
Characterizing Deterministic-Prover Zero Knowledge

Nir Bitansky1[0000−0001−8361−6035] and Arka Rai Choudhuri2[0000−0003−0452−3426]

1 Tel Aviv University
nirbitan@tau.ac.il
2 Johns Hopkins University
achoud@cs.jhu.edu

Abstract. Randomness is typically thought to be essential for zero knowledge
protocols. Following this intuition, Goldreich and Oren (Journal of Cryptology
94) proved that auxiliary-input zero knowledge cannot be achieved with a deter-
ministic prover. On the other hand, positive results are only known in the honest-
verifier setting, or when the prover is given at least a restricted source of entropy.
We prove that removing (or just bounding) the verifier’s auxiliary input, deterministic-
prover zero knowledge becomes feasible:

– Assuming non-interactive witness-indistinguishable proofs and subexponen-
tial indistinguishability obfuscation and one-way functions, we construct
deterministic-prover zero-knowledge arguments for NP∩ coNP against ver-
ifiers with bounded non-uniform auxiliary input.

– Assuming also keyless hash functions that are collision-resistant against bounded-
auxiliary-input quasipolynomial-time attackers, we construct similar argu-
ments for all of NP.

Together with the result of Goldreich and Oren, this characterizes when deterministic-
prover zero knowledge is feasible. We also demonstrate the necessity of strong
assumptions, by showing that deterministic prover zero knowledge arguments for
a given language imply witness encryption for that language. We further prove
that such arguments can always be collapsed to two messages and be made la-
conic. These implications rely on a more general connection with the notion of
predictable arguments by Faonio, Nielsen, and Venturi (PKC 17).

1 Introduction

Goldwasser, Micali, and Rackoff [18] founded the concept of zero-knowledge proofs
on two main elements: interaction and randomness. While both interaction and verifier
randomness are known to be essential for zero knowledge, the answer as to whether the
prover must also be randomized is not as definite. Goldreich and Oren [16] showed that
prover randomness is essential in order to achieve auxiliary-input zero-knowledge for
non-trivial languages. According to this notion, motivated by composition [15], any-
thing that a verifier can learn from the proof, on top of the auxiliary information z it
already possesses, can be efficiently simulated given the same auxiliary information z.

So when is deterministic-prover zero knowledge possible? So far, deterministic
prover zero knowledge have only been shown to exist in the honest-verifier setting.
Here Faonio, Nielsen, and Venturi [12] proved that any NP language L that has a wit-
ness encryption scheme [13], also has a deterministic-prover honest-verifier (perfect)

zero-knowledge argument, or proof, if the language L has a hash proof system [10]. A
similar result was recently shown by Dahari and Lindell [11]. In the same work, Da-
hari and Lindell also show a statistically sound honest-verifier zero knowledge protocol
with an unbounded honest prover for all of NP assuming doubly-enhanced injective
one-way functions. In the malicious verifier setting, they give a protocol satisfying a
non-standard distributional notion of zero knowledge. In their definition, the prover has
access to a pair of witnesses sampled from a distribution, which satisfy a certain entropy
guarantee.

Whether zero knowledge with a truly deterministic prover is possible considering any
meaningful form of malicious verifiers remains unknown.

1.1 This Work

We prove that deterministic-prover zero knowledge for non-trivial languages is feasible
for the class of malicious verifiers with bounded auxiliary input.

Theorem 1 (Informal). Assuming non-interactive witness-indistinguishable proofs and
subexponentially-secure indistinguishability obfuscation and one-way functions, there
exist two-message deterministic-prover arguments for NP∩coNP that are zero-knowledge
against bounded-auxiliary-input verifiers.3

Theorem 2 (Informal). Assuming also keyless hash functions that are collision-resistant
against bounded-auxiliary-input quasipolynomial-time attackers, there exist similar ar-
guments for all of NP.

By zero knowledge against bounded-auxiliary-input verifiers we formally mean that
for any polynomial bound b, there exists a corresponding deterministic-prover argument
that is zero knowledge against (malicious) verifiers with non-uniform auxiliary input of
size at most b. This, in particular, includes the class of uniform verifiers, considered in
the original zero-knowledge definition of [18]. We stress that the running time of the
verifier may be an arbitrary polynomial, potentially larger than b. Also, indistinguisha-
bility of simulated and real proofs holds against non-uniform distinguishers of arbitrary
polynomial size. Same goes for soundness, which holds against non-uniform provers of
arbitrary polynomial size.

Together with the impossibility result of Goldreich and Oren for unbounded aux-
iliary input, the above results give a complete picture of when exactly deterministic-
prover zero knowledge is feasible. We note that two-message zero knowledge against
unbounded auxiliary input is by itself known to be impossible. Our result indeed cir-
cumvents this impossibility (for bounded auxiliary input), but this was already known
(with a randomized prover) [6].

3 Indistinguishability obfuscation implies non-interactive witness indistinguishable proofs, but
with a randomized verifier [8], which is insufficient for our purpose. The verifier can be de-
randomized under a worst-case Nisan-Wigderson [21] type derandomization assumption [9].
Non-interactive witness indistinguishable proofs with a deterministic verifier are also known
from standard assumptions on bilinear maps [19].

2

On the Necessity of Strong Assumptions and Predictable Arguments. To demonstrate
the feasibility of deterministic-prover zero knowledge, we rely on hardness assumptions
that are arguably strong. We show that this is inherent. Specifically, we show that de-
terministic prover zero-knowledge arguments for NP imply witness encryption for NP,
which at this point is only known based on strong assumptions, such as indistinguisha-
bility obfuscation.

The implication to witness encryption, in fact, follows from a more general impli-
cation to predictable arguments. Predictable arguments, introduced by Faonio, Nielsen,
and Venturi [12], are arguments where the honest verifier’s (private) random coins
efficiently determine a unique accepting transcript — in order to convince the veri-
fier, the prover must be consistent with this transcript throughout the entire protocol.
We prove that any deterministic-prover zero-knowledge argument against bounded-
auxiliary-input verifiers can be turned into a predictable argument. The transformation,
in fact, preserves the honest prover algorithm, and in particular also zero knowledge.

Theorem 3 (Informal). Any deterministic-prover zero-knowledge argument against
bounded-auxiliary-input verifiers can be made predictable.

We also give a transformation that only requires honest-verifier zero knowledge
and works provided that the argument is expressive enough (e.g., for all NP or even
just NP ∩ coNP). The fact that deterministic-prover zero knowledge arguments imply
witness encryption, then follows from [12] where predictable arguments are shown to
imply witness encryption.

Corollary 1 (of Predictability). Any deterministic-prover zero-knowledge argument
against bounded-auxiliary-input verifiers for a languageL implies a witness encryption
scheme for L.

We use additional known results regarding predictable arguments [12] to deduce
similar results for deterministic-prover zero knowledge:

Corollary 2 (of Predictability). Any deterministic-prover zero-knowledge argument
against bounded-auxiliary-input verifiers can be reduced to two messages and made
laconic.

Here by laconic [12,17] we mean that the prover sends a single bit and the soundness
error is negligibly close to 1/2; or more generally, the prover sends ` bit in order to
obtain a soundness error negligibly close to 2−`.

Non-Black-Box Zero-Knowledge Simulation. The zero-knowledge simulator in our con-
structed arguments makes non-black-box use of the verifier’s code. This is known to be
inherent — black-box simulation is impossible in the setting of two (or even three)
message zero knowledge against bounded-auxiliary-input verifiers [6, 15].

1.2 Technical Overview

We now give an overview of the main ideas and techniques behind our results.

3

The Deterministic-Prover Zero-Knowledge Protocol. Our starting point is the protocol
against honest verifiers based on witness encryption [12]. In their protocol, the verifier
simply sends a witness encryption of a random message u with respect to the statement
x ∈ L to be proven, and expects to get u back from the prover. Witness encryption
guarantees that a prover that has a corresponding witness w, can obtain u and convince
the verifier. However, if the statement is false, namely x /∈ L, u is hidden, and soundness
is guaranteed.

While honest verifiers are easy to simulate in this scheme, it is not clear how to
simulate malicious verifiers. For this purpose, we aim to add to the protocol a trapdoor
way of obtaining u. A simulator that has the code of the verifier should be able to extract
the message u. In contrast, a malicious prover who doesn’t have the code (specifically,
the verifier’s randomness) should still fail to find u when x /∈ L.

Explainable Verifiers. To explain the idea behind the protocol in its simplest form, let
us start by assuming that the first message v sent by verifier to the prover is always
explainable [7]. That is, there exist honest verifier coins r that explain this message as
an honest verifier message v = V(x; r). The difference between this setting and the
honest verifier setting is that the explaining coins r may be distributed arbitrarily and
also computationally hard to find.

Our basic idea is for the verifier to send the prover yet another witness encryption
of u where the witness is basically the malicious verifier code V∗. Our realization of
this idea is inspired by Barak’s uniform simulation technique [1]. Let b be the given
bound on the description size of the verifier including its (bounded) auxiliary input
hardwired. Then, the honest verifier samples a long random string R ← {0, 1}b+2λ.
Then in addition to the witness encryption of u under the statement x ∈ L, it sends a
witness encryption of u under the statement:

“There exists a program Π of size b+ λ (namely short) that outputs R.”

To argue that the protocol remains sound, we note that except with negligible proba-
bility 2−λ over the choice of r, such a short program does not exist. In this case, witness
encryption will guarantee that u remains hidden and soundness is preserved. Further-
more, a simulator in possession of the b-size code V∗ of the malicious verifier can now
use it to simulate. Specifically, let ` be the amount of coins r∗ used by V∗, then the
simulator will sample r∗ using a pseudorandom generator that stretches a seed s∗ of
length ≈ λ to a pseudorandom r∗ of length `. Looking at the string R that V∗(x; r∗)
outputs, the simulator now possesses a size-(b+ λ) program Π that computes R — the
code of V∗ with the seed s∗ hardwired. This in turn leads to valid simulation.

Witness Encryption for Unbounded NP Relations and IO. One thing to notice about
the latter protocol is that in fact the existence of program Π that outputs R is not an
NP statement, unless we restrict the running time of Π to some specific polynomial.
However, while the non-uniform description size (equivalently, auxiliary input size) of
the malicious verifier V∗ is a-priori bounded, its running time is not bounded by any
specific polynomial.

Accordingly, we need a strong notion of witness encryption for unbounded non-
deterministic relations. Specifically, encryption under a statement x should take time

4

polynomial in |x| (and the security parameter), and not depend on the time required
to verify a witness for x. In contrast, decrypting with a witness w should take time
proportional to the time required to verify w. Such witness encryption schemes directly
follow from known indistinguishability obfuscation (IO) schemes for Turing Machines,
which are in turn constructed from subexponentially-secure IO for circuits [5, 14, 20].

Malicious Verifiers. Having constructed a protocol against explainable verifiers, we
use compilers from the literature to turn it into a protocol against arbitrary verifiers.
These compilers use non-interactive witness-indistinguishable proofs (NIWIs) in order
to enforce explainable behavior on the verifier’s side. Being non-interactive verifying,
these proofs require no randomness from the honest zero-knowledge prover.

The first such compiler [7] works for NP ∩ coNP and requires no additional hard-
ness assumptions. The second compiler is taken from [3] (where it was used in a differ-
ent context) and relies in addition on keyless hash functions that are collision resistant
against attackers with bounded auxiliary input and quasipolynomial running time, as
well as subexponentially secure commitments (which in turn follow from subexponen-
tially secure IO and one-way functions). In the body, we reanalyze these compilers to
show that they can be used to enforce robust explainability, which roughly means that
the verifier’s messages are almost always explainable on any efficiently samplable dis-
tribution on its coins, a property required for our simulation strategy. See more details
in Section 3.

From Deterministic-Prover Zero Knowledge to Predictable Arguments. We now ex-
plain how deterministic-prover zero knowledge implies predictable arguments, which
in turn imply witness encryption (as well as the additional properties stated in Corollary
2). We start with an oversimplified transformation that captures the main idea, but does
not fully work, and then explain how to augment it. This oversimplified transformation,
in fact, starts from deterministic-prover honest-verifier zero knowledge.

Let (P,V) be our argument, and let Sim be the honest-verifier simulator. We con-
sider a new verifier V′ that works as follows. It applies the simulator Sim(x) to obtain
simulated randomness r̃ for the honest verifier along with simulated prover messages
p̃1, . . . , p̃k. The verifier V′ then certifies that the prover messages lead to an accepting
transcript with respect to the verifier coins r. If they do not lead to an accepting tran-
script, V′ automatically rejects; otherwise, it interacts with the prover, and rejects the
moment it receives a message pi 6= p̃i. The described protocol is predictable by con-
struction. Also, since we do not change the honest prover, it is zero knowledge against
the same class of verifiers as the original protocol. We now turn to argue that the proto-
col is complete and sound.

To see that the protocol has almost perfect completeness, consider a distinguisher
that has the witness w hardwired. Given a transcript p1, . . . , pk and verifier coins r,
it can perfectly emulate a conversation between the deterministic prover P(x,w) and
honest verifier V(x; r) and check whether the produced prover messages are consistent
with the input transcript p1, . . . , pk, and that the transcript is accepting. We deduce that
with overwhelming probability the simulator produces simulated messages p̃1, . . . , p̃k,
and randomness r, such that the honest prover would produce the same messages, and
the transcript will be accepting. To see soundness, notice that if the simulated coins r

5

are pseudorandom and the simulated prover messages p̃1, . . . , p̃k are accepting, then by
the soundness of the original protocol (P,V), it should be hard for an efficient prover
to produce messages consistent with p̃1, . . . , p̃k (or with any accepting transcript).

Above, when proving soundness we actually made the implicit assumption that
the honest verifier simulator Sim(x) produces pseudorandom verifier coins, even when
given a no instance x /∈ L. Indeed, with respect to random, or pseudorandom, coins, we
can argue that it is hard to find accepting transcripts. While this is a natural property, it
does not follow directly from honest verifier zero knowledge. To circumvent this diffi-
culty, we slightly augment the above transformation, while relying on zero-knowledge
against (not necessarily honest) bounded-auxiliary-input verifiers.

Specifically, the verifier V′ uses a pseudorandom generator to sample coins r for
the honest verifier V, using a short seed s. It then applies the same procedure as above,
except that it runs the simulator Sim(Vs, x) for the deterministic verifier Vs that first
derives the coins r from the seed s, and then applies V. By choosing an appropriate
pseudorandom generator, we can guarantee that the non-uniform description of Vs is
short enough. This transformation guarantees that the simulated coins are pseudoran-
dom, even for a no instance, and allows the above proof to go through. The necessity
of zero-knowledge to hold even for verifiers that are not necessarily honest comes from
the fact that our description of Vs deviates from the honest verifier strategy. We give an-
other construction of predictable arguments from deterministic-prover arguments that
are only honest-verifier zero knowledge, provided that the arguments supports expres-
sive enough languages. See Section A for details.

A Word on Two-Message Laconic Arguments. As stated in Corollary 2, we use the
implication to predictable arguments to also derive that any deterministic-prover zero
knowledge argument for bounded-auxiliary-input verifiers can be made two message
and laconic. This corollary is obtained by applying as is general transformations on pre-
dictable arguments [12]. The only thing we need to prove is that these transformations
preserve zero knowledge. The only hurdle here is that the mentioned transformations in-
volve parallel repetition for the sake of soundness amplification. We observe that (unlike
many-round zero knowledge) two-message zero knowledge against bounded-auxiliary-
input verifiers is closed under parallel repetition.

On Deterministic Prover Zero-Knowledge Proofs. While our results (in conjunction
with prior works) provide a complete picture of deterministic zero-knowledge argu-
ments, our results do not have any bearing on deterministic zero-knowledge proofs,
where soundness is required to hold against unbounded provers. Completing the pic-
ture for proofs remains an interesting open problem.

2 Definitions

In this work, we will consider PPT machines with both, bounded and unbounded non-
uniform auxiliary input. For simplicity of notation, rather than considering explicit aux-
iliary input in our definitions, we consider two basic notions of non-uniformity. The
corresponding zero knowledge definition will in particular capture the auxiliary input
setting. See Remark 1.

6

1. non-uniform PPT: this is the standard notion of non-uniform PPT machines. For-
mally, a non-uniform PPT M = {Mλ}λ is a family of probabilistic Turing ma-
chines (one for each λ), where there exists a polynomial poly, such that the de-
scription size |Mλ| and the running time of Mλ are bounded by poly(λ).

