
Accumulators in (and Beyond) Generic Groups:
Non-Trivial Batch Verification

Requires Interaction

Gili Schul-Ganz? and Gil Segev?

School of Computer Science and Engineering,
Hebrew University of Jerusalem, Jerusalem 91904, Israel.

{gili.schul,segev}@cs.huji.ac.il

Abstract. We prove a tight lower bound on the number of group opera-
tions required for batch verification by any generic-group accumulator
that stores a less-than-trivial amount of information. Specifically, we
show that Ω(t · (λ/ log λ)) group operations are required for the batch
verification of any subset of t ≥ 1 elements, where λ ∈ N is the security
parameter, thus ruling out non-trivial batch verification in the standard
non-interactive manner.

Our lower bound applies already to the most basic form of accumulators
(i.e., static accumulators that support membership proofs), and holds
both for known-order (and even multilinear) groups and for unknown-
order groups, where it matches the asymptotic performance of the known
bilinear and RSA accumulators, respectively. In addition, it complements
the techniques underlying the generic-group accumulators of Boneh, Bünz
and Fisch (CRYPTO ’19) and Thakur (ePrint ’19) by justifying their
application of the Fiat-Shamir heuristic for transforming their interactive
batch-verification protocols into non-interactive procedures.

Moreover, motivated by a fundamental challenge introduced by Aggarwal
and Maurer (EUROCRYPT ’09), we propose an extension of the generic-
group model that enables us to capture a bounded amount of arbitrary
non-generic information (e.g., least-significant bits or Jacobi symbols that
are hard to compute generically but are easy to compute non-generically).
We prove our lower bound within this extended model, which may be of
independent interest for strengthening the implications of impossibility
results in idealized models.

1 Introduction

Cryptographic accumulators [BdM93], in their most basic form, generate a short
commitment to a given set of elements while supporting non-interactive and
publicly-verifiable membership proofs. Such accumulators, as well as ones that
offer more advanced features (e.g., non-membership proofs, aggregation of proofs

? Supported by the European Union’s Horizon 2020 Framework Program (H2020) via
an ERC Grant (Grant No. 714253).



2 G. Schul-Ganz and G. Segev

and batch verification) have been studied extensively given their wide applicability
to authenticating remotely-stored data (see, for example, [BdM93, ST99, BLL00,
CL02, NN98, CJ10, ABC+12, Sla12, MGG+13, CF14, GGM14, PS14] and the
references therein).

Known constructions of accumulators can be roughly classified into two
categories: hash-based constructions and group-based constructions. Hash-based
constructions generate a short commitment via a Merkle tree [Mer87, CHK+08],
where the length of the resulting commitment is independent of the number of
accumulated elements, and the length of membership proofs and the verification
time are both logarithmic in the number of accumulated elements. Group-based
constructions, exploiting the structure provided by their underlying groups,
lead to accumulators in which the length of the commitment, the length of
membership proofs and the verification time are all independent of the number of
accumulated elements. Such accumulators have been constructed in RSA groups
[BP97, CL02, LLX07, Lip12] and in bilinear groups [Ngu05, DT08, CKS09].
In both cases the constructions do not exploit any particular property of the
representation of the underlying groups, and are thus generic-group constructions
[Nec94, BL96, Sho97, MW98, DK02, Mau05, JS08, JR10, JS13, FKL18].1

Accumulators with batch verification. Motivated by recent applications
of accumulators to stateless blockchains and interactive oracle proofs [Tod16,
BCS16, AHI+17, BSBH+18, BCR+19], Boneh, Bünz and Fisch [BBF19] developed
techniques for the aggregation of membership proofs (and even of non-membership
proofs) and for their batch verification. Given that hash-based accumulators seem
less suitable for offering such advanced features [OWW+20], Boneh et al. exploited
the structure provided by RSA groups, and more generally by unknown-order
groups such as the class group of an imaginary quadratic number field.

Specifically, Boneh et al. showed that membership proofs and non-membership
proofs for any subset of t elements can be aggregated into a single proof whose
length is independent of t. Then, by relying on the techniques of Wesolowski
[Wes19], they showed that such aggregated proofs can be verified via an interactive
protocol, where the number of group operations performed by the verifier is
nearly independent of t (instead of growing with t in a multiplicative manner as
in the verification of t separate proofs). By applying the Fiat-Shamir transform
with a hash function that produces random primes, Boneh et al. showed that
their interactive verification protocol yields a non-interactive publicly-verifiable
verification procedure. Analogous results were subsequently obtained in bilinear
groups by Thakur [Tha19], who extended the techniques of Boneh et al. and
Wesolowski to such groups based on the constructions of Nguyen [Ngu05] and of
Damg̊ard and Triandopoulos [DT08].

1 We note that the RSA-based accumulator hashes the elements into primes before
accumulating them. This is captured within the generic-group model since the ac-
cumulated elements are provided explicitly as bit-strings (i.e., they are not group
elements and therefore such hashing can be performed by generic algorithms). Equiv-
alently, the RSA-based accumulator can be viewed as a generic-group accumulator
that accumulates prime numbers.



3

Non-trivial batch verification vs. interaction. Other than applying the
Fiat-Shamir transform for obtaining a non-interactive verification procedure, the
constructions of Boneh et al. and Thakur are generic-group constructions, relying
on the existing generic-group accumulators in RSA groups [BP97, CL02, LLX07]
and in bilinear groups [Ngu05, DT08]. This introduces a substantial gap between
generic-group accumulators that support non-trivial batch verification and generic-
group accumulators that support only trivial batch verification (i.e., via the
verification of individual proofs). Given the key importance of non-interactive
verification in most applications that involve accumulators, this leads to the
following fundamental question:

Does non-trivial batch verification in generic-group
accumulators require interaction?

This question is of significant importance not only from the foundational
perspective of obtaining a better understanding of the feasibility and efficiency
of supporting advanced cryptographic features, but also from the practical
perspective. Specifically, following Wesolowski [Wes19], Boneh et al. implement
the Fiat-Shamir transform using a hash function that produces random primes.
As discussed by Boneh et al. [BBF19] and by Ozdemir, Wahby, Whitehat and
Boneh [OWW+20], who proposed various potential realizations for such a hash
function, this affects the efficiency, the correctness and the security of the resulting
accumulator. More generally, and even when implementing the Fiat-Shamir
transform via any standard hash function, in many cases the transformation
violates the elegant algebraic structure of the underlying interactive protocol,
leading to potentially-substantial overheads when implemented within larger
systems (e.g., systems that rely on efficient algebraic proof systems).

1.1 Our Contributions

We prove a tight lower bound on the number of group operations performed dur-
ing batch verification by any generic-group accumulator that uses less-than-trivial
space. In particular, we show that no such accumulator can support non-trivial
batch verification in the standard non-interactive manner. Our lower bound
applies already to the most basic form of accumulators (i.e., static accumulators
that support membership proofs), and holds both for known-order (and even mul-
tilinear) groups and for unknown-order groups, where it matches the asymptotic
performance of the known bilinear and RSA accumulators, respectively.2

Moreover, motivated by a fundamental challenge introduced by Aggarwal and
Maurer [AM09]), we propose an extension of the generic-group model that enables
us to capture a bounded amount of arbitrary non-generic information (e.g., least
significant bits or Jacobi symbols that are hard to compute generically but are
easy to compute non-generically [AM09, JS13]). We prove our lower bound within

2 Our results hold also for the more restrictive notion of vector commitments [CF13,
BBF19, LM19], which provide the same functionality as accumulators, but for ordered
lists instead of sets.



4 G. Schul-Ganz and G. Segev

this extended model, where we measure efficiency in terms of the number of group
operations and in terms of the amount of non-generic information. This extension
of the generic-group model may be of independent interest for strengthening the
implications of impossibility results in idealized models.

In what follows we state our results somewhat informally in order to avoid
introducing the entire list of parameters with which we capture the efficiency of
generic-group accumulators (we refer the reader to Section 2.2 for our formal
definitions). Here we will focus on the following three main parameters, nAcc, `Acc
and q, that are associated with an accumulator ACC, where we denote by λ ∈ N
the security parameter:

– nAcc(λ, k) and `Acc(λ, k) are the number of group elements and the bit-
length of the explicit string, respectively, stored by the accumulator when
accumulating k elements.

– q(λ, t, k) is the number of group-operation queries issued by the accumulator’s
verification procedure when verifying a membership proof for t out of k
elements.

Our main result. Our main result is a tight bound on the trade-off between
the amount of information that an accumulator stores when accumulating k ≥ 1
elements and its number of group operations when verifying a membership proof
for 1 ≤ t ≤ k elements. We prove that this number of group operations must
scale multiplicatively with t, thus ruling out non-trivial batch verification. This
is captured by the following theorem which applies both to known-order groups
and to unknown-order groups.3

Theorem 1.1 (Simplified). For any generic-group accumulator ACC over a
domain X = {Xλ}λ∈N it holds that

q(λ, t, k) = Ω

t · log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

· 1

log λ


for all sufficiently large λ ∈ N. In particular, if |Xλ| = 2Ω(λ) then for any
0 < ε < 1 either

nAcc · log2(nAcc + 1) + `Acc ≥ (1− ε) · log2

(
|Xλ|
k

)
or

q(λ, k, t) = Ω

(
t · ελ

log λ

)
.

For interpreting our main theorem, note that log2

(|Xλ|
k

)
is the expected number of

bits required for an exact representation of k elements, and that nAcc · log2(nAcc +

3 We note that all logarithms in this paper are to the base of 2, which we omit whenever
used within asymptotic expressions in a multiplicative manner.



5

1) + `Acc is the amount of information that is actually stored by a generic-group
accumulator from its verification algorithm’s point of view: nAcc ·log2(nAcc+1) bits
of information resulting from the equality pattern among the nAcc stored group
elements, and `Acc additional explicit bits of information. Thus, the expression

log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

captures the average information loss per accumulated element. Our theorem
shows that as long as the amount of information stored by an accumulator is
bounded away from the information-theoretic amount that is required for an
exact representation, then non-trivial batch verification is impossible.

