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Abstract. A family of one-way functions is extractable if given a random func-
tion in the family, an efficient adversary can only output an element in the image
of the function if it knows a corresponding preimage. This knowledge extraction
guarantee is particularly powerful since it does not require interaction. However,
extractable one-way functions (EFs) are subject to a strong barrier: assuming in-
distinguishability obfuscation, no EF can have a knowledge extractor that works
against all polynomial-size non-uniform adversaries. This holds even for non-
black-box extractors that use the adversary’s code.
Accordingly, the literature considers either EFs based on non-falsifiable knowl-
edge assumptions, where the extractor is not explicitly given, but it is only as-
sumed to exist, or EFs against a restricted class of adversaries with a bounded
non-uniform advice. This falls short of cryptography’s gold standard of security
that requires an explicit reduction against non-uniform adversaries of arbitrary
polynomial size.
Motivated by this gap, we put forward a new notion of weakly extractable one-
way functions (WEFs) that circumvents the known barrier. We then prove that
WEFs are inextricably connected to the long standing question of three-message
zero knowledge protocols. We show that different flavors of WEFs are sufficient
and necessary for three-message zero knowledge to exist. The exact flavor de-
pends on whether the protocol is computational or statistical zero knowledge and
whether it is publicly or privately verifiable.
Combined with recent progress on constructing three message zero-knowledge,
we derive a new connection between keyless multi-collision resistance and the
notion of incompressibility and the feasibility of non-interactive knowledge ex-
traction. Another interesting corollary of our result is that in order to construct
three-message zero knowledge arguments, it suffices to construct such arguments
where the honest prover strategy is unbounded.
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1 Introduction

An extractable one-way function is a family of functions {fk} that satisfies two proper-
ties: One-wayness: Given an image y = fk(x) for random key k and input x, it is hard
to find a corresponding pre-image x′ ∈ f−1k (y); and Extraction: Given a random key k,
it is hard to produce an image y obliviously, without knowing a corresponding preim-
age x′. This is formalized by requiring that for any efficient algorithm A that given k
produces an image y, there is an efficient extractor E (that depends on A) that given the
same key k, extracts a preimage x′.

While their extraction property is reminiscent of proofs of knowledge [FS89,BG92],
EFs are essentially different — they draw their power from the fact that extraction can
be done without interaction.

The Good. The non-interactive nature of EFs gives rise to killer applications such as
encryption with strong CCA security [Dam91,BP04], three-message zero knowledge
[HT98,CD08], and by extending one-wayness to collision-resistance, also succinct non-
interactive arguments of knowledge (SNARKs) [BCC+14].

The Bad. Constructing EFs has proven to be an elusive task. A first barrier is that
without interaction, traditional black-box extraction techniques, like rewinding, (prov-
ably) do not work. Accordingly, extraction must use the code of the adversary in a non-
black-box way. Bitansky, Canetti, Paneth, and Rosen [BCPR16], following Goldreich’s
intuition [HT98], demonstrated an even stronger barrier that holds for non-black-box
extractors. Assuming indistinguishability obfuscation, they show that no efficient ex-
tractor can work against all polynomial-size non-uniform adversaries; that is, even when
the extractor is given the adversary’s code.

The Ugly. One approach that avoids the above barriers is to simply assume the existence
of an extractor for every adversary, without giving an explicit extraction strategy. An EF
with such non-explicit extractors follows, for example, from the knowledge of exponent
assumption [Dam91]. Such knowledge assumptions translate in applications to security
reductions that are, at least in part, non-explicit. Knowledge assumptions are arguably
unsatisfying, and in particular are not falsifiable [Nao03].

Another way to circumvent known barriers is to restrict the class of adversaries. Bi-
tansky et al. construct EFs with an explicit extractor against adversaries with bounded
non-uniform advice, under standard assumptions.1 The restriction on the adversaries
carries over to applications — they obtain three-message zero-knowledge, but only
against verifiers with bounded non-uniformity. This of course falls short of the gold
standard in cryptography of security against non-uniform adversaries of arbitrary poly-
nomial size.

Given this state of affairs, we ask:

Is there hope for explicit extraction from general non-uniform adversaries?

1 More accurately, they constructed generalized EFs under standard assumption and (plain) EFs
assuming publicly verifiable delegation, which by now is also known based on standard as-
sumptions [KPY19].
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1.1 This Work

We put forward a new definition of weakly extractable one-way functions (WEFs) that
circumvents the [BCPR16] extraction barrier. We then show that WEFs are deeply con-
nected to three-message zero knowledge protocols, establishing a loose equivalence
between the two notions.

The New Definition. Our notion of WEFs is inspired by simulation-based definitions
of multi-party computation. We relax the extraction requirement as follows: instead of
requiring that the extractor E , given a random key k and the code of the adversary A, is
able to find a preimage x′ ∈ f−1k (y) for the adversary’s image y = A(k), we allow the
extractor to sample a simulated key k̃ on its own together with an extracted preimage
x′ ∈ f−1

k̃
(y) for y = A(k̃). The simulated key k̃ must be indistinguishable from a

randomly sampled key k.
For this relaxation to be meaningful we must also strengthen the one-wayness re-

quirement. Instead of one-wayness for a random key, we require that fk is hard to invert
on any key k. More generally, we can require hardness for any key from some NP set of
valid keys. In this case, we further require that the extractor’s simulated keys be valid
and thus extraction cannot simply sample “easy to invert” keys. Rather, just as in stan-
dard EFs, the WEF extractor must use the code of the adversary to extract a preimage
or it could be used to break one-wayness.

Our main motivation for studying WEFs is that they are weak enough to circum-
vent the impossibility of [BCPR16] (see the technical overview for more details) yet,
appear to capture a natural and meaningful notion of extraction. We confirm this intu-
ition by showing that WEFs are sufficient for one of the central applications of EFs:
three-message zero knowledge arguments.

Theorem 1 (Informal). Assuming WEFs, two-message witness-indistinguishable ar-
guments, and non-interactive commitments, there exist three-message ZK arguments
for NP.

The existence of three-message zero knowledge arguments (with negligible sound-
ness error) is one of the central questions in the area. The main barrier to construct-
ing such arguments is that they require non-black box simulation [GK96]. In addition
to constructions based on EFs, the only known construction secure against arbitrary
polynomial size non-uniform adversaries was given recently by Bitansky, Kalai and
Paneth [BKP18] based on keyless multi-collision resistant hash functions (and other,
more standard, assumptions). A feature of the WEF-based zero knowledge argument,
which [BKP18] protocol lacks, is that it is publicly verifiable. This means that the veri-
fier’s decision can be inferred from the message transcript alone.

A Tighter Connection. We continue to show a tighter connection between the notions
of WEF and three-message zero knowledge. We show that a slight generalization of
WEF is sufficient as well as necessary for three-message zero knowledge. Our gener-
alization follows Bitansky et al’s [BCPR16] generalization of EFs, allowing for a more
general forms of hardness than one-wayness. They consider a relationRk(y, x′) on im-
ages y = fk(x) and solutions x′, and replace one-wayness with the hardness of finding
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solutions. Likewise, the extractor only has to find x′ that satisfies the relationRk, rather
than a preimage.2 We generalize WEFs in an analogous way.

We establish the following equivalence between generalized WEFs (GWEFs) and
three-message zero knowledge arguments:

Theorem 2 (Informal). Assuming two-message witness- indistinguishable and non in-
teractive commitments arguments, GWEFs exist if and only if publicly verifiable three-
message zero knowledge arguments exist.

Finally, we ask if there is some natural notion of WEF that corresponds to three-message
ZK arguments that are privately verifiable, such as the argument of [BKP18]. Again
following [BCPR16], we consider a notion of privately verifiable GWEFs where the
hard relation Rk is not publicly verifiable — efficiently testing whether (fk(x), x′) ∈
Rk requires the preimage x (see the technical overview for a more details on privately
verifiable GWEFs).

In the privately verifiable settings, we show the following loose equivalence:

Theorem 3 (Informal).

1. Assuming privately verifiable GWEFs and secure function evaluation, there ex-
ist privately verifiable three-message computational zero-knowledge arguments for
NP.

2. Assuming privately verifiable three-message statistical zero-knowledge arguments
for NP and non-interactive commitments, there exist privately verifiable GWEFs.

Recently, building on [BKP18] and relying on the same assumptions, three-message
statistical zero-knowledge arguments were constructed in [BP19]. Thus, as a corollary
from Theorem 3 we obtain privately verifiable GWEFs from keyless multi-collision
resistant hashing (and other standard assumptions). This connects between the notion of
incompressibility, which stands behind keyless multi-collision-resistance and the notion
of knowledge extraction. We further note that keyless collision-resistance is a falsifiable
assumption, which should be contrasted with the fact that standard EFs all crucially rely
on non-falsifiable assumptions such as the knowledge of exponent assumption.