2. b-non-uniform PPT: These are PPT machines with non-uniform description of size
b(λ) and arbitrary polynomial running time (possibly larger than b(λ)). Formally, a
b-non-uniform PPTM = {Mλ}λ is a family of probabilistic Turing machines (one
for each λ), where |Mλ| ≤ b(λ) and there exists a polynomial poly, such that the
running time of Mλ is bounded by poly(λ).

In both of the above, we often omit from Mλ the subscript λ when it is clear from the
context. If we simply say a PPT machine, we mean a uniform one.

Throughout this work, we will talk about computational indistinguishability with
respect to non-uniform distinguishers.

Definition 1 (Computational Indistinguishability). Two ensembles X = {Xα}α∈S
and Y = {Yα}α∈S are said to be computationally indistinguishable, denoted by X ≈c
Y , if for every non-uniform PPT distinguisher D, every polynomial p, all sufficiently
large λ and every α ∈ {0, 1}poly(λ) ∩ S∣∣∣Pr

[
D(1λ, Xα) = 1

]
− Pr

[
D(1λ, Yα) = 1

] ∣∣∣ < 1

p(λ)
,

where the probability are taken over the samples of Xα, Yα and coin tosses of D.

We shall sometimes find it convenient to talk about the stronger notion of statistical
indistinguishability, defined below.

Definition 2 (Statistical Indistinguishability). Two ensembles X = {Xα}α∈S and
Y = {Yα}α∈S are said to be statistically indistinguishable, denoted by X ≈s Y , if for
every polynomial p, all sufficiently large λ and every α ∈ {0, 1}poly(λ) ∩ S

∆(Xα, Yα) <
1

p(λ)
,

where ∆(Xα, Yα) corresponds to the statistical distance between Xα and Yα.

2.1 Deterministic-Prover Zero Knowledge Against Bounded-Auxiliary-Input
Verifiers

We define the notion of deterministic-prover zero-knowledge arguments against veri-
fiers with bounded auxiliary-input (DPZK). We shall denote by OutA〈A(a), B(b)〉 the
output of party A on execution of the protocol between A with input a, and B with in-
put b. By ViewA〈A(a), B(b)〉, we denote the view of party A consisting of the protocol
transcript along with its random tape.

Definition 3. An interactive protocol (P,V) between a deterministic polynomial time
prover P and PPT verifier V, for a language L is a deterministic prover b-bounded-
auxiliary-input zero knowledge argument if the following holds.

7

Completeness: For every x ∈ L,

Pr[OutV〈P(x,w),V(x)〉 = 1] = 1 .

Soundness: For any non-uniform PPT P∗, there exists a negligible function negl(·)
such that for all λ ∈ N and x ∈ {0, 1}λ \ L,

Pr[OutV〈P∗,V(x)〉 = 1] ≤ negl(λ) .

Zero Knowledge: There exists a PPT simulator Sim, such that for every b-non-uniform
PPT verifier V∗ of running time at most t(λ),{

ViewV∗〈P(x,w),V∗〉
}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

≈c
{
Sim(V∗, 1t, x)

}
λ∈N,
x∈L∩{0,1}λ,
w∈RL(x)

.

Remark 1 (Universal Simulation). In the above definition, there exists one universal
simulator Sim that gets the code of the verifier as input. We note that this definition is
known [16] to imply the alternative definition of (bounded) auxiliary-input zero knowl-
edge that requires that any for any t-time V∗ there is a PPT simulator SimV∗ such that
given (bounded) auxiliary input z, SimV∗(x, z, 1

t) simulates V∗(z).

2.2 Indistinguishability Obfuscation (IO)

We now give a definition of indistinguishability obfuscator for Turing Machines, which
can be constructed from indistinguishability obfuscators for circuits [5, 14, 20].

Definition 4 (Indistinguishability Obfuscator for Turing Machines). A succinct in-
distinguishability obfuscator for Turing machines consists of a PPT machine iOM that
works as follows:

– iOM takes as input the security parameter 1λ, the Turing machine M to obfuscate,
an input length n, and time bound t.

– iOM outputs a Turing machine M̃ which is an obfuscation of M corresponding to
input length n and time bound t. M̃ takes as input x ∈ {0, 1}n.

The scheme should satisfy the following requirements:

Correctness For all λ ∈ N, for all M ∈ Mλ, for all inputs x ∈ {0, 1}n, time bounds
t′ such that t′ ≤ t, let y be the output of M(x) after at most t steps, then

Pr
[
M̃← iOM(1λ, 1n, 1log t,M) : M̃(x) = y

]
= 1 .

Security It holds that{
iOM(1λ, 1n, 1log t,M0)

}
λ,t,n,
M0,M1

≈c
{
iOM(1λ, 1n, 1log t,M1)

}
λ,t,n,
M0,M1

,

where λ ∈ N, n ≤ t ≤ 2λ, and M0,M1 are any pair of machines of the same size
such that for any input x ∈ {0, 1}n both halt after the same number of steps with
the same output.

Efficiency and Succinctness We require that the running time of iOM and the length
of its output, namely the obfuscated machine M̃, is poly(|M|, log t, n, λ). We also
require that the running time t̃x of M̃(x) is poly (tx, |M|, n, λ), where tx is the
running time of M(x).

8

2.3 Witness Encryption

The following definition of witness encryption is taken from [13].

Definition 5. A witness encryption scheme for an NP language L, with corresponding
witness relation RL, consists of the following two polynomial-time algorithms:

Encryption. The probabilistic algorithm WE.Enc(1λ, x,m) takes as input a security
parameter 1λ, a string x ∈ {0, 1}∗, and a message m ∈ {0, 1}. It outputs a cipher-
text ct.

Decryption. The algorithm WE.Dec(ct, w) takes as input a ciphertext ct, a string w ∈
{0, 1}∗. It outputs either a message m ∈ {0, 1}.

The above algorithms satisfy the following conditions:

– Correctness. For any security parameter λ, for any m ∈ {0, 1}, and for any
(x,w) ∈ RL, we have that

Pr
[
ct←WE.Enc(1λ, x,m) : WE.Dec(ct, w) = m

]
= 1 .

– Security. For any non-uniform PPTadversary A, there exists a negligible function
negl(·) such that for any λ ∈ N, and any x /∈ L, we have that{

WE.Enc(1λ, x, 0)
}
λ∈N,x/∈L ≈c

{
WE.Enc(1λ, x, 1)

}
λ∈N,x/∈L .

We note that the above scheme can be extended to encrypt strings, rather than just
bits, by encrypting each bit independently. Witness encryption for all of NP can be
constructed from IO for circuits [13].

2.4 Non-interactive Witness Indistinguishability (NIWI)

Definition 6 ([2]). A non-interactive witness-indistinguishable proof system NIWI =
(NIWI.Prov,NIWI.Ver) for an NP relation RL consists of two polynomial-time algo-
rithms:

– a probabilistic prover NIWI.Prov(x,w, 1λ) that given an instance x, witness w,
and security parameter 1λ, produces a proof π.

– a deterministic verifier NIWI.Ver(x, π) that verifies the proof.

We make the following requirements:

Completeness for every λ ∈ N, (x,w) ∈ RL,

Pr
[
π ← NIWI.Prov(x,w, 1λ) : NIWI.Ver(x, π) = 1

]
= 1

Soundness for every x /∈ L and π ∈ {0, 1}∗,

NIWI.Ver(x, π) = 0 .

Witness Indistinguishability It holds that{
NIWI.Prov(x,w0, 1

λ)
}
λ,x,
w0,w1

≈c
{
NIWI.Prov(x,w1, 1

λ)
}
λ,x,
w0,w1

,

where λ ∈ N, x ∈ {0, 1}λ, w0, w1 ∈ RL(x).

9

2.5 Collision Resistance against Bounded Non-uniform Adversaries

We describe here the notion of keyless collision resistance against quasi-polynomial
b-non-uniform adversaries, extending the definition in [3].

Syntax. A keyless collision resistance hash function is associated with an input function
`(λ) > λ and a polynomial time algorithm H such that H(1λ, X) is a deterministic
algorithm that takes as input an X ∈ {0, 1}`(λ) and outputs a hash Y ∈ {0, 1}λ.

Definition 7. We say that H is collision-resistant against quasi-polynomial adversaries
if for any b-non-uniform probabilistic 2poly(log λ)-time A, there exists a negligible func-
tion negl, such that for any λ ∈ N,

Pr
[
(x1, x2)← A(1λ) : x1 6= x2,H(1λ, x1) = H(1λ, x2)

]
≤ negl(λ) .

2.6 Non-interactive Commitment Schemes

We define below bit commitment schemes

Definition 8 (Non-interactive Bit Commitment Schemes). A polynomial time com-
putable function: Com : {0, 1}×{0, 1}λ 7→ {0, 1}`(λ) is a bit commitment if it satisfies
the properties below:

Binding: For any r, r′ ∈ {0, 1}λ, b, b′ ∈ {0, 1}, if Com(b; r) = Com(b′; r′) then
b = b′.

Computational Hiding: The following holds:{
Com(0) : r←$ {0, 1}λ

}
≈c
{
Com(1; r) : r←$ {0, 1}λ

}
.

where computational indistinguishability is with respect to arbitrary non-uniform
PPT distinguisher.

We note that the above scheme can be extended to commit to strings, rather than just
bits, by committing to each bit independently. Looking ahead, we require that the un-
derlying string that is committed can be extracted in quasi-polynomial time. Such com-
mitments can be constructed from subexponentiall-secure injective one-way functions
(which in turn can be constructed from subexponential IO and one-way functions).

2.7 Explainable Verifiers

We define here the a variant of the notion of explainable verifiers [7] called robustly-
explainable verifiers. Roughly speaking, explainable verifiers are ones whose messages
almost always lie in the support of the honest verifier messages (or are abort). Robustly-
explainable verifiers are such where this occurs when they use random coins sampled
from an arbitrary efficient sampler (and not necessarily the uniform distribution).

Definition 9 (Explainable Message). Let 〈P,V〉 be a two-message protocol. We say
that a given message m is explainable with respect to x, if there exist honest verifier
coins r such that m ∈ {V (x; r),⊥}.

10

Definition 10 (Robustly-Explainable Verifier). Let 〈P,V〉 be a protocol. A b-non-
uniform PPT verifier V∗ using `(λ) random coins is robustly-explainable if for any
PPT sampler R on `(λ) bits, there exists a negligible negl(λ) such that for any λ ∈ N
and x ∈ λ,

Pr
[
r ← R(1λ),m = V∗(x; r) : m is explainable

]
≥ 1− negl(λ) .

2.8 Pseudorandom Generators

Definition 11 (Psedudorandom Generators). A deterministic function PRG : {0, 1}λ →
{0, 1}p(λ) is called a pseudorandom generator (PRG) if:

1. (efficiency): PRG can be computed in polynomial time,
2. (expansion): p(λ) > λ,
3.
{
x← {0, 1}λ : PRG(x)

}
≈c

{
Up(λ)

}
, where Up(λ) is the uniform distribution

over p(λ) bits.

3 A Deterministic-Prover Zero-Knowledge Protocol

In this section we present our deterministic prover zero knowledge (DPZK) proto-
col. As explained in the introduction, we start by describing the protocol for robustly-
explainable verifiers. We then show how to compile this protocol to one that is secure
against malicious verifiers.

3.1 DPZK for Robustly-Explainable Verifiers

We use the following components for the deterministic prover zero knowledge (DPZK)
protocol for an NP language L against b-non-uniform explainable verifiers.

– A witness encryption scheme (WE.Enc,WE.Dec) for language L.
– An indistinguishability obfuscation (IO) scheme iOM for Turing Machines (TM).

Additionally, we will use the machine described below that outputs the hardcoded secret
u given as input the description of a “short” Turing machine that outputs a hardcoded
public value R.

Machine: Prog

Hardcoded: R, u
Input: M ∈ {0, 1}ρ(λ)

if M outputs R
output u

else
output ⊥

In what follows, let ρ(λ) = b(λ)+λ+ω(1), `(λ) = ρ(λ)+λ. The protocol is described
in Figure 1. We prove the properties of the protocol below.

11

Protocol: DPZK for robustly-explainable verifiers

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V computes the first message as

(a) R←$ {0, 1}`(λ)
(b) t := λlog λ

(c) u←$ {0, 1}λ

(d) P̃rog← iOM
(
1λ, 1ρ, 1log t,Prog [R, u]

)
(e) ct←WE.Enc(u, x)

send (R, ct, P̃rog) to the prover P.

2. Prover P computes the second message as

(a) ũ := WE.Dec(ct, x, w)
send ũ to the verifier V.

3. Verifier V performs the check

(a) if ũ = u, accept. Else, reject.

Fig. 1: Deterministic prover zero-knowledge for robustly-explainable verifiers.

Completeness. Completeness follows from the correctness of witness encryption.

Soundness. We now prove that the above protocol is sound against computationally
bounded provers.

Proposition 1. Assuming security of the indistinguishability obfuscation scheme and
the witness encryption scheme, the protocol is sound.

Proof. We consider a sequence of hybrids transitioning from the real protocol to an
ideal protocol where the probability that the prover convinces the verifier of accepting
is clearly negligible.

Hyb0: This is the real protocol.
Hyb1: In this hybrid, we modify the program Prog to Prog′ that always output ⊥.

By our choice of parameters and a union bound, the probability that there exists
a machine M ∈ {0, 1}ρ that outputs R is at most 2ρ−` = 2−λ. Therefore, except
with negligible probability Prog and Prog′ are functionally equivalent. The indis-
tinguishability of Hyb1 and Hyb0 then follows from the indistinguishability of the
IO scheme.

12

Hyb2: In this hybrid, we additionally change the ciphertext ct of the witness encryption
scheme to be the encryption of 0.
Since x /∈ L, the indistinguishability between Hyb2 and Hyb1 follows from the
security of the witness encryption scheme.

It is left to observe that in Hyb2 the prover obtains no information about u, and thus
convinces the verifier with probability at most 2−λ.

Zero Knowledge. We prove

Proposition 2. Assuming the existence of pseudorandom generators, the protocol is
zero knowledge against b-non-uniform verifiers.

Proof. We describe the simulation strategy below. In what follows V∗ is a b-non-uniform
malicious verifier of polynomial running time at most t(λ). Additionally, let k be the
amount of random coins r∗ used by V∗. The simulator Sim will use a PRG PRG :
{0, 1}λ 7→ {0, 1}k.

Sim(V∗, 1t, x):

1. Construct verifier V∗s that has the seed s hardwired. V∗s computes PRG(s) and uses
it as random coins for V∗. Additionally, V∗s truncates V∗’s output to R.

2. Initialize V∗ with random coins PRG(s).
3. Given P̃rog from V∗, use the description of V∗s as input to P̃rog and obtain u.
4. u is then used as the simulated prover message, along with verifier randomness

PRG(s).

First, consider an execution between the prover and augmented verifier 〈P(x,w),V∗s〉,
and let v and p denote the verifier and prover messages in such an execution. Then by
pseudorandomness of PRG,

ViewV∗〈P(x,w),V∗〉 ≈c p,PRG(s) .

Next, by the fact that V∗ is robustly explainable, we know that except with negligible
probability, v = (R, ct, P̃rog) is explainable; namely, has the structure prescribed by
the honest verifier algorithm. Noting that V∗s is a program of length b + λ + O(1) <
ρ(λ) and running time at most t(λ) that outputs R. By the fact that v is explainable,
P̃rog(V∗s) = WE.Dec(ct, x, w). It follows that

p,PRG(s) ≈s Sim(V∗, 1t, x) ,

and overall
ViewV∗〈P(x,w),V∗〉 ≈c Sim(V∗, 1t, x) ,

as required.

13

3.2 From Explainable to Malicious Verifiers

In this section we give generic compilers going from robust-explainable to malicious
verifiers. These compilers were constructed in [7] where they were used to enforce
explainability and in [3] where they were used in a different context. We prove that these
compilers, in fact, enforce robust explainability. The statements, and correspondingly
the underlying assumptions, change based on whether we want a DPZK for NP∩coNP,
or for all of NP. We discuss the two cases separately.

3.2.1 DPZK for NP ∩ coNP

We consider languages L ∈ NP∩coNP, which in turn means that in addition to relation
RL, there is also a NP-relation RL to certify that a statement x /∈ L.
We use the following primitives in our construction:

– A two-message deterministic-prover zero-knowledge (DPZK) protocol (eP, eV)
secure against robustly-explainable verifiers. Let the verifier and prover messages
be denoted by v and p, respectively.

– A non-interactive witness indistinguishable proof (NIWI) (NIWI.Prov,NIWI.Ver)
for the language

LNIWI =
{

(v, x)
∣∣∣ ∃(r, w̄) s.t. v = eV(x; r) OR RL(x, w̄) = 1

}
,

namely, either the verifier’s message is explainable, or the statement is not in the
language. Henceforth, we shall refer to the second half of the ‘OR’ statement, that
the statement is not in the language, to be the trapdoor statement.

The protocol is presented in Figure 2.

Completeness. Completeness follows directly from the completeness of the underlying
protocol and the NIWI proof.

Zero Knowledge. We show how any b-non-uniform malicious verifier V∗ for the above
protocol can be converted to a robustly-explainable b + O(1)-non-uniform verifier
against the original protocol.

Claim 1. There exist an efficient simulator S and a verifier eV∗ such that

1. eV∗ is a robustly explainable verifier against 〈eP, eV〉.
2. eV∗ is (b+O(1))-non-uniform and efficiently constructable from eV∗.
3. For every x ∈ L,

ViewV∗〈P(x,w),V∗〉 ≡ S(VieweV∗〈eP(x,w), eV∗〉) .

Proof. We construct S, eV∗.

eV∗:

1. Emulates V∗ and obtains (v,wi).

14

Protocol: (P,V) for L ∈ NP ∩ coNP

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V computes the first message as

(a) r←$ {0, 1}p(n)
(b) v := eV(x; r)
(c) xNIWI := (v, x)
(d) wNIWI := (r,⊥)
(e) wi← NIWI.Prov(xNIWI, wNIWI)
send (v,wi) to the prover P.

2. Prover P computes the second message as

(a) x̃NIWI := (v, x)
(b) if NIWI.Ver(x̃NIWI,wi) 6= 1, output ⊥.
(c) p := eP(x,w, v).
send p to the verifier V.

3. Verifier V performs the check

(a) if eV(x, p; r) = 1, accept. Else, reject.

Fig. 2: Deterministic-prover zero knowledge for L ∈ NP ∩ coNP.

2. If wi is not a valid proof for the statement (v, x), send eP the message ⊥.
3. Else, send eP v, and get p.
4. Complete emulation of V∗ with message p.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness
of eV∗,

2. as well as the received prover message p (possibly ⊥).

The third property asserted in the claim follows by construction of S, eV∗ and the
fact that the prover P checks on its own whether the verifier’s proof is accepting. It
is left to see that eV∗ is robustly explainable, (b + O(1))-non-uniform, and efficiently
constructable from V∗. Robust explainability follows directly by the (unconditional)
soundness of the NIWI — eV∗ either outputs an explainable message or⊥. (b+O(1))-
non-uniformity and efficient construction follow from the fact that V∗ is b-non-uniform
and eV∗ uses it as a black box and described by the four code lines above.

15

Claim 1 directly gives rise to a zero knowledge Sim for the protocol (P,V). In what
follows, let eSim be the simulator of the underlying DPZK protocol against robustly-
explainable verifiers.

Sim(V∗, 1t, x):

1. Construct the explainable verifier eV∗.
2. Output S(eSim(eV∗, 1t, x).

The validity of the simulator Sim follows directly from that of eSim and Claim 1.

Soundness. For soundness, we show that any cheating prover P∗ breaking the sound-
ness of the above protocol, can be converted into a prover eP∗ that breaks the soundness
of the underlying protocol. eP∗ will have the witness w̄ for x /∈ L hardwired.

eP∗:

1. Obtain message v from eV.
2. Use w̄ as the witness to compute the NIWI proof wi.
3. Emulate P∗ with (v,wi) and obtain p.
4. Send p to the verifier eV.

First note that since L ∈ NP ∩ coNP, the statement x /∈ L has a witness w̄ as
required. The only difference in the views of P∗ and its emulated version in eP∗ is
in the NIWI proof. From the witness indistinguishability of the NIWI, P∗’s success
probability does not change by more than a negligible amount.

3.2.2 DPZK for all of NP

As mentioned to in the introduction, for the case of NP, we require stronger primitives.
Specifically, we use the following primitives for our construction:

– A two round deterministic prover zero knowledge (DPZK) protocol (eP, eV) se-
cure against robustly-explainable verifiers. Let the verifier and prover messages be
denoted by v and p, respectively.

– A non-interactive commitment scheme Com with perfect binding and computa-
tional hiding. Additionally, as mentioned earlier, we require that the plaintext un-
derlying a commitment can be extracted in quasi-polynomial time. Such commit-
ments can be constructed from subexponentiall-secure injective one-way functions
(which in turn can be constructed from subexponential IO and one-way functions).

– A keyless collision-resistant hash function H secure against (b+O(1))-non-uniform
quasi-polynomial time adversaries.

– A non-interactive witness-indistinguishable proof (NIWI) (NIWI.Prov,NIWI.Ver)
for the language

LNIWI =
{

(v, x, c)
∣∣∣ ∃(r, rCom, x1, x2) s.t. v = eV(x; r) OR(

c = Com((x1, x2); rCom) ∧ x1 6= x2 ∧ H(1λ, x1) = H(1λ, x2)
)}

,

16

namely, either the verifier’s message is explainable, or the commitment sent by the
verifier contains a collision in H. As before, we shall refer to the second half of the
‘OR’ statement as the trapdoor statement.

The protocol is presented in Figure 3.

Protocol: (P,V) for L ∈ NP

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V compute the first message as

(a) r←$ {0, 1}p(n)
(b) c := Com(0; rCom)
(c) v := eV(x; r)
(d) xNIWI := (x, v, c,H)
(e) wNIWI := (r,⊥,⊥)
(f) wi← NIWI.Prov(xNIWI, wNIWI).

send (v,wi, c) to the prover P.

2. Prover P computes the second message as

(a) x̃NIWI := (x, v, c,H)
(b) if NIWI.Ver(x̃NIWI,wi) 6= 1, output ⊥.
(c) p := eP(x,w, v).
send p to the verifier V.

3. Verifier V performs the check

(a) if eV(x, p; r) = 1, accept. Else, reject.

Fig. 3: Deterministic prover zero-knowledge for L ∈ NP.

Completeness. Follows directly from the completeness of the underlying protocol and
the NIWI.

Zero Knowledge. For zero knowledge, we follow the same strategy as in the previous
subsection and show how any b-non-uniform verifier V∗ for the above protocol can
be converted into a robustly-explainable (b + O(1))-non-uniform verifier against the
original protocol.

17

We argue that Claim 1 also holds for this protocol with the exact same S and eV∗.
The only difference is in the proof of robust explainability of the verifier eV∗, which is
based on complexity leveraging.

Robust Explainability of eV∗. Fix some PPT sampler R for coins for eV∗ and assume
toward contradiction that with noticeable probability it outputs a message v that is not
explainable when initialized with random coins sampled using R. We show that there
exists a (b + O(1))-non-uniform quasi-polynomial time attacker that finds a collision
in H. Recall the eV∗ only outputs a non-⊥ message provided that the emulated V∗

produces a valid NIWI. By the unconditional soundness of the NIWI, it follows that
whenever eV∗ outputs a non-explainable message, it must be that c is a valid commit-
ment to a collision in H. This collision is then be extracted from the commitment in
quasi-polynomial time. Note that the corresponding collision finder can be described
by eV∗ and R, which have non-uniform description of size b+O(1).

Zero knowledge of (P,V) now follows from that of (eP, eV) and the existence of S
and eV∗, exactly as in the previous subsection.

Soundness. We show that any cheating prover P∗ breaking the soundness of the above
protocol, can be converted into a prover eP∗ that breaks the soundness of the underlying
robustly-explainable protocol. The reduction is similar to that in the previous subsection
with some required changed. eP∗ will have a collision (x1, x2) as (part of the) witness
for the trapdoor statement hardwired in its code.

eP∗:

1. Obtain message v from eV.
2. Compute c = Com(x1, x2; rCom).
3. Use (x1, x2, rCom) as the witness to compute the NIWI proof wi.
4. Emulate P∗ with (v,wi) and obtain p.
5. Send p to the verifier eV.

The difference in the views of P∗ and its emulated version in eP∗ is the commit-
ment to (x1, x2) rather than zero, and in the witness used for the NIWI proof. Using the
hiding of the commitment (against non-uniform PPT attackers) and the witness indis-
tinguishability of the NIWI, P∗’s success probability does not change by more than a
negligible amount.

Remark 2. We emphasize that for soundness, we require that all the underlying prim-
itives to are secure against non-uniform adversaries since our soundness reduction is
non-uniform.

4 Predictable Arguments and DPZK

In this section, we show that any deterministic-prover zero-knowledge (DPZK) argu-
ment against bounded-non-uniform verifier can be made predictable. The notion of
predictable arguments was introduced in [12], where it is in particular shown to imply

18

witness encryption. In the next section, we address additional properties of DPZK that
follow from this connection.

We start by recalling the definition of predictable arguments (PA) [12]. While they
also address predictable argument of knowledge, we restrict attention to predictable
arguments that are only sound.

Definition 12 (Predictable Argument). A ρ-round predictable argument is an argu-
ment specified by a tuple of algorithms (Chal,Resp) as described below:

1. The verifier PA.V samples (c, b) ← Chal(1λ, x), where c := (c1, · · · , cρ) and
b := (b1, · · · , bρ).

2. For all i ∈ [ρ] in increasing sequence:
(a) PA.V sends ci to the PA.P;
(b) The prover PA.P computes ai := Resp(1λ, x, w, c1, · · · , ci) and sends ai to

PA.V.
(c) PA.V checks if ai = bi, and returns 0 otherwise.

3. If all challenges are answered correctly, PA.V returns 1.

The protocol is required to satisfy:

Correctness. There exists a negligible function negl(·) such that for all x ∈ L such
that RL(x,w) = 1, we have

Pr[OutPA.V〈PA.P(x,w),PA.V(x)〉 = 1] ≥ 1− negl(λ) .

Soundness. For any non-uniform PPT prover P∗, there exists a negligible function
negl(·) such that for all x /∈ L,

Pr[〈PA.P∗,PA.V(x)〉 = 1] ≤ negl(λ) .

A deterministic-prover zero-knowledge predictable argument (PA-DPZK) is a deterministic-
prover zero-knowledge argument that is also a predictable argument.

We prove the following:

Theorem 4. Let (P,V) be a deterministic-prover zero-knowledge argument forL against
bounded-non-uniform verifiers. There exists a verifier V′ such that (P,V′) is a pre-
dictable argument.

Note that since we do not change the honest prover P it follows that (P,V′) is also
deterministic-prover zero knowledge against the same class of verifiers.

Relying on the following result by Faonio, Nielsen, and Venturi,

Theorem 5 ([12]). If there exists a Predictable Argument (PA) for a language L, then
there exists a witness encryption scheme for L.

our theorem holds for all λΩ(1)-non-uniform verifiers, and we deduce

Corollary 3. If there exists a deterministic-prover zero-knowledge argument forL against
λΩ(1)-non-uniform verifiers, then there exists a witness encryption scheme for L.

19

We now proceed with the proof.

Proof of Theorem 4. Let (P,V) be a ρ-round DPZK argument for L against b-non-
uniform verifiers, for b(λ) ≥ 2λ + ω(1). Let PRG : {0, 1}λ → {0, 1}` be a pseu-
dorandom generator, where `(λ) is the amount of coins used by V. For a given seed
s ∈ {0, 1}λ, we define the deterministic verifier Vs(x) that derives coins r = PRG(s)
for V then emulates V(x; r).

The transformed verifier V′ is presented in Figure 4.

The New Verifier V′

Input: x, security parameter 1λ

1. Sample s←$ {0, 1}λ and construct Vs.
2. Sample {p̃i}ρi=1 ← Sim(Vs, 1

t, x), where t is the running time of Vs.
3. Emulate an execution of Vs(x) with prover messages {p̃i}ρi=1; let {ṽi}ρi=1 be the

resulting verifier messages.
4. If the verifier Vs rejects in the above execution, reject.
5. Proceed interacting with the prover P: at each round i ∈ [ρ]:

– send vi(= ṽi) to P,
– if the prover answers with pi = p̃i, proceed to the next round,
– else, reject.

6. Accept.

Fig. 4: The Verifier in the Predictable Protocol

First, note that the protocol satisfies the structural requirement of a predictable argu-
ment. We now move to prove completeness and soundness with respect to the new
verifier V′.

Completeness. We show that (P,V′) is complete based on (a) the completeness of
(P,V′); (b) zero knowledge of (P,V′); and (c) pseudorandomness of PRG.

Fix any statement x ∈ L and corresponding prover witness w. We need to show that
in an interaction 〈P(x,w),V′(x)〉, V′ rejects with negligible probability. First, by the
completeness of (P,V) and the pseudorandomness of PRG, an interaction 〈P(x,w),Vs(x))〉
is accepting except with negligible probability over the choice of s. Noting that Vs(x)
is b-non-uniform, we can invoke zero knowledge, to deduce that the simulated prover
messages {p̃i}ρi=1 make Vs accept with overwhelming probability over the choice of s.

We next argue that the deterministic prover P(x,w) produces messages {pi = p̃i}ρi=1

with overwhelming probability (over the coins of Sim that sampled them). This again
follows from zero knowledge. Indeed, we can consider a zero-knowledge distinguisher

20

that has (x,w, s) hardwired, and given messages pi emulates a conversation of the de-
terministic P(x,w) with Vs(x), and outputs “real” if the corresponding prover messages
coincide with pi, or “simulated” otherwise. If the simulated messages p̃i are inconsis-
tent with the real prover messages pi, the distinguisher will tell them apart.

Soundness. We show that (P,V′) is sound based on (a) the pseudorandomness of PRG;
and (b) the soundness of (P,V).

First, note that by pseudorandomness the protocol (P,Vs) where s is chosen at ran-
dom is also sound, since otherwise a cheating prover can be directly used to distinguish
real verifier coins form pseudorandom ones. Next, note that any cheating prover against
V′ directly implies a cheating prover against Vs (for a random s) by construction. In-
deed, V′ emulates Vs and accepts only when the prover is consistent with a simulated
strategy p̃i that convinces Vs.4 Soundness follows.

5 Round Reduction and Laconicity

Faonio, Nielsen, and Venturi [12] proved that the round complexity of any predictable
argument can be collapsed to one (two messages overall) and that any predictable argu-
ment can be made laconic — namely, the prover message is a single bit (or more gener-
ally ` bits to achieve soundness≈ 2−`). In this section, we review their transformations
and show that they preserve zero knowledge against bounded-non-uniform verifiers. As
a corollary of this and the previous section, we deduce that any deterministic-prover
zero knowledge argument against bounded-non-uniform verifiers can be collapsed to
one round and made laconic.

5.1 Round Reduction

We start by recalling the round-collapsing transformation from [12]. In what follows,
let (P′,V′) be a ρ-round predictable argument, the following transformation provides
a one round predictable argument (P,V) with a large soundness error (to be dealt with
later on). Roughly, the verifier randomly chooses a “cut-off” point i∗ for the underlying
protocol, and sends all the verifier messages up to, and including, the i∗-th round verifier
message to the prover. Being a predictable argument, the verifier is able to do so without
requiring the corresponding intermediate prover messages. The prover then iteratively
computes the response for each round of the underlying protocol and send over all
the prover messages with the verifier accepting if and only if each prover messages
corresponds to the predicted prover message.

In [12], it is proven that this protocol has soundness error at most 1−ρ−1+negl(λ).
The protocol is then repeated ω(ρ log λ) times to achieve negligible soundness, using a
parallel repetition theorem for one round arguments [4].

4 Here we implicitly rely on the fact that the simulator produces an accepting transcript for the
deterministic verifier Vs. The deterministic nature of the verifier ensures that the simulator can-
not manipulate the verifier’s randomness and therefore must produce an accepting transcript is
consistent with V(·;PRG(s)).

21

Protocol: One Round (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V

(a) Samples i∗ ←$ [ρ],
(b) Samples (vi, bi)i∈[ρ] ←$V(x).
(c) Sends v1, · · · , vi∗ to the prover P.

2. Prover P

(a) For each i ∈ [i∗], compute pi := P(x,w, {vj}j∈[i]).
(b) Send p1, · · · , pi∗ to the verifier V.

3. Verifier V accepts if and only if for all j ∈ [i∗], pj = bj .

Fig. 5: Round collapsing transformation.

Proposition 3. The round collapsing transformation preserves zero knowledge against
b-non-uniform verifiers.

Proof. We prove the proposition in two steps. First, we show that the transformation in
Figure 5 preserves zero-knowledge. Then we show that two-message zero-knowledge
against bounded-non-uniform adversaries is closed under parallel repetition.

To prove the first part, let V∗ be a b-non-uniform verifier. We show the following
claim.

Claim 2. There exist an efficient simulator S and a verifier V′∗ against 〈P′,V′〉 such
that

1. V′∗ is (b+O(1))-non-uniform and efficiently constructable from V∗.
2. For every x ∈ L,

ViewV∗〈P(x,w),V∗〉 ≡ S(ViewV′∗〈P′(x,w),V′∗〉) .

This claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′ of
(P,V) on V′∗ and then invokes S.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulates V∗ and obtains (v1, . . . , vi∗).

22

2. At each round i ∈ [i∗], forward vi to P′.
3. Abort after round i∗.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness
of V′∗),

2. as well as the received prover messages p1, . . . , pi∗ .

The second property asserted in the claim follows by construction of S,V′∗ and
the construction of P from P′ in Figure 5. It is left to see that V′∗ is (b + O(1))-non-
uniform and efficiently constructable from V∗. (b+O(1))-non-uniformity and efficient
construction follow from the fact that V∗ is b-non-uniform and V′∗ uses it as a black
box and described by the three code lines above.

We now prove that closure under parallel repetition.

Claim 3. For any two-message zero knowledge system (P,V) against b-non-uniform
verifiers and a any polynomial `, the `-fold parallel repetition (P⊗`,V⊗`) is zero knowl-
edge against (b−O(log λ))-non-uniform verifiers.

Proof. In what follows, let Sim be the simulator for the original argument (P,V), and
let V∗⊗` be any (b − λ − O(log λ))-non-uniform verifier of polynomial running time
t(λ). We now describe the simulator Sim⊗` for (P⊗`,V⊗`). The simulator will use a
pseudorandom generator PRG : {0, 1}λ → {0, 1}k, where k is the amount of coins
used by V∗⊗`.

Sim⊗`(V
∗
⊗`, 1

t, x):

1. Sample a s←$ {0, 1}λ.
2. For each i ∈ [`]:

(a) Construct the deterministic verifier V∗s,i that first derives coins PRG(s), uses
them to emulate V∗⊗`, obtains v1, . . . , v`, and outputs vi. Let t′ = t+ poly(λ)
be a bound on its running time.

(b) Sample p̃i←$Sim(V∗s,i, 1
t′ , x).

3. Output p̃1, . . . , p̃`,PRG(s).

We now prove the validity of Sim⊗`. First, consider an execution between the prover
P(x,w) and verifier V∗s = (V∗s,1, . . . ,V

∗
s,`), and let p1, . . . , p` denote the prover mes-

sages in such an execution. Then by pseudorandomness of PRG,

ViewV∗⊗`
〈P(x,w),V∗⊗`〉 ≈c p1, . . . , p`,PRG(s) .

Noting that V∗s,i is a program of length at most b and running time at most t′(λ), we
can invoke the simulation guarantee (P,V). Specifically, we can deduce that

p1, . . . , p`,PRG(s) ≈c p̃1, . . . , p̃`,PRG(s) .

23

This can be shown by a standard hybrid argument and follows from the fact that pi ≈c
p̃i = Sim(V∗s,i, 1

t′ , x) and that the distinguisher can have (x,w, s) hardwired in order
to simulate any other pj or p̃i. Overall

ViewV∗⊗`
〈P(x,w),V∗⊗`〉 ≈c Sim⊗`(V∗⊗`, 1t, x) .

This complete the proof of Proposition 3.

5.2 Laconic Prover Messages

As in the previous section, we start by recalling the laconic prover transformation from
[12]. In what follows, let (P′,V′) be a one round predictable argument, the following
transformation provides a laconic prover predictable argument (P,V) with a soundness
error negligibly close to 1/2, where the prover sends only a single bit. Roughly, the
verifier samples a sufficiently large random string γ and sends it to the prover along with
the verifier message. The prover responds with a single bit corresponding to the inner
product of γ and its own response to the verifier message, with the verifier accepting if
only if the bit matches its own computed inner product of γ with the predicted prover
message.

Protocol: Laconic Prover (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

1. Verifier V

(a) Sample (v, b)←$V′(x).
(b) Sample γ ←$ {0, 1}|b|.
(c) Send v, γ to the prover P.

2. Prover P

(a) Compute p := P′(x,w, v).
(b) Send q := 〈p, γ〉 to the verifier V.

3. Verifier V accepts if and only if q = 〈b, γ〉.

Fig. 6: Laconic prover transformation.

In [12], it is proven that this protocol has soundness error at most 1
2 + negl(λ). As

we have seen in the previous subsection (Claim 3), the soundness can be amplified in a

24

manner that preserves zero knowledge. Specifically, ` repetitions yields a protocol with
soundness error at most 2−` + negl(λ). Therefore, we focus on proving that a single
instance of the above transformation preserves zero knowledge.

Proposition 4. The round collapsing transformation preserves zero knowledge against
b-non-uniform verifiers.

Proof. Let V∗ be a b-non-uniform verifier. We show the following claim.

Claim 4. There exist an efficient simulator S and a verifier V′∗ against 〈P′,V′〉 such
that

1. V′∗ is (b+O(1))-non-uniform and efficiently constructable from V∗.
2. For every x ∈ L,

ViewV∗〈P(x,w),V∗〉 ≡ S(ViewV′∗〈P′(x,w),V′∗〉) .

This claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′ of
(P′,V′) on V′∗ and then invokes S.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulate V∗ and obtains (v, γ).
2. Forward v to P′.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the randomness
of V′∗),

2. as well as 〈p, γ〉, where p is the received prover message and γ is derived from the
randomness of V∗.

The proof is similar to that of Claim 2 in the previous subsection. The second prop-
erty asserted in the claim follows by construction of S,V′∗ and the construction of P
from P′. It is left to see that V′∗ is (b+O(1))-non-uniform and efficiently constructable
from V∗. (b+O(1))-non-uniformity and efficient construction follow from the fact that
V∗ is b-non-uniform and V′∗ uses it as a black box and described by the two code lines
above.

This completes the proof of Proposition 4.

Acknowledgments

Nir Bitansky is a member of the Check Point Institute of Information Security. Sup-
ported by the Alon Young Faculty Fellowship, by Len Blavatnik and the Blavatnik
Family foundation, and an ISF grant 18/484.

25

This work was done in part when Arka Rai Choudhuri was visiting Tel Aviv Univer-
sity and supported by the Check Point Institute of Information Security. He is also sup-
ported in part by DARPA/ARL Safeware Grant W911NF-15-C-0213, NSF Grants CNS-
1908181, CNS-1414023, CNS-1814919, NSF CAREER 1942789, Samsung Global Re-
search Outreach award, Johns Hopkins University Catalyst award and the Office of
Naval Research Grant N00014-19-1-2294.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS. pp. 106–115.
IEEE Computer Society Press (Oct 2001)

2. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (Aug 2003)

3. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg (Feb 2004)

4. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computa-
tionally sound protocols? In: 38th FOCS. pp. 374–383. IEEE Computer Society Press (Oct
1997)

5. Bitansky, N., Canetti, R., Garg, S., Holmgren, J., Jain, A., Lin, H., Pass, R., Telang, S.,
Vaikuntanathan, V.: Indistinguishability obfuscation for RAM programs and succinct ran-
domized encodings. SIAM J. Comput. 47(3), 1123–1210 (2018)

6. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way
functions. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 505–514. ACM Press (May / Jun
2014)

7. Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the black-box barrier.
In: Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1091–1102. ACM Press (Jun 2019)

8. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indis-
tinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 401–427. Springer, Heidelberg (Mar 2015)

9. Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by derandomization. In:
Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 592–606.
Springer, Heidelberg (Apr / May 2017)

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 45–64. Springer, Heidelberg (Apr / May 2002)

11. Dahari, H., Lindell, Y.: Deterministic-prover zero-knowledge proofs. Cryptology ePrint
Archive, Report 2020/141 (2020), https://eprint.iacr.org/2020/141

12. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In: Fehr, S. (ed.)
PKC 2017, Part I. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg (Mar 2017)

13. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–476. ACM
Press (Jun 2013)

14. Garg, S., Srinivasan, A.: A simple construction of iO for turing machines. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 425–454. Springer, Hei-
delberg (Nov 2018)

15. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM
J. Comput. 25(1), 169–192 (1996)

16. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. Journal
of Cryptology 7(1), 1–32 (Dec 1994)

26

https://eprint.iacr.org/2020/141

17. Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a laconic prover. In:
Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 334–
345. Springer, Heidelberg (Jul 2001)

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM Journal on Computing 18(1), 186–208 (1989)

19. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (Aug
2006)

20. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines
with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC. pp.
419–428. ACM Press (Jun 2015)

21. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167
(1994)

A Predictable Arguments from Honest-Verifier ZK

In Section 4, we showed how to transform any deterministic-prover zero-knowledge
(DPZK) protocol into one that is also a predictable argument (PA). In this section, we
show that if we start with a weaker notion of deterministic-prover honest verifier zero-
knowledge (DP-HVZK) 5 and the existence of an appropriate hard language, we can
transform the DP-HVZK protocol into a predictable argument. One caveat of this trans-
formation is that the languages of the DP-HVZK and PA in our transformation will be
related, but not identical. As long as the DP-HVZK we start from is for an expressive
enough class of languages (e.g. for NP ∩ coNP), we will get a PA for the same class.

Definition 13 (Hard-on-Average Language). A languageL is hard-on-average if there
exist two PPT samplers YL, NL where the support of the first is L and of the second is
{0, 1}∗ \ L such that{

x : x← YL(1λ)
}
λ∈N ≈c

{
x : x← NL(1λ)

}
λ∈N .

We establish the following theorem.

Theorem 6. If there exists a deterministic-prover honest-verifier zero-knowledge argu-
ment (DP-HVZK) for L∨Lhard, where Lhard is a hard-on-average language, then there
exists a predictable argument (PA) for L.

By the fact that both NP and NP ∩ coNP are closed under OR, we deduce the
following corollaries.

Corollary 4. Assuming DP-HVZK for all of NP and hard-on-average languages in NP,
there is a witness encryption scheme for all of NP.

Corollary 5. Assuming DP-HVZK for all of NP ∩ coNP and hard-on-average lan-
guages in NP ∩ coNP, there is a witness encryption scheme for all of NP ∩ coNP.

5 Only zero-knowledge against honestly behaving verifiers.

27

We note that hard-on-average languages in NP are known to follow from one-way
functions, and hard-on-average languages in NP ∩ coNP are known to follow from
one-way permutations.

We now proceed with the proof.

Proof of Theorem 6.. To build a predictable argument for L, we use the following prim-
itives:

– A hard language Lhard given by samplers (YLhard
, NLhard

).
– A ρ-round DP-HVZK protocol 〈P′,V′〉 for the language LOR defined below, where

the verifier V′ sends messages vi in round i, and the prover P′ sends message pi
in round i. We denote by Sim′ the corresponding honest-verifier simulator. The
language LOR is defined below,

LOR =
{

(x, x̃)
∣∣∣ ∃(w, w̃) s.t. RL(x,w) = 1 OR RLhard

(x̃, w̃) = 1
}

,

namely, either the statement x is in L, or x̃ is in Lhard.

The transformation is presented in Figure 7.
Before we proceed with the completeness and soundness, we note that the protocol
structure follows that of a predictable argument.

Completeness. We show that (P,V) is complete based on the honest verifier zero-
knowledge property of (P′,V′).

Fix any x ∈ L and the corresponding witness w, a yes-instance x̃ ∈ Lhard, and
let x′ = (x, x̃). Let p̃1, . . . , p̃ρ denote the messages and r̃ denote the verifier random-
ness simulated by Sim′(x′). We argue that the deterministic prover P(x,w) produces
messages {pi = p̃i}ρi=1 with overwhelming probability (over the coins of Sim′). This
follows from zero knowledge. Consider a distinguisher that has (x,w) hardwired, and
given messages pi and verifier randomness r̃ emulates a conversation of the determin-
istic P′(x,w) with V′(x; r̃), and outputs “real” if the corresponding prover messages
coincide with pi, or “simulated” otherwise. If the simulated messages p̃i are inconsis-
tent with the real prover messages pi, the distinguisher will tell them apart.

Soundness. We show that (P,V) is sound based on the completeness, soundness and
zero knowledge of (P′,V′), as well as the hardness of Lhard.

Fix any x /∈ L and cheating prover P∗. We prove that P∗ fails to convince V(x) of
accepting, except with negligible probability. We consider several hybrid experiments
transitioning from a real interaction to an ideal interaction. We will show that when
moving from one hybrid to the next the prover’s chance of convincing the verifier does
not decrease by more than a negligible amount. Then we will show that the chance that
V(x) is convinced the final (ideal interaction) hybrid is negligible.

Hyb0: This is a real interaction between P∗ and V(x).

28

Protocol: PA (P,V)

Common input: Input x ∈ L, security parameter 1λ

P’s auxiliary input: witness w such that (x,w) ∈ RL

Verifier V computes

1. x̃← YLhard(1
λ)

2. x′ := (x, x̃).
3.
(
{(vi, p̃i)}ρi=1 , r̃

)
← Sim′(x′).

sends x̃ to the prover P in the first message.

In each round i ∈ [ρ],

1. Verifier V sends vi to the prover P.
2. Prover P computes

(a) x′ := (x, x̃)
(b) w′ := (w,⊥)
(c) pi := P′(x′, w′, {vj}ij=1)
sends pi to the verifier V.

3. If for any i ∈ [ρ], pi 6= p̃i, V rejects.

If verifier V has not rejected in all rounds, accept.

Fig. 7: Transforming DP-HVZK to PA

Hyb1: In this hybrid, once V samples a simulated transcript p̃1, . . . , p̃ρ, r̃ ←$Sim(x′),
it emulates an execution of V′(x′; r̃) with the simulated prover messages and checks
whether it is accepting. If it is not, V rejects immediately.
We argue that the probability that P∗ convinces V(x) to accept in this hybrid is
negligibly close to that in Hyb0. For this purpose, we argue that with overwhelm-
ing probability Sim(x′) samples an accepting transcript. This is shown based on
completeness and zero knowledge of (P′,V′). Specifically, recall that V(x) sam-
ples x̃ ∈ Lhard and thus x′ = (x, x̃) ∈ LOR. By the completeness of (P′,V′), in an
interaction between V′(x′) and P′(x′, w′) where w′ = (⊥, w̃) and w̃ is a witness
for x̃, the prover convince V′ with overwhelming probability. It then follows from
zero knowledge of (P′,V′) that Sim(x′) also generates an accepting transcript with
overwhelming probability; otherwise, we can non-uniformly fix x̃, w̃ and construct
a distinguisher that violates zero knowledge.

Hyb2: In this hybrid, the verifier V does not insist that the prover P∗ is consistent with
the simulated messages p̃1, . . . , p̃ρ. Instead, it emulates V′(x′; r̃), and accepts if the
messages sent by P∗ convince V′.

29

The probability that V accepts in this hybrid is at least as large as the probability
it accepts in Hyb1. Indeed, any execution that would have been accepted in the
previous hybrid Hyb1 is in particular an execution in which V′(x′; r̃) is convinced
and thus is also accepted in the current Hyb2.

Hyb3: In this hybrid, the verifier V does not check that the simulated p̃1, . . . , p̃ρ, r̃
make V′(x′; r̃) accept. (In particular, the simulated prover messages p̃1, . . . , p̃ρ are
ignored altogether, and only the simulated coins r̃ are used).
The probability that V(x) accepts in this hybrid is at least as large as the probability
it accepts in the previous hybrid, as we have only removed a verifier test.

Hyb4: In this hybrid, instead of sampling simulated coins r̃ using Sim′(x′), V samples
truly random coins r.
The probability that V(x) accepts in this hybrids is negligibly close to that in the
previous hybrid. This follows from zero knowledge of (P′,V′). Indeed, since x′ ∈
LOR, the simulated honest verifier coins r̃ are pseudorandom.

Hyb5: In this hybrid, V(x) samples a no-instance x̃← NLhard
instead of a yes-instance.

By the indistinguishability of YLhard
and NLhard

, the probability that P∗ convinces
V(x) to accept in this hybrid is negligibly close to that in Hyb4.

We now argue that the probability that P∗ convinces V(x) to accept in Hyb5 is
negligible. Note that in Hyb5 it holds that both x /∈ L and x̃ /∈ Lhard and thus x′ =
(x, x̃) /∈ LOR. For P∗ to convince V(x) of accepting in Hyb5, it must convince V′(x′; r)
of accepting, when V′ uses truly random coins. By the soundness of (P′,V′) this occurs
with negligible probability. Soundness follows.

30

	Characterizing Deterministic-Prover Zero Knowledge