Our lower bound on the efficiency of batch verification matches the perfor-
mance of the RSA accumulator considered by Boneh et al. [BBF19] in which
nAcc = 1 and `Acc = 0 (i.e., the accumulator stores just a single group element),
and |Xλ| = 2Ω(λ). In this accumulator, batch verification of t elements can be
computed via a single exponentiation in the group Z∗N , where the exponent is
the product of t numbers, each of which is of length λ bits. Since the order of
the group is unknown, it seems that the exponent cannot be reduced modulo the
group order prior to the exponentiation, and therefore this computation requires

Ω(t · λ) group operations, or Ω
(
t · λ

log λ

)
group operations with preprocessing

[BGM+92] – thus matching our lower bound.4

Moreover, we show that our result holds even in the generic d-linear group
model for any d ≥ 2. We generalize Theorem 1.1 and similarly show that

Ω
(
t · λ

log λ ·
1
d

)
group operations are required for batch verifying a membership

proof for t elements. This matches the performance of the bilinear accumulator
constructed by Nguyen [Ngu05] in which nAcc = 1 and `Acc = 0 (i.e., the
accumulator stores just a single group element), and |Xλ| = 2Ω(λ). In this
accumulator, trivial batch verification of t elements consists of computing t

exponentiations, translating to Ω(t ·λ) group operations, or to Ω
(
t · λ

log λ

)
group

operations with preprocessing as above. This once again matches our lower bound,
showing that trivial batch verification is indeed optimal for this accumulator.

Beyond generic groups. Lower bounds in idealized models shed substantial
insight on our understanding of a wide range of both hardness assumptions and
cryptographic constructions. For example, such lower bounds apply to a wide
range of algorithms and constructions, and thus help directing cryptanalytic
efforts and candidate constructions away from generic impossibility results.

However, despite their importance, a major drawback of such lower bounds
is clearly their restriction to idealized models. This drawback was discussed
by Aggarwal and Maurer [AM09], noting that there are certain computations
that are hard with respect to generic algorithms but are extremely simple with

4 The additional information resulting from such preprocessing can be included with the
information stored by the accumulator. This amount of information is independent
of the number of accumulated elements, and thus does not influence our result.



6 G. Schul-Ganz and G. Segev

respect to non-generic ones. Two important examples for such computations are
computing the least significant bit [AM09] or the Jacobi symbol of a random
group element [JS13]. Motivated by this major drawback, Aggarwal and Maurer
proposed the problem of considering more general and realistic models where
all algorithms are given access, for example, to least significant bits or Jacobi
symbols of elements.

Addressing the challenge introduced by Aggarwal and Maurer, we show
that our techniques are applicable even in an extended model that enables us
to capture a bounded amount of non-generic information. Specifically, for any
family Φ of predicates φ(·, ·) that take as input the group order and a group
element, we equip all algorithms with access to an oracle that responds to Φ-
queries: On input a query of the form (φ, x̂), where φ ∈ Φ and x̂ is an implicit
representation of a group element x, the oracle returns φ(N, x) where N is the
order of the group. We refer to this extension as the Φ-augmented generic-group
model, and note that the family Φ may be tailored to the specific non-generic
structure of any underlying group. This model, allowing a bounded amount of
non-generic information, can be viewed as an intermediate model between the
generic-group model that does not allow any non-generic information, and the
algebraic-group model [FKL18, MTT19, AHK20, FPS20] that allows direct access
to the representation of the underlying group.

At a high-level, we prove that our result still holds for any family Φ of
polynomially-many predicates (in particular, it still holds for the case |Φ| = 2 that
enables to compute least significant bits and Jacobi symbols). More specifically,
letting q(λ, t, k) denote the number of group-operation queries and Φ-queries
issued by an accumulator’s verification procedure when verifying a membership
proof for t out of k elements, and considering also predicate families Φ of super-
polynomial size, we prove the following theorem (which again applies both to
known-order groups and to unknown-order groups).

Theorem 1.2 (Simplified). For any predicate family Φ and for any Φ-augmented
generic-group accumulator ACC over a domain X = {Xλ}λ∈N it holds that

q(λ, t, k) = Ω

t · log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

· 1

log λ+ log |Φ|


for all sufficiently large λ ∈ N. In particular, if |Xλ| = 2Ω(λ) then for any
0 < ε < 1 either

nAcc · log2(nAcc + 1) + `Acc ≥ (1− ε) · log2

(
|Xλ|
k

)
or

q(λ, k, t) = Ω

(
t · ελ

log λ+ log |Φ|

)
.

It should be noted that our result in this augmented model do not contradict
the highly-efficient non-interactive batch verification procedures of the accumu-
lators constructed by Boneh, Bünz and Fisch [BBF19] and by Thakur [Tha19].



7

Their verification procedures are obtained by applying the (non-generic) Fiat-
Shamir transform to interactive verification protocols. Although our augmented
model does allow any predicate family Φ, the trade-off resulting from Theorem
1.2 becomes meaningless when instantiated with the parameters that are required
for accommodating the Fiat-Shamir transform.

For example, it is possible to consider a predicate family Φ that consists of
predicates φi that output the i-th output bit of any given collection of hash
functions. However, within our model, the family Φ has to be fixed ahead of time,
whereas the soundness of the Fiat-Shamir transform relies on the hash function
being completely random. This means that realizing the Fiat-Shamir transform
within our augmented model requires including such a predicate φh,i for every
function h mapping group elements to, say, λ bits, as this would then enable
sampling a random function. However, in this case, the size |Φ| of the family
Φ becomes too large for our trade-off to be meaningful. An additional example
is a predicate family Φ that consists of predicates φi that directly output the
i-th bit of a group element. Applying these predicates to all group elements in
the view of the verification algorithm increases the number q of queries that are
issued by the verification algorithm at least by a multiplicative factor of λ (i.e.,
λ queries for each group element), and then once again our trade-off is no longer
meaningful – and thus does not contradict the known non-generic constructions.

1.2 Overview of Our Approach

The framework. We prove our result within the generic-group model introduced
by Maurer [Mau05], which together with the incomparable model introduced by
Shoup [Sho97], seem to be the most commonly used approaches for capturing
generic-group computations. At a high level, in both models algorithms have
access to an oracle for performing the group operation and for testing whether
two group elements are equal. The difference between the two models is in the way
that algorithms specify their queries to the oracle. In Maurer’s model algorithms
specify their queries by pointing to two group elements that have appeared in
the computation so far (e.g., the 4th and the 7th group elements), whereas in
Shoup’s model group elements have an explicit representation (sampled uniformly
at random from the set of all injective mappings from the group to sufficiently
long strings) and algorithms specify their queries by providing two strings that
have appeared in the computation so far as encodings of group elements.

Jager and Schwenk [JS08] proved that the complexity of any computational
problem that is defined in a manner that is independent of the representation
of the underlying group (e.g., computing discrete logarithms) in one model is
essentially equivalent to its complexity in the other model. However, not all generic
cryptographic constructions are independent of the underlying representation.

More generally, these two models are rather incomparable. On one hand, the
class of cryptographic schemes that are captured by Maurer’s model is a subclass
of that of Shoup’s model – although as demonstrated by Maurer his model still
captures all schemes that only use the abstract group operation and test whether



8 G. Schul-Ganz and G. Segev

two group elements are equal. On the other hand, the same holds also for the
class of adversaries, and thus in Maurer’s model we have to break the security
of a given scheme using an adversary that is more restricted when compared to
adversaries in Shoup’s model. We refer the reader to Section 2.1 for a formal
description of Maurer’s generic-group model.5

Generic-group accumulators. A generic-group accumulator ACC consists of
three algorithms, denoted Setup, Prove and Vrfy. Informally (and very briefly),
the algorithm Setup receives as input a set X ⊆ X of elements to accumulate
and produces a representation Acc together with a secret state, where X is the
universe of all possible elements. The algorithm Prove receives as input the secret
state and a set S ⊆ X, and outputs a membership proof π, which can then be
verified by the algorithm Vrfy. Note that the case |S| = 1 captures standard
verification of individual elements, whereas the case |S| > 1 captures batch
verification (i.e., simultaneous verification of sets of elements). Each of these
algorithms may receive as input and return as output a combination of group
elements and explicit strings.

We consider the standard notion of security for accumulators when naturally
extended to consider batch verification. That is, we consider an adversary who
specifies a set X ⊆ X of elements, receives an accumulator Acc that is honestly
generated for X, and can then ask for honestly-generated membership proofs for
sets S ⊆ X (in fact, the adversary we present for proving our result does not
require such adaptive and post-challenge access to honestly-generated proofs).
Then, the adversary aims at outputting a pair (S∗, π∗) that is accepted by the
verification algorithm as a valid membership proof for the set S∗ with respect to
the accumulator Acc although S∗ * X. We refer the reader to Section 2.2 for
formal definitions.

From capturing information loss to exploiting it. We prove our result by
presenting a generic-group adversary that attacks any generic-group accumulator.
Our attacker is successful against any accumulator that does not satisfy the
trade-off stated in Theorem 1.1 between the amount of information that the
accumulator stores and the number of group-operation queries issued by its
verification algorithm. The main idea underlying our approach can be summarized
via the following two key steps:

– Step I: Capturing the information loss. We identify and account for
the total amount of information on a random set X of accumulated elements
from the point of view of a generic-group verification algorithm.

– Step II: Exploiting the information loss. We show that any gap between
this amount of information and the amount of information that is required for
an exact representation of such a set X can be exploited by a generic-group
attacker for generating a false batch-membership proof.

5 In fact, we consider two different flavors of Maurer’s model, for capturing both
known-order and unknown-order groups. The reader is referred to Section 2.1 for
an in-depth discussion of these two flavors and of the extent to which each of them
captures group-based cryptographic constructions.



9

In what follows we elaborate on these two steps, first focusing on our main
result and then discussing its extensions. Let ACC = (Setup,Prove,Vrfy) be a
generic-group accumulator, and consider the view of its verification algorithm
Vrfy on input an accumulator Acc, a set S, and a membership proof π for the
fact that all elements of S have been accumulated within Acc. For simplicity, we
assume here that Acc and π consist only of group elements, and we note that
our proof in fact considers the more general case where they may consist of both
group elements and explicit strings. Then, the view of the verification algorithm
consists of the following ingredients:

– The accumulator Acc consists of group elements, and therefore the verification
algorithm essentially only observes the equality pattern among these elements,
and does not observe the elements themselves. This enables us to upper bound
the amount of information provided by Acc by upper bounding the number
of possible equality patterns among the group elements that are included in
Acc.

