
NIZK from SNARG

Fuyuki Kitagawa1, Takahiro Matsuda2, and Takashi Yamakawa1

1 NTT Secure Platform Laboratories, Tokyo, Japan
{fuyuki.kitagawa.yh, takashi.yamakawa.ga}@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

t-matsuda@aist.go.jp

Abstract. We give a construction of a non-interactive zero-knowledge
(NIZK) argument for all NP languages based on a succinct non-interactive
argument (SNARG) for all NP languages and a one-way function. The
succinctness requirement for the SNARG is rather mild: We only require
that the proof size be |π| = poly(λ)(|x|+ |w|)c for some constant c < 1/2,
where |x| is the statement length, |w| is the witness length, and λ is the
security parameter. Especially, we do not require anything about the
efficiency of the verification.

Based on this result, we also give a generic conversion from a SNARG to
a zero-knowledge SNARG assuming the existence of CPA secure public-
key encryption. For this conversion, we require a SNARG to have efficient
verification, i.e., the computational complexity of the verification algo-
rithm is poly(λ)(|x| + |w|)o(1). Before this work, such a conversion was
only known if we additionally assume the existence of a NIZK.

Along the way of obtaining our result, we give a generic compiler to up-
grade a NIZK for all NP languages with non-adaptive zero-knowledge to
one with adaptive zero-knowledge. Though this can be shown by care-
fully combining known results, to the best of our knowledge, no explicit
proof of this generic conversion has been presented.

1 Introduction

A non-interactive zero-knowledge (NIZK) argument [BFM88] is a non-interactive
argument system that enables a prover to convince a verifier of the truth of an
NP statement without revealing any information about its witness. Since it is
known that a NIZK in the plain model where no setup is needed exists only for
trivial languages [GO94], NIZKs are typically constructed in the common refer-
ence string (CRS) model where a trusted party generates a CRS and provides
it to both the prover and verifier. In the following, we refer to NIZKs in the
CRS model simply as NIZKs. Thus far, NIZKs for all NP languages have been
constructed based on various standard assumptions including factoring [FLS99],
pairings [CHK07,GOS12], and lattices [PS19]. Besides the theoretical impor-
tance on its own, NIZKs have found numerous applications in cryptography in-
cluding chosen-ciphertext security [NY90,DDN00], leakage- and tamper-resilient

cryptography [KV09,DHLW10,DFMV13], advanced types of digital signatures
[Cv91,RST01,BMW03], multi-party computation [GMW87], to name a few.

A succinct non-interactive argument (SNARG) is another notion of a non-
interactive argument, which satisfies succinctness, i.e., the proof size is (asymp-
totically) smaller than the statement size and the witness size. Micali [Mic00]
gave a construction of SNARGs for all NP languages in the random oracle
model. On the other hand, Gentry and Wichs [GW11] ruled out a black-box
reduction proving the adaptive soundness of a SNARG from any falsifiable as-
sumption in the standard model. Since then, there have been proposed con-
structions of SNARGs for all NP languages based on non-falsifiable assumptions
on pairings [Gro10,GGPR13,Gro16], lattices [BISW17,BISW18]3, or hash func-
tions [BCC+17]. On the application side, SNARGs have natural applications in
the context of verifiable computation. They also have been gaining a renewed
attention in the context of blockchains (e.g., [BCG+14,BBBF18]).4

As mentioned above, there are constructions of NIZKs based on various stan-
dard assumptions while there is no known construction of SNARGs based on a
standard assumption and there is even a strong impossibility for that. Given this
situation, we may think that a SNARG is a stronger primitive than a NIZK.
However, it is not known if a SNARG implies a NIZK, and they have been
treated as incomparable primitives. For example, Bitansky et al. [BCC+17] gave
a generic conversion from a SNARG to a zero-knowledge SNARG by additionally
assuming the existence of NIZKs. If a SNARG implies a NIZK, we could drop the
additional assumption of the NIZK. Besides, since both NIZKs and SNARGs are
important and fundamental primitives that have been well-studied, we believe
that it is interesting on its own if we find a new relationship between them.

1.1 Our Results

We give a construction of a NIZK for all NP languages based on a SNARG for
all NP languages and a one-way function (OWF). The succinctness requirement
for the SNARG is rather mild: We only require that its proof size be |π| =
poly(λ)(|x|+ |w|)c for some constant c < 1/2, where |x| is the statement length,
|w| is the witness length, and λ is the security parameter. Especially, we do not
require anything about the efficiency of the verification.

Based on this result, we also give a generic conversion from a SNARG to a
zero-knowledge SNARG assuming the existence of CPA secure public-key en-
cryption. For this conversion, we require a SNARG to have efficient verification,
i.e., the computational complexity of the verification algorithm is poly(λ)(|x| +
|w|)o(1) (and thus the proof size is also |π| = poly(λ)(|x|+ |w|)o(1)). Before this
work, such a conversion was only known if we additionally assume the existence
of a NIZK [BCC+17].

3 The lattice based constructions are in the designated verifier model where a desig-
nated party that holds a verification key can verify proofs.

4 Actually, what is often used in blockchains is a SNARK [BCC+17], which is a
stronger variant of a SNARG that satisfies extractability. We often refer to a SNARK
as a SNARG since we do not discuss extractability in this paper.

2

Along the way of obtaining our result, we give a generic compiler to upgrade a
NIZK for all NP languages with non-adaptive zero-knowledge to one with adap-
tive zero-knowledge. Though this can be shown by carefully combining known
results, to the best of our knowledge, no explicit proof of this generic conversion
has been presented.5 6

We note that we use the adaptive computational soundness as a default no-
tion of soundness for non-interactive arguments in this paper, and our results are
proven in this setting. We leave it as an interesting open problem to study if sim-
ilar implications hold for NIZKs and SNARGs with non-adaptive computational
soundness.

To the best of our knowledge, all known constructions of a SNARG in the
CRS model satisfies the zero-knowledge property from the beginning. Therefore,
we do not obtain a concrete construction of a NIZK from an assumption that
was not known to imply NIZKs by using our result. Nonetheless, it is in general
important to study generic relationships between different primitives from a
theoretical point of view, and we believe that our results contribute to deepening
our understanding on the two important and fundamental primitives of NIZKs
and SNARGs.

1.2 Technical Overview

In this section, we give an overview of the construction of a NIZK from a
SNARG. Once this is done, it is straightforward to obtain a generic conversion
from a SNARG to a zero-knowledge SNARG by combining it with the result of
[BCC+17].

First, we observe that the succinctness of a SNARG implies that a SNARG
proof at least “loses” some information about the witness though it may leak
some partial information. Based on this observation, our basic idea is to combine
a SNARG with a leakage-resilient primitive [AGV09] whose security holds even
if a certain fraction of a secret key is leaked. If the SNARG proof size is small
enough, then we may be able to use the security of the leakage-resilient primitive
to fully hide the witness considering a SNARG proof as a leakage. For example,
suppose that we have a leakage-resilient secret-key encryption (LR-SKE) scheme
whose semantic security holds as long as the amount of leakage from the secret
key is at most a half of the secret key size. Then, a naive (failed) idea to construct
a NIZK is to let a NIZK proof consist of an encryption ct of the witness by the
LR-SKE scheme and a SNARG proof proving that there exists a secret key
of the LR-SKE scheme that decrypts ct to a valid witness. Soundness of this
construction is easy to reduce to the soundness of the SNARG. In addition, if

5 Dwork and Naor [DN07] showed a similar compiler for a NIZK proof in the common
random string model. But their compiler does not work for a NIZK argument in the
common reference string model.

6 A recent work by Couteau, Katsumata, and Ursu [CKU20] implicitly relies on a
similar observation. However, they do not state it in a general form, and they only
analyze their specific instantiations.

3

the SNARG is fully succinct, then we can show that the SNARG proof size is at
most a half of the secret key size if we set the secret key size of LR-SKE to be
sufficiently large. Then, it seems possible to argue that the information of the
witness is completely hidden by the security of LR-SKE. However, there is a flaw
in the above idea: The security of a LR-SKE scheme holds only if the leakage
does not depend on the challenge ciphertext. On the other hand, in the above
construction, the SNARG proof clearly depends on the challenge ciphertext ct,
and thus we cannot use the security of a LR-SKE scheme. Though the above
naive idea fails, this highlights a potential idea of combining a SNARG with a
leakage-resilient primitive to obtain a NIZK. Indeed, we implement this idea by
modifying the NIZK construction based on the hidden-bits paradigm [FLS99].

NIZK via the Hidden-Bits Paradigm. First, we recall the construction of a NIZK
based on the hidden-bits paradigm [FLS99] following the formalization by Quach,
Rothblum, and Wichs [QRW19]. Readers familiar with their formalization can
safely skip this paragraph. The construction uses two building blocks: a NIZK
in the hidden-bit model (HBM-NIZK) and a hidden-bits generator (HBG).

In an HBM-NIZK, a trusted party picks a random string ρ ∈ {0, 1}k and
gives it to the prover. Then a prover, who holds a statement x and a witness
w, generates a proof π along with a subset I ⊆ [k], which specifies which bits
of ρ to be revealed to the verifier. Then, the verifier is given a statement x, a
proof π, a subset I, and a string ρI that is the substring of ρ on the positions
corresponding to I, and accepts or rejects. We require an HBM-NIZK to satisfy
two security requirements: soundness and zero-knowledge. Intuitively, soundness
requires that no cheating prover can convince the verifier of a false statement x
with non-negligible probability, and the zero-knowledge property requires that
the verifier learns nothing beyond that x is a true statement. Feige, Lapidot, and
Shamir [FLS99] constructed an HBM-NIZK for all NP languages that satisfies
these security requirements (without relying on any assumption).