On WEFs candidates. As mentioned above, the negative result of Bitansky et al.
[BCPR16] does not extend to WEFs. Therefore, even assuming indistinguishability ob-
fuscation, existing candidate constructions, such as the one based on the knowledge of
exponent assumption, may be weakly extractable. In the current work, however, we do
not provide any evidence in support of that. Demonstrating, under standard assump-
tions, a WEF with an explicit extractor against non-uniform adversaries is left as an
open question. We view the privately verifiable GWEFs from keyless multi-collision
resistant hashing that follows from Theorem 3 as a first step in this direction.

On Zero Knowledge with an Unbounded Honest Prover. Our GWEF constructions
from zero knowledge arguments, in fact, work even if the honest prover is unbounded.

2 In this formulation, we think of the the preimage x as the private randomness used to sample y.
Looking ahead, we will also discuss GWEFs with private verification, where it will be useful
to refer to the private randomness x explicitly.



4 Nir Bitansky, Noa Eizenstadt, and Omer Paneth

Combined with our results in the reverse direction, this has an interesting implication
— to obtain three-message zero knowledge arguments with an efficient honest prover,
it suffices to obtain such argument with with an unbounded honest prover.

1.2 Technical Overview

We now provide an overview of the main technical ideas behind our results. We start
by explaining how the definition of WEFs circumvents the [BCPR16] barrier. We then
discuss the equivalence between GWEFs and (publicly verifiable) three-message zero
knowledge. Finally, we discuss the case of private verification.

Circumventing the Impossibility. The [BCPR16] impossibility constructs a distribu-
tion A over obfuscated adversaries, and shows that if the extractor works given a ran-
dom key k and adversaryA sampled fromA, then it must also work when the adversary
A is sampled after the key k from an alternative distribution Ak over adversaries that
have a random image fk(x) hardwired in their code. This argument crucially relies on
the fact that the extractor does not control the key k.

GWEFs to Publicly Verifiable Zero Knowledge. The construction of publicly verifi-
able zero knowledge from GWEFs is mostly similar to previous constructions (e.g.,
[CD08,BCC+14]). We sketch it here briefly, highlighting the differences. To prove
some NP statement ϕ ∈ L, the protocol follows the Feige-Lapidot-Shamir trapdoor
paradigm [FLS90]. The prover sends a random key k for a GWEF, and the veri-
fier responds with a random image y = fk(x). The prover then provides a witness-
indistinguishable proof of knowledge that either the statement ϕ is true, or that (a) the
chosen key k is valid (and thus hard), and (b) it knows a solution x′ for y; namely,
(y, x′) ∈ Rk.

The protocol is publicly verifiable, as it only requires verifying the witness indistin-
guishable proof, which is publicly verifiable. Soundness follows from the fact that for a
valid key k and a random image fk(x), it is hard to find a solution x′ satisfyingRk. For
zero knowledge, the simulator uses the extractor E(V ∗) to extract from the verifier a
solution x′ together with a corresponding simulated key k and an NP certificate for the
key’s validity. It then uses x′ and the certificate of validity as its witness in the witness-
indistinguishable proof. The protocol, as described, implicitly assumes that the mali-
cious verifier’s message y can indeed be explained as an image y = fk(x). We bridge
this gap using standard techniques, based on two-message witness-indistinguishability
and commitments, for compiling protocols against explainable verifiers to ones against
malicious verifiers [BKP19].

Publicly Verifiable Zero Knowledge to GWEFs. The main idea behind the construc-
tion of GWEFs from three-message zero knowledge is a natural one — a key k for a
function fk consists of the first zero knowledge message zk1 as well a statement ϕ ∈ L
for some language L (to be specified), an image under the function fk(x) is the honest
verifier response y = zk2, when using x as its randomness. The corresponding hard
relation Rk(y, x′) accepts as a solution x′ any message zk3 that convinces the verifier.
Indeed, given that the zero knowledge is publicly verifiable, this can be tested efficiently.

The set of valid keys (for which the relation is hard) consists of false statements
ϕ /∈ L. Indeed, finding a solution x′ = zk3 to a random image y = zk2 under a valid
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key k = (zk1, ϕ), amounts to producing an accepting proof for the false statement ϕ,
which is computationally hard due to the soundness of the argument.

The extractor E(A) samples a false ϕ on its own, and runs the zero knowledge
simulator S(ϕ, VA) on the code of the verifier VA induced by the adversaryA to produce
a simulated transcript (zk1, zk2, zk3). It then sets the simulated key to be (zk1, ϕ) and
the extracted preimage to be zk3. To argue that the extractor indeed works we have to
argue that the simulator produces an accepting transcript. We note that had ϕ been a true
statement, then this would have followed from the zero knowledge and completeness
of the underlying argument. Indeed, the honest prover necessarily generates accepting
transcripts due to completeness, and the simulated transcript must be indistinguishable.

To establish faithful extraction, we choose the language L so to guarantee indistin-
guishable distributions over true-statements and false-statements. Since the simulator is
efficient, and cannot tell them apart, it will also generate accepting transcripts on false-
statements like the one sampled by the extractor. We also require that false-statements
are taken from an NP set. The existence of a language L satisfying these properties
follow from non-interactive commitments.

Privately Verifiable GWEFs. We now move to discuss privately verifiable GWEFs
and their connection to privately verifiable zero knowledge. Here the hard relation Rk

is not publicly verifiable — efficiently testing whether (fk(x), x′) ∈ Rk requires the
preimage x.

In the setting of privately verifiable GWEF, where testing a solution x′ for y requires
private information (a preimage), there are two knowledge-related questions: (1) the
usual one: must the adversary know a solution for the produced image y? but also (2)
can it even recognize such a solution? The definition we consider essentially says that if
the adversary can generate an image y, for which it can verify solutions, then it must also
know a solution. If it cannot even verify a solution, we only require that the extractor
generates x′ that the adversary cannot distinguish from a solution.

Following this intuition, we further relax the previous extraction definition as fol-
lows. The extractor E may sometime fail to extract. However, there is an additional
extractor Ẽ that is guaranteed to always succeed and produce a key k and candidate so-
lution x′ that are indistinguishable from those generated by E . The extractor Ẽ is given
the extra freedom to solve invalid keys (indeed invalid keys may be indistinguishable
from valid keys, if the NP certificate of validity is hidden). Note that in the publicly
verifiable setting, or if the adversary generates images y whose solutions it can rec-
ognize, the original extractor E must indeed always succeed just like the alternative Ẽ
(otherwise, we can tell them apart).

Privately Verifiable GWEFs to Privately Verifiable Zero Knowledge. The construc-
tion of privately verifiable zero knowledge from privately verifiable GWEFs follows
the construction of [BCPR16] from privately verifiable GEFs. In a nutshell, in the case
of privately verifiable GWEFs, the prover cannot directly prove that it found a solution
x′, as testing a solution requires the private randomness x used to generate y = fk(x).
Instead, the verifier and prover execute a secure function evaluation protocol, which
allows to perform this verification in an “encrypted manner”. This results in privately
verifiable zero knowledge due to the private state of the verifier in the secure function
evaluation protocol.



6 Nir Bitansky, Noa Eizenstadt, and Omer Paneth

Soundness of the protocol is argued similarly to [BCPR16]. For zero knowledge,
we rely on the relaxed extraction guarantee described above. The simulator uses E to
generate a simulated key k along with an NP certificate of validity, and extracted a
solution x′. Only in the analysis, we switch to indistinguishably generating the keys
using the alternative extractor Ẽ , and use the fact that it successfully extracts.

Privately Verifiable Statistical Zero Knowledge to Privately Verifiable GWEFs.
The construction of GWEFs from Privately Verifiable Zero Knowledge is essentially the
same as that from publicly verifiable zero knowledge. We address the difference in the
analysis, explaining why statistical zero knowledge is needed, and how the alternative
extractor relaxation aids the construction.

Recall that in the GWEF construction from publicly verifiable zero knowledge, to
prove hardness it is crucial that a valid key corresponds to a false statement ϕ. To show
that the extractor faithfully extracts, we had to show that the simulator faithfully gen-
erates an accepting transcript. We argued that in two steps: (1) the simulator generates
accepting transcripts on true statements, and (2) even though the extractor generates
false statements, the simulator would still succeed as it cannot tell false statements from
true ones.

