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Abstract. The algebraic group model, introduced by Fuchsbauer, Kiltz
and Loss (CRYPTO ’18), is a substantial relaxation of the generic group
model capturing algorithms that may exploit the representation of the
underlying group. This idealized yet realistic model was shown useful
for reasoning about cryptographic assumptions and security properties
defined via computational problems. However, it does not generally cap-
ture assumptions and properties defined via decisional problems. As such
problems play a key role in the foundations and applications of cryptog-
raphy, this leaves a significant gap between the restrictive generic group
model and the standard model.
We put forward the notion of algebraic distinguishers, strengthening the
algebraic group model by enabling it to capture decisional problems.
Within our framework we then reveal new insights on the algebraic inter-
play between a wide variety of decisional assumptions. These include the
decisional Diffie-Hellman assumption, the family of Linear assumptions
in multilinear groups, and the family of Uber assumptions in bilinear
groups.
Our main technical results establish that, from an algebraic perspective,
these decisional assumptions are in fact all polynomially equivalent to
either the most basic discrete logarithm assumption or to its higher-order
variant, the q-discrete logarithm assumption. On the one hand, these
results increase the confidence in these strong decisional assumptions,
while on the other hand, they enable to direct cryptanalytic efforts
towards either extracting discrete logarithms or significantly deviating
from standard algebraic techniques.

1 Introduction

One of the most successful and influential idealized models in cryptography is the
generic group model [Nec94, BL96, Sho97, Mau05], most often used to analyze

? Supported by the European Union’s Horizon 2020 Framework Program (H2020) via
an ERC Grant (Grant No. 714253).

?? Supported by the Adams Fellowship Program of the Israel Academy of Sciences and
Humanities.



2 L. Rotem and G. Segev

the security of group-based cryptographic assumptions and constructions. The
generic group model captures group-based computations that do not exploit any
specific property of the representation of the underlying group, by withholding
from algorithms the concrete representations of group elements. At a high level,
the access of generic algorithms to group elements is mediated by an oracle, and
is restricted to the abstract group operation and to checking equalities among
group elements throughout the computation. On the one hand, the generic group
model captures a wide and natural class of algorithms, and a proof of security in
this model means that a successful adversary must step outside this class. This
enables, in particular, to direct candidate constructions and cryptanalytic efforts
away from generic impossibility or hardness results. On the other hand, however,
the assumption that adversaries are completely oblivious to the representation of
the group and its elements is often unrealistic to some extent (see for example
[FKL18, JS13] and the discussion therein).

The algebraic group model. With this gap in mind, Fuchsbauer, Kiltz and
Loss [FKL18] elegantly introduced the algebraic group model, as an intermediary
model between the generic group model and the standard model.1 Roughly
speaking, an algebraic algorithm may use the representation of group elements in
any arbitrary manner, but whenever it outputs a group element, it must supply
together with it an “algebraic explanation” for how it came up with this element.
Informally, this explanation is a representation of the outputted element, in the
basis of all group elements that the algorithm has received so far.

Fuchsbauer et al. showed that though a considerable weakening of the generic
group model, the algebraic group model provides a very advantageous framework
for proving security reductions which are unknown to hold in the standard model.
For example, within the algebraic group model, they reduced the security of
very useful cryptographic schemes such as the BLS signature scheme [BLS01]
and Groth’s zero-knowledge SNARK [Gro16], to the hardness of very simple
variants of the discrete logarithm problem. Follow-up works have continued to
exemplify the usefulness of the model, by providing security reductions from the
hardness of a large class of computational Diffie-Hellman-like problems to the
hardness of the discrete logarithm problem [MTT19]; and from the unforgeability
of blind Schnorr signatures [Sch91, Sch01] and variants thereof to the hardness
of simple computational problems in cyclic groups [FPS20]. Moreover, the recent
work of Agrikola, Hofheinz and Kastner [AHK20] provided a standard-model
implementation of (a relaxation of) the algebraic group model.

Computational vs. decisional problems. One commonality which is shared
by all of the aforesaid results, is that they all deal with assumptions and security
properties that are defined via computational problems (i.e., search problems in
which an algorithm is required to output group elements). This should come as
no surprise: Algorithms for decisional problems are challenged with outputting
a decision bit, and do not, generally speaking, output any group elements. As

1 Previous, extraction-based, definitions may be found in the earlier works of Boneh
and Venkatesan [BV98] and of Paillier and Vergnaud [PV05].
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Fuchsbauer et al. point out, this means that such algorithms (to which we refer as
distinguishers) are vacuously algebraic, and that in principal, decisional problems
are not captured within the algebraic group model. Fuchsbauer et al. posed
the important open problem of whether or not their approach can be extended
to capture decisional algebraic problems and algebraic distinguishers, as these
play key roles in the foundations and applications of cryptography. Developing
such a model will enable to analyze the security of indistinguishability-based
cryptographic problems and constructions while enjoying the key advantages of
the algebraic group model.