An HBG is a primitive introduced in [QRW19], which consists of the following
algorithms:

– HBG.Setup(1λ, 1k) generates a CRS crs where k denotes the length of hidden-
bits to be generated.

– HBG.GenBits(crs) generates a succinct commitment com whose length is
much shorter than k, “hidden-bits” r ∈ {0, 1}k, and a tuple of proofs {πi}i∈[k].
Intuitively, each πi can be thought of a certificate of the i-th bit of r.

– HBG.Verify(crs, com, i, ri, πi) verifies the proof πi to ensure that the i-th
hidden-bit is ri.

We require an HBG to satisfy two security requirements: binding and hiding.
The binding property requires that for any fixed commitment com, there exist
“committed bits” r∗ ∈ {0, 1}k and no PPT adversary can generate a proof πi
such that HBG.Verify(crs, com, i, r̄∗i , πi) accepts, where r̄∗i denotes the negation of

4

r∗i .7 Combined with the succinctness of com, this implies that there should be a
“sparse” set Vcrs ∈ {0, 1}k (dependent on crs) of size much smaller than 2k such
that no PPT adversary can generate a set of proofs {πi}i∈I for bits that are not
consistent with any element of Vcrs even if it can control the value of com. The
hiding property requires that for any subset I ⊆ [k], no PPT adversary given

{(ri, πi)}i∈I can distinguish rĪ from a fresh random string r′
I

$← {0, 1}|I|, where

rI denotes the substring of r on the positions corresponding to I = [k] \ I.

Combining the above two primitives, Quach et al. [QRW19] constructed a

NIZK as follows: The setup algorithm generates a CRS crs
$← HBG.Setup(1λ, 1k)

of the HBG and a random string s
$← {0, 1}k and outputs them as a CRS of the

NIZK where k = poly(λ) is a parameter that is set appropriately as explained

later. Then the prover generates (com, r, {πi}i∈[k])
$← HBG.GenBits(crs), sets

ρ := r ⊕ s, runs the prover of the underlying HBM-NIZK w.r.t. the hidden-bits
ρ to generate (I, πhbm), and outputs (I, πhbm, com, rI , {πi}i∈I) as a proof of the
NIZK. Then the verifier runs the verification of the underlying HBG to check
the validity of rI and the verification algorithm of the underlying HBM-NIZK
under the revealed hidden-bits ρI := rI ⊕ sI .

The security of the above NIZK is argued as follows: For each fixed r, any
cheating prover against the above NIZK can be easily converted into a cheating
prover against the underlying HBM-NIZK. Moreover, by the binding property of
the underlying HBG, the prover has to use r in the subset Vcrs to pass the veri-
fication. Then, by taking the union bound, the success probability of a cheating
prover against the above NIZK is at most |Vcrs| � 2k times larger than that of
a cheating prover against the underlying HBM-NIZK. Thus, by setting k to be
sufficiently large so that the success probability of a cheating prover against the
underlying HBM-NIZK is at most |Vcrs|−1negl(λ), we can prove the soundness.
Intuitively, the zero-knowledge property of the above NIZK is easy to reduce
to that of the underlying HBM-NIZK by observing that the hiding property of
the underlying HBG ensures that the verifier obtains no information about rI .
We note that this simple reduction works only for non-adaptive zero-knowledge
where an adversary declares a challenge statement before seeing a CRS. Roughly
speaking, this is because in the definition of the hiding property of a HBG, the
subset I is fixed before the CRS is chosen whereas an adversary against adap-
tive zero-knowledge may choose I depending on the CRS. Quach et al. [QRW19]
showed that adaptive zero-knowledge can be also proven assuming that the un-
derlying HBM-NIZK satisfies a stronger notion of zero-knowledge called special
zero-knowledge. We omit to explain the details since we will show a generic
compiler from non-adaptive to adaptive zero-knowledge.

HBG from a SNARG? Our first attempt is to construct an HBG from a SNARG
combined with a leakage-resilient weak pseudorandom function (LR-wPRF) [HLWW16].

7 The original definition in [QRW19] required a stronger requirement of statistical
binding where the property should hold against all computationally unbounded ad-
versaries.

5

A (one-bit-output) LR-wPRF is a function family F = {FK : {0, 1}m →
{0, 1}}K∈{0,1}κ such that (x∗, FK(x∗)) for x∗

$← {0, 1}m looks pseudorandom
from an adversary that is given an arbitrary polynomial number of input-output

pairs (x, FK(x)) for x
$← {0, 1}m and a leakage from K (that does not depend on

x∗) of at most `-bit for a certain leakage bound ` < κ. Hazay et al. [HLWW16]
constructed an LR-wPRF for any polynomial ` = poly(λ) based solely on the
existence of a OWF.

Then, our first (failed) attempt for constructing an HBG from a SNARG and
an LR-wPRF is as follows:

– HBG.Setup(1λ, 1k) samples (x1, ..., xk) ∈ {0, 1}m×k and outputs it as a CRS
crs.

– HBG.GenBits(crs) randomly picks a key K
$← {0, 1}κ of the LR-wPRF, and

outputs a commitment com of K by a statistically binding commitment
scheme, hidden-bits r := (FK(x1), ..., FK(xk)), and proofs {πi}i∈[k] that are
generated by the SNARG to certify r.

– HBG.Verify(crs, com, i, ri, πi) verifies the proof πi by the verification algo-
rithm of the SNARG.

The binding property easily follows from the statistical binding property
of the underlying commitment scheme and the soundness of the underlying
SNARG. For the hiding property, we would like to rely on the security of the un-
derlying LR-wPRF by viewing the SNARG proofs as a leakage. However, there
are the following two problems:

1. An adversary against the hiding property can obtain all proofs {πi}i∈I corre-
sponding to the subset I whose size may be linear in k. On the other hand,
for ensuring the succinctness of the commitment, we have to set k � κ.
Thus, the total size of {πi}i∈I may be larger than κ, in which case it is
impossible to rely on the security of the LR-wPRF.

2. Even if the above problem is resolved, we still cannot apply the security of
the LR-wPRF since com also depends on K and its size must be larger than
that of K.

To resolve these issues, our idea is to drop the commitment com from the output
of HBG.GenBits(crs), and generate a single SNARG proof π that proves that
“there exists K ∈ {0, 1}κ such that ri = FK(xi) for all i ∈ I” in one-shot instead
of generating πi for each i ∈ I separately. Then, the only leakage of K given to
an adversary against the hiding property is the SNARG proof π, whose size is
sublinear in |I| by the succinctness of the SNARG. Thus, it seems possible to
apply the security of the LR-wPRF if we set parameters appropriately. However,
this idea is not compatible with the syntax of an HBG. This is why we modify
the syntax of an HBG to introduce what we call an HBG with subset-dependent
proofs (SDP-HBG).

HBG with Subset-Dependent Proofs. Roughly speaking, an SDP-HBG is a
(weaker) variant of an HBG with the following modifications:

6

1. A proof is generated depending on a subset I, which specifies positions of bits
to be revealed. This is in contrast to the original definition of an HBG where
proofs are generated for each position i ∈ [k]. To formalize this, we introduce
the proving algorithm separated from the bits generation algorithm.

2. The bits generation algorithm does not output a commitment, and we require
a relaxed version of the binding property that we call the somewhat binding
property as explained later.

More precisely, an SDP-HBG consists of the following algorithms:

– HBGsdp.Setup(1λ, 1k) generates a CRS crs.
– HBGsdp.GenBits(crs) generates “hidden-bits” r ∈ {0, 1}k and a state st.
– HBGsdp.Prove(st, I) generates a proof π that certifies the sub-string rI .
– HBGsdp.Verify(crs, I, rI , π) verifies the proof π to ensure that the substring

of r on the positions corresponding to the subset I is indeed rI .

We require an SDP-HBG to satisfy the somewhat binding property and the
hiding property. The somewhat binding property requires that there exists a
“sparse” subset Vcrs ∈ {0, 1}k (dependent on crs) of size much smaller than 2k

such that no PPT malicious prover can generate a proof for bits that are not
consistent with any element of Vcrs. As mentioned earlier, a similar property
easily follows by combining the succinctness of the commitment and the bind-
ing property in the original HBG, and this was the essential property to prove
soundness in the construction of a NIZK from an HBG. The hiding property is
similar to that for an HBG except that an adversary is given a single proof π
corresponding to the subset I instead of {πi}i∈I . Namely, it requires that for
any subset I ∈ [k], no PPT adversary given {ri}i∈I and π that certifies {ri}i∈I
can distinguish rI from a fresh random string r′

I

$← {0, 1}|I|, where rI denotes

the sub-string of r on the positions corresponding to I = [k] \ I.
To see that an SDP-HBG is a weaker primitive than an HBG, in Section 4.2,

we formally show that an original HBG indeed implies an SDP-HBG.

SDP-HBG from a SNARG and an LR-wPRF. Next, we construct an SDP-HBG
from a SNARG and an LR-wPRF. Since the idea is already explained, we directly
give the construction below:

– HBGsdp.Setup(1λ, 1k) samples (x1, ..., xk) ∈ {0, 1}m×k and outputs it as a
CRS crs.

– HBGsdp.GenBits(crs) randomly picks a key K
$← {0, 1}κ of the LR-wPRF and

outputs hidden-bits r := (FK(x1), ..., FK(xk)) and a state st := K.
– HBGsdp.Prove(st, I) outputs a SNARG proof π that proves that there exists
K ∈ {0, 1}κ such that ri = FK(xi) for all i ∈ I.

– HBGsdp.Verify(crs, I, rI , π) verifies the proof π by the verification algorithm
of the SNARG.