– Once the computation starts, the verification algorithm generates a sequence
of group-operation queries, where each such query is specified by pointing to
two group elements that have appeared in the computation so far (we allow the
verification algorithm to issue all possible equality queries). The following two
observations enable us to upper bound the amount of information provided by
this computation by upper bounding the number of possible query patterns
that the verification algorithm observes, together with the number of possible
equality patterns among the group elements included in the proof π and
among the responses to the queries: (1) There are only polynomially-many
possibilities for the two pointers included in each query (since queries are
specified by pointing to two group elements that have appeared in the
computation so far), and (2) we can effectively upper bound the number of
possible query patterns induced by the proof and the responses using the
number of queries issued by the verification algorithm instead of using the
length of the proof π (which may be significantly larger).

This accounts for the total amount of information that is available to the verifi-
cation algorithm from a single execution. However, different executions of the
verification algorithm may be highly correlated via Acc and via the membership
proofs (which are all generated from the secret state). Therefore, in order to
capture the total amount of information that is available on the entire accumu-
lated set X, our attacker A gathers this information as follows. First, it chooses
a random set X ⊆ X of k elements for which the setup algorithm Setup will
honestly generate an accumulator Acc. Then, A partitions X into subsets of
size t, and asks for an honestly-generated batch-membership proof for each such
subset. Next, A executes the verification algorithm to verify each of these k/t
proofs, and records the above information for all of the subsets.

At this point we show that the information recorded from these k/t batch
verifications must be at least the amount of information that is required for
representing a random set X of size k. This is done by proving that, with high
probability over the choice of X, this information can be exploited for forging



10 G. Schul-Ganz and G. Segev

a batch-membership proof for a set S∗ * X of size t. The most subtle part
of our proof is in tailoring the set S∗ and its false proof in a manner that is
indistinguishable to the verification algorithm from those of at least one of the
k/t subsets of X, and we refer the reader to Section 3 for the details of this part
of our attack.

Extensions. As discussed above, we extend our result to accumulators in generic
d-linear groups and to accumulators that rely on a bounded amount of non-generic
information. Both of these extensions essentially rely on the same basic idea,
which is the observation that each query issued by the verification algorithm
can be fully represented in a somewhat succinct manner. Specifically, each such
query is determined by: (1) Pointers to its inputs (where the number of inputs
may now range from 2 to d), (2) the type of query (e.g., addition or subtraction
queries in ZN , multilinear queries, or any other type of non-generic query φ ∈ Φ),
and (3) the contribution of its response to the equality pattern among all group
elements involved in the computation, or the contribution of its explicit response
to the overall amount of information in the case of non-generic queries. For each
of these two extensions, we first adapt our proof to identify and account for
the total amount of information on a random set X of accumulated elements
from the verification algorithm’s point of view. Then, we accordingly adapt our
tailored set S∗ and its false proof in a manner that remains indistinguishable to
the verification algorithm even when equipped with more expressive queries.

1.3 Related Work

In addition to the above-discussed motivation underlying our work, the problem
we consider can be viewed as inspired by a long line of research on proving
efficiency trade-offs for various primitives that are constructed in a black-box
manner in the standard model (see, for example, [KST99, GGK+05, BM07,
Wee07, BM09, HK10, HHR+15] and the many references therein). Despite the
similarity in terms of the goal of proving efficiency trade-offs, there are several
fundamental differences between this line of research and our work, as we now
discuss.

Conceptually, results in this line of research provide lower bounds for con-
structions that are based on specific and somewhat weak assumptions, such
as the existence of one-way functions or permutations. Our work provides a
lower bound for any generic-group scheme, capturing assumptions that seem
significantly stronger than the existence of minimal cryptographic primitives. As
a consequence, our lower bound applies to a wide variety of practical construc-
tions, instead of somewhat theoretical constructions that are based on minimal
assumptions.

Generally speaking, it is more challenging to prove lower bounds for schemes
in the generic-group model when compared to lower bounds for black-box con-
structions based on minimal assumptions. One-way functions or permutations
are typically modeled via random functions or permutations, which admit very
little structure that can be utilized by cryptographic constructions. This stands



11

in complete contrast to generic-group constructions that exploit the algebraic
structure of the underlying groups. The prime example for this substantial gap is
the fact that key-agreement protocols do not exist relative to a random function
or permutation, but do exist based on the decisional Diffie-Hellman assumption
and thus in the generic-group model [DH76, IR89, BM09].

Technically, out of this long line of research, the result that is closest to
the problem we consider is that of Horvitz and Katz [HK10]. They proved a
lower bound on the efficiency of statistically-binding commitment schemes based
on one-way permutations, in terms of the number of invocations of the one-
way permutation during the commit stage. In addition to the above-discussed
differences between this line of research and our work, here we would like to
point out two more differences. First, Horvitz and Katz proved a lower bound
for a primitive with statistical soundness, whereas we consider a primitive with
standard computational soundness6. Second, and much more crucial, they proved
a lower bound on the efficiency of the commit stage, whereas we prove a lower
bound on the efficiency of verification. This is especially crucial given that
accumulators can be viewed as commitments with short local openings, and thus
in general a lower bound on the efficiency of the commit stage does not seem to
imply any meaningful lower bound on the efficiency of the decommit stage.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we
present the basic notation used throughout the paper, and formally describe
the framework of generic-group accumulators. In Section 3 we prove our main
result in the generic-group model, and in Section 4 we briefly discuss several
open problems that arise from this work. Due to space limitations we refer the
reader to the full version of this work for the extension of our result to the generic
multilinear-group model and to its extension beyond the generic-group model.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools
that are used in this work. For a distribution X we denote by x← X the process
of sampling a value x from the distribution X. Similarly, for a set X we denote
by x← X the process of sampling a value x from the uniform distribution over
X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a vector v ∈ X k,
where X is a set and k ∈ N, and for any j ∈ [k], we denote by (v)j the jth
coordinate of v. For a set J ⊆ Z and an integer i ∈ Z we let i+J = {i+j|j ∈ J }.
A function ν : N → R+ is negligible if for any polynomial p(·) there exists an
integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

6 When interpreted in our setting of the generic-group model (where algorithms
are unbounded in their internal computation), computational soundness considers
adversaries that issue a polynomial bounded of group-operation queries, whereas
statistical soundness considers adversaries that may issue an unbounded number of
such queries.



12 G. Schul-Ganz and G. Segev

2.1 Generic Groups and Algorithms

We prove our results within the generic-group model introduced by Maurer
[Mau05]. We consider computations in cyclic groups of order N (all of which are
isomorphic to ZN with respect to addition modulo N), for a λ-bit integer N that
is generated by an order-generation algorithm OrderGen(1λ), where λ ∈ N is the
security parameter (and N may or may not be prime).

When considering such groups, each computation in Maurer’s model is asso-
ciated with a table B. Each entry of this table stores an element of ZN , and we
denote by Vi the group element that is stored in the ith entry. Generic algorithms
access this table via an oracle O, providing black-box access to B as follows.
A generic algorithm A that takes d group elements as input (along with an
optional bit-string) does not receive an explicit representation of these group
elements, but instead, has oracle access to the table B, whose first d entries store
the ZN elements corresponding to the d group element in A’s input. That is, if
the input of an algorithm A is a tuple (g1, . . . , gd, x), where g1, . . . , gd are group
elements and x is an arbitrary string, then from A’s point of view the input is the
tuple (ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group elements g1, . . . , gd
(these group elements are stored in the table B), and x is given explicitly. All
generic algorithms in this paper will receive as their first input a generator of
the group; we capture this fact by always assuming that the first entry of B is
occupied by 1 ∈ ZN , and we will sometimes forgo noting this explicitly. The
oracle O allows for two types of queries:

– Group-operation queries: On input (i, j, ◦) for i, j ∈ N and ◦ ∈ {+,−},
the oracle checks that the ith and jth entries of the table B are not empty,
computes Vi ◦ Vj mod N and stores the result in the next available entry. If
either the ith or the jth entries are empty, the oracle ignores the query.

– Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that
the ith and jth entries of the table B are not empty, and then returns 1 if
Vi = Vj and 0 otherwise. If either the ith or the jth entries are empty, the
oracle ignores the query.

In this paper we consider interactive computations in which multiple algo-
rithms pass group elements (as well as non-group elements) as inputs to one
another. This is naturally supported by the model as follows: When a generic
algorithm A outputs k group elements (along with a potential bit-string σ),
it outputs the indices of k (non-empty) entries in the table B (together with
σ). When these outputs (or some of them) are passed on as inputs to a generic
algorithm C, the table B is re-initialized, and these values (and possibly additional
group elements that C receives as input) are placed in the first entries of the
table. Additionally, we rely on the following conventions:

1. Throughout the paper we refer to values as either “explicit” ones or “implicit”
ones. Explicit values are all values whose representation (e.g., binary strings
of a certain length) is explicitly provided to the generic algorithms under
consideration. Implicit values are all values that correspond to group elements



13

and that are stored in the table B – thus generic algorithms can access them
only via oracle queries. We will sometimes interchange between providing
group elements as input to generic algorithms implicitly, and providing them
explicitly. Note that moving from the former to the latter is well defined,
since a generic algorithm A that receives some of its input group elements
explicitly can always simulate the computation as if they were received as
part of the table B.

2. For a group element g, we will differentiate between the case where g is
provided explicitly and the case where it is provided implicitly via the table
B, using the notation g in the former case, and the notation ĝ in the latter.
Additionally, we extend this notation to a vector v of group elements, which
may be provided either explicitly (denoted v) or implicitly via the table B
(denoted v̂).

Known-order vs. unknown-order generic groups. We consider two flavors
of generic groups: groups of known orders and groups of unknown orders. In
the case of known-order groups, as discussed above we prove our results within
Maurer’s generic-group model [Mau05] that lets all algorithms receive the order
of the underlying group as an explicit input.