1.1 Our Contributions

Algebraic distinguishers. We put forward a generalized framework that cap-
tures algebraic distinguishers within the algebraic group model. Following Fuchs-
bauer et al. [FKL18], our framework fits the intuition according to which the
algebraic group model “lies in between the standard model and the generic group
model”. Concretely, our notion of algebraic distinguishers allows such algorithms
to rely on the explicit representation of group elements in any arbitrary manner,
while still requiring that they “explain” their decision via an “algebraic witness”.

In our framework this witness corresponds to a non-trivial equality relation
satisfied by a subset of the group elements which the algebraic distinguisher
has received or has computed throughout its execution. We carefully formulate
an additional requirement regarding this witness in order to guarantee its non-
triviality and usefulness: Loosely speaking, we ask that whenever the algebraic
distinguisher can tell two distributions apart, then this witness serves as a “good
differentiator” between these two distributions. Our requirement is a rather
mild one (much stronger requirements hold in the generic group model), and it
is sufficient for proving highly non-trivial reductions, as discussed below. Our
notion of algebraic distinguishers is formulated in a general manner, allowing
for flexibility and versatility in its applications (e.g., it can be used to reason
about the indistinguishability of hybrid distributions that are introduced within
proofs of security and are not part of the original formulation of the problem
under consideration – as we demonstrate, for example, in Section 5). We refer
the reader to Section 1.2 for a high-level description of our framework.

From discrete logarithms to decisional Uber assumptions. Within our
framework we reveal new insights on the algebraic interplay between a wide
variety of decisional assumptions. These include the seemingly modest decisional
Diffie-Hellman assumption and the family of Linear assumptions [Sha07], as well
as the seemingly substantially stronger family of decisional Uber assumptions
[BBG05, Boy08].

Our main technical results show that, from an algebraic perspective, these
decisional assumptions are in fact all polynomially equivalent to either the
most basic discrete logarithm assumption (in the case of the decisional Diffie-
Hellman and Linear assumptions) or to its generalized higher-order variant, the
q-discrete logarithm assumption (in the case of the entire family of decisional
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Uber assumptions). We refer the reader to Section 1.2 for a high-level description
of our results and for informal theorem statements.

Interpreting our framework and results. Prior to our work, these decisional
assumptions that we consider were simply known to unconditionally hold in the
generic group model, without any indication of a non-trivial interplay among
them. Moreover, prior to our work, the algebraic group model enabled to reason
only about computational problems, whereas our framework enables both to
reason about decisional problems and to reduce their algebraic hardness to that
of computational problems. In this light, the contributions of our framework
and technical results can be interpreted in the following, somewhat equivalent,
manners:

– From the perspective of designing cryptographic schemes, our equivalence
between the algebraic hardness of extracting discrete logarithms and that
of seemingly much stronger assumptions increases the confidence in such
stronger assumptions.

– From the perspective of cryptanalytic efforts, the introduction of the family
of Uber assumptions [BBG05, Boy08] enabled directing nearly all such efforts
towards a specific and well-defined family of decisional assumptions. Our
results show that these efforts either can be significantly further directed
towards extracting discrete logarithms, or should deviate from all algebraic
techniques that are captured within our framework.

1.2 Overview of Our Framework and Results

In this section we provide a high-level overview of our framework and technical
results. We start by reviewing our definition of algebraic distinguishers, and the
intuition behind it, in more detail. For a formal exposition and discussion of the
definition, see Section 3.

A first attempt. As a first attempt of defining algebraic distinguishers, consider
demanding that whenever an algebraic distinguisher accepts (i.e., outputs 1), it
should output a “decision” vector ~w such that

∏
i gi

wi = 1, where g1, g2, . . . are
the group elements that the distinguisher has observed, and 1 is the unity of the
group. This is inspired by the approach of Fuchsbauer et al. who adapted from
the generic group model the restriction of producing new group elements only as
combinations of previously observed elements. The above requirement couples
this restriction with another constraint posed on algorithms in the generic group
model: The fact that essentially the only useful information on which generic
algorithms can base their decisions is the equality pattern among the group
elements that they have observed. Put differently, the basic algebraic information
which can lead a generic distinguisher to accept (or to reject), is a non-trivial
equality relation among the group elements that it has observed. Thus, the vector
~w captures the zero test induced by this relation.