The somewhat binding property is easy to reduce to the soundness of the
underlying SNARG if κ � k. The hiding property is easy to reduce to the

7

security of the underlying LR-PRF if |π| ≤ ` where ` is the leakage bound by
noting that the proof π corresponding to the subset I does not depend on xI , and
thus we can think of xI as challenge inputs and π as a leakage. Therefore, what
remains is to show that we can appropriately set the parameters to satisfy these
two inequalities. Here, for simplicity we assume that the SNARG is fully succinct,
i.e., |π| = poly(λ) independently of the statement/witness size.8 Especially, |π|
can be upper bounded by a polynomial in λ that does not depend on k. Then,
we first set ` = poly(λ) so that |π| ≤ `. According to this choice of `, κ = poly(λ)
is determined. Here, we emphasize that κ does not depend on k. Thus, for
sufficiently large k = poly(λ), we have κ � k as desired.9 The crucial point
is that no matter how large k is, this does not affect |π| thanks to the full
succinctness of the SNARG. We note that we assume nothing about the leakage-
rate (i.e., `/κ) of the LR-wPRF, and thus we can use the LR-wPRF based on
a OWF in [HLWW16], which achieves a relatively poor leakage-rate of O(log λ

λ).
For the case of slightly-succinct SNARGs, a more careful analysis is needed, but
we can extend the above proof as long as |π| = poly(λ)(|x|+ |w|)c holds for some
constant c < 1/2.

As seen above, the underlying SNARG in fact needs to prove only a statement
of an NP language with a specific form that is dependent on the LR-wPRF
(which is in turn based on a OWF). Thus, if the latter is determined beforehand,
the SNARG is required to support this particular language (and not all NP
languages).10

NIZK from an SDP-HBG. Then, we show that an SDP-HBG suffices for con-
structing a NIZK. In fact, the construction and security proof are essentially the
same as that from an HBG in [QRW19]:

– The setup algorithm generates a CRS crs
$← HBGsdp.Setup(1λ, 1k) of the

SDP-HBG and a random string s
$← {0, 1}k, and outputs them as a CRS of

the NIZK;

– The prover generates (r, st)
$← HBGsdp.GenBits(crs), sets ρ := r ⊕ s, runs

the prover of the underlying HBM-NIZK w.r.t. the hidden-bits ρ to gen-

erate (I ⊆ [k], πhbm), generates πbgen
$← HBGsdp.Prove(st, I), and outputs

(I, πhbm, rI , πbgen) as a proof of the NIZK;
– The verifier runs the verification of the underlying SDP-HBG to check the

validity of rI and the verification of the underlying HBM-NIZK under the
revealed hidden-bits ρI := rI ⊕ sI .

It is easy to see that essentially the same proofs as the NIZK from an HBG
work for soundness and non-adaptive zero-knowledge. However, it is not clear

8 Though the full succinctness just says |π| = poly(λ)(|x|+ |w|)o(1), this implies |π| =
poly(λ) as long as we have |x| = poly(λ) and |w| = poly(λ).

9 It suffices that we have this for sufficiently large k since we can take k = poly(λ)
arbitrarily largely in the construction of a NIZK.

10 A similar remark applies to the underlying NIZK with non-adaptive zero-knowledge
used in the non-adaptive-to-adaptive conversion for a NIZK.

8

how to prove the adaptive zero-knowledge for this construction. As mentioned
earlier, for the construction of a NIZK from an HBG, Quach et al. [QRW19]
proved its adaptive zero-knowledge assuming that the underlying HBM-NIZK
satisfies a stronger notion of zero-knowledge called special zero-knowledge. How-
ever, their proof does not extend to the proof of adaptive zero-knowledge for the
above NIZK from an SDP-HBG even if we rely on the special zero-knowledge
for the underlying HBM-NIZK. Roughly speaking, the problem comes from the
fact that the SDP-HBG enables us to generate a proof πbgen corresponding to
a subset I only after I is fixed. This is in contrast to an HBG where we can
generate πi that certifies the i-th hidden bit for each i ∈ [k] before I is fixed.
Specifically, the proof of adaptive zero-knowledge from an HBG in [QRW19] cru-
cially relies on the fact that if I ⊆ I∗, then a set of proofs {πi}i∈I can be derived
from {πi}i∈I∗ in a trivial manner. On the other hand, we do not have a similar
property in SDP-HBG since it generates a proof for a subset I in one-shot in-
stead of generating a proof in a bit-by-bit manner. Thus, we have to come up
with an alternative way to achieve adaptive zero-knowledge.

Non-adaptive to Adaptive Zero-Knowledge. Based on existing works, we give a
generic compiler from non-adaptive to adaptive zero-knowledge. First, we ob-
serve that we can construct an HBG by combining a commitment, a pseudo-
random generator (PRG), and a NIZK in a straightforward manner. We note
that essentially the same construction was already mentioned by Dwork and
Naor [DN07] where they constructed a verifiable PRG, which is a similar but
slightly different primitive from an HBG. Our crucial observation is that non-
adaptive zero-knowledge is sufficient for this construction of an HBG. Then, we
can apply the construction of [QRW19] instantiated with the above HBG and
an HBM-NIZK with special zero-knowledge to obtain a NIZK with adaptive
zero-knowledge.

1.3 Related Work

Known Constructions of NIZKs. Here, we review known constructions of a NIZK
for all NP languages. Below, we just write NIZK to mean NIZK for all NP
languages for simplicity. In this paragraph, we omit a NIZK that is also a SNARG
since such schemes are mentioned in the next paragraph. Blum, Feldman, and
Micali [BFM88] introduced the concept of NIZK and constructed a NIZK based
on the quadratic residuosity assumption. Feige, Lapidot, and Shamir [FLS99]
established the hidden-bits paradigm and constructed a NIZK based on trapdoor
permutations. The requirements on trapdoor permutations for realizing a NIZK
have been revisited and refined in a series of works [Gol11,GR13,CL18]. Canetti,
Halevi, and Katz [CHK07] constructed a NIZK based on pairing by instantiating
the hidden-bits paradigm. Groth, Ostrovsky, and Sahai [GOS12] constructed a
pairing-based NIZK based on a completely different approach, which yields the
first NIZK with perfect zero-knowledge. Sahai and Waters [SW14] constructed
the first NIZK with a deterministic proving algorithm and perfect zero-knowledge
based on indistinguishability obfuscation and a OWF. Recently, there has been

9

a line of researches [KRR17,CCRR18,CCH+19] aiming at realizing the Fiat-
Shamir transform [FS87] in the standard model. Peikert and Shiehian [PS19]
constructed a NIZK based on a standard lattice-based assumption following this
approach. Very recently, Couteau, Katsumata, and Ursu [CKU20] constructed
a NIZK based on a certain exponential hardness assumption on pairing-free
groups. We note that it still remains open to construct a NIZK from polynomial
hardness assumption on pairing-free groups.

We omit NIZKs in a different model than the CRS model including prepro-
cessing, designated prover, and designated verifier models since our focus in this
paper is constructions in the CRS model. We refer to [KW18,KNYY19] for a
survey on NIZKs in these models.

Known Constructions of SNARGs. Here, we review known constructions of a
SNARG for all NP languages. Below, we just write SNARG to mean SNARG for
all NP languages. We note that some of the following constructions are actually
a SNARK, which satisfies a stronger notion of soundness called extractabil-
ity, but we just call them a SNARG since we do not discuss extractability in
this paper. Also, other than [Mic00,CMS19], here we only mention works that
do not rely on random oracles. For the recent advances on practical SNARGs
(SNARKs) including those in the random oracle model, see, e.g., the recent
papers [BFS20,CHM+20,COS20,EFKP20] and references therein.

Micali [Mic00] constructed a zero-knowledge SNARG in the random oracle
model. Chiesa, Manohar, and Spooner [CMS19] proved that the Micali’s con-
struction is also secure in the quantum random oracle model. Groth [Gro10,Gro16]
and Gennaro, Gentry, Perno, and Raykova [GGPR13] proposed zero-knowledge
SNARGs in the CRS model based on non-falsifiable assumptions on pairing
groups. There are several constructions of (zero-knowledge) SNARGs in the
designated-verifier model where verification can be done only by a designated
verifier who possesses a secret verification key. These include constructions based
on an extractable collision-resistant hash function [BCC+17], homomorphism-
extractable encryption [BC12], linear-only encryption [BCI+13,BISW17,BISW18],
etc..

NIZKs/SNARGs and OWFs. Pass and shelat [Ps05] showed that a NIZK for a
hard-on-average language implies the existence of (non-uniform) OWFs. On the
other hand, Wee [Wee05] gave an evidence that a SNARG for a hard-on-average
language is unlikely to imply the existence of OWFs. Therefore, it is considered
reasonable to additionally assume the existence of OWFs for constructing a
NIZK from a SNARG.

2 Preliminaries

In this section, we review the basic notation and definitions of cryptographic
primitives.

10

Basic Notation. For a natural number n > 0, we define [n] := {1, . . . , n}. Fur-
thermore, for I ⊆ [n], we define I := [n] \ I.

For a string x, |x| denotes the bit-length of x. For bits b, b′ ∈ {0, 1}, (b′
?
= b)

is defined to be 1 if b′ = b holds and 0 otherwise.
For a set S, |S| denotes its size, and x

$← S denotes sampling x uniformly
at random from S. Furthermore, for natural numbers i, k such that i ∈ [k] and
a sequence z ∈ Sk, zi denotes the i-th entry in z. Also, for I ⊆ [k], we define
zI := (zi)i∈I , namely the subsequence of z in the positions I.