In the case of unknown-order groups, we prove our results in a natural variant
of Maurer’s model by following the approach of Damg̊ard and Koprowski [DK02].
They considered a variant of Shoup’s “random-encoding” model [Sho97] where the
order of the underlying group is not included as an explicit input to all algorithms
(still, however, the corresponding order-generation algorithm OrderGen is publicly
known). We consider the exact same variant of Maurer’s model (i.e., Maurer’s
model where the order of the underlying group is not included as an explicit
input to all algorithms) for proving our results for unknown-order groups.

The known-order and unknown-order flavors of generic groups are incompara-
ble for analyzing the security of cryptographic constructions. In the known-order
variant, constructions can explicitly rely on the order of the underlying group,
but this holds for attackers as well. In the unknown-order variant, neither con-
structions or attackers can explicitly rely on the order of the underlying group.

Finally, it should be noted that these two flavors of generic groups seem to
somewhat differ in the extents in which they capture group-based constructions
of cryptographic primitives. While the known-order flavor seems to capture quite
accurately generic computations in prime-order cyclic groups and multilinear
groups, the unknown-order flavor seems somewhat less accurate in capturing
generic computations in RSA groups. Specifically, in the unknown-order flavor,
the order of the underlying group is hidden in an information-theoretic manner
and generic algorithm are unbounded in their internal computation. However,
in “natural” RSA-based constructions, the order of the underlying group is only
computationally hidden (i.e., the modulus N = P ·Q is known but the order of
the multiplicative group Z∗N is unknown based on the factoring assumption), and
algorithms are polynomially-bounded in their computation.

Addressing these differences, Aggarwal and Maurer [AM09] proposed the
incomparable generic-ring model, where algorithms are provided with the modulus



14 G. Schul-Ganz and G. Segev

N but are restricted in their computation. A interesting open problem for future
research is whether or not our techniques extend to other idealized models such
as the generic-ring model. Despite any potential differences between the various
models, impossibility results in any idealized model direct cryptanalytic efforts
and candidate constructions away from generic impossibility results, and serve
as a necessary step towards proving such results within less-idealized models.

2.2 Generic-Group Accumulators

For concreteness, we frame the following definition for known-order generic groups,
noting that the analogous definition for unknown-order generic groups is obtained
by not providing the order N of the underlying group as an input to any of the
algorithms. Our definition is parameterized by 5 functions corresponding to the
measures of efficiency that are considered in our work, and we refer the reader to
Table 1 for the list of all the parameters used in the following definition.

Definition 2.1. A generic-group (nAcc, `Acc, nπ, `π, q)-accumulator over a do-
main X = {Xλ}λ∈N is a triplet ACC = (Setup,Prove,Vrfy) of generic algorithms
defined as follows:

– The algorithm Setup is a probabilistic algorithm that receives as input the
security parameter λ ∈ N, the group order N and a set X ⊆ Xλ. It outputs

an accumulator Acc = (ÂccG,Accstr) and a state state ∈ {0, 1}∗, where AccG
is a sequence of nAcc(λ, |X|) group elements, and Accstr ∈ {0, 1}`Acc(λ,|X|).

– The algorithm Prove is a probabilistic algorithm that receives as input an
accumulator Acc, a state state ∈ {0, 1}∗ and a set S ⊆ Xλ, and outputs a
proof π = (π̂G, πstr), where πG is a sequence of nπ(λ, |S|, k) group elements,
πstr ∈ {0, 1}`π(λ,|S|,k) is an explicit string, and k is the number of elements
that have been accumulated by Acc.

– The algorithm Vrfy is a deterministic algorithm that receives as input an
accumulator Acc, a set S ⊆ Xλ and a proof π, issues an arbitrary number of
equality queries and at most q(λ, |S|, k) group-operation queries and outputs
a bit b ∈ {0, 1}, where k is the number of elements that have been accumulated
by Acc. Note that we do not restrict the number of equality queries that are
issued by the verification algorithm and this only makes our lower bound
stronger (i.e., our lower bound on the number of group-operation queries
holds even for accumulators in which the verification algorithm issues all
possible equality queries).

Correctness. The correctness requirement for this most basic form of accu-
mulators is quite natural: For any set X ⊆ Xλ of accumulated elements, any
membership proof that is generated by the algorithm Prove for any set S ⊆ X
should be accepted by the algorithm Vrfy. More formally:

Definition 2.2. A generic-group accumulator ACC = (Setup,Prove,Vrfy) over
a domain X = {Xλ}λ∈N is correct with respect to an order-generation algorithm



15

λ The security parameter

k(λ) The number of accumulated elements (i.e., k = |X|)
t(λ) The number of elements for which a batch membership proof is generated

and then verified (i.e., t = |S| where S ⊆ X)

nAcc(λ, k) The number of group elements produced by Setup when accumulating
a set of k elements

`Acc(λ, k) The bit-length of the explicit string produced by Setup when accumu-
lating a set of k elements

nπ(λ, t, k) The number of group elements produced by Prove when proving mem-
bership of a set of t elements out of k accumulated elements

`π(λ, t, k) The bit-length of the explicit string produced by Prove when proving
membership of a set of t elements out of k accumulated elements

q(λ, t, k) The number of group-operation queries issued by Vrfy when verifying a
membership proof for a set of t elements out of k accumulated elements
(we prove our lower bound even for verification algorithms that issue an
arbitrary number of equality queries)

Table 1. The parameters considered in Definition 2.1.

OrderGen if for any λ ∈ N and for any two sets S ⊆ X ⊆ Xλ, it holds that

Pr
[
VrfyO (Acc, S, π) = 1

]
= 1

where N ← OrderGen(1λ), (Acc, state)← SetupO(λ,N,X) and π ← ProveO(Acc,
state, S), and the probability is taken over the internal randomness of all algo-
rithms.

Security. We extend the standard notion of security for accumulators to consider
batch verification (i.e., supporting the simultaneous verification of sets of elements
instead of individual elements). Our notion of security considers an adversary who
specifies a set X ⊆ Xλ of elements, receives an accumulator Acc that is honestly
generated for X, and can then ask for honestly-generated membership proofs
for sets S ⊆ X. Then, the adversary aims at outputting a pair (S∗, π∗), where
S∗ ⊆ Xλ, that is accepted by the verification algorithm as a valid membership
proof for the set S∗ with respect to the accumulator Acc although S∗ * X.

Definition 2.3. A generic-group accumulator ACC = (Setup,Prove,Vrfy) over
a domain X = {Xλ}λ∈N is secure with respect to an order-generation algorithm
OrderGen if for any algorithm A = (A0,A1) that issues a polynomial number of
queries there exists a negligible function ν(λ) such that

Pr
[
ExptACC,A(λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExptACC,A(λ) is defined as
follows:



16 G. Schul-Ganz and G. Segev

1. N ← OrderGen(1λ).

2. X ← AO0 (1λ, N) where X ⊆ Xλ.

3. (Acc, state)← SetupO(1λ, N,X).

4. (S∗, π∗)← AO,Prove
O(Acc,state,·)

1 (1λ, N,Acc) where S∗ ⊆ Xλ.

5. If VrfyO(Acc, S∗, π∗) = 1 and S∗ * X then output 1, and otherwise output 0.

Note that the above definition provides the algorithm A1 with adaptive and
post-challenge access to the oracle ProveO(Acc, state, ·). In fact, the adversaries
we present for proving our results do not require such a strong form of access to
honestly-generated proofs. Specifically, already our algorithm A0 can specify a list
of queries to this oracle, in a completely non-adaptive manner and independently
of the challenge accumulator Acc. That is, our results apply already for a seemingly
much weaker notion of security.

In addition, note that the output of the setup algorithm consists of two
values: A public value Acc (the accumulator itself) that is used by both the Prove
algorithm and the Vrfy algorithm, and a private state state that is used only by
the Prove algorithm (the private state may include, for example, the randomness
that was used by the Setup algorithm, for generating the accumulator).

Finally, as standard in the generic-group model, the above definition restricts
only the number of queries issued by the adversary, and does not restrict the
adversary’s internal computation (i.e., the definition considers computationally-
unbounded adversaries). As a consequence, note that without loss of generality
such an adversary A = (A0,A1) is deterministic, and there is no need to transfer
any state information from A0 to A1 (this can at most double the number of
queries issued by A).

3 Our Lower Bound in the Generic-Group Model

In this section we prove our main technical result, providing a lower bound on
the number of group-operation queries required for batch verification. We prove
the following theorem.

Theorem 3.1. Let ACC be an (nAcc, `Acc, nπ, `π, q)-accumulator in the generic-
group model over a domain X = {Xλ}λ∈N, for some polynomials nAcc = nAcc(λ, k),
`Acc = `Acc(λ, k), nπ = nπ(λ, k, t), `π = `π(λ, k, t) and q = q(λ, k, t), and let
OrderGen be an order-generation algorithm. If ACC is secure with respect to
OrderGen, then for any polynomials k = k(λ) ≥ 1 and t = t(λ) ≤ k and for all
sufficiently large λ ∈ N it holds that

q(λ, t, k) = Ω

t · log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

· 1

log λ

 .

As discussed in Section 1.1, recall that log2

(|Xλ|
k

)
is the expected number of

bits required for an exact representation of k elements, and that nAcc · log2(nAcc +



17

1) + `Acc is the amount of information that is actually stored by a generic-
group accumulator from its verification algorithm’s point of view. The following
corollary of Theorem 3.1 shows that as long as the amount of information stored
by an accumulator is bounded away from the information-theoretic amount that
is required for an exact representation, then non-trivial batch verification is
impossible.

Corollary 3.2. Let ACC be an (nAcc, `Acc, nπ, `π, q)-accumulator in the generic-
group model over a domain X = {Xλ}λ∈N, for some polynomials nAcc = nAcc(λ, k),
`Acc = `Acc(λ, k), nπ = nπ(λ, k, t), `π = `π(λ, k, t) and q = q(λ, k, t), and let
OrderGen be an order-generation algorithm. If ACC is secure with respect to
OrderGen and |Xλ| = 2Ω(λ), then for any polynomials k = k(λ) ≥ 1 and t =
t(λ) ≤ k, for any 0 < ε < 1 and for all sufficiently large λ ∈ N, either

nAcc · log2(nAcc + 1) + `Acc ≥ (1− ε) · log2

(
|Xλ|
k

)
or

q(λ, k, t) = Ω

(
t · ελ

log λ

)
.