Of course, such a zero test can always be produced by setting ~w to be the
all-zeros vector, and so we need to add some non-triviality requirement. A possible
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route is demanding that whenever an algebraic algorithm accepts, the vector
~w has to be non-zero (i.e., ~w 6= ~0). Such a demand, however, seems unrealistic
since a distinguisher can always accept even without “having knowledge” of such
a non-zero vector ~w. Moreover, it is not enough to ask that ~w 6= ~0. Consider,
for example, the decisional Diffie-Hellman problem in which the distinguisher is
asked to distinguish between a tuple of the form (g, gx, gy, gx·y) and a tuple of
the form (g, gx, gy, gz) for a uniform choice of x, y and z. In this case, a vector ~w
whose any of the last three entries is 0, cannot be used in order to distinguish
between the distributions, since when projected onto the support of such a vector
~w, the two distributions coincide.

Our definition. In light of the above discussion, our definition of algebraic
distinguishers is somewhat more subtle. Informally, it asks that if an algebraic
distinguisher A runs in time t and distinguishes between two distributions D0

and D1 with advantage ε, then there exists some bit b ∈ {0, 1} such that the
following holds: On input drawn from Db, the distinguisher A outputs a “good”
vector ~w with probability at least ε/t2 (this is in addition to the requirement
that

∏
i gi

wi = 1 with probability 1). We define a “good” vector ~w to be such
that D0 and D1 remain distinct even when projected onto the support of ~w.
Informally, by projecting a distribution onto the support of ~w, we mean “erasing”
all group elements whose corresponding entry in ~w is 0 (See section 3.2 for a
formal definition of this operation). This requirement (and even stronger forms
thereof) indeed holds in the generic group model (as we discuss in Section 3.3),
implying that our definition of the algebraic group model in fact lies between
the generic group model and the standard one. We remark that even stronger
requirements might be justifiable, and refer the reader to Section 3.2.

In groups which are equipped with a k-linear map, a distinguisher has ad-
ditional algebraic power: It can infer information from equalities in the target
group as well. Whereas in the generic group model, equalities in the source group
induce linear polynomials in the exponent, equalities in the target group induce
polynomials of degree up to k. We capture this fact by allowing the distinguisher
to output a “degree k zero test” as its algebraic witness, and refer the reader to
Section 5.1 and to the full version of this paper [RS20] for the formal definition.

The algebraic hardness of the decisional Uber assumption in bilinear
groups. In the setting of bilinear groups, Boneh, Boyen and Goh [BBG05] and
Boyen [Boy08] introduced the Uber family of decisional assumptions. Each as-
sumption in the family is parameterized by two tuples of m-variate polynomials
~r = (r1, . . . , rt) and ~s = (s1, . . . , st) and an m-variate polynomial f . Roughly, the
assumption states that given a generator g of the source group, and given the group
elements gr1(x1,...,xm), . . . , grt(x1,...,xm) and e(g, g)s1(x1,...,xm), . . . , e(g, g)st(x1,...,xm),
it is infeasible to distinguish between e(g, g)f(x1,...,xm) and a uniformly-random el-
ement in the target group for a uniform choice of x1, . . . , xm. Boneh et al. proved
that as long as ~r, ~s and f do not admit a trivial solution, the (~r,~s, f)-Uber
problem is hard in the generic group model.

Within our framework, we reduce the hardness of the (~r,~s, f)-Uber problem
to the hardness of the q-discrete logarithm problem in the source group, where in
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the q-discrete logarithm problem an adversary needs to retrieve a secret exponent
x given (g, gx, . . . , gx

q

), and q is polynomial in the number of polynomials in ~r
and in ~s and in the their degree.

Theorem 1.1 (Informal). Let (~r,~s, f) represent m-variate polynomials which
do not admit a trivial solution to the (~r,~s, f)-Uber problem, and let A be an
algebraic algorithm for the (~r,~s, f)-Uber problem relative to a source group G and
a target group GT . Then, there exists an algorithm B for the q-Discrete Logarithm
problem in G, whose running time and success probability are polynomially-related
to those of A.