In the private verification setting, (1) is not clear. Indeed, testing whether a transcript
is accepting cannot be done efficiently, and thus computational zero knowledge is in-
sufficient for arguing that the simulator would also generate accepting transcripts. This
is where we resort to statistical zero knowledge — indeed, an unbounded distinguisher
can generate verifier coins consistent with the transcript and test acceptance. However,
the second argument (2) should also be treated with care. The fact that the simula-
tor generates accepting transcripts on true statements does not necessarily mean that it
generates such transcripts on false statements. Indeed these are inherently only com-
putational indistinguishable. However, this argument is sufficient for establishing our
relaxed extraction guarantee: the alternative extractor Ẽ simply chooses true statements
rather than false statements. Since these are computationally indistinguishable, and the
extracted solution x′ is efficiently generated from the statement, we are guaranteed that
the two extractors are indeed indistinguishable.

1.3 Open Questions

The notions of WEFs and GWEFs suggest a new avenue for dealing with knowledge
extraction in the non-interactive settings. We address a few of the open questions that
arise.

– Can we use our new notions of extraction to go beyond zero knowledge and obtain
results on the round complexity of secure computation? One concrete approach is to
construct (G)WEFs with a unique hard property. That is, a GWEFs and a property
π such that an image y uniquely determines the value π(x′) for any solution x′

but given only y the value π(x′) is pseudo-random. Indeed, this can be seen as a
generalization of WEF that are injective and will lead to extractable commitments
in two messages.

– Can we construct any form of collision resistant (G)WEFs? Can these suffice for
applications such as succinct non-interactive arguments of knowledge (SNARKs)?
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– Is there an implication in the reverse direction from (G)WEF to keyless multi-
collision-resistance, or, more generally to some non-trivial notion of incompress-
ibility.

2 Preliminaries

We rely on the following standard computational concepts and notation:

– A PPT is a probabilistic polynomial-time algorithm.
– We follow the standard practice of modeling any efficient adversary strategy as a

family of polynomial size circuits. For an adversary A corresponding to a family of
polynomial-size circuits {An}n∈N.

– A distinguisher algorithm is one that has a single output bit.
– We say that a function f : N→ R is negligible if for all constants c > 0, there exists
N ∈ N such that for all n > N , f(n) < n−c. We sometimes denote negligible
functions by negl.

– We say that a function f : N → R is noticeable if there exist constants c > 0 and
N ∈ N such that for all n > N , f(n) ≥ n−c.

– Two ensembles of random variables X = {Xi}n∈N,i∈In , Y = {Yi}n∈N,i∈In over
the same set of indices I =

⋃
n∈N In are said to be computationally indistin-

guishable, denoted by X ≈c Y , if for every polynomial-size distinguisher D =
{Dn}n∈N there exists a negligible function µ(·) such that for all n ∈ N, i ∈ In,

ED(Xi)− ED(Yi) ≤ µ(n) .

The ensembles are statistically indistinguishable if the above holds also for un-
bounded (rather than polynomial-size distinguishers).

– For a finite set S, denote by x← S the process of uniformly sampling x from S.
– For a distribution X , we denote by x ∈ X the fact that x is in the support of X .

LetR = {(ϕ, ω)} be a relation. Denote by L(R) the corresponding language:

L(R) := {ϕ | ∃ω such that (ϕ, ω) ∈ R} .

For any ϕ, we denote byR(ϕ) the set of witnesses corresponding to ϕ:

R(ϕ) := {ω | (ϕ, ω) ∈ R} .

2.1 Hard On Average Relations

We define hard-on-average problems with solved instance and co-instance samplers.
Such a hard problem is given by two efficient samplers Y,N and corresponding NP
relations RY ,RN . Y outputs yes-instances along with a witness and N outputs no-
instances along with a witness. The two types of instances are computationally indis-
tinguishable.

Definition 1 (Hard on Average Problem). A hard-on-average problem consists of
PPT samplers Y,N supported on NP relationsRY ,RN . We require
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1. Disjointness: L(RY ) ∩ L(RN ) = ∅.
2. Indistinguishability:

{ϕ | (ϕ, ω)← Y (1n)}n ≈c {ϕ̄ | (ϕ̄, ω̄)← N(1n)}n .

The notion is, in fact, equivalent to non-interactive commitments, but will be useful
for presenting our constructions of generalized weakly extractable one-way functions,
in a conceptually clear manner. To see this equivalence, we can consider the two NP
languages corresponding to commitments of 0 and 1, and consider their respective rela-
tions. Analogously, we can construct commitments, where committing to 1 is done by
sampling from Y , and committing to 0 is done by sampling from N .

2.2 Non-Interactive Commitments

Definition 2 (Non-Interactive Commitment [Blu81]). A non-interactive commitment
scheme consists of a polynomial-time commitment algorithm Com(x; r) that given a
message x ∈ {0, 1}∗ and randomness r ∈ {0, 1}n outputs a commitment c. We make
the following requirements:

1. Perfect Binding: For every security parameter n ∈ N, and string c ∈ {0, 1}∗ there
exists at most a single x ∈ {0, 1}∗ such that c is a commitment to x:

∀n ∈ N, r0, r1 ∈ {0, 1}n if Com(w0; r0) = Com(w1; r1) then w0 = w1 .

2. Computational Hiding: for any sequence I =
{
n ∈ N, w0, w1 ∈ {0, 1}poly(n)

}
:{

c0 :
r ← {0, 1}n

c0 ← Com(w0; r)

}
(n,w0,w1)∈I

≈c

{
c1 :

r ← {0, 1}n
c1 ← Com(w1; r)

}
(n,w0,w1)∈I

.

Non-interactive commitments can be constructed from any injective one-way func-
tion (or a certifiable collection thereof) [Blu81].

2.3 Zero-Knowledge and Witness Indistinguishable Protocols

Throughout, for an interactive protocol between a prover P and verifier V (one of which
possibly malicious), we denote by 〈P (ω), V 〉(ϕ) the transcript of an interaction with
prover private input ω (possibly empty), and common input ϕ. We denote by Acc/
Rej out← 〈P (ω), V 〉(ϕ) the output of the (honest) verifier.

Definition 3 (Zero-Knowledge Arguments). We say that a pair of interactive PPT
machines 〈P , V 〉 is a zero-knowledge argument system for a NP relation R if the fol-
lowing holds:

1. Completeness: For every element ϕ ∈ L(R), and a witness ω ∈ R(ϕ):

Pr
[
Acc out← 〈P (ω), V 〉(ϕ)

]
= 1 .
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2. Soundness: For any family of polynomial-size circuits P ∗ = {P ∗n}n, and every
ϕ ∈ {0, 1}n \ L:

Pr
[
Acc out← 〈P ∗n, V 〉(ϕ)

]
≤ negl(n) .

3. Zero Knowledge: There exists a PPT simulator S such that for any non-uniform
family of polynomial-size circuits V ∗ = {V ∗n }n,

{〈P (ω), V ∗n 〉(ϕ)}ϕ,ω ≈c {S(V ∗n , ϕ)}ϕ,ω ,

where (ϕ, ω) ∈ R and |ϕ| = n.

The argument is statistical zero knowledge if the above indistinguishability is sta-
tistical (rather than computational).

The protocol is publicly verifiable is the verifier’s decision can be determined solely
from the protocol’s transcript (without the private coins of the verifier).

Definition 4 (Argument of Knowledge). An argument system 〈P , V 〉 is an argument
of knowledge for a relation R if there exists a PPT extractor E such that for any non-
uniform family of polynomial-size circuits P ∗ = {P ∗n}n∈N, any noticeable function
ε(n), any n ∈ N, and any ϕ ∈ {0, 1}n:

if Pr
[
Acc out← 〈P ∗n, V 〉(ϕ)

]
= ε(n)

then

Pr

[
ω ← EP∗n (11/ε(n), ϕ)
ω ∈ R(ϕ)

]
≥ ε(n)− negl(n) .

2.4 Offline-Online Witness Indistinguishable Arguments

An offline-online interactive argument is a protocol 〈P , V 〉 that can be divided into two
phases: an offline phase independent of the proven statement, and an online phase where
the statement (and witness) become available and the proof is completed. We define
such witness-indistinguishable arguments (and arguments of knowledge). Our formal
definition follows that of [BP19]. Below, we consider sub-protocols 〈offP,offV 〉(1n)

where both prover and verifier may have an output; we denote this by (OP , OV )
out←

〈offP,offV 〉(1n).

