.Setup(1κ).
Output public parameter pp = ppFE and master secret key msk = mskFE.

SignKeyGen(i): (ski, vki)← SIGN.KeyGen(1κ).
Output the signer’s secret key sski = ski and public key spki = vki.

16

VerKeyGen(msk, j):
1. vpkj = j,
2. (skj , vkj)← SIGN.KeyGen(1κ),

16 We assume that the mapping i → (sski, spki) is unique in the system. This can be
achieved without loss of generality by pseudorandomly generating the randomness
required in the key generation process from the identity i and the master secret key.

28

3. dkj ← VFE.KeyGen(mskFE, fj), where fj is defined as follows.

Function fj
Input: m, vki, {vpkj′}j′∈D, Σ;
Const: vpkj , vkj ;
1. If vpkj /∈ {vpkj′}j′∈D: output ⊥;
2. If ∃σ ∈ Σ : SIGN.Verify(vki,m, σ) = 1 OR SIGN.Verify(vkj ,m, σ) = 1:

output (m, vki, {vpkj′}j′∈D);
3. Else: output ⊥

Output the verifiers secret key vskj = (skj , dkj) and public key vpkj = j.17

Sign(pp, sski, {vpkj}j∈D,m):
1. σ ← SIGN.Sign(ski,m).
2. Output c = VFE.Enc(ppFE, (m, vki, {vpkj}j∈D, {σ,⊥, · · · ,⊥})).

Verify(pp, spki, vskj , {vpkj}j∈D,m, c):
1. Check whether VFE.Verify(ppFE, c) = 1. If not, output 0.
2. Compute (m′, vk′i, {vpkj}j∈D′)\⊥ ← VFE.Dec(dkj , c). If the output is
⊥, output 0.

3. Check m′ = m, vk′i = vki (with spki = vki), and D′ = D. If all hold,
output 1. Otherwise output 0.

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m):
1. For each j ∈ C, vskj = (skj , dkj).
2. Compute σj ← SIGN.Sign(skj ,m

∗).
3. Let Σ = {σj}j∈C∗ , add default values to get the required size.
4. Output c = VFE.Enc(ppFE, (m∗, spki, {vpkj}j∈D, Σ)).

Theorem 5. Assume that VFE is an IND-CPA secure functional encryption
scheme with ciphertext verifiability, and SIGN is an existential unforgeable digital
signature scheme. Then Construction 5 is a correct and secure MDVS scheme
with privacy of identities and verifier-identity-based signing.

Due to space limitations, the proof of Theorem 5 is deferred to the full version.

References

AV19. Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion
secure functional encryption. pages 174–198, 2019.

BGB04. Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communica-
tion, or, why not to use PGP. In Proceedings of the 2004 ACM workshop on
Privacy in the electronic society, pages 77–84. ACM, 2004.

BGJS16. Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Ver-
ifiable functional encryption. pages 557–587, 2016.

Cha96. David Chaum. Private signature and proof systems, 1996. US Patent
5,493,614.

Cha11. Ting Yi Chang. An id-based multi-signer universal designated multi-verifier
signature scheme. Inf. Comput., 209(7):1007–1015, 2011.

17 We assume that the mapping j → (vskj , vpkj) is unique in the system. This can be
achieved wlog by pseudorandomly generating the randomness required in the key
generation process from the identity j and the master secret key.

29

Cho06. Sherman S. M. Chow. Identity-based strong multi-designated verifiers signa-
tures. In Public Key Infrastructure, Third European PKI Workshop: Theory
and Practice, EuroPKI 2006, Turin, Italy, June 19-20, 2006, Proceedings,
pages 257–259, 2006.

Cho08. Sherman S. M. Chow. Multi-designated verifiers signatures revisited. I. J.
Network Security, 7(3):348–357, 2008.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. pages 162–
179, 2012.

JSI96. Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. pages 143–154, 1996.

LSMP07. Yong Li, Willy Susilo, Yi Mu, and Dingyi Pei. Designated verifier signature:
Definition, framework and new constructions. In Ubiquitous Intelligence and
Computing, 4th International Conference, UIC 2007, Hong Kong, China,
July 11-13, 2007, Proceedings, pages 1191–1200, 2007.

LV04. Fabien Laguillaumie and Damien Vergnaud. Multi-designated verifiers sig-
natures. pages 495–507, 2004.

LV07. Fabien Laguillaumie and Damien Vergnaud. Multi-designated verifiers signa-
tures: anonymity without encryption. Inf. Process. Lett., 102(2-3):127–132,
2007.

Mar13. Moxie Marlinspike. Advanced cryptographic ratcheting. 2013.
MW08. Yang Ming and Yumin Wang. Universal designated multi verifier signa-

ture scheme without random oracles. Wuhan University Journal of Natural
Sciences, 13(6):685–691, Dec 2008.

NSM05. Ching Yu Ng, Willy Susilo, and Yi Mu. Universal designated multi verifier
signature schemes. In 11th International Conference on Parallel and Dis-
tributed Systems, ICPADS 2005, Fuduoka, Japan, July 20-22, 2005, pages
305–309, 2005.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
pages 552–565, 2001.

SHCL08. Seung-Hyun Seo, Jung Yeon Hwang, Kyu Young Choi, and Dong Hoon Lee.
Identity-based universal designated multi-verifiers signature schemes. Com-
puter Standards & Interfaces, 30(5):288–295, 2008.

SKS06. G. Shailaja, K. Phani Kumar, and Ashutosh Saxena. Universal designated
multi verifier signature without random oracles. In 9th International Con-
ference in Information Technology, ICIT 2006, Bhubaneswar, Orissa, India,
18-21 December 2006, pages 168–171, 2006.

Tia12. Haibo Tian. A new strong multiple designated verifiers signature. IJGUC,
3(1):1–11, 2012.

Ver06. Damien Vergnaud. New extensions of pairing-based signatures into universal
designated verifier signatures. pages 58–69, 2006.

ZAYS12. Yunmei Zhang, Man Ho Au, Guomin Yang, and Willy Susilo. (strong) multi-
designated verifiers signatures secure against rogue key attack. In Network
and System Security - 6th International Conference, NSS 2012, Wuyishan,
Fujian, China, November 21-23, 2012. Proceedings, pages 334–347, 2012.

Zhe97. Yuliang Zheng. Digital signcryption or how to achieve cost(signature &
encryption) � cost(signature) + cost(encryption). pages 165–179, 1997.

30

	Stronger Security and Constructions of Multi-Designated Verifier Signatures