The proof of Theorem 1.1 consists of two parts. First, inspired by the work
of Ghadafi and Groth [GG17], we consider an intermediate variant of the Uber
assumption which is univariate, in the sense that it involves only a single secret
exponent x (instead of m secret exponents x1, . . . , xm). We observe that the
work of Ghadafi and Groth immediately implies that for any triplet (~r,~s, f), the
existence of a successful algebraic distinguisher for the (~r,~s, f)-Uber assumption
implies the existence of a successful algebraic distinguisher for the univariate
variant as well.

In the second (and main) part of the proof, we reduce within our framework
the hardness of this univariate variant to that of the q-discrete logarithm problem.
Technical details omitted, the main idea is to embed the secret exponent x
of the q-discrete logarithm challenge as the secret exponent used to generate
the input in the univariate Uber assumption. This is where the parameter q
comes into play; since the polynomials (~r,~s, f) may be of high degree, generating
the input to the univariate Uber assumption may require knowledge of group
elements of the form gx

i

for different values of i. As discussed above, a successful
algebraic distinguisher for univariate Uber assumption returns a zero test as an
algebraic witness for its decision. We observe that if (~r,~s, f) do not admit a trivial
solution to the (~r,~s, f)-Uber problem, this witness induces a non-zero univariate
polynomial with one of its roots being x. Consequently, we can retrieve x by
finding the roots of this polynomial (for example, by using the Berlekamp-Rabin
algorithm [Ber70, Rab80]) and searching for the root which is consistent with
the input to the q-discrete logarithm problem.

The algebraic hardness of the decisional k-Linear problem in k-linear
groups. In the Decisional k-Linear problem introduced by Shacham [Sha07], a
distinguisher is given an input of the form (g, gα1 , . . . , gαk , gβ , gα1·r1 , . . . , gαk·rk)

and needs to distinguish between the group element gβ·
∑k

i=1 ri and a uniformly
random group element gz. Observe that this family of assumptions generalizes
the Decisional Diffie-Hellman assumption (which corresponds to k = 1) and the
Decisional Linear assumption [BBS04] (which corresponds to k = 2). Seemingly,
this family forms a hierarchy; for any k, the k-Linear assumption implies the (k+1)-
Linear assumption. As for the other direction, Shacham proved that in a generic
group equipped with a (k + 1)-linear map the (k + 1)-Linear assumption holds,
even though it is easy to break the k-Linear assumption. Within our algebraic
framework, we prove a more refined relation among the different assumptions in
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the family: For k-linear groups, we show an equivalence between the k-Linear
problem in the source group and the discrete logarithm in the source group.

Theorem 1.2 (Informal). Let A be an algebraic algorithm for the k-Linear
problem relative to a group G equipped with a k-linear map. Then, there exists
an algorithm B for Discrete Logarithm assumption in G, whose running time and
success probability are polynomially-related to those of A.

An immediate corollary of Theorem 1.2 is an equivalence (within our frame-
work) between the Decisional Diffie-Hellman assumption and the discrete loga-
rithm assumption in groups without a bilinear map (see Section 3.2 for our model
which captures such groups); and an equivalence between the Decisional Linear
assumption and the discrete logarithm assumption in bilinear groups (without a
trilinear map – see Section 5.1 for definition of such groups in our model). We
refer the reader to the full version of this paper [RS20] for the formal statement
and proof of Theorem 1.2. For concreteness, we now provide a more detailed
account of the proof outline for Theorem 1.2 for the simple case of k = 1.

Warm-up: From Decisional Diffie-Hellman to discrete logarithms. Con-
sider an algebraic distinguisher D which runs in time t and has advantage ε in
breaking the Decisional Diffie-Hellman assumption in a group G. As discussed
above, this means that on input of the form (g, gx, gy, gx·y+b·z) for some b ∈ {0, 1}
and a uniform choice of x, y and z, D outputs a vector ~w = (w0, w1, w2, w3) such
that:

1. gw0 · gw1·x · gw2·y · gw3·(x·y+b·z) = 1; and

2. There exists σ ∈ {0, 1} such that if b = σ, then with probability at least ε/t2

it holds that w1, w2 and w3 are all non-zero.