Definition 5 (Offline-Online Witness-Indistinguishable Arguments). An interactive
protocol 〈P , V 〉 is an offline-online witness-indistinguishable argument for an NP re-
lation R if it consists of two sub-protocols P = (offP,onP ), V = (offV,onV ), that
satisfy:

1. Completeness: For any (ϕ, ω) ∈ R where |ϕ| = n:

Pr
[
〈Acc out← onP (stP , ω),onV (stV )〉(ϕ)

∣∣∣ (stP , stV )
out← 〈offP,offV 〉(1n)

]
= 1 .
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2. Adaptive Soundness: For any non-uniform family of polynomial-size circuits P ∗ =
{offP ∗n ,onP ∗n}n, and for all n ∈ N:

Pr
[

Acc out← 〈onP ∗n(stP ),onV (stV )〉(ϕ)

∣∣∣ ((stP , ϕ), stV )
out← 〈offP ∗n,offV 〉(1n)

]
≤ negl(n) ,

where ϕ /∈ L and |ϕ| = n.
3. Adaptive Witness-Indistinguishability For any non-uniform family of polynomial

size circuits V ∗ = {V ∗n }n, all n ∈ N:

Pr
[
b

out← 〈onP (stP , ωb),onV ∗n(stV )〉(ϕ)∣∣∣∣ (stP , (stV , ϕ, ω0, ω1))
out← 〈offP,offV ∗n〉(1n),

b← {0, 1}

]
≤ 1

2 + negl(n)
,

where (ϕ, ω0), (ϕ, ω1) ∈ R and |ϕ| = n

Definition 6 (Adaptive Argument of Knowledge). We say that the system is an Adap-
tive Argument of Knowledge if there exists a PPT extractor E such that for any non-
uniform family of polynomial-size circuits P ∗ = {offP ∗n ,onP ∗n}n∈N, and for all n ∈ N:

if Pr

[
Acc out← 〈onP ∗n(stP ),onV (stV )〉(ϕ) |

((stP , ϕ), stV )
out← 〈offP ∗n,offV 〉(1n)

]
= ε

then

Pr

Acc out← 〈onP ∗n(stP ),onV (stV )〉(ϕ)

ω ← E(offP∗n ,onP∗n)(11/ε, ϕ, stP , stV )
ω ∈ R(ϕ)

∣∣∣∣∣∣
((stP , ϕ), stV )

out← 〈offP ∗n,offV 〉(1n)
]
≥ ε− negl(n)

,

where |ϕ| = n. This further holds for randomized circuits offP ∗,onP ∗, provided that
the first prover message of offP is deterministic.3

Assuming non-interactive commitments, there exist three-message systems as the
one defined above that are adaptive arguments of knowledge, and have two offline
(prover and verifier) messages and a single online (prover) message [FLS90].

Two-message systems (that are only sound) are known under a variety of assump-
tions like trapdoor permutations, or concrete number-theoretic or lattice assumptions
(e.g. [DN00,GOS06,KKS18]).

2.5 Secure Function Evaluation

We define two-message secure function evaluation.

3 The requirement for randomized circuits is not essential, but simplifies the analysis.
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Definition 7 (Two-Message Secure Function Evaluation Scheme). A secure function
evaluation scheme consists of three algorithms (Enc,Dec,Eval), where Enc,Eval are
probabilistic and Dec is deterministic, satisfying:

1. Correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr
[
Decsk(ĉt) = C(x) | (sk, ct)← Enc(x), ĉt← Eval(ct, C)

]
= 1 .

2. Semantic Security:

{ct | (sk, ct)← Enc(w0)}n,w0,w1
≈c {ct | (sk, ct)← Enc(w1)}n,w0,w1

,

where n ∈ N, w0, w1 ∈ {0, 1}n.
3. Circuit Privacy:

{Eval(ct, C0)}n,C0,C1,ct ≈c {Eval(ct, C1)}n,C0,C1,ct ,

where n ∈ N, C0, C1 ∈ {0, 1}poly(n) compute the same function, and ct ∈
{0, 1}`(n), where `(n) is the size of encryptions of messages of length n.

Such secure function evaluation schemes are known from a variety of assumptions such
as DDH [NP01] and LWE [BD18].

3 Extractable-One Way Functions: A New Definition

In this section, we provide our new definition of extractable one-way functions against
adversaries with arbitrary polynomial-size non-uniform advice. We start by recalling
the concept of generalized extractable one-way functions (GEF) [BCPR16], which
considers general (hard) relations, rather than the specific preimage relation. We then
present our new definition of generalized weakly extractable one-way functions (GWEF).

Definition 8 (GEF [BCPR16]). A polynomial-time computable family of functions

F =
{
fk : {0, 1}`(n) → {0, 1}`

′(n) | n ∈ N, k ∈ {0, 1}m(n)
}

,

associated with an efficient key sampler K, is a generalized extractable one-way func-
tion with respect to a polynomial-time relationRF if the following holds:

1. RF -Hardness: For any non-uniform family of polynomial-size circuitsA = {An}n
and every n ∈ N,

Pr
[
(fk(x), x′) ∈ RFk | k ← K(1n), x← {0, 1}`(n), x′ ← An(k, fk(x))

]
≤ negl(n) .

2. RF -Extractability: There exists a PPT extractor E such that for any non-uniform
family of polynomial size circuits A = {An}n and every n ∈ N,

Pr

∃x : y = fk(x),
(y, x′) /∈ RFk

∣∣∣∣∣∣
k ← K(1n)
y ← An(k),
x′ ← E(k,An)

 ≤ negl(n) .
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Definition 9 (Privately Verifiable GEF). A GEF is (only) privately verifiable if the re-
lation RFk is not necessarily polynomial-time, but there exists a polynomial-time tester
M such that for any (k, x, x′):

M(k, x, x′) = 1 iff (fk(x), x′) ∈ RFk .

On the Amount of Non-Uniformity. The definition of [BCPR16] also considers PPT
adversaries with bounded non-uniform advice. In contrast, the above definition is for-
mulated for non-uniform circuit adversaries of arbitrary polynomial size, which is equiv-
alent to considering PPT adversaries with arbitrary polynomial-size non-uniform ad-
vice. As discussed in the introduction, while security against such adversaries is the
gold standard in cryptography, such extractable functions are shown in [BCPR16] to be
impossible assuming indistinguishability obfuscation.

The New Definition for Arbitrary Non-Uniformity. The main relaxation we intro-
duce in order to overcome the impossibility is to only require that extraction holds with
respect to simulated keys, indistinguishable from real keys. That is, we allow the extrac-
tor to also simulate the key, for which it may use the code of the adversary.

Having relaxed extraction, we also strengthen the hardness requirement — we ask
that one-wayness holds with respect to any key from a predefined set of valid keys
L(K), certifiable by an NP relation K, rather than only when the key is chosen at ran-
dom by the (real) key sampler. (As noted in the introduction, without this strengthen-
ing, extraction relative to extractor-simulated keys becomes trivial, assuming trapdoor
one-way functions. Indeed, this stronger form of one-wayness will be crucial for the
application of three-message zero-knowledge.) We shall require that the simulated keys
are also valid and are generated by the extractor along with an NP certificate for their
validity.

Definition 10 (GWEF). An efficiently computable family of functions

F =
{
fk : {0, 1}`(n) → {0, 1}`

′(n) | n ∈ N, fk ∈ {0, 1}m(n)
}

,

associated with an efficient key sampler K and NP relation K, is a generalized weakly
extractable one-way function with respect to a polynomial-time relation RF if the fol-
lowing holds:

1. Worst-caseRF -Hardness: For any non-uniform family of polynomial-size circuits
A = {An}n, every n ∈ N, and every k ∈ L(K) ∩ {0, 1}m(n),

Pr
[
(fk(x), x′) ∈ RF | x← {0, 1}`(n), x′ ← An(k, fk(x))

]
≤ negl(n) .

2. Weak RF -Extractability: There exists a PPT extractor E such that for any non-
uniform family of polynomial-size circuits A = {An}n, we have:
(a) Extraction: For all n ∈ N,

Pr

[
∃x : y = fk(x),

(y, x′) /∈ RFk

∣∣∣∣ (k, v, x′)← E(1n, An)
y ← An(k)

]
≤ negl(n) .
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(b) Key Indistinguishability:

{k | k ← K(1n)}n ≈c {k | (k, v, x′)← E(1n, An)}n .

(c) Validity: For all n ∈ N,

Pr
k,v,x′←E(1n,An)

[(k, v) ∈ K] ≥ 1− negl(n) .

Remark 1 (On Validity of Keys). We note that we do not insist that random keys sam-
pled by K are valid. Indeed, requiring this is typically not useful in settings where
keys are not necessarily generated by trusted parties. We note, however, that due to
key-indistinguishability, it is possible to add this additional requirement generically, by
having the K(1n) sample using E(1n, Cn), for any fixed circuit Cn.