For a probabilistic (resp. deterministic) algorithm A, y
$← A(x) (resp. y ←

A(x)) denotes A on input x outputs y. If we need to specify a randomness r used
in A, we write y ← A(x; r) (in which case the computation is deterministic). If
O is a function or an algorithm, then AO means that A has oracle access to O.

Throughout the paper, we use λ to denote the security parameter, and a
“PPT adversary” is a non-uniform PPT adversary (equivalently, a family of
polynomial-sized circuits). A function ε(λ) with range [0, 1] is said to be negligible
if ε(λ) = λ−ω(1), and negl(λ) denotes an unspecified negligible function of λ.
poly(λ) denotes an unspecified (constant-degree) polynomial of λ.

2.1 NIZK and SNARG

Here, we define several notions of a non-interactive argument for an NP language
L. Throughout this paper, for an NP language L, we denote by R ⊆ {0, 1}∗ ×
{0, 1}∗ the corresponding efficiently computable binary relation. For (x,w) ∈ R,
we call x a statement and w a witness.

Definition 2.1 (Non-interactive Arguments). A non-interactive argument
for an NP language L consists of the three PPT algorithms (Setup,Prove,Verify):

Setup(1λ)
$→ crs: The setup algorithm takes the security parameter 1λ as input,

and outputs a CRS crs.

Prove(crs, x, w)
$→ π: The prover’s algorithm takes a CRS crs, a statement x,

and a witness w as input, and outputs a proof π.
Verify(crs, x, π)→ > or ⊥: The verifier’s algorithm takes a CRS crs, a statement

x, and a proof π as input, and outputs > to indicate acceptance of the proof
or ⊥ otherwise.

A non-interactive argument must satisfy the following requirements:

Completeness: For all pairs (x,w) ∈ R, we have

Pr

[
Verify(crs, x, π) = > :

crs
$← Setup(1λ);

π
$← Prove(crs, x, w)

]
= 1.

Soundness: We define the following four variants of soundness.
Adaptive Computational Soundness: For all PPT adversaries A, we

have

Pr

[
x 6∈ L ∧ Verify(crs, x, π) = > :

crs
$← Setup(1λ);

(x, π)
$← A(crs)

]
= negl(λ).

11

Adaptive Statistical Soundness: This is defined similarly to adaptive
computational soundness, except that A can be any computationally un-
bounded adversary.

Non-adaptive Computational (resp. Statistical) Soundness: This is
defined similarly to adaptive computational (resp. statistical) soundness,
except that A must declare x /∈ L before it is given crs.

If we only require completeness and soundness as defined above, a non-
interactive argument trivially exists for all NP languages, since a witness itself
can be used as a proof. Thus, we consider two other properties that make non-
interactive arguments non-trivial. First, we define non-interactive zero-knowledge
arguments (NIZKs).

Definition 2.2 (NIZK). A non-interactive argument (Setup,Prove,Verify) for
an NP language L is a non-interactive zero-knowledge argument (NIZK) if it
satisfies the following property in addition to completeness and soundness.

(Computational) Zero-Knowledge: We define the following four variants of
zero-knowledge property.
Adaptive Multi-theorem Zero-Knowledge: There exists a PPT simu-

lator S = (S1,S2) that satisfies the following. For all PPT adversaries
A, we have∣∣∣Pr[Exptazk-realA (λ) = 1]− Pr[Exptazk-simA,S (λ) = 1]

∣∣∣ = negl(λ),

where the experiments Exptazk-realA (λ) and Exptazk-simA,S (λ) are defined as
follows, and in the experiments, A’s queries (x,w) must satisfy (x,w) ∈
R.
Exptazk-realA (λ) :

crs
$← Setup(1λ)

b′
$← AO0(·,·)(crs)

where O0(x,w) := Prove(crs, x, w)
Return b′.

Exptazk-simA,S (λ) :

(crs, st)
$← S1(1λ)

b′
$← AO1(·,·)(crs)

where O1(x,w) := S2(st, x)
Return b′.

Though we treat adaptive multi-theorem zero-knowledge as defined above as
a default notion of zero-knowledge, we also define weaker notions of zero-
knowledge.
Adaptive Single-Theorem Zero-Knowledge: This is defined similarly

to adaptive multi-theorem zero-knowledge, except that A is allowed to
make only a single query.

Non-adaptive Multi-theorem Zero-Knowledge: There exists a PPT
simulator S that satisfies the following. For all PPT adversaries A =
(A1,A2) we have∣∣∣Pr[Exptnazk-realA (λ) = 1]− Pr[Exptnazk-simA,S (λ) = 1]

∣∣∣ = negl(λ),

where the experiments Exptnazk-realA (λ) and Exptnazk-simA,S (λ) are defined be-
low. In the experiments, ` (the number of statement/witness pairs) is

12

arbitrarily chosen by A1, and A1’s output must satisfy (xi, wi) ∈ R for
all i ∈ [`].

Exptnazk-realA (λ) :

({(xi, wi)}i∈[`], st)
$← A1(1λ)

crs
$← Setup(1λ)

πi
$← Prove(crs, xi, wi) for i ∈ [`]

b′
$← A2(crs, {πi}i∈[`], st)

Return b′.

Exptnazk-simA,S (λ) :

({(xi, wi)}i∈[`], st)
$← A1(1λ)

(crs, {πi}i∈[`])
$← S(1λ, {xi}i∈[`])

b′
$← A2(crs, {πi}i∈[`], st)

Return b′.
Non-adaptive Single-Theorem Zero-Knowledge: This is defined sim-

ilarly to non-adaptive multi-theorem zero-knowledge, except that ` must
be 1.

It is well-known that a NIZK with adaptive single-theorem zero-knowledge
can be generically converted into a NIZK with adaptive multi-theorem zero-
knowledge using a PRG [FLS99]. It is easy to see that the same construction
works in the non-adaptive setting. Thus, we have the following lemma.

Lemma 2.1. If there exist a OWF and a NIZK for all NP languages with
adaptive (resp. non-adaptive) single-theorem zero-knowledge, then there exists
a NIZK for all NP languages with adaptive (resp. non-adaptive) multi-theorem
zero-knowledge. The resulting NIZK satisfies the same notion of soundness (which
is either of adaptive/non-adaptive statistical/computational soundness) as the
building-block NIZK.

Remark 2.1. Pass and shelat [Ps05] showed that a NIZK for a hard-on-average
language implies the existence of a (non-uniform) OWF. Therefore, we can
weaken the assumption of the existence of a OWF to the existence of a hard-on-
average NP language. We just assume the existence of a OWF for simplicity. A
similar remark also applies to Theorem 3.1 and Lemmata 3.1 and 3.2.

Next, we define SNARGs. The following definition is taken from [GW11] with
a minor modification in the definition of slight succinctness (see Remark 2.2).

Definition 2.3 ((Fully/Slightly Succinct) SNARG). A non-interactive
argument (Setup,Prove,Verify) for an NP language L is a fully (resp. δ-slightly)
succinct non-interactive argument (SNARG) if it satisfies full (resp. δ-slight)
succinctness defined as follows in addition to completeness and soundness.

Succinctness: We define the following two variants of succinctness.

Full Succinctness: For all (x,w) ∈ R, crs
$← Setup(1λ), and π

$← Prove(crs,
x, w), we have |π| = poly(λ)(|x|+ |w|)o(1).

δ-Slight Succinctness: For all (x,w) ∈ R, crs
$← Setup(1λ), and π

$←
Prove(crs, x, w), we have |π| = poly(λ)(|x|+ |w|)δ.

Remark 2.2. The notion of δ-slight succinctness is meaningful only when δ < 1
since otherwise we can use a witness itself as a proof. We note that our definition
of δ-slight succinctness for any δ < 1 is stronger than slight succinctness defined

13

in [GW11] where they require |π| = poly(λ)(|x| + |w|)δ + o(|x| + |w|) for some
δ < 1. Namely, they allow the proof size to grow according to any function
dominated by |x| + |w| asymptotically as long as that is independent of the
security parameter λ.

We define an additional property for SNARG.

Definition 2.4 (Efficient Verification of SNARG). A SNARG (Setup,
Prove,Verify) for an NP language L has efficient verification if the following
is satisfied.

Efficient Verification: For all (x,w) ∈ R, crs
$← Setup(1λ), and π

$← Prove(crs,
x, w), the running time of Verify(crs, x, π) is poly(λ)(|x|+ |w|)o(1).

Remark 2.3. The efficient verification property immediately implies full suc-
cinctness.

Remark 2.4. The efficient verification property is usually a default requirement
for SNARGs. On the other hand, we do not assume a SNARG to have efficient
verification unless otherwise mentioned. This is because efficient verification is
not needed for the construction of a NIZK in this paper.

2.2 NIZK in the Hidden-Bits Model

Here, we define a NIZK in the hidden-bits model introduced in [FLS99]. The
following definition is taken from [QRW19].

Definition 2.5 (NIZK in the Hidden-Bits Model). Let L be an NP lan-
guage and R be its associated relation. A non-interactive zero-knowledge proof
in the hidden-bits model (HBM-NIZK) for L consists of the pair of PPT al-
gorithms (NIZKhbm.Prove,NIZKhbm.Verify) and a polynomial k = k(λ, n), which
specifies the hidden-bits length.

NIZKhbm.Prove(1λ, ρ, x, w)
$→ (I, π): The prover’s algorithm takes the security

parameter 1λ, a string ρ ∈ {0, 1}k(λ,n), a statement x ∈ {0, 1}n, and a
witness w as input, and outputs a subset of indices I ⊆ [k] and a proof π.

NIZKhbm.Verify(1λ, I, ρI , x, π)→ > or ⊥: The verifier’s algorithm takes the se-
curity parameter 1λ, a subset I ⊆ [k], a string ρI , a statement x, and a proof
π as input, and outputs > to indicate acceptance of the proof or ⊥ otherwise.