These facts can be used to construct an algorithm A breaking the discrete
logarithm problem in G. For concreteness and brevity, in this overview we focus
on the case in which σ = 0.2 The adversary A receives as input a group element
R := gr and embeds it as part of the input to D: With probability 1/2, it embeds
r instead of x by sampling y on its own and invoking D on (g,R, gy,Ry); and
with probability 1/2 it embeds r instead of y. Suppose that D returns a vector ~w
for which 0 6∈ {w1, w2, w3} (which, according to condition 2 above, happens with
probability at least ε/t2). We can rewrite the first condition in additive notation
to deduce the bilinear bivariate equation w0 + w1 · x+ w2 · y + w3 · x · y = 0. If
r was embedded to replace x then A, knowing y, can solve the equation for x
and output the correct discrete logarithm r. This works as long as the coefficient
of x in this equation is non-zero; i.e., as long as w1 + w3 · y 6= 0. But whenever
0 6∈ {w1, w2, w3}, this can only happen if y = −w1/w3. Hence, if r was embedded
to replace y, A may simply return −w1/w3 in order to output the correct discrete
logarithm r.

2 In the full reduction (Section 4), we consider two attacks, one per each possible value
of σ, and the adversary A chooses which one of them to execute uniformly at random.
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1.3 Additional Related Work

Beullens and Wee [BW19] have put forth the Knowledge of Orthogonality As-
sumption (KOALA), which is similar in spirit to our extension of the algebraic
group model. The assumption deals with the problem of distinguishing between
vectors of group elements whose exponents are uniformly drawn from some linear
subspace V and vectors of independently (and uniformly) sampled group ele-
ments. Roughly speaking, KOALA holds if for any probabilistic polynomial-time
algorithm which can distinguish between the two afore-described distributions,
there exists an extractor which outputs a vector from the orthogonal complement
V ⊥. Though similar in spirit, our model significantly generalizes KOALA. First,
our model supports interactive security games, whereas KOALA considers a
non-interactive game. In interactive games, our model also accounts for the entire
view of the adversary, which may extend beyond just vectors of group elements.
Second, and more importantly, KOALA seems to be tailored to prove the security
of concrete obfuscation schemes, and hence only deals with the pseudorandomness
of very specific distributions. In contrast, even when restricted to non-interactive
games, our model can be used to reason about the ability to distinguish between
any two distributions over group elements.

More generally speaking, these aforesaid differences between our model and
KOALA precisely exemplify the motivation of the our work. Over the years,
various knowledge assumptions in cyclic groups have been introduced in order to
reason about the security of different constructions. The algebraic group model
provides a unified framework for capturing computational knowledge assumptions.
The motivation behind the introduction of our model is to capture in a similar
manner decisional knowledge assumptions, such as KOALA, as well.

In a recent and independent work, Bauer, Fuchsbauer and Loss [BFL20] have
considered (among other things) the computational variant of the Uber problem
of Boneh, Boyen and Goh [BBG05, Boy08] in bilinear groups. Concretely, Bauer et
al. reduced this variant to the q-Discrete Logarithm problem within the algebraic
group model of Fuchsbauer et al. [FKL18], where q is the maximum (total)
degree of the challenge polynomials in the instance of the Uber problem. Our
result regarding the Uber problem (Theorem 1.1) differs from theirs in that we
consider the decisional variant of the Uber problem within our decisional algebraic
group model. Both our work and theirs utilize a similar technique of embedding
randomizations of the secret exponent of the q-Discrete Logarithm instance into
the secret exponents of the Uber problem instance (the concrete randomizations,
however, are different). This is in contrast to our proof of Theorem 1.2, which
employs a different technique.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we review
the basic notation and definitions underlying the algebraic group model. In Section
3 we present our generalized framework capturing algebraic distinguishers, and
as a warm-up, Section 4 includes a proof of the equivalence within our framework
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of the decisional Diffie-Hellman problem and the discrete logarithm problem. In
Section 5 we extend our framework to bilinear groups, and prove our hardness
result for the Uber family of decisional problems in such groups. In the full
version of this paper [RS20], we generalize our framework to multilinear groups,
and prove our hardness result for the decisional k-Linear problem in k-linear
groups.

2 Preliminaries

In this section we briefly review the basic notions and definitions underlying the
algebraic-group model [FKL18]. Throughout this work, for a distribution X we
denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X . For an integer n ∈ N, we use the notation
[n] to denote the set {1, . . . , n}.

Game-based security definitions. Notions of security within the algebraic-
group model are formalized using “security games”, following the classic frame-
work of Bellare and Rogaway [BR06]. A game G is parameterized by a set par
of public parameters, and is comprised of an adversary A interacting with a
challenger via oracle access. Such a game is described by a main procedure and
possibly additional oracle procedures, which describe the manner in which the
challenger replies to oracle queries issued by the adversary. We denote by Gpar a
game G with public parameters par, and we denote by GA