We prove the following lemma from which we then derive Theorem 3.1 and
Corollary 3.2.

Lemma 3.3. Let ACC be an (nAcc, `Acc, nπ, `π, q)-accumulator in the generic-
group model over a domain X = {Xλ}λ∈N, for some polynomials nAcc = nAcc(λ, k),
`Acc = `Acc(λ, k), nπ = nπ(λ, k, t), `π = `π(λ, k, t) and q = q(λ, k, t), and let
OrderGen be an order-generation algorithm. If ACC is secure with respect to
OrderGen then for any polynomials k = k(λ) ≥ 1 and t = t(λ) ≤ k and for all
sufficiently large λ ∈ N it holds that

1

2
·
(
|Xλ|
k

)
< (nAcc + 1)

nAcc · 2`Acc · (nAcc + nπ + 3q + 1)
6q·dk/te

(1)

In what follows, in Section 3.1 we prove Lemma 3.3, and then in Section 3.2
we rely on Lemma 3.3 for deriving the proofs of Theorem 3.1 and Corollary 3.2.

3.1 Proof of Lemma 3.3

For simplicity, we first prove the lemma for the case of known-order groups, and
then show that the proof extends to unknown-order groups. The proof of Lemma
3.3 relies on the following notation given an (nAcc, `Acc, nπ, `π, q)-generic-group
accumulator ACC = (Setup,Prove,Vrfy) over a domain X = {Xλ}λ∈N (recall
Definition 2.1):

– In any execution of the verification algorithm VrfyO(Acc, S, π), note that the
table B which stores group elements (and to which the oracle O provide black-
box access – as described in Section 2.1) consists of at most nAcc + nπ + q+ 1



18 G. Schul-Ganz and G. Segev

entries: The table contains the generator 1 ∈ ZN in its first entry (as standard
for all computations in this model), then it contains the nAcc group elements
that are part of the accumulator Acc, the nπ group elements that are part
of the proof π, and finally at most q additional group elements that result
from the group-operation queries issued by the verification algorithm. In
addition, recall that each such query can be specified by providing a pair
of indices to entries in the table together with the query type (i.e., the
group operation + or the group operation −). Therefore, each query has at

most 2 (nAcc + nπ + q + 1)
2

possibilities. We let VrfyQueriesAcc,S,π denote the
concatenation of the encodings of all queries made during the computation
VrfyO(Acc, S, π) (in the order in which the queries were issued). Thus, the
total number of possibilities for VrfyQueriesAcc,S,π is at most(

2 · (nAcc + nπ + q + 1)2
)q ≤ (nAcc + nπ + q + 1)3q,

since 2 ≤ nAcc + nπ + q + 1.
– In any execution of the verification algorithm VrfyO(Acc, S, π) we would also

like to encode the equality pattern of all group elements in the table B. Recall
that the table contains the generator 1 ∈ ZN , the nAcc group elements that
are part of the accumulator Acc, the nπ group elements that are part of the
proof π, and then at most q additional group elements that result from the
group-operation queries issued by the verification algorithm. We split this
encoding into the following three ingredients:
• The equality pattern for the generator 1 ∈ ZN and the nAcc group

elements that are part of the accumulator Acc (i.e., for the nAcc + 1
first entries of the table) can be encoded as follows: For each of the
nAcc group elements that are part of the accumulator Acc we encode
the index of the minimal entry among the first nAcc + 1 entries of the
table that contains the same group element (independently of whether
a corresponding equality query was explicitly issued by the verification
algorithm). We denote this encoding by AccEqualitiesAcc. There are at
most (nAcc + 1)nAcc possibilities for AccEqualitiesAcc.

• The equality pattern for the nπ group elements that are part of the proof
π (i.e., for the next nπ entries of the table) can be similarly encoded
which results in at most (nAcc + nπ + 1)nπ possibilities. However, nπ can
be significantly larger than q, and this may potentially lead to a too-long
encoding for the purpose of our proof.
Thus, instead of encoding the equality pattern among all nπ group
elements that are part of the proof π, it is in fact sufficient for us to
encode the equality pattern only among those elements that are involved
in the group-operation queries that are issued during the computation
VrfyO(Acc, S, π). There are at most q such queries, and therefore we
need to encode the equality pattern only among at most 2q elements
out of the nπ group elements that are part of the proof π. For each
such element we encode the index of the minimal entry among the first
nAcc+2q+1 entries of the table that contains the same group element (not



19

including the entries that are not involved in any of the group-operation
queries). The number of possibilities for ProofEqualitiesAcc,S,π, is at most
(nAcc + 2q + 1)2q.
• The equality pattern for the (at most) q group elements that result from

the group-operation queries issued by the verification algorithm (i.e., for
the last q entries of the table) can be encoded the same way (while again
not including the entries of the proof π that are not involved in any of
the group-operation queries) resulting in at most (nAcc + 2q + q + 1)q

possibilities. We denote this encoding by QueriesEqualitiesAcc,S,π.

Equipped with the above notation, we now prove Lemma 3.3.

Proof of Lemma 3.3. Let ACC = (Setup,Prove,Vrfy) be an (nAcc, `Acc, nπ, `π,
q)-generic-group accumulator for some nAcc = nAcc(λ, k), `Acc = `Acc(λ, k), nπ =
nπ(λ, k, t), `π = `π(λ, k, t) and q = q(λ, k, t), and let OrderGen be an order-
generation algorithm. Fix any polynomials k = k(λ) ≥ 1 and t = t(λ) ≤ k. We
show that if Eq. (1) does not hold for infinitely many values of λ ∈ N, then there
exists a generic-group attacker A that issues a polynomial number of queries
for which Pr

[
ExptACC,A(λ) = 1

]
is non-negligible in the security parameter λ ∈

N (recall that the experiment ExptACC,A(λ) was defined in Definition 2.3 for
capturing the security of generic-group accumulators).

At a high level, for any security parameter λ ∈ N our attacker A, participating
in the experiment ExptACC,A(λ), will choose a random set X ⊆ Xλ of k elements
for which the setup algorithm Setup will honestly generate an accumulator. Then,
A will partition S into subsets of size t, and ask for an honestly-generated batch
membership proof for each such subset. Then, with high probability, this will
allow A to forge a batch membership proof for a set S∗ * X of size t.

In what follows we first describe the attacker A and then analyze its success
probability. For simplicity we assume throughout the proof that t divide k, and
we let v = k/t (this is not essential and can be trivially avoided at the cost of
somewhat degrading the readability of the proof). In addition, we let < denote
any ordering of the elements of the set X = {Xλ}n∈N (e.g., the lexicographic
order). As discussed in Section 2.1, recall that for a group element g and for a
vector of group elements v, we will differentiate between the case where g and v
are provided explicitly and the case where they are provided implicitly via the
table B, using the notation g and v in the former case, and the notation ĝ and v̂
in the latter.

The attacker A = (A0,A1)

The algorithm A0. On input (1λ, N) and oracle access to O(·), the algorithm
A0 samples a uniformly distributed set X ⊆ Xλ that consists of k distinct elements
x1 < · · · < xk. It then outputs the set X, and also passes it as its internal state to
the algorithm A1.

The algorithm A1. On input (1λ, N,Acc, X) and oracle access to O(·) and to
ProveO(Acc, state, ·), where (Acc, state)← SetupO(1λ, N,X) is honestly-generated
within the experiment ExptACC,A(λ), the algorithm A1 is defined as follows:



20 G. Schul-Ganz and G. Segev

1. The algorithm A1 computes the equality pattern AccEqualitiesAcc by issuing

equality queries (recall that Acc = (ÂccG,Accstr), where AccG is a sequence of
nAcc(λ, k) group elements that can be accessed indirectly via oracle queries, and
Accstr ∈ {0, 1}`Acc(λ,k) is an explicit string that can be accessed directly).

2. For every i ∈ [v] the algorithm A1 queries the oracle ProveO(Acc, state, ·) with
the set Si = {x(i−1)·t+1, . . . , xi·t} to obtain a proof πi ← ProveO(Acc, state, Si).
We denote πi = (π̂i,G, πi,str), where πi,G is a sequence of nπ(λ, t, k) group ele-
ments that can be accessed indirectly via oracle queries and πi,str ∈ {0, 1}`π(λ,t,k)
is an explicit string that can be accessed directly.
Then, the algorithm A1 executes VrfyO(Acc, Si, πi) for obtaining the query
pattern VrfyQueriesAcc,Si,πi by forwarding the queries issued by Vrfy to the
oracle O, and issues additional equality queries for computing the equality
patterns ProofEqualitiesAcc,Si,πi and QueriesEqualitiesAcc,Si,πi .

3. The algorithm A1 finds a set X ′ ⊆ Xλ that consists of k distinct elements
x′1 < · · · < x′k, and strings r′, r′1, . . . , r

′
v ∈ {0, 1}∗ satisfying the following

requirements:
– X ′ 6= X.
– AccEqualitiesAcc′ = AccEqualitiesAcc and Acc′str = Accstr, where (Acc′, state′) =

Setup(1λ, N,X ′; r′) and Acc′ = (Acc′G,Accstr). Note that all inputs to the
computation Setup(1λ, N,X ′; r′) are explicitly known to A1, and therefore
this computation can be internally emulated without any oracle queries.

– For every i ∈ [v] it holds that

VrfyQueriesAcc′,S′i,π′i
= VrfyQueriesAcc,Si,πi

ProofEqualitiesAcc′,S′i,π′i
= ProofEqualitiesAcc,Si,πi

QueriesEqualitiesAcc′,S′i,π′i
= QueriesEqualitiesAcc,Si,πi

where π′i = Prove(Acc′, state′, S′i; r
′
i) and S′i = {x′(i−1)·t+1, . . . , x

′
i·t}.