3.1 Privately Verifiable GWEF

We now turn to define private-verifiable GWEF. Here we relax the definition even fur-
ther, allowing that simulated keys generated by the extractor are not necessarily valid.
Rather, we require that there exists another extractor Ẽ that does output valid keys, and
such that the key k and extracted w sampled by Ẽ are indistinguishable from those sam-
pled by E . However, Ẽ , may not necessarily succeed in producing w that satisfies the
relationRFk .

We present the definition, and then further discuss the intuition behind it.

Definition 11 (Privately Verifiable GWEF). A GWEF is (only) privately verifiable if
the relation RFk is not necessarily polynomial-time, but there exists a polynomial-time
testerM(k, x, w) for (fk(x), w) ∈ RFk as in Definition 9

In addition, WeakRF -Extractability is augmented.

WeakRF -Extractability: There exist PPT extractors E , Ẽ such that for any non-uniform
family of polynomial size circuits A = {An}n, we have:

1. Extraction: For all n ∈ N,

Pr

[
∃x : y = fk(x),

(y, w) /∈ RFk

∣∣∣∣ (k,w)← E(1n, An)
y ← An(k)

]
≤ negl(n) .

2. Key Indistinguishability:

{k | k ← K(1n)}n ≈c {k | (k,w)← E(1n, An)}n .

3. Ẽ-Validity: For all n ∈ N,

Pr
[
(k, v) ∈ K | (k, v, w)← Ẽ(1n, An)

]
≥ 1− negl(n) .

4. Extractor Indistinguishability:

{k,w | (k,w)← E(1n, An)}n ≈c

{
k,w | (k, v, w)← Ẽ(1n, An)

}
n
.
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More on the Definition. In the setting of privately verifiable GWEF, where testing a
solution w for y requires private information (a preimage), there are two knowledge-
related questions: (1) the usual one: must the adversary know a solution for the produced
image y? but also (2) can it even recognize such a solution? The definition we consider
essentially says that if the adversary can generate an image y, for which it can verify
solutions, then it must also know a solution. If it cannot even verify a solution, we
only require that the extractor generates w that the adversary cannot distinguish from a
solution.

4 From Three-Message ZK to GWEF

In this section, we present our constructions of generalized weakly extractable one-way
functions from three-message zero-knowledge arguments.

4.1 Publicly Verifiable GWEF

In this section, we construct publicly verifiable three-message zero-knowledge proto-
cols from GWEF.

Theorem 4. Assuming publicly verifiable three-message zero-knowledge argument sys-
tem for NP and non-interactive commitments, there exists a GWEF.

Ingredients and Notation:

– H = (Y,N,RY ,RN ), a hard-on-average problem with solved instances and co-
instances. (Recall that such problems follow from non-interactive commitments.)

– 〈P , V 〉, a ZK argument system for RY . We denote the protocol’s messages by
zk1, zk2, zk3.

We now define our GWEF F with associated key sampler K, key-relation K, and
hard relationRF . These are given in Figure 1.

Security Analysis We now show that the described function family F (and associated
K,K,RF ) satisfy the requirements of a GWEF.

Hardness. We show hardness based on the soundness of the argument system and dis-
jointness property ofH.

Proposition 1. F satisfiesRF -hardness.

Proof. Assume toward contradiction there exists a family of polynomial-size circuits
A = {An}n and a noticeable function ε(n), such that for infinitely many n, there exists
a valid key k = (ϕ̄, zk1) ∈ L(K), such that

Pr

(y, x′) ∈ RFk

∣∣∣∣∣∣
x← {0, 1}n
y = fk(x)
x′ = A(k, y)

 ≥ ε(n) .
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Sampler K(1n):

– Sample (ϕ, ω)← Y (1n)
– Let S be the zero-knowledge simulator, and let V0 be the honest verifier circuit with

hardwired randomness 0n. Sample (zk1, zk2, zk3)← S(V0, ϕ).
– Return k = (ϕ, zk1).

Key relation K:

– (k, v) ∈ K iff k = (ϕ, zk1) such that (ϕ, v) ∈ RN .

Function fk(r) in family F = {fk : {0, 1}n → {0, 1}∗}n,k:

– Parse k = (ϕ, zk1).
– Emulate the verifier V with statement ϕ, first prover message zk1, and randomness r.

Let zk2 be the produced verifier message.
– Output zk2.

RF :

– (y, x′) ∈ RFk iff
• Parsing y = zk2, x′ = zk3, and k = (ϕ, zk1).
• The transcript (zk1, zk2, zk3) with respect to statement ϕ is accepting.

Fig. 1. GWEF

That is, parsing y = zk2, x
′ = zk3, the transcript (zk1, zk2, zk3) is accepting with

respect to statement ϕ̄.
We construct a corresponding prover P ∗ = {P ∗n}n (Figure 2) that convinces the

verifier of accepting the statement ϕ̄ with probability ε(n) − negl(n). Since k ∈ K, it
holds that ϕ̄ ∈ L(RN ). By the disjointness property ofH, this means that ϕ̄ /∈ L(RY )
and thus, P ∗ will violate the soundness of the underlying argument system.

P ∗n(ϕ̄)

1. Sends zk1 to the verifier.
2. Obtains a response zk2 from the verifier.
3. Emulates An(k, y), where y = zk2, and obtains zk3. Sends zk3 to the verifier.

Fig. 2. ZK Malicious Prover GWEF

Note that the view of An when emulated by P ∗n is identical to its view when break-
ing the hardness ofRF . Thus P ∗n convinces the verifier of accepting the false statement
with probability ε(n)− negl(n).



16 Nir Bitansky, Noa Eizenstadt, and Omer Paneth

Weak Extractability. We now prove weak extractability, based on the zero-knowledge
and completeness properties of the argument system and indistinguishability ofH.

Proposition 2. F satisfies weak extractability.

Proof. We start by defining the extractors E , which is described in Figure 3.

E(1n, A):

– Sample (ϕ̄, ω̄)← N(1n).
– Consider the verifier circuit V ∗, that given a first prover message zk1, computes zk2 =
A(ϕ̄, zk1), and responds with zk2.

– Sample a simulated transcript (zk1, zk2, zk3) ← S(V ∗, ϕ̄), where S is the zero-
knowledge simulator.

– Output (k, v, x′) where k = (ϕ̄, zk1), v = ω̄, and x′ = zk3.

Fig. 3. GWEF Extractor

We prove the three properties — extraction, key-indistinguishability and validity —
required by weak extractability (Definition 10). From hereon, fix a family of polynomial
size circuits A = {An}n.

Claim (Extraction). For all n ∈ N,

Pr

[
∃x : y = fk(x),
(y, x′) /∈ RFk

∣∣∣∣ (k, x′)← E(1n, An)
y ← An(k)

]
≤ negl(n) .

Proof. We start by recalling that whenever y is in the image of fk, it is the case that y =
zk2, such that zk2 is the response of the honest verifier to zk1, using some randomness
r, where zk1 is given by the key k = (ϕ, zk1).

Our goal is to show that except with negligible probability, the extractor produces
zk3, such that the simulated transcript (zk1, zk2, zk3) is accepting with respect to state-
ment ϕ̄. We show that this follows from the zero-knowledge and completeness of the
underlying argument, and the hardness of the languageH.

To see this, consider an alternative experiment where (ϕ, ω) are sampled from the
yes-instances sampler Y . From the ZK guarantee of the simulator, the generated tran-
script is computationally indistinguishable from the honest interaction. Note that by
the (perfect) completeness of the zero-knowledge argument, whenever An(k) outputs
y = zk2 in the image of fk, the interaction results in an accepting transcript. By the
zero-knowledge property, it follows that except with negligible probability, the simula-
tor also generates accepting transcripts whenever An outputs y in the image of fk.

It is left to note that from the indistinguishability of the hard samplers Y,N , the
simulated transcripts of the experiment are indistinguishable from the ones used by the
extractor. Therefore they are accepting with the same probability, and thus E success-
fully extracts x′ such that (y, x′) ∈ RFk , as required.
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Claim (Key Indistinguishability).

{k | k ← K(1n)}n ≈c {k | (k, v, x′)← E(1n, An)}n .

Proof. Recall that k = (ϕ, zk1) where the statement ϕ is sampled from Y (1n) in the
key sampler, and from N(1n) in the simulated case. Consider the hybrid experiment
where ϕ is sampled from Y (1n) in the simulated case. The message zk1 is then sampled
from S(V0, ϕ), where V0 is the honest verifier with hardwired randomness 0n, by the
key sampler, and from S(V ∗, ϕ), where V ∗ is the verifier constructed from An, by the
hybrid extractor. Using zero-knowledge guarantee, and the fact that the honest prover’s
first message zk1 is independent of the verifier, we have:

{zk1 | (zk1, zk2, zk3)← S(V0, ϕ)} ≈c {zk1 | (zk1, zk2, zk3)← 〈P , V 0〉(ϕ)} ≡
{zk1 | (zk1, zk2, zk3)← 〈P , V ∗〉(ϕ)} ≈c {zk1 | (zk1, zk2, zk3)← S(V ∗, ϕ)} ,

where throughout ϕ← Y (1n).
From the hardness of the samplers, Y -instances are indistinguishable from N - in-

stances, and therefore the simulated transcripts are distinguishable. The extractor indis-
tinguishability follows.