An HBM-NIZK must satisfy the following requirements.

Completeness: For all pairs (x,w) ∈ R, we have

Pr

[
NIZKhbm.Verify(1λ, I, ρI , x, π)

= > :
ρ

$← {0, 1}k(λ,|x|);

(I, π)
$← NIZKhbm.Prove(1λ, ρ, x, w)

]
= 1.

14

ε-Soundness: For all polynomials n = n(λ) and computationally unbounded
adversaries A, we have

Pr

[
x ∈ {0, 1}n \ L
∧ NIZKhbm.Verify(1λ, I, ρI , x, π) = > :

ρ
$← {0, 1}k(λ,n);

(x, I, π)
$← A(ρ)

]
≤ ε(λ).

Zero-Knowledge: There exists a PPT simulator NIZKhbm.Sim that satisfies the
following. For all computationally unbounded adversaries A = (A1,A2), we
have ∣∣∣Pr[Expthbmzk-real

A (λ) = 1]− Pr[Expthbmzk-sim
A,NIZKhbm.Sim(λ) = 1]

∣∣∣ = negl(λ),

where the experiments Expthbmzk-real
A (λ) and Expthbmzk-sim

A,NIZKhbm.Sim(λ) are defined
as follows, and A1’s output must satisfy (x,w) ∈ R.

Expthbmzk-real
A (λ) :

(x,w, st)
$← A1(1λ)

ρ
$← {0, 1}k(λ,|x|)

(I, π)
$← NIZKhbm.Prove(1λ, ρ, x, w)

b′
$← A2(I, ρI , π, st)

Return b′.

Expthbmzk-sim
A,NIZKhbm.Sim(λ) :

(x,w, st)
$← A1(1λ)

(I, ρI , π)
$← NIZKhbm.Sim(1λ, x)

b′
$← A2(I, ρI , π, st)

Return b′.

Lemma 2.2 ([FLS99]). For any NP language L, there exists an HBM-NIZK
satisfying completeness, 2−Ω(k)-soundness, and zero-knowledge.

Remark 2.5. Though Quach et al. [QRW19] also defined a stronger definition
of zero-knowledge called special zero-knowledge, we omit its definition since we
do not use it in security proofs given in this version. We note that we use an
HBM-NIZK with special zero-knowledge in a proof of Lemma 3.2, which is given
in the full version.

2.3 Leakage-Resilient Weak Pseudorandom Function

Here, we review the definition of a leakage-resilient weak pseudorandom function
(LR-wPRF) [HLWW16]. Though the definition is essentially the same as that
in [HLWW16], we make it more explicit that we can arbitrarily set the leak-
age bound ` = `(λ) instead of treating ` as a fixed parameter hardwired in a
scheme.11 Specifically, we define parameters of an LR-wPRF including the key
length, input length, and output length as polynomials of λ and `. This implic-
itly means that an evaluation of an LR-wPRF also depends on ` since it is given
a key and an input whose length depends on `.

11 Syntactically, this treatment of the leakage bound ` is similar to a cryptographic
primitive in the bounded retrieval model (BRM). Unlike the BRM, however, we do
not pose any efficiency requirement on the scheme regarding the dependency on the
given leakage bound `.

15

ExptLRwPRF-bF,A (λ, `) :
L← 0

K
$← {0, 1}κ(λ,`)

st
$← AFK($),Leak(·)

1 (1λ, 1`)

b′
$← AChal($)

2 (st)
Return b′.

FK($) :

x
$← {0, 1}m(λ,`)

Return (x, FK(x)).

Leak(f) :
L← L+ |f(K)|
If L > ` then return ⊥.
Return f(K).

Chal($) :

x∗
$← {0, 1}m(λ,`){

y∗ := FK(x∗) if b = 0

y∗
$← {0, 1}n(λ,`) if b = 1

Return (x∗, y∗).

Fig. 1. The experiment for defining the leakage-resilience for a wPRF.

Definition 2.6 (Leakage-Resilient Weak Pseudorandom Function). Let
κ = κ(λ, `), m = m(λ, `), and n = n(λ, `) be polynomials. A leakage-resilient
weak pseudorandom function (LR-wPRF) with the key length κ, input length m,
and output length n, is a family of efficiently computable functions F = {FK :
{0, 1}m → {0, 1}n}K∈{0,1}κ such that for all polynomials ` = `(λ) and PPT
adversaries A = (A1,A2), we have∣∣∣Pr[ExptLRwPRF-0F,A (λ, `) = 1]− Pr[ExptLRwPRF-1F,A (λ, `) = 1]

∣∣∣ = negl(λ),

where the experiment ExptLRwPRF-bF,A (λ, `) (with b ∈ {0, 1}) is described in Fig. 1.

Hazay et al. [HLWW16] showed how to construct an LR-wPRF from a OWF.
Their result can be stated in the following form that is convenient for our pur-
pose.

Theorem 2.1 ([HLWW16]). If there exists a OWF, then there exists an LR-
wPRF with the key length κ = ` ·poly(λ), input length m = ` ·poly(λ), and output
length n = 1.

Remark 2.6. Actually, Hazay et al. showed that we can set κ = O(`λ/ log λ),
m = O(`λ), and n to be any polynomial in λ. We state the theorem in the above
form since this is sufficient for our purpose.

3 Non-adaptive to Adaptive Zero-Knowledge for NIZK

In this section, we show the following theorem.

Theorem 3.1. If there exist a OWF and a NIZK for all NP languages that
satisfies adaptive computational (resp. statistical) soundness and non-adaptive
single-theorem zero-knowledge, then there exists a NIZK for all NP languages
that satisfies adaptive computational (resp. statistical) soundness and adaptive
multi-theorem zero-knowledge.

Remark 3.1. The theorem remains true even if we start from a NIZK with non-
adaptive statistical soundness since we can convert it into one with adaptive
statistical soundness while preserving the zero-knowledge property by a simple
parallel repetition. On the other hand, we do not know whether the theorem re-
mains true if we start from a NIZK with non-adaptive computational soundness.

16

HBG from Non-adaptive NIZK. First, we show that we can construct an HBG
by combining a non-interactive commitment scheme, a PRG, and a NIZK in a
straightforward manner.12 We note that Dwork and Naor [DN07] already men-
tioned a similar construction.13 Our crucial observation is that non-adaptive
multi-theorem zero-knowledge is sufficient for this purpose. Moreover, as stated
in Lemma 2.1, we can generically upgrade non-adaptive single-theorem zero-
knowledge to non-adaptive multi-theorem zero-knowledge. Therefore, we obtain
the following lemma.

Lemma 3.1. If there exist a OWF and a NIZK for all NP languages that satis-
fies adaptive computational (resp. statistical) soundness and non-adaptive single-
theorem zero-knowledge, then there exists an HBG that satisfies succinct com-
mitment, computational (resp. statistical) binding, and computational hiding.

Since the construction and security proof are straightforward, we omit them here
and give them in the full version.

Adaptive NIZK from HBG. Quach et al. [QRW19] gave a construction of a NIZK
with adaptive statistical soundness and adaptive multi-theorem zero-knowledge
based on an HBG with statistical binding and computational hiding. It is easy
to see that the same construction works for a computationally binding HBG
to construct an adaptively computationally sound NIZK. Namely, we have the
following lemma.

Lemma 3.2. If there exist a OWF and an HBG that satisfies succinct commit-
ment, computational (resp. statistical) binding, and computational hiding, then
there exists a NIZK for all NP languages that satisfies adaptive computational
(resp. statistical) soundness and adaptive multi-theorem zero-knowledge.

Since the construction and proof are essentially the same as those in [QRW19],
we omit them here, and give them in the full version.

Theorem 3.1 can be obtained by combining Lemmata 3.1 and 3.2.

4 Hidden-Bits Generator with Subset-Dependent Proofs

In this section, we introduce a weaker variant of an HBG that we call an HBG
with subset-dependent proofs (SDP-HBG). We also give a construction of an
SDP-HBG from the combination of a SNARG and an LR-wPRF (and thus,
from a SNARG and a OWF).

4.1 Definition

Here, we define an SDP-HBG.

12 A formal definition of HBG can be found in the full version.
13 Dwork and Naor [DN07] constructed what they call a verifiable pseudorandom gen-

erator from a NIZK, which is a similar primitive to an HBG.

17

Definition 4.1 (SDP-HBG). A hidden-bits generator with subset depen-
dent proofs (SDP-HBG) consists of the four PPT algorithms (HBGsdp.Setup,
HBGsdp.GenBits,HBGsdp.Prove,HBGsdp.Verify):

HBGsdp.Setup(1λ, 1k)
$→ crs: The setup algorithm takes the security parameter

1λ and the length parameter 1k as input, and outputs a CRS crs.

HBGsdp.GenBits(crs)
$→ (r, st): The bits generation algorithm takes a CRS crs as

input, and outputs a string r ∈ {0, 1}k and a state st.

HBGsdp.Prove(st, I)
$→ π: The proving algorithm takes a state st and a subset

I ⊆ [k] as input, and outputs a proof π.

HBGsdp.Verify(crs, I, rI , π)→ > or ⊥: The verification algorithm takes a CRS
crs, a subset I ⊆ [k], a string rI ∈ {0, 1}|I|, and a proof π as input, and
outputs > indicating acceptance or ⊥ otherwise.

We require an SDP-HBG to satisfy the following properties:

Correctness: For any natural number k and I ⊆ [k], we have

Pr

HBGsdp.Verify(crs, I, rI , π) = > :

crs
$← HBGsdp.Setup(1λ, 1k);

(r, st)
$← HBGsdp.GenBits(crs);

π
$← HBGsdp.Prove(st, I)

 = 1.

Somewhat Computational Binding: There exists a constant γ < 1 such

that (1) for any polynomial k = k(λ) and crs generated by HBGsdp.Setup(1λ,
1k), there exists a subset Vcrs ⊆ {0, 1}k such that |Vcrs| ≤ 2k

γpoly(λ), and (2)
for any PPT adversary A, we have

Pr

[
rI /∈ Vcrs

I

∧ HBGsdp.Verify(crs, I, rI , π) = > :
crs

$← HBGsdp.Setup(1λ, 1k);

(I, rI , π)
$← A(crs)

]
= negl(λ),

where Vcrs
I := {rI : r ∈ Vcrs}.

Computational Hiding: For any polynomial k = k(λ), I ⊆ [k], and PPT
adversary A, we have∣∣∣Pr[A(crs, I, rI , π, rI) = 1]− Pr[A(crs, I, rI , π, r

′
I
) = 1]

∣∣∣ = negl(λ),

where we generate crs
$← HBGsdp.Setup(1λ, 1k), (r, st)

$← HBGsdp.GenBits(crs),

π
$← HBGsdp.Prove(st, I), and r′

$← {0, 1}k.

An SDP-HBG can be seen as a weaker variant of an ordinary HBG, in the
sense that the former can be naturally constructed from the latter. A proof can
be found in the full version.

18

4.2 Construction

Here, we give a construction of an SDP-HBG from a SNARG and a OWF.

Theorem 4.1. If there exist a OWF and a δ-slightly succinct SNARG for all
NP languages for some δ < 1/2 that satisfies adaptive computational soundness,
then there exists an SDP-HBG that satisfies somewhat computational binding
and computational hiding.

Our construction of an SDP-HBG uses the following ingredients.

– An LR-wPRF F = {FK : {0, 1}m → {0, 1}}K∈{0,1}κ , built from a OWF
via Theorem 2.1, with the key length κ = κ(λ, `) = ` · poly(λ), input length
m = m(λ, `) = ` · poly(λ), and output length 1.

– A δ-slightly succinct SNARG (SNARG.Setup,SNARG.Prove,SNARG.Verify)
for some δ < 1/2 for the language L associated with the relation R defined
as follows:(

(k′, {xi}i∈[k′], {ri}i∈[k′]), K
)
∈ R ⇐⇒ ri = FK(xi) for all i ∈ [k′].

In our construction of an SDP-HBG, the leakage bound ` of the underlying
LR-wPRF is chosen depending on the length parameter k input to the setup
algorithm of the SDP-HBG, so that

(a) κ ≤ kγ · poly(λ) holds for some constant γ < 1, and
(b) for any k′ ≤ k, xi ∈ {0, 1}m for i ∈ [k′], ri ∈ {0, 1} for i ∈ [k′], and

K ∈ {0, 1}κ, if crssnarg
$← SNARG.Setup(1λ) and π

$← SNARG.Prove(crssnarg,
(k′, {xi}i∈[k′], {ri}i∈[k′]),K), then we have |π| ≤ `.

Below we explain how we choose such `.
Recall that the δ-slight succinctness of the SNARG ensures that the size

of a proof π generated from a statement/witness pair (x,w) ∈ R satisfies
|π| ≤ (|x| + |w|)δ · poly(λ). In our case, the bit-length of a statement x =
(k′, {xi}i∈[k′], {ri}i∈[k′]) is bounded by log k+k·(m+1) ≤ k·(m+2) = k`·poly(λ),
and the bit-length of a witness w = K is just κ = ` · poly(λ). Hence, the size of
a proof π generated by SNARG.Prove for (x,w) is bounded by

|π| ≤ (k` · poly(λ) + ` · poly(λ))δ · poly(λ) ≤ (k`)δ · p,

for some polynomial p = poly(λ) that is independent of k and `.
Then we set the leakage bound ` = `(λ, k) as

` := k
δ

1−δ · p
1

1−δ .

Since we assume δ < 1/2, we have δ
1−δ < 1. Thus the property (a) is satisfied

with γ := δ
1−δ . Furthermore, we have

|π| ≤ (k`)δ · p = k
δ

1−δ p
1

1−δ = `.

19

HBGsdp.Setup(1λ, 1k) :

crssnarg
$← SNARG.Setup(1λ)

∀i ∈ [k] : xi
$← {0, 1}m

Return crs = (crssnarg, {xi}i∈[k]).

HBGsdp.GenBits(crs) :
(crssnarg, {xi}i∈[k])← crs

K
$← {0, 1}κ

∀i ∈ [k] : ri ← FK(xi)
Return (r = {ri}i∈[k], st = (crs,K, r)).

HBGsdp.Prove(st, I) :
(crs,K, r)← st
(crssnarg, {xi}i∈[k])← crs
X := (|I|, xI , rI)
π

$← SNARG.Prove(crssnarg, X,K)
Return π.

HBGsdp.Verify(crs, I, rI , π) :
(crssnarg, {xi}i∈[k])← crs
X := (|I|, xI , rI)
Return SNARG.Verify(crssnarg, X, π).

Fig. 2. The construction of an SDP-HBG based on an LR-wPRF and a SNARG.

Hence, the property (b) is also satisfied, as desired.

Using the above ingredients, our construction of an SDP-HBG (HBGsdp.Setup,
HBGsdp.GenBits,HBGsdp.Prove,HBGsdp.Verify) is described in Fig. 2. In the de-
scription, xI is a short hand for {xi}i∈I .

It is easy to see that the construction satisfies correctness. The security prop-
erties of the SDP-HBG are guaranteed by the following theorem.

Theorem 4.2. The above SDP-HBG satisfies somewhat computational binding
and computational hiding.

Proof. We start by showing somewhat computational binding, then computa-
tional hiding.

Somewhat Computational Binding. For a CRS crs = (crssnarg, {xi}i∈[k]) out-

put from HBGsdp.Setup(1λ, 1k), we define Vcrs := {(FK(x1), ..., FK(xk)) | K ∈
{0, 1}κ}. Then, since |K| = κ ≤ kγpoly(λ), we have |Vcrs| ≤ 2k

γpoly(λ). Fur-
thermore, it is straightforward to see that by the soundness of the underlying
SNARG, no PPT adversary can generate a valid proof for (I, rI) that is inconsis-
tent with any element of V. More specifically, any PPT adversary that given crs =
(crssnarg, {xi}i∈[k]) outputs a tuple (I, rI , π) satisfying SNARG.Verify(crssnarg, (|I|,
xI , rI), π) = > and rI /∈ Vcrs

I , can be straightforwardly turned into a PPT ad-
versary that breaks the adaptive soundness of the underlying SNARG, since
rI /∈ Vcrs

I implies (|I|, xI , rI) /∈ L.

Computational Hiding. It is easy to reduce the computational hiding of our
SDP-HBG to the security of the underlying LR-wPRF in which the leakage
bound is `, by noting that the leakage from K is π whose size is at most `.
Formally, given any polynomial k = k(λ), I ⊆ [k], and PPT adversary A, con-
sider the following PPT adversary B = (B1,B2) that attacks the security of the
underlying LR-wPRF with the leakage bound `.

20

BFK($),Leak(·)
1 (1λ): (where K

$← {0, 1}κ) B1 makes |I| queries to the oracle FK($),
and regards the returned values from the oracle as {(xi, ri = FK(xi))}i∈[I].

Next, B1 computes crssnarg
$← SNARG.Setup(1λ), and defines the circuit f :

{0, 1}κ → {0, 1}` by f(·) := SNARG.Prove(crscrs, (|I|, xI , rI), ·). Then, B1

submits f(·) to the oracle Leak(·), and receives π. Finally, B1 sets stB as all
the information known to B1, and terminates with output stB.

BChal($)
2 (stB): B2 submits k − |I| queries to the challenge oracle Chal($), and

regards the returned values from the oracle as {(xi, ri)}i∈I . Note that ri =

FK(xi) if b = 0 and ri
$← {0, 1} if b = 1, where b is B’s challenge bit.

Now, B2 sets crs := (crssnarg, {xi}i∈[k]), and runs A(crs, I, rI , π, rI). When A
terminates with output b′, B2 outputs b′ and terminates.

Since |f(·)| = `, B complies with the rule of the LR-wPRF security exper-
iment with the leakage bound `. Furthermore, it is straightforward to see that
if b = 0, then the pairs {(xi, ri)}i∈I that B2 receives from the challenge oracle
satisfy FK(xi) = ri, and B simulates the computational hiding experiment in the
case rI is the real randomness generated by HBGsdp.GenBits(crs), perfectly for
A. On the other hand, if b = 1, then {ri}i∈I are random bits, and B2 simulates
the experiment of the opposite case (i.e. rI = {ri}i∈I is random) perfectly for A.
Hence, B’s advantage in breaking the security of the underlying LR-wPRF is ex-
actly the same as A’s advantage in breaking the computational hiding property
of our SDP-HBG. ut

5 NIZK from SDP-HBG

In this section, we show the following theorem.

Theorem 5.1. If there exists an SDP-HBG, then there exists a NIZK for all
NP languages that satisfies adaptive computational soundness and non-adaptive
single-theorem zero-knowledge.

Combining Theorems 3.1, 4.1 and 5.1, we obtain the following theorem.

Theorem 5.2. If there exist a OWF and a δ-slightly succinct SNARG for all
NP languages for some δ < 1/2 that satisfies adaptive computational soundness,
then there exists a NIZK for all NP languages that satisfies adaptive soundness
and adaptive multi-theorem zero-knowledge.

In the following, we prove Theorem 5.1. The construction of our NIZK is
almost the same as the scheme by Quach, Rothblum, and Wichs [QRW19], except
that we use an SDP-HBG instead of an HBG.