If such a set X ′ and strings r′, r′1, . . . , r
′
v ∈ {0, 1}∗ do not exist, then the

algorithm A1 aborts the experiment.
4. Let i∗ ∈ [v] be any index such that S′i∗ * X (e.g., the smallest one), then the

algorithm A1 outputs S∗ = S′i∗ and π∗ =
(
π̂∗G, π

∗
str

)
, where π∗G is a sequence of

nπ group elements that are defined below and π∗str = π′i∗,str is an explicit string.
(a) Let J ⊆ [nπ] be the positions of the group elements that are part of the

proof πi∗ which are accessed by the group-operation queries issued during
the computation VrfyO(Acc, Si∗ , πi∗).

(b) For every j ∈ J we define (π∗G)j = (πi∗,G)j (i.e., we set π∗G to agree with
πi∗,G on the group elements in the positions included in J ).

(c) Let T = 1 + nAcc + nπ + q, and for every j ∈ [T ] we denote by Vj and V ′j
the group element at the jth entry of the table B in the computations
VrfyO(Acc, Si∗ , πi∗) and VrfyO(Acc′, S′i∗ , π

′
i∗), respectively. Note that T =

1 + nAcc + nπ + q is indeed an upper bound on the number of entries in
the table B in these computations: The first entry contains the element
1 ∈ ZN , the next nAcc entries contain the group elements of the given
accumulator, the next nπ entries contains the group elements of the
given proof, and then there are at most q entries that result from the



21

group-operation queries issued by the verification algorithm. Let I =
{1, . . . , 1+nAcc}∪(1+nAcc+J )∪{1+nAcc+nπ+1, . . . , 1+nAcc+nπ+q} ⊆ [T ].

[Recall that 1 + nAcc + J = {1 + nAcc + j|j ∈ J }.]
(d) For every j ∈ [nπ] \ J in increasing order we define (π∗G)j as follows:

i. If there exists a position w ∈ I such that (π′i∗,G)j = V ′w, then we
define (π∗G)j = Vw.

ii. Otherwise, if for all positions w ∈ I it holds that (π′i∗,G)j 6= V ′w then

A. If there exists some k ∈ [nπ] \ J such that k < j and (π′i∗,G)j =
(π′i∗,G)k, then define (π∗G)j = (π∗G)k (note that (π∗G)k is already
defined in this stage since k < j).

B. Otherwise, we define (π∗G)j arbitrarily such that (π∗G)j 6= Vw for
all w ∈ I and (π∗G)j 6= (π∗G)k for all k ∈ [nπ] \ J such that k < j.

At this point, after having described our attacker A, we are ready to analyze
its success probability: In Claim 3.4 we prove that A aborts with probability
at most 1/2, and in Claim 3.5 we prove that any execution in which A does
not abort results in a successful forgery. First, however, we observe that the
query complexity of our attacker is polynomial in k(λ), nAcc(λ, k), nπ(λ, k, t)
and q(λ, k, t), and thus polynomial in the security parameter λ ∈ N. Specifically,
the algorithm A0 does not issue any queries, and the algorithm A1 issues the
following queries:

– Step 1: This step requires at most (nAcc(λ, k))2 queries for computing the
equality pattern AccEqualitiesAcc among the group elements AccG of the given
accumulator Acc.

– Step 2: This step requires v queries for obtaining the proofs π1, . . . , πv, and
at most v · (nπ(λ, t, k) + nAcc(λ, k))2 queries for computing the equality
patterns ProofEqualitiesAcc,Si,πi among the group elements πi,G of the proofs
π1, . . . , πv.
In addition, this step requires at most v ·q(λ, t, k)+v · (q(λ, t, k)+nπ(λ, t, k)+
nAcc(λ, k))2 queries for computing the query patterns VrfyQueriesAcc,S1,π1

, . . . ,
VrfyQueriesAcc,Sv,πv and the query equality patterns QueriesEqualitiesAcc,S1,π1

,
. . . ,QueriesEqualitiesAcc,Sv,πv .

– Step 3: No queries. All inputs to the relevant computations are explicitly
known to A1, and therefore these computations can be internally emulated
without any oracle queries.

– Step 4: The sub-steps 4(a) – 4(c) do not require any queries, whereas sub-step
4(d) does require issuing both group-operation queries and equality queries.
Specifically, in sub-step 4(d).ii.B. the attacker defines (π∗G)j arbitrarily such
that (π∗G)j 6= Vw for all w ∈ I and (π∗G)j 6= (π∗G)k for all k ∈ [nπ] \ J such
that k < j. This can be done, for example, by adding 1 ∈ ZN to (π∗G)j in
an iterative manner until (π∗G)j 6= Vw for all w ∈ I and (π∗G)j 6= (π∗G)k for
all k ∈ [nπ] \ J such that k < j. The number of such iterations is upper
bounded by the number of distinct elements in the table B, which is at most
1 + nAcc(λ, k) + nπ(λ, t, k) + q(λ, t, k) (the number of entries in B).



22 G. Schul-Ganz and G. Segev

Claim 3.4 For any λ ∈ N, if

1

2
·
(
|Xλ|
k

)
≥ (nAcc + 1)

nAcc · 2`Acc · (nAcc + nπ + 3q + 1)
6q·dk/te

(2)

then Pr [A aborts] < 1/2.

Proof of Claim 3.4. We show that if Eq. (2) holds then with probability at
least 1/2 the attacker is able to find a set X ′ ⊆ Xλ that consists of k distinct

elements x′1 < · · · < x′k, and strings ~r′ = (r′, r′1, . . . , r
′
v) ∈ {0, 1}∗, that satisfy

the requirements specified in Step 3. Denote by r ∈ {0, 1}∗ the randomness
used by the algorithm Setup in the experiment ExptACC,A(λ) (i.e., (Acc, state) =

SetupO(1λ, N,X; r)). In addition, for every i ∈ [v] denote by ri ∈ {0, 1}∗ the
randomness used by the oracle ProveO(Acc, state, ·) when computing a batch
membership proof for the set Si in the experiment ExptACC,A(λ) (i.e., πi =

ProveO(Acc, state, Si; ri)), and let ~r = (r, r1, . . . , rv). We show that even when

restricting the attacker to choose ~r′ = ~r there is still a set X ′ that satisfies the
requirements specified in Step 3 with probability at least 1/2 over the choice of
X.

Consider the function F~r that takes as input a set X ⊆ Xλ of k distinct
elements x1 < · · · < xk, and returns as output the following values:

F~r(X) =
(
AccEqualitiesAcc,Accstr,

VrfyQueriesAcc,S1,π1
, . . . ,VrfyQueriesAcc,Sv,πv ,

ProofEqualitiesAcc,S1,π1
, . . . ,ProofEqualitiesAcc,Sv,πv ,

QueriesEqualitiesAcc,S1,π1
. . . ,QueriesEqualitiesAcc,Sv,πv

)
where Si = {x(i−1)·t+1, . . . , xi·t} for every i ∈ [v], (Acc, sk)← SetupO(λ,N,X; r),
and πi ← Prove(Acc, sk, Si; ri) for every i ∈ [v]. Our goal is to prove that with
probability at least 1/2 over the choice of X there exists a set X ′ 6= X such that
F~r(X

′) = F~r(X). We prove this claim by showing that the size of the image of
the function F~r, denoted Image(F~r), is at most half the size of its domain (this
guarantees that with probability at least 1/2 over the choice of X there exists a
set X ′ 6= X as required).

The domain of the function F~r is of size
(|Xλ|
k

)
. The number of possibilities for

an output of the function F~r is the product of the following quantities (as discussed
above when defining AccEqualitiesAcc, VrfyQueriesAcc,Si,πi , ProofEqualitiesAcc,Si,πi
and QueriesEqualitiesAcc,Si,πi):

– AccEqualitiesAcc and Accstr have (nAcc + 1)nAcc and 2`Acc possibilities, respec-
tively.

– VrfyQueriesAcc,Si,πi for every i ∈ [v] has (nAcc + nπ + q + 1)3q possibilities.

– ProofEqualitiesAcc,Si,πi for every i ∈ [v] has (nAcc + 2q + 1)2q possibilities.



23

– QueriesEqualitiesAcc,Si,πi for every i ∈ [v] has (nAcc + 3q + 1)q possibilities.

Thus, the size of the image of the function F~r can be upper bounded via

|Image(F~r)| ≤ (nAcc + 1)
nAcc · 2`Acc · (nAcc + nπ + 3q + 1)

6q·dk/te
.

We assume that Eq. (2) holds, and therefore the size of the image of the function
F~r is at most half the size of its domain, and the claim follows.

Claim 3.5 For any λ ∈ N it holds that

Pr
[
ExptACC,A(λ) = 1

∣∣A does not abort
]

= 1.

Proof of Claim 3.5. Assuming that A does not abort we prove that VrfyO(Acc,
S′i∗ , π

∗) = 1. Together with the fact that S′i∗ * X, this implies that ExptACC,A(λ)

= 1. Recall that the proof π∗ =
(
π̂∗G, π

∗
str

)
is constructed using the two proofs

πi∗ and π′i∗ , where:

– A queried the oracle ProveO(Acc, state, ·) with the set Si∗ to obtain πi∗ =(
π̂i∗,G, πi∗,str

)
← ProveO(Acc, state, Si∗), where πi∗,G is a sequence of group

elements and πi∗,str is an explicit string.

– A generated π′i∗ =
(
π̂′i∗,G, π

′
i∗,str

)
← Prove(Acc′, state′, S′i; r

′
i) subject to the

requirements specified in the description of the attack, where π′i∗,G is a
sequence of group elements and π′i∗,str is an explicit string.