Claim (Validity). For all n ∈ N:

Pr [(k, v) ∈ K | (k, v, x′)← E(1n, An)] ≥ 1− negl(n) .

Recall that E always samples (ϕ̄, ω̄) ← N(1n) and sets k = (ϕ̄, zk1) and v = ω̄.
Thus (k, v) ∈ K by definition.

4.2 Privately Verifiable GWEF

In this section, we construct privately verifiable GWEF from privately verifiable three-
message zero knowledge protocols.

Theorem 5. Assuming privately verifiable three-message statistical zero-knowledge ar-
gument system for NP and non-interactive commitments, there exists a privately verifi-
able GWEF.

Adjustments from GWEF. In this construction we use privately verifiable ZK,
rather than publicly verifiable one. Therefore, unlike the previous construction, the ver-
ifier’s randomness is required in order to efficiently decide whether the transcript is
accepting or not. To overcome it, SZK is needed. This will guarantee that the simulated
transcripts are indeed accepting (and are not simply hard to distinguish). Note that the
definition of the privately GWEF extractor is relaxed as well, allowing two different ex-
tractors. One of which will guarantee extraction, and will use the ZK simulator on true
statements, and the other will guarantee validity, and will use false statements. From
the hardness of the problemH, both extractors will be indistinguishable, as required.

Ingredients and Notation:
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– H = (Y,N,RY ,RN ), a hard-on-average problem with solved instances and co-
instances. (Recall that such problems follow from non-interactive commitments.)

– 〈P , V 〉, an SZK argument system for RY . We denote the protocol’s messages by
zk1, zk2, zk3.

– Com, a non-interactive string commitment scheme.

We now define our privately verifiable GWEF F with associated key sampler K,
key-relation K, hard relationRF , and corresponding testerM. These are given in Fig-
ure 4.

Sampler K(1n):

– Sample (ϕ, ω)← Y (1n).
– Let S be the zero-knowledge simulator, and let V0 be the honest verifier circuit with

hardwired randomness 0n. Sample (zk1, zk2, zk3)← S(V0, ϕ).
– Return k = (ϕ, zk1).

Key relation K:

– (k, v) ∈ K iff k = (ϕ, zk1) such that (ϕ, v) ∈ RN .

Function fk(r, r′) in family F =
{
fk : {0, 1}n×n → {0, 1}∗

}
n,k

:

– Parse k = (ϕ, zk1).
– Emulate the verifier V with statement ϕ, first prover message zk1, and randomness r.

Let zk2 be the produced verifier message.
– Compute a commitment c = Com(r; r′) to the verifier’s randomness r.
– Output (zk2, c).

RF and private testerM:

– (y, x′) ∈ RFk iff
• Parsing y = (zk2, c), x′ = zk3, and k = (ϕ, zk1).
• c is a commitment to a string r, such that the verifier V accepts the transcript

(zk1, zk2, zk3) with respect to statement ϕ and verifier randomness r.
– The testerM(k, x, x′), parses x = (r, r′), computes y = fk(x), and efficiently tests if

(y, x′) ∈ RFk using r, r′.

Fig. 4. Privately Verifiable GWEF

Security Analysis We now show that the described function family F (and associated
K,K,RF ,M) satisfy the requirements of a GWEF.

Hardness. We show hardness based on the soundness of the argument system, disjoint-
ness property ofH, and hiding of the commitment scheme.



Weakly Extractable One-Way Functions 19

Proposition 3. F satisfiesRF -hardness.

Proof. Assume toward contradiction there exists a family of polynomial-size circuits
A = {An}n and a noticeable function ε(n), such that for infinitely many n, there exists
a valid key k = (ϕ̄, zk1) ∈ L(K), such that

Pr

(y, x′) ∈ RFk

∣∣∣∣∣∣
x← {0, 1}n×n
y = fk(x)
x′ = A(k, y)

 ≥ ε(n) .

That is, parsing y = (zk2, c), x = (r, r′), x′ = zk3, the verifier V accepts (zk1, zk2, zk3)
with respect to statement ϕ̄ and verifier randomness r.

We construct a corresponding prover P ∗ = {P ∗n}n (Figure 5) that convinces the
verifier of accepting the statement ϕ̄ with probability ε(n) − negl(n). Since k ∈ K, it
holds that ϕ̄ ∈ L(RN ). By the disjointness property ofH, this means that ϕ̄ /∈ L(RY )
and thus, P ∗ will violate the soundness of the underlying argument system.

P ∗n(ϕ̄)

1. Sends zk1 to the verifier.
2. Obtains a response zk2 from the verifier.
3. Simulates the commitment c as a commitment to 0n, emulates An(k, y), where y =

(zk2, c), and obtains zk3. Sends zk3 to the verifier.

Fig. 5. ZK Malicious Prover GWEF

We then consider a hybrid experiment in which the prover P ∗n obtains a commit-
ment c to the verifier’s randomness r, rather than simulating the commitment c as a
commitment to 0n on its own. By the hiding of the commitment, the prover in this hy-
brids experiment convinces the verifier of accepting with the same probability as in a
real interaction up to a negligible difference negl(n).

It is left to note that the view of An when emulated by P ∗n in this hybrid experi-
ment is identical to its view, when breaking the hardness of RF . Thus in the hybrids
experiment, the verifier is convinces with probability ε(n).

It follows that in a real interaction P ∗n convinces the verifier of accepting the false
statement with probability ε(n)− negl(n).

Weak Extractability. We now prove weak extractability, based on the statistical zero-
knowledge and completeness properties of the argument system, indistinguishability of
H, and binding of the commitment Com.

Proposition 4. F satisfies weak extractability.

Proof. We start by defining the extractors E , Ẽ . These are described in Figure 6.
We now prove the four properties — extraction, key-indistinguishability, Ẽ-validity,

and extractor-indistinguishability — required by weak extractability (Definition 11).
From hereon, fix a family of polynomial size circuits A = {An}n.
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E(1n, A):

– Sample (ϕ, ω)← Y (1n).
– Consider the verifier circuit V ∗, that given a first prover message zk1, computes

(zk2, c) = A(ϕ, zk1), and responds with zk2.
– Sample a simulated transcript (zk1, zk2, zk3) ← S(V ∗, ϕ), where S is the (statistical)

zero-knowledge simulator.
– Output (k, x′) where k = (ϕ, zk1), and x′ = zk3.

Ẽ(1n, A):

– Sample (ϕ̄, ω̄)← N(1n).
– Consider the verifier circuit V ∗, that given a first prover message zk1, computes

(zk2, c) = A(ϕ̄, zk1), and responds with zk2.
– Sample a simulated transcript (zk1, zk2, zk3) ← S(V ∗, ϕ̄), where S is the (statistical)

zero-knowledge simulator.
– Output (k, v, x′) where k = (ϕ̄, zk1), v = ω̄, and x′ = zk3.

Fig. 6. GWEF Extractors

Claim (Extraction). For all n ∈ N,

Pr

[
∃x : y = fk(x),
(y, x′) /∈ RFk

∣∣∣∣ (k, x′)← E(1n, An)
y ← An(k)

]
≤ negl(n) .

Proof. We start by recalling that whenever y is in the image of fk, it is the case that
y = (zk2, c), such that:

– zk2 is the response to zk1 of the honest verifier, using some randomness r, where
zk1 is given by k = (ϕ, zk1).

– c is a commitment to the verifier randomness r.

Our goal is to show that except with negligible probability, whenever this occurs, the ex-
tractor produces zk3, such that the honest verifier accepts the simulated (zk1, zk2, zk3)
with respect to statement ϕ and randomness r. We show that this follows from the
statistical zero-knowledge and completeness of the underlying argument.

To see this, consider an alternative experiment where zk1, zk3 are generated by the
honest zero knowledge prover P (ϕ). Note that by the (perfect) completeness of the
zero-knowledge argument, in this experiment, whenever An(k), where k = (ϕ, zk1),
outputs y = (zk2, c) in the image of fk, the prover outputs a message zk3 such that the
corresponding transcript (zk1, zk2, zk3) is accepting with respect to the corresponding
verifier randomness r, which by the binding of Com is uniquely defined by the commit-
ment c.