Construction. Our NIZK uses the following ingredients:

– An SDP-HBG (HBGsdp.Setup,HBGsdp.GenBits,HBGsdp.Prove,HBGsdp.Verify).
– An HBM-NIZK (NIZKhbm.Prove,NIZKhbm.Verify) for an NP language L with
ε-soundness.

21

NIZK.Setup(1λ) :

crsbgen
$← HBGsdp.Setup(1λ, 1k)

s
$← {0, 1}k

Return crs := (crsbgen, s).

NIZK.Prove(crs, x, w) :
(crsbgen, s)← crs

(r, st)
$← HBGsdp.GenBits(crsbgen)

ρ← s⊕ r
(I, πhbm)

$← NIZKhbm.Prove(ρ, x, w)

πbgen
$← HBGsdp.Prove(st, I)

Return π := (I, πhbm, rI , πbgen).

NIZK.Verify(crs, x, π) :
(crsbgen, s)← crs
(I, πhbm, rI , πbgen)← π
ρI ← sI ⊕ rI
If (a) ∧ (b) then return > else return ⊥:

– (a) NIZKhbm.Verify(I, ρI , x, πhbm) = >
– (b) HBGsdp.Verify(crsbgen, I, rI , πbgen) = >

Fig. 3. The construction of a NIZK based on an SDP-HBG and an HBM-NIZK.

Let γ < 1 be the constant regarding the somewhat computational binding
of the SDP-HBG, which satisfies |Vcrsbgen | ≤ 2k

γpoly(λ) for all crsbgen generated

by HBGsdp.Setup(1λ, 1k). When we use an HBM-NIZK with the random-string
length k, we can make ε = 2−Ω(k) as stated in Lemma 2.2. Therefore, we can
take k = k(λ) = poly(λ) so that |Vcrs| · ε = negl(λ) holds. We fix such k in the
following.

Then, our construction of a NIZK for L is described in Fig. 3.
It is easy to see that the construction satisfies completeness. The security

properties of the NIZK is guaranteed by the following theorem.

Theorem 5.3. The above NIZK satisfies adaptive computational soundness and
non-adaptive single-theorem zero-knowledge.

Proof. We start by showing soundness, and then zero-knowledge.

Adaptive Computational Soundness. Let A be any PPT adversary that at-
tacks the adaptive soundness of our NIZK. Let Win be the event that A succeeds
in breaking the adaptive soundness (i.e. NIZK.Verify(crs, x, π) = > and x /∈ L).
Suppose A on input crs = (crsbgen, s) outputs a pair (x, π = (I, πhbm, rI , πbgen)).
Let Vcrsbgen ⊆ {0, 1}k be the set with which the somewhat computational binding
of the underlying SDP-HBG is considered. We have

Pr[Win] = Pr[Win ∧ rI /∈ V
crsbgen
I] + Pr[Win ∧ rI ∈ V

crsbgen
I].

It is straightforward to see that Pr[Win ∧ rI /∈ Vcrsbgen
I] = negl(λ) holds by the

somewhat computational binding of the underlying SDP-HBG.
Hence, it remains to show P := Pr[Win ∧ rI ∈ V

crsbgen
I] = negl(λ). Fix crs∗bgen

in the image of HBGsdp.Setup(1λ, 1k) and A’s randomness r∗A that maximize the

above probability P . Let V∗ := Vcrs∗bgen . Let F (·) be the function that on input

22

s ∈ {0, 1}k, computes (x, π = (I, πhbm, rI , πbgen))← A(crs = (crs∗bgen, s); r
∗
A), and

outputs (x, I, πhbm, rI). (Looking ahead, F is essentially an adversary against the
ε-soundness of the underlying HBM-NIZK.) Let P ′ be the following probability:

P ′ := Pr

[
NIZKhbm.Verify(I, sI ⊕ rI , x, πhbm) = >
∧ rI ∈ V∗I ∧ x /∈ L

:
s

$← {0, 1}k;
(x, I, πhbm, rI)← F (s)

]
.

Clearly, we have P ≤ P ′. We also have

P ′ =
∑
r′∈V∗

Pr

[
NIZKhbm.Verify(I, sI ⊕ rI , x, πhbm) = >
∧ rI = r′I ∧ x /∈ L

: s
$← {0, 1}k;

(x, I, πhbm, rI)← F (s)

]

≤ |V∗| · max
r∗∈V∗

Pr

[
NIZKhbm.Verify(I, sI ⊕ rI , x, πhbm) = >
∧ rI = r∗I ∧ x /∈ L

: s
$← {0, 1}k;

(x, I, πhbm, rI)← F (s)

]

= |V∗| · max
r∗∈V∗

Pr

[
NIZKhbm.Verify(I, ρI , x, πhbm) = >
∧ rI = r∗I ∧ x /∈ L

: ρ
$← {0, 1}k;

(x, I, πhbm, rI)← F (ρ⊕ r∗)

]

≤ |V∗| · max
r∗∈V∗

Pr

[
NIZKhbm.Verify(I, ρI , x, πhbm) = >
∧ x /∈ L : ρ

$← {0, 1}k;
(x, I, πhbm, rI)← F (ρ⊕ r∗)

]
≤ |V∗| · ε(k) = negl(λ),

where the last inequality uses the ε-soundness of the underlying HBM-NIZK
which we consider for the adversary B(ρ) that outputs F (ρ⊕ r∗) other than rI ,
and the last equality is due to our choice of k. Hence, we have P = Pr[Win∧rI ∈
Vcrsbgen
I] = negl(λ) as well.

Combined together, we have seen thatA’s advantage in breaking the adaptive
soundness of our NIZK is negligible. This implies that our NIZK satisfies adaptive
soundness.

Non-adaptive Single-Theorem Zero-Knowledge. Let NIZKhbm.Sim be the
simulator that is guaranteed to exist by the zero-knowledge of the underlying
HBM-NIZK. Using NIZKhbm.Sim, we first give the description of the simulator
S in Fig. 4 for showing the non-adaptive single-theorem zero-knowledge of our
NIZK.

We prove the non-adaptive single-theorem zero-knowledge of the above NIZK
via a sequence of games argument using four games, among which the first
game Game1 (resp. the final game Game4) is exactly the real (resp. simulated)
experiment. Let A = (A1,A2) be any PPT adversary that attacks the non-
adaptive single-theorem zero-knowledge of the above NIZK. For j ∈ [4], let Tj
be the event that A2 finally outputs 1 in Gamej . The description of the games
is as follows.

Game1: This is exactly the real experiment Exptnazk-realA . We have Pr[T1] =
Pr[Exptnazk-realA (λ) = 1].

Game2: We change the ordering of the steps of Game1, and furthermore “pro-

gram” s by first choosing ρ
$← {0, 1}k and then setting s := ρ ⊕ r, without

changing the distribution of A’s view. Specifically, this game proceeds as
follows.

23

S(1λ, x) :

(I, ρI , πhbm)
$← NIZKhbm.Sim(x)

crsbgen
$← HBGsdp.Setup(1λ, 1k)

(r, st)
$← HBGsdp.GenBits(crsbgen)

πbgen
$← HBGsdp.Prove(st, I)

sI := ρI ⊕ rI
sI

$← {0, 1}k−|I|
crs := (crsbgen, s)
π := (I, πhbm, rI , πbgen)
Return (crs, π).

Fig. 4. The simulator for showing non-adaptive single-theorem zero-knowledge in the
proof of Theorem 5.3.

1. Run (x,w, stA)
$← A1(1λ).

2. Pick ρ
$← {0, 1}k.

3. Compute (πhbm, I)
$← NIZKhbm.Prove(ρ, x, w).

4. Compute crsbgen
$← HBGsdp.Setup(1λ, 1k).

5. Compute (r, st)
$← HBGsdp.GenBits(crsbgen).

6. Compute πbgen
$← HBGsdp.Prove(st, I).

7. Set sI := ρI ⊕ rI .
8. Set sI := ρI ⊕ rI .14

9. Set crs := (crsbgen, s) and π := (I, πhbm, rI , πbgen).

10. Run b′
$← A2(crs, π, stA).

It is easy to see that the distribution of A’s view has not been changed from
Game1. Hence, we have Pr[T1] = Pr[T2].

Game3: This game is identical to the previous game, except that the 8th step

“sI := ρI ⊕ rI” is replaced with “sI
$← {0, 1}k−|I|”.

It is straightforward to see that |Pr[T2] − Pr[T3]| = negl(λ) holds by the
computational hiding of the underlying SDP-HBG.

Game4: This game is identical to the previous game, except that (ρ, πhbm, I) is

generated as (ρI , πhbm, I)
$← NIZKhbm.Sim(x), instead of picking ρ

$← {0, 1}k

and then executing (πhbm, I)
$← NIZKhbm.Prove(ρ, x, w).

It is immediate to see that |Pr[T3] − Pr[T4]| = negl(λ) holds by the zero-
knowledge of the underlying HBM-NIZK.

It is also straightforward to see that Game4 is identical to the simulated
experiment Exptnazk-simA,S . Hence, we have Pr[T4] = Pr[Exptnazk-simA,S (λ) = 1].

14 Splitting the step “s := ρ⊕ r” into Steps 7 and 8 is to make it easier to describe the
change in the next game and also see the correspondence with the procedure of the
simulator S.

24

Combined together, A’s advantage against the non-adaptive single-theorem
zero-knowledge can be estimated as follows:∣∣∣Pr[Exptnazk-realA (λ) = 1]− Pr[Exptnazk-simA,S (λ) = 1]

∣∣∣ =
∣∣∣Pr[T1]− Pr[T4]

∣∣∣
≤
∑
j∈[3]

∣∣∣Pr[Tj]− Pr[Tj+1]
∣∣∣ = negl(λ).