The correctness of the accumulator guarantees that VrfyO(Acc, Si∗ , πi∗) = 1 and
Vrfy(Acc′, S′i∗ , π

′
i∗) = 1, and we show that VrfyO(Acc, Si∗ , π

∗) = 1. This will
follow from the fact that the computation of the verification algorithm, which
can access group elements only via the oracle O, cannot distinguish between the
two inputs (Acc′, S′i∗ , π

′
i∗) and (Acc, S′i∗ , π

∗).
Recall that each computation is associated with a table B, where each entry

of this table stores an element of ZN , and that the oracle O provides black-box
access to B via group operations and equality queries. Let T = 1 + nAcc + nπ + q,
and for every j ∈ [T ] we denote by Vj , V

′
j and V ∗j the ZN element that is

located at the jth entry of the table B in the computations VrfyO(Acc, Si∗ , πi∗),
Vrfy(Acc′, S′i∗ , π

′
i∗) and VrfyO(Acc, S′i∗ , π

∗), respectively.
Recall that we denoted by J ⊆ [nπ] the positions of the group elements

that are part of the proof πi∗ which are accessed by the group-operation queries
issued during the computation VrfyO(Acc, Si∗ , πi∗). Recall also that we defined
I = {1, . . . , 1+nAcc}∪(1+nAcc+J )∪{1+nAcc+nπ+1, . . . , 1+nAcc+nπ+q} ⊆ [T ].
Observe that (V1, . . . , VT ) and (V ′1 , . . . , V

′
T ), have the same equality pattern when

restricted to the position included in I (although they may correspond to different
ZN elements), since based on the description of our attacker it holds that

AccEqualitiesAcc′ = AccEqualitiesAcc
ProofEqualitiesAcc′,S′

i∗ ,π
′
i∗

= ProofEqualitiesAcc,Si∗ ,πi∗

QueriesEqualitiesAcc′,S′
i∗ ,π

′
i∗

= QueriesEqualitiesAcc,Si∗ ,πi∗ .



24 G. Schul-Ganz and G. Segev

In addition, the same queries are issued in the computations VrfyO(Acc, Si∗ , πi∗)
and Vrfy(Acc′, S′i∗ , π

′
i∗), as VrfyQueriesAcc′,S′

i∗ ,π
′
i∗

= VrfyQueriesAcc,Si∗ ,πi∗ .

Recall that for every j ∈ J we defined (π∗G)j = (πi∗,G)j . Note that the first
1 + nAcc + nπ entries of the table B are the ZN elements corresponding to the
group elements that are provided as part of the inputs to the computation. In
both the computations VrfyO(Acc, Si∗ , πi∗) and VrfyO(Acc, S′i∗ , π

∗) the first 1 +
nAcc+nπ entries of the table B are the elements (1,AccG, πi∗,G) and (1,AccG, π

∗
G)

respectively. Therefore, for every w ∈ I ∩ [1 + nAcc + nπ] it holds that V ∗w = Vw.
Since (V1, . . . , VT ) and (V ′1 , . . . , V

′
T ), have the same equality pattern on the

indices in I, we get that (V ′1 , . . . , V
′
1+nAcc+nπ

) and (V ∗1 , . . . , V
∗
1+nAcc+nπ

) have
the same equality pattern on the indices in I. Recall also that for every j ∈
[nπ] \ J we defined (π∗G)j according to the equalities in (V ′1 , ..., V

′
T ) using the

elements in (V1, ..., VT ) or new element when needed. So (V ∗1 , . . . , V
∗
1+nAcc+nπ

)
and (V ′1 , . . . , V

′
1+nAcc+nπ

) have the same equality pattern everywhere (i.e., not
only when restricted to the positions included in I).

In what follows we prove that (V ∗1 , . . . , V
∗
T ) and (V ′1 , . . . , V

′
T ) have the same

equality pattern everywhere (although they may correspond to different ZN
elements). Together with the fact that the explicit inputs to their respective
computations, VrfyO(Acc, S′i∗ , π

∗) and Vrfy(Acc′, S′i∗ , π
′
i∗), are the same (these are

the explicit bit-strings Accstr, S
′
i∗ and π′i∗,str), we obtain that VrfyO(Acc, S′i∗ , π

∗) =

Vrfy(Acc′, S′i∗ , π
′
i∗) as required.

We prove, via induction on j ∈ {0, . . . , q}, that (1) for every w ∈ I ∩
[1 + nAcc + nπ + j] it holds that V ∗w = Vw, and (2) (V ∗1 , . . . , V

∗
1+nAcc+nπ+j

) and
(V ′1 , . . . , V

′
1+nAcc+nπ+j

) have the same equality pattern. For the case j = 0 this
has already been established above.

Now assume that for some j ∈ {0, . . . , q − 1} we have that for every w ∈
I ∩ [1 + nAcc + nπ + j] it holds that V ∗w = Vw, and that (V ∗1 , . . . , V

∗
1+nAcc+nπ+j

)
and (V ′1 , . . . , V

′
1+nAcc+nπ+j

) have the same equality pattern. We would like to
argue that the same holds for j + 1 as well. The entries V ∗1+nAcc+nπ+j+1 and
V1+nAcc+nπ+j+1 contain the result of the next group-operation query in the com-

putations VrfyO(Acc, S′i∗ , π
∗) and VrfyO(Acc, Si∗ , πi∗). The next group-operation

query in the computation VrfyO(Acc, S′i∗ , π
∗) is identical to that of the computa-

tion Vrfy(Acc′, S′i∗ , π
′
i∗) (since both computations have the same explicit inputs

and so far have the same equality patterns in their tables), and the next group-
operation query in the computation Vrfy(Acc′, S′i∗ , π

′
i∗) is identical to that of

the computation VrfyO(Acc, Si∗ , πi∗) (since we required VrfyQueriesAcc′,S′
i∗ ,π

′
i∗

=

VrfyQueriesAcc,Si∗ ,πi∗ ). Therefore, the next group-operation query in the computa-

tion VrfyO(Acc, S′i∗ , π
∗) is identical to that of the computation VrfyO(Acc, Si∗ , πi∗).

Since the two tables (V ∗1 , . . . , V
∗
1+nAcc+nπ+j

) and (V1, . . . , V1+nAcc+nπ+j) are iden-
tical on the indices in I, which contain the indices of the queries of Vrfy, this
implies that (V ∗1 , . . . , V

∗
1+nAcc+nπ+j+1) and (V1, . . . , V1+nAcc+nπ+j+1) are identical

on the indices in I (which proves part (1)).

Note that (V1, . . . , V1+nAcc+nπ+j+1) and (V ′1 , . . . , V
′
1+nAcc+nπ+j+1) have the

same equality pattern on the indices in I (by the description of our attacker), and
therefore (V ∗1 , . . . , V

∗
1+nAcc+nπ+j+1) and (V ′1 , . . . , V

′
1+nAcc+nπ+j+1) have the same



25

equality pattern on the indices in I. In addition, the elements (π∗G)j of π∗G for all
j ∈ [nπ] \ J are chosen to agree with the equality pattern of (V ′1 , . . . , V

′
T ). Thus,

(V ∗1 , . . . , V
∗
1+nAcc+nπ+j+1) and (V ′1 , . . . , V

′
1+nAcc+nπ+j+1) have the same equality

pattern.

This settles the proof of Lemma 3.3.

Extension to unknown-order groups. As discussed in Section 2.1, we consider
two different flavors of generic groups: groups of known orders and groups of
unknown orders. When modeling known-order generic groups then all algorithms
receive the order of the underlying group as an explicit input, and when modeling
unknown-order generic groups then the order is not provided (still, however, the
corresponding order-generation algorithm OrderGen is publicly known). In our
case, this difference corresponds to whether or not the accumulator’s procedures
Setup, Prove and Vrfy, and our attacker A receive the order of the group as input,
and the above proof of Lemma 3.3 assumes that they do.

This proof easily extends to the case where the accumulator’s procedures
and our attacker do not receive the order of the group as input. Specifically,
note that our attacker uses the order N of the group only in Step 3 of the
algorithm A1, for finding a set X ′ ⊆ Xλ and randomness ~r′ = (r′, r′1, . . . , r

′
v) that

satisfy the prescribed requirements (finding these values requires A1 to internally
perform computations modulo N). However, if the accumulator’s procedures do
not receive the order of the group as input, then we can modify the algorithm
A1 to find in Step 3, together with X ′ and ~r′, an integer N ′ in the support of
the computation OrderGen(1λ) such that the exact same conditions are satisfied
(while performing the required internal computations modulo N ′).

The proof of Claim 3.4 is essentially unchanged, now showing that even when
restricting the attacker to choose ~r′ = ~r and N ′ = N there is still a set X ′

that satisfies the prescribed requirements with probability at least 1/2 over the

choice of X (i.e., there exists at least one suitable choice of ~r′ and N ′ exactly as
before). The proof of Claim 3.5 is completely unchanged, since the accumulator’s
procedures do not receive the order of the group as input, the exact same proof
shows that the verification algorithm, which can access group elements only
via the oracle O, cannot distinguish between the two inputs (Acc′, S′i∗ , π

′
i∗) and

(Acc, S′i∗ , π
∗).

3.2 Proofs of Theorem 3.1 and Corollary 3.2

Equipped with Lemma 3.3 we now derive Theorem 3.1 and Corollary 3.2.



26 G. Schul-Ganz and G. Segev

Proof of Theorem 3.1. Lemma 3.3 implies that for all sufficiently large λ ∈ N
it holds that

log2

(
|Xλ|
k

)
< nAcc · log2(nAcc + 1) + `Acc

+

⌈
k

t

⌉
· 6q · log2(nAcc + nπ + 3q + 1) + 1

≤ nAcc · log2(nAcc + 1) + `Acc

+
2k

t
· 6q · log2(nAcc + nπ + 3q + 1) + 1.

Therefore, using the fact that t ≤ k and q ≥ 1 we obtain

t ·
log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

≤ 12q log2(nAcc + nπ + 3q + 1) +
t

k
≤ 12q log2(nAcc + nπ + 3q + 1) + 1

≤ 13q log2(nAcc + nπ + 3q + 1).

Since the functions nAcc,nπ and q are all polynomials in the security parameter
λ ∈ N, then log2(nAcc + nπ + 3q + 1) = O(log2 λ), and therefore

q = Ω

t · log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

· 1

log λ

 .

Proof of Corollary 3.2. If we assume that

nAcc · log2(nAcc + 1) + `Acc < (1− ε) · log2

(
|Xλ|
k

)
then

log2

(
|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
> ε · log2

(
|Xλ|
k

)
≥ εk · log2

(
|Xλ|
k

)
= εk ·Ω(λ), (3)

where Eq. (3) follows from the assumption that |Xλ| ≥ 2Ω(λ) and the fact that
k = k(λ) is polynomial in the security parameter λ ∈ N. Therefore,

q = Ω

t · log2

(|Xλ|
k

)
−
[
nAcc · log2(nAcc + 1) + `Acc

]
k

· 1

log λ


= Ω

(
t · ελ

log λ

)
.