By statistical zero knowledge, it follows that except with negligible probability
negl(n), the simulator also generates accepting transcripts whenever An outputs y in
the image of fk. In this case, E successfully extracts x′ such that (y, x′) ∈ RFk , as
required.



Weakly Extractable One-Way Functions 21

Claim (Key Indistinguishability).

{k | k ← K(1n)}n ≈c {k | (k, x′)← E(1n, An)}n .

Proof. Recall that k = (ϕ, zk1) where the statement ϕ is sampled from Y (1n) in both
distributions. The message zk1 is sampled from S(V0, ϕ), where V0 is the honest verifier
with hardwired randomness 0n, by K, and from S(V ∗, ϕ), where V ∗ is the verifier
constructed from An, by E .

Using zero-knowledge guarantee, and the fact that the honest prover’s first message
zk1 is independent of the verifier, we have:

{zk1 | (zk1, zk2, zk3)← S(V0, ϕ)} ≈s {zk1 | (zk1, zk2, zk3)← 〈P , V 0〉(ϕ)} ≡
{zk1 | (zk1, zk2, zk3)← 〈P , V ∗〉(ϕ)} ≈s {zk1 | (zk1, zk2, zk3)← S(V ∗, ϕ)} ,

where throughout ϕ← Y (1n).

Claim (Ẽ-Validity). For all n ∈ N:

Pr
[
(k, v) ∈ K | k, v, x′ ← Ẽ(1n, An)

]
≥ 1− negl(n) .

Proof. Recall that Ẽ always samples (ϕ̄, ω̄)← N(1n) and sets k = (ϕ̄, zk1) and v = ω̄.
Thus (k, v) ∈ K by definition with all but negligible probability.

Claim (Extractor Indistinguishability).

{k, x′ | (k, x′)← E(1n, An)}n ≈c

{
k, x′ | (k, v, x′)← Ẽ(1n, An)

}
n
.

Proof. Observe that the extractors E and Ẽ generate (k, x′) efficiently from ϕ sampled
using Y (1n) and ϕ̄ sampled using N(1n), respectively. Thus, extractor indistinguisha-
bility follows from the indistinguishability of Y -instances from N -instances.

5 From GWEF to Three-Message ZK

In this section, we show that GWEF (with additional standard assumptions) are suffi-
cient for constructing three-message zero-knowledge arguments.

5.1 Publicly Verifiable ZK

In this section, we construct publicly verifiable three-message zero-knowledge argu-
ments from GWEFs. The construction itself is mostly similar to previous constructions
(e.g., [CD08,BCC+14]), but requires a new analysis, following the weaker extractabil-
ity guarantee.

Theorem 6. Assume there exist GWEF, non-interactive commitments, and two-message
witness indistinguishable arguments. Then there exists a publicly verifiable three-message
ZK argument.
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Ingredients and Notation:

– F , a GWEF with associated key sampler K, valid key relation K, and a hard rela-
tionRF .

– Com, a non-interactive string commitment scheme.
– 〈(offP,onP ), (offV,onV )〉 an offline-online WIAOK system for NP with two of-

fline messages and a single online message. (Recall that such systems follow from
non-interactive commitments. We denote its corresponding messages by wi1,wi2,wi3)

– 〈onP ′, (offV ′,onV ′)〉 an offline-online WI system for NP with a single offline
(verifier) message and a single online (prover) message. We denote its correspond-
ing messages by wi′1,wi

′
2

The protocol is described in Figure 7.

Security Analysis The security analysis is omitted from this extended abstract and can
be found in the full version of the paper.

5.2 Privately Verifiable ZK

In this section, we construct privately verifiable three-message zero-knowledge argu-
ments from privately verifiable GWEFs. The construction is similar to that of [BCPR16],
but requires a new analysis, following the weaker extractability guarantee.

Theorem 7. Assume there exist privately verifiable GWEF and secure function evalu-
ation. Then there exists a privately verifiable three-message ZK argument.

Adjustments from public verification. There are two main differences between
this construction and the publicly verifiable one. First, as membership in R can no
longer be tested efficiently given only (y, x′), it will be done homomorphically over the
verifier’s encrypted input. Second, as membership is already tested homomorphically,
the validity of the image can be tested in the same circuit, thus sparing the two-message
WI used in the public version.

Ingredients and Notation:

– F , a privately verifiable GWEF with associated a key samplerK, valid key relation
K, hard relation RF and an efficient tester M. We denote by Mk,y,x′ the aug-
mentedRF -tester that on input x returns 1 if either y 6= fk(x) orM(k, x, x′) = 1.

– (Enc,Dec,Eval), a secure function evaluation scheme.
– 〈(offP,onP ), (offV,onV )〉 an offline-online WIAOK system for NP with two of-

fline messages and a single online message. (Recall that such systems follow from
non-interactive commitments, which in turn follow from secure function evaluation
[LS19]).

The protocol is described in Figure 8.



〈P (ω), V 〉(ϕ)

Common Input: statement ϕ ∈ L(R).
Prover Input: witness ω ∈ R(ϕ).

1. P computes:
– k ← K(1n), a GWEF key.
– wi1, the first prover message in the offline WI 〈offP, offV 〉(1n).
– wi′1, the first offline message the verifier offV ′.
– c← Com(ω), a commitment to the witness ω.

Sends zk1 = (k,wi1,wi
′
1, c).

2. V computes:
– x← {0, 1}`(n), a random string.
– y = fk(x), the image of x under the GWEF.
– wi2, the second verifier message in the offline WI 〈offP, offV 〉(1n).
– wi′2, the second prover message in the online WI 〈onP ′(x), onV ′〉(Γ ) for the

statement Γ = Γ1(ϕ, c) ∨ Γ2(k, y):

∃ω̄ :
(
c ∈ Com(ω̄)

∧
ω̄ /∈ R(ϕ)

)∨
∃x : y = fk(x) ,

where the witness x is used.
Sends zk2 = (y,wi2,wi

′
2).

3. P computes:
– The decision of the online verifier in 〈onP ′(x′), onV ′〉(Γ ).

If it rejects, then P aborts.
– wi3, the third prover message in the online WI 〈onP (ω), onV 〉(Ψ) for the state-

ment Ψ = Ψ1(ϕ) ∨ Ψ2(k, c, y):

ϕ ∈ L(R)
∨(

k ∈ L(K)
∧
∃ω′ : c ∈ Com(ω′)

∧
∃x′ : (y, x′) ∈ RFk

)
,

where the prover uses the witness ω ∈ R(ϕ).
Sends zk3 = wi3

4. V accepts iff the online verifier in 〈onP (ω), onV 〉(Ψ) accepts.

Fig. 7. Privately Verifiable Three-Message ZK protocol forR ∈ NP

23
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〈P (ω), V 〉(ϕ)

Common Input: statement ϕ ∈ L(R).
Prover Input: witness ω ∈ R(ϕ).

1. P computes:
– k ← K(1n), a GWEF key.
– wi1, the first prover message in the offline WI 〈offP, offV 〉(1n).

Sends zk1 = (k,wi1).
2. V computes:

– x← {0, 1}`(n), a random string.
– (sk, ct)← Enc(x), an SFE encryption of x.
– y = fk(x), the image of x under the GWEF.
– wi2, the second verifier message in the offline WI 〈offP, offV 〉(1n).

Sends zk2 = (y, ct,wi2).
3. P computes:

– ĉt ← Eval(ct,1), an evaluation of the constant 1 circuit, padded to the size of the
circuitMk,y,x′ .

– wi3, the third prover message in the online WI 〈onP (ω), onV 〉(Ψ) for the state-
ment Ψ = Ψ1(ϕ) ∨ Ψ2(k, y, ct, ĉt):

ϕ ∈ L(R)
∨(

k ∈ L(K)
∧
∃x′ : ĉt ∈ Eval(ct,Mk,y,x′)

)
,

where the prover uses the witness ω ∈ R(ϕ).
Sends zk3 = (ĉt,wi3)

4. V computes:
– Decsk(ĉt), the decryption of the test bit.
– The decision of the online verifier in 〈offP (ω), offV 〉(Ψ).

It accepts if both accept.

Fig. 8. Privately Verifiable Three-Message ZK protocol forR ∈ NP

Security Analysis The completeness of the protocol follows readily from the com-
pleteness and correctness of the underlying primitives. We focus on proving that the
protocols is an argument of knowledge and that it is zero knowledge.

Proposition 5 (Argument of Knowledge). The protocol is an argument of knowledge
(and in particular, sound). Specifically, there exists a PPT extractor ZK.E such that for
any non-uniform family of polynomial-size circuits P ∗ = {P ∗n}n∈N, any noticeable
function ε(n), any n ∈ N, and any ϕ ∈ {0, 1}n:

if Pr
[
Acc out← 〈P ∗n, V 〉(ϕ)

]
= ε(n)

then

Pr

[
ω ← ZK.EP∗n (11/ε(n), ϕ)
ω ∈ R(ϕ)

]
≥ ε(n)− negl(n) .