This proves that our NIZK is non-adaptive single-theorem zero-knowledge. ut

Remark 5.1. (On adaptive zero-knowledge.) One may think that we can prove
that the above construction satisfies adaptive single-theorem zero-knowledge by
relying on the special zero-knowledge property of the underlying HBM-NIZK,
since a similar statement is proven for the construction of a NIZK based on
an (ordinary) HBG in [QRW19]. However, we believe that this is not possible.
Roughly speaking, the problem comes from the fact that the SDP-HBG enables
us to generate a proof πbgen corresponding to a subset I only after I is fixed.
This is in contrast to an HBG where we can generate πi that certifies the i-th
hidden bit for each i ∈ [k] before I is fixed. Specifically, the proof of adaptive
zero-knowledge from an HBG in [QRW19] crucially relies on the fact that if
I ⊆ I∗, then a set of proofs {πi}i∈I can be derived from {πi}i∈I∗ in a trivial
manner. On the other hand, we do not have a similar property in SDP-HBG
since it generates a proof for a subset I in one-shot instead of generating a proof
in a bit-by-bit manner. We note that if SDP-HBG satisfies an adaptive version of
computational hiding where an adversary can choose a subset I depending on a
CRS crsbgen, then we can prove the adaptive zero-knowledge of the above scheme
relying on special zero-knowledge of HBM-NIZK. However, such an adaptive
version of computational hiding cannot be proven by a similar proof to the
one in Section 4.2 due to the fact that a leakage function cannot depend on a
challenge input in the security game of LR-wPRF. Therefore, instead of directly
proving that the above scheme satisfies adaptive zero-knowledge, we rely on the
generic conversion from non-adaptive to adaptive zero-knowledge as stated in
Theorem 3.1.

6 Zero-Knowledge SNARG

In this section, we consider a zero-knowledge SNARG (zkSNARG) which is a
SNARG that also satisfies the zero-knowledge property.

Bitansky et al. [BCC+17] gave a construction of a zkSNARG in the des-
ignated verifier model based on a SNARG (with efficient verification) in the
designated verifier model, a NIZK argument of knowledge, and a circuit-private
FHE scheme. As noted in [BCC+17], if we consider a publicly verifiable SNARG
(which is the default notion of a SNARG in this paper), then we need not rely
on FHE. Moreover, a NIZK argument of knowledge can be constructed by com-
bining any NIZK and CPA secure PKE. Thus, we obtain the following theorem:

25

Lemma 6.1. Assume that there exist a fully succinct SNARG for all NP lan-
guages with adaptive computational soundness and efficient verification, a NIZK
for all NP languages with adaptive computational soundness and adaptive multi-
theorem zero-knowledge, and a CPA secure PKE scheme. Then, there exists a
fully succinct SNARG for all NP languages with adaptive computational sound-
ness, adaptive multi-theorem zero-knowledge, and efficient verification.

Since this lemma follows from a straightforward extension of existing works,
we omit the proof here and give it in the full version.

Combining Lemma 6.1 and Theorem 5.2, we obtain the following theorem.

Theorem 6.1. If there exist a CPA secure PKE scheme and a fully succinct
SNARG for all NP languages with adaptive computational soundness and effi-
cient verification, then there exists a fully succinct SNARG for all NP languages
with adaptive computational soundness, adaptive multi-theorem zero-knowledge,
and efficient verification.

Remark 6.1. We cannot prove a similar statement for a SNARG without effi-
cient verification since efficient verification is essential in the construction of a
zkSNARG in Lemma 6.1.

Acknowledgement The second author was partially supported by JST CREST
Grant Number JPMJCR19F6 and JSPS KAKENHI Grant Number 19H01109.

References

AGV09. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In Omer Rein-
gold, editor, TCC 2009, volume 5444 of LNCS, pages 474–495. Springer,
Heidelberg, March 2009. 3

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018. 2

BC12. Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover
interactive proofs and their efficiency benefits. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
255–272. Springer, Heidelberg, August 2012. 10

BCC+17. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia
Lin, Aviad Rubinstein, and Eran Tromer. The hunting of the SNARK.
Journal of Cryptology, 30(4):989–1066, October 2017. 2, 3, 10, 25

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE Computer Society Press, May 2014. 2

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013. 10

26

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. 1, 9

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs
from DARK compilers. In Vincent Rijmen and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part I, LNCS, pages 677–706. Springer, Heidelberg, May
2020. 10

BISW17. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based
SNARGs and their application to more efficient obfuscation. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part III, volume 10212 of LNCS, pages 247–277. Springer, Heidelberg,
April / May 2017. 2, 10

BISW18. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal
SNARGs via linear multi-prover interactive proofs. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822
of LNCS, pages 222–255. Springer, Heidelberg, April / May 2018. 2, 10

BMW03. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
group signatures: Formal definitions, simplified requirements, and a con-
struction based on general assumptions. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer, Heidelberg,
May 2003. 2

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. Fiat-Shamir: from practice
to theory. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC,
pages 1082–1090. ACM Press, June 2019. 10

CCRR18. Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-
Shamir and correlation intractability from strong KDM-secure encryp-
tion. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer,
Heidelberg, April / May 2018. 10

CHK07. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. Journal of Cryptology, 20(3):265–294, July 2007. 1, 9

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with uni-
versal and updatable SRS. In Vincent Rijmen and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, LNCS, pages 738–768. Springer, Heidelberg,
May 2020. 10

CKU20. Geoffroy Couteau, Shuichi Katsumata, and Bogdan Ursu. Non-interactive
zero-knowledge in pairing-free groups from weaker assumptions. In Vincent
Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part III, LNCS,
pages 442–471. Springer, Heidelberg, May 2020. 3, 10

CL18. Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, re-
visited. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part I, volume 11239 of LNCS, pages 476–506. Springer, Heidelberg,
November 2018. 9

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct argu-
ments in the quantum random oracle model. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 1–29.
Springer, Heidelberg, December 2019. 10

27

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Vincent
Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part I, LNCS, pages
769–793. Springer, Heidelberg, May 2020. 10

Cv91. David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265.
Springer, Heidelberg, April 1991. 2

DDN00. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography.
SIAM J. Comput., 30(2):391–437, 2000. 1

DFMV13. Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi.
Bounded tamper resilience: How to go beyond the algebraic barrier. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 140–160. Springer, Heidelberg, December 2013. 2

DHLW10. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leakage.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
613–631. Springer, Heidelberg, December 2010. 2

DN07. Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J.
Comput., 36(6):1513–1543, 2007. 3, 9, 17

EFKP20. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass.
SPARKs: Succinct parallelizable arguments of knowledge. In Vincent Ri-
jmen and Yuval Ishai, editors, EUROCRYPT 2020, Part I, LNCS, pages
707–737. Springer, Heidelberg, May 2020. 10

FLS99. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero
knowledge proofs under general assumptions. SIAM J. Comput., 29(1):1–
28, 1999. 1, 4, 9, 13, 14, 15

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. 10

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. 2, 10

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987. 2

GO94. Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, December 1994.
1

Gol11. Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced)
trapdoor permutations: The state of the art. In Oded Goldreich, editor,
Studies in Complexity and Cryptography. Miscellanea on the Interplay be-
tween Randomness and Computation, volume 6650 of LNCS, pages 406–
421. Springer, 2011. 9

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012. 1, 9

GR13. Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permu-
tations. Journal of Cryptology, 26(3):484–512, July 2013. 9

28

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321–340. Springer, Heidelberg, December 2010. 2, 10

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. 2, 10

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
2, 13, 14

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

HLWW16. Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs.
Leakage-resilient cryptography from minimal assumptions. Journal of
Cryptology, 29(3):514–551, July 2016. 5, 6, 8, 15, 16

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Exploring constructions of compact NIZKs from various as-
sumptions. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 639–669. Springer,
Heidelberg, August 2019. 10

KRR17. Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From
obfuscation to the security of Fiat-Shamir for proofs. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 224–251. Springer, Heidelberg, August 2017. 10

KV09. Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with
bounded leakage resilience. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 703–720. Springer, Heidelberg, December
2009. 2

KW18. Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs
from lattices. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 733–765. Springer,
Heidelberg, August 2018. 10

LPWW20. Benôıt Libert, Alain Passelègue, Hoeteck Wee, and David J. Wu. New
constructions of statistical NIZKs: Dual-mode DV-NIZKs and more. In
Vincent Rijmen and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
LNCS, pages 410–441. Springer, Heidelberg, May 2020.

Mic00. Silvio Micali. Computationally sound proofs. SIAM J. Comput.,
30(4):1253–1298, 2000. 2, 10

Nao91. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryp-
tology, 4(2):151–158, January 1991.

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990. 1

Ps05. Rafael Pass and Abhi shelat. Unconditional characterizations of non-
interactive zero-knowledge. In Victor Shoup, editor, CRYPTO 2005, vol-
ume 3621 of LNCS, pages 118–134. Springer, Heidelberg, August 2005. 10,
13

29

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
89–114. Springer, Heidelberg, August 2019. 1, 10

QRW19. Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-
verifier NIZKs for all NP from CDH. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 593–
621. Springer, Heidelberg, May 2019. 4, 5, 8, 9, 14, 15, 17, 21, 25

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
552–565. Springer, Heidelberg, December 2001. 2

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014. 9

Wee05. Hoeteck Wee. On round-efficient argument systems. In Lúıs Caires,
Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung,
editors, ICALP 2005, volume 3580 of LNCS, pages 140–152. Springer, Hei-
delberg, July 2005. 10

30

	NIZK from SNARG