27

4 Open Problems

In this section we briefly discuss several open problems that arise from this work.

Randomized verification and imperfect correctness. Our work considers
accumulators with deterministic verification procedures and perfect correctness,
as noted in Section 2.2. Although this seems to be the case with the known
accumulators, the more general case of accumulators with randomized verification
procedures and imperfect correctness (i.e., valid proofs are accepted with all but
a negligible probability) is clearly fundamental, and thus an interesting direction
for future research.

Non-trivial non-interactive batch verification in Shoup’s model. As
discussed in Section 1.2, we prove our result within the generic-group model
introduced by Maurer [Mau05], which together with the incomparable model
introduced by Shoup [Sho97], seem to be the most commonly used approaches
for capturing generic-group computations. A natural open problem is whether
our result can be either proved or circumvented within Shoup’s model.

One should note that our result can be circumvented by applying the Fiat-
Shamir transform [BBF19, Tha19], and that the random injective mapping used
in Shoup’s model for explicitly representing group elements may potentially
be exploited towards this goal. Although, this can perhaps be viewed as some-
what abusing Shoup’s model by relying on the randomness provided by the
injective mapping (which does not actually exist in concrete implementation of
cryptographic groups) instead of relying on the algebraic structure of the group.

The efficiency of batch verification in other settings. Our work considers
the efficiency of batch verification in the specific setting of accumulators. More
generally, however, the efficiency of batch verification may be interesting to study
in other settings as well. One such setting is the general one of non-interactive
arguments, and specifically that of succinct non-interactive arguments [Mic94]
(which seem tightly related to accumulators as succinct non-interactive arguments
may be used to provide, for example, short membership proofs for accumulated
values).

References

[ABC+12] J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Wa-
ters. Computing on authenticated data. In Proceedings of the 9th Theory
of Cryptography Conference, pages 1–20, 2012.

[AHI+17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2087–2104, 2017.

[AHK20] T. Agrikola, D. Hofheinz, and J. Kastner. On instantiating the algebraic
group model from falsifiable assumptions. In Advances in Cryptology –
EUROCRYPT ’20, pages 96–126, 2020.



28 G. Schul-Ganz and G. Segev

[AM09] D. Aggarwal and U. M. Maurer. Breaking RSA generically is equivalent
to factoring. In Advances in Cryptology – EUROCRYPT ’09, pages 36–53,
2009.

[BBF19] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In Advances in Cryptology –
CRYPTO ’19, pages 561–586, 2019.

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Advances in
Cryptology – EUROCRYPT ’19, pages 103–128, 2019.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In
Proceedings of the 14th Theory of Cryptography Conference, pages 31–60,
2016.

[BdM93] J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized
alternative to digital signatures. In Advances in Cryptology – EUROCRYPT
’93, pages 274–285, 1993.

[BGM+92] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast
exponentiation with precomputation. In Advances in Cryptology – EURO-
CRYPT ’92, pages 200–207, 1992.

[BL96] D. Boneh and R. J. Lipton. Algorithms for black-box fields and their
application to cryptography. In Advances in Cryptology – CRYPTO ’96,
pages 283–297, 1996.

[BLL00] A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management
using undeniable attestations. In Proceedings of the 7th ACM Conference
on Computer and Communications Security, pages 9–17, 2000.

[BM07] B. Barak and M. Mahmoody-Ghidary. Lower bounds on signatures from
symmetric primitives. In Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pages 680–688, 2007.

[BM09] B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal - An
O(n2)-query attack on any key exchange from a random oracle. In Advances
in Cryptology – CRYPTO ’09, pages 374–390, 2009.

[BP97] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In Advances in Cryptology – EUROCRYPT
’97, pages 480–494, 1997.

[BSBH+18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[CF13] D. Catalano and D. Fiore. Vector commitments and their applications. In
Proceedings of the 16th International Conference on Practice and Theory
in Public-Key Cryptography, pages 55–72, 2013.

[CF14] S. Y. Conner Fromknecht, Dragos Velicanu. A decentralized public key
infrastructure with identity retention. Cryptology ePrint Archive, Report
2014/803, 2014. https://eprint.iacr.org/2014/803.

[CHK+08] P. Camacho, A. Hevia, M. A. Kiwi, and R. Opazo. Strong accumulators
from collision-resistant hashing. In Proceedings of the 11th International
Conference on Information Security, pages 471–486, 2008.

[CJ10] S. Canard and A. Jambert. On extended sanitizable signature schemes. In
Topics in Cryptology – CT-RSA ’10, pages 179–194, 2010.

[CKS09] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based
on bilinear maps and efficient revocation for anonymous credentials. In
Proceedings of the 12th International Conference on Practice and Theory
in Public Key Cryptography, pages 481–500, 2009.



29

[CL02] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In Advances in Cryptology
– CRYPTO ’02, pages 61–76, 2002.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DK02] I. Damg̊ard and M. Koprowski. Generic lower bounds for root extraction
and signature schemes in general groups. In Advances in Cryptology –
EUROCRYPT ’02, pages 256–271, 2002.

[DT08] I. Damg̊ard and N. Triandopoulos. Supporting non-membership proofs with
bilinear-map accumulators. Cryptology ePrint Archive, Report 2008/538,
2008. https://eprint.iacr.org/2008/538.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In Advances in Cryptology – CRYPTO ’18, pages 33–62, 2018.

[FPS20] G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind Schnorr signatures and
signed ElGamal encryption in the algebraic group model. In Advances in
Cryptology – EUROCRYPT ’20, pages 63–95, 2020.

[GGK+05] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM Journal on Computing,
35(1):217–246, 2005.

[GGM14] C. Garman, M. Green, and I. Miers. Decentralized anonymous credentials.
In Proceedings of the 21st Annual Network and Distributed System Security
Symposium (NDSS), 2014.

[HHR+15] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in
interactive protocols – Tight lower bounds on the round and communica-
tion complexities of statistically hiding commitments. SIAM Journal on
Computing, 44(1):193–242, 2015.

[HK10] O. Horvitz and J. Katz. Bounds on the efficiency of black-box commitment
schemes. Theor. Comput. Sci., 411(10):1251–1260, 2010.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, pages 44–61, 1989.

[JR10] T. Jager and A. Rupp. The semi-generic group model and applications to
pairing-based cryptography. In Advances in Cryptology – ASIACRYPT ’10,
pages 539–556, 2010.

[JS08] T. Jager and J. Schwenk. On the equivalence of generic group models.
In Proceedings of the 2nd International Conference on Provable Security,
pages 200–209, 2008.

[JS13] T. Jager and J. Schwenk. On the analysis of cryptographic assumptions in
the generic ring model. Journal of Cryptology, 26(2):225–245, 2013.

[KST99] J. H. Kim, D. R. Simon, and P. Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, pages 535–542, 1999.

[Lip12] H. Lipmaa. Secure accumulators from euclidean rings without trusted
setup. In Proceedings of the 10th International Conference on Applied
Cryptography and Network Security, pages 224–240, 2012.

[LLX07] J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmember-
ship proofs. In Proceedings of the 5th International Conference on Applied
Cryptography and Network Security, pages 253–269, 2007.

[LM19] R. W. F. Lai and G. Malavolta. Subvector commitments with application
to succinct arguments. In Advances in Cryptology – CRYPTO ’19, pages
530–560, 2019.



30 G. Schul-Ganz and G. Segev

[Mau05] U. Maurer. Abstract models of computation in cryptography. In Proceedings
of the 10th IMA International Conference on Cryptography and Coding,
pages 1–12, 2005.

[Mer87] R. C. Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology – CRYPTO ’87, pages 369–378, 1987.

[MGG+13] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Proceeding of the 2013 IEEE Symposium
on Security and Privacy, pages 397–411, 2013.

[Mic94] S. Micali. CS proofs. In Proceedings of the 35th Annual IEEE Symposium
on the Foundations of Computer Science, pages 436–453, 1994.

[MTT19] T. Mizuide, A. Takayasu, and T. Takagi. Tight reductions for Diffie-Hellman
variants in the algebraic group model. In Topics in Cryptology – CT-RSA
’19, pages 169–188, 2019.

[MW98] U. M. Maurer and S. Wolf. Lower bounds on generic algorithms in groups.
In Advances in Cryptology – EUROCRYPT ’98, pages 72–84, 1998.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):91–101, 1994.

[Ngu05] L. Nguyen. Accumulators from bilinear pairings and applications. In Topics
in Cryptology – CT-RSA ’05, pages 275–292, 2005.

[NN98] K. Nissim and M. Naor. Certificate revocation and certificate update. In
Proceedings of the 7th USENIX Security Symposium, 1998.

[OWW+20] A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh. Scaling verifiable
computation using efficient set accumulators. In Proceedings of the 29th
USENIX Security Symposium, pages 2075–2092, 2020.

[PS14] H. C. Pöhls and K. Samelin. On updatable redactable signatures. In
Proceedings of the 12th International Conference on Applied Cryptography
and Network Security, pages 457–475, 2014.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In
Advances in Cryptology – EUROCRYPT ’97, pages 256–266, 1997.

[Sla12] D. Slamanig. Dynamic accumulator based discretionary access control
for outsourced storage with unlinkable access. In Proceedings of the 16th
International Conference on Financial Cryptography and Data Security,
pages 215–222, 2012.

[ST99] T. Sander and A. Ta-Shma. Flow control: A new approach for anonymity
control in electronic cash systems. In Proceedings of the 3rd International
Conference on Financial Cryptography, pages 46–61, 1999.

[Tha19] S. Thakur. Batching non-membership proofs with bilinear accumulators.
Cryptology ePrint Archive, Report 2019/1147, 2019. https://eprint.

iacr.org/2019/1147.
[Tod16] P. Todd. Making UTXO set growth irrelevant with low-latency de-

layed TXO commitments. Available at https://petertodd.org/2016/

delayed-txo-commitments, 2016.
[Wee07] H. Wee. One-way permutations, interactive hashing and statistically hiding

commitments. In Proceedings of the 4th Theory of Cryptography Conference,
pages 419–433, 2007.

[Wes19] B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptol-
ogy – EUROCRYPT ’19, pages 379–407, 2019.