Proof. We define the extractor ZK.E in Figure 9.
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ZK.EP
∗
(11/ε, ϕ)

Oracle: a prover circuit P ∗.
Input: parameter 11/ε and statement ϕ.

1. Emulates the prover P ∗ and obtain its first message (k,wi1).
2. Constructs prover circuits for the offline-online WI protocol:

(a) offP ∗(1n):
– Sends wi1 to onV .
– Samples x← {0, 1}`(n) and (sk, ct)← Enc(x), and computes y = fk(x).
– Given wi2 from verifier offV , feeds (y,wi2, ct) to the emulated P ∗ as the

response of verifier V , and obtains (ĉt,wi3).
– Outputs statement Ψ = Ψ1(ϕ) ∨ Ψ2(k, y, ct, ĉt) and internal state stP = wi3.

(b) onP ∗(Ψ ;wi3):
– Sends wi3 to onV .

3. Emulates an execution ((stP , Ψ), stV )
out← 〈offP ∗, offV 〉(1n).

4. Applies the WI extractor ω ←WI.E(offP∗,onP∗)(11/ε, Ψ, stP , stV ).
5. Outputs the extracted ω.

Fig. 9. Argument of Knowledge Extractor for the Three-Message ZK protocol

We now prove the validity of the extractor. Let P ∗ = {P ∗n}n∈N be a non-uniform
family of polynomial-size circuits, and assume the for every n, there exists ϕ such
that P ∗n convinces the verifier V of accepting ϕ with probability ε(n). We prove that
ZK.EP∗n (1ε, ϕ) outputs ω ∈ R(ϕ) with probability at least ε(n)− negl(n).

First note that each execution of ZK.E perfectly emulates an interaction 〈P ∗n , V 〉(ϕ).

Claim. Let ĉt and Ψ be the evaluated cipher-text and statement induced by the execution
of ZK.E . Then, with probability at least ε(n)−negl(n), the extracted witness ω satisfies
Ψ and in addition Decsk(ĉt) = 1.

Proof. Since ZK.E perfectly emulates an interaction 〈P ∗n , V 〉(ϕ), the verifier V accepts
in the induced interaction with probability ε(n). Whenever this occurs:

– The WI verifier (offV,onV ) accepts.
– It holds that Decsk(ĉt) = 1.

Noting that the prover (offP ∗n ,onP ∗n) constructed by ZK.E has a deterministic first
message, it follows by the adaptive argument of knowledge guarantee of the WI system
that except with negligible probability negl(n), whenever the WI verifier accepts, WI.E
succeeds in extracting a witness for Ψ . The claim follows.

To complete the proof of Proposition 5, and conclude that the extracted ω is a witness
for Ψ1(ϕ) = (ϕ ∈ L), we prove:

Claim. Except with negligible probability negl(n), either the extracted witness ω does
not satisfy Ψ2(k, y, ct, ĉt) or Decsk(ĉt) 6= 1.

Proof. Assume toward contradiction that for infinitely many n, the extracted witness ω
satisfies Ψ2 and Decsk(ĉt) = 1 with probability δ(n). That is, ω = (v, x′) such that:
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– (k, v) ∈ K, the key is valid.
– ĉt ∈ Eval(ct,Mk,y,x′), the cipher-text ĉt is a homomorphic evaluation of the aug-

mentedRF -testerMk,y,x′ .

The second condition implies that M(k, x, x′) = 1, and accordingly (y, x′) ∈ RFk .
Indeed, recalling that (ct, sk) ∈ Enc(x) and that Decsk(ĉt) = 1, this follows from the
correctness of the SFE scheme.

We now construct a polynomial-size adversary A = {An}n that breaks the RF -
hardness of F with probability δ(n)− negl(n), relative to the valid key k (determinis-
tically defined by the first prover message).

An(y)

Input: ỹ (an image under fk).

An emulates the extractor ZK.EP
∗
n (11/ε(n), ϕ) with the following exceptions:

1. The extractor does not sample (x, y, ct) on its own.
2. An samples c̃t← Enc(0`(n)).
3. An then uses (c̃t, ỹ) in the emulation in place of (ct, y).
4. When the emulated extractor ZK.E outputs ω, An outputs x′ = ω.

Fig. 10. adversary for theRF hardness

Claim. For infinitely many n,

Pr

[
x′ ← An(fk(x))
(fk(x), x′) ∈ RFk

∣∣∣∣ x← {0, 1}`(n)] ≥ δ(n)− negl(n) .

Proof. To see this we first consider an alternative experiment, whereAn also obtains an
SFE encryption ct← Enc(x) of x and uses it in the emulation of ZK.E , instead of using
c̃t. We argue that in this alternative experiment, An outputs x′ such that (fk(x), x′) ∈
RFk with the same probability as in the original experiment up to a negligible difference
negl(n).

Indeed, this follows directly from the semantic security of SFE encryptions. Any
noticeable difference between the experiments directly leads to a distinguisher between
encryptions of 0`(n) and x. (Note that given x, we can efficiently test the condition
(fk(x), x′) ∈ RFk , usingM(fk(x), x, x′)).

It is left to observe that in this alternative experiment the extractor ZK.E is perfectly
emulated, and thus by our assumption on ZK.E , An it outputs the required x′ with
probability at least δ(n)− negl(n).

This complete the proof of Proposition 5.

Proposition 6 (Zero Knowledge). The protocol 〈P , V 〉 is zero knowledge.
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S(V ∗n , ϕ)

1. Sample:
– wi1, the first prover message in the offline WI.
– (k, v, x′) ← Ẽ(1n, V ∗n (·,wi1)), a key k, a certificate v for the keys validity,

and an extracted solution x′. Here V ∗n (·,wi1) is a circuit that given key k, runs
(y, ct,wi2)← V ∗n (k,wi1) and outputs y.

– Let zk1 = (k,wi1).
2. Compute the response zk2 = (y, ct,wi2) of the verifier V ∗ to prover message zk1.
3. Compute:

– ĉt← Eval(ct,Mk,y,x′).
– wi3, the third prover message in the online WI for statement Ψ1(ϕ) ∨
Ψ2(k, y, ct, ĉt), using the witness (v, x′) for Ψ2.

– Let zk3 = (ĉt,wi3).
4. Output the transcript (zk1, zk2, zk3).

Fig. 11. Simulator for the Three-Message ZK protocol

Proof. We start by describing the simulator S in Figure 11. In what follows, let E , Ẽ be
the GWEF extractors guaranteed by Definition 11.

We now prove the validity of the simulator S, using a sequence of hybrids.

H1: The transcript (zk1, zk2, zk3) is generated by S.

H2: Instead of generating wi3, using the witness (v, x′) for Ψ2, it is generated using a
witness ω for Ψ1 = (ϕ ∈ L). We note that by the Ẽ-validity property of the GWEF,
v ∈ K(k) with overwhelming probability. Thus, like ω, (v, x′) is also a valid witness
for the statement Ψ . By the adaptive witness-indistinguishability of the WI system, this
hybrid is computationally indistinguishable from H1.

H3: Instead of generating k, x′ using Ẽ , we generate it using E . By the extractor-
indistinguishability, this hybrid is computationally indistinguishable from H2.

H4: Instead of generating ĉt ← Eval(ct,Mk,y,x′), we generate ĉt ← Eval(ct,1). By
the extraction guarantee of E we have that the probability that y is in the image of fk,
but the extractor E fails to extract x′ ∈ RFk (y), is negligible. We observe that if it is the
case that y is in the image and x′ ∈ RFk (y), then by definitionMk,y,x′ ≡ 1; indeed,
for any preimage x of y, it returns 1, sinceM(k, x, x′) = 1, and for any x that is not
a preimageMk,y,x′ ≡ 1 returns 1. Furthermore, if y is not in the image then no x is a
preimage and againMk,y,x′ ≡ 1. Since the two circuits are of equal size and compute
the same function, the indistinguishability of the two hybrids follows by circuit privacy.

H5: Here the transcript is generated as in a real interaction between P and V ∗. The only
difference between this hybrids and the previous ones is that in this hybrid the GWEF
key fk is sampled from K(1n) instead of by E . Indistinguishability of the hybrids fol-
lows by the key-indistinguishability property.



28 Nir Bitansky, Noa Eizenstadt, and Omer Paneth

References
BCC+14. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad

Rubinstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptol. ePrint
Arch., 2014:580, 2014.

BCPR16. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. SIAM J. Comput., 45(5):1910–1952, 2016.
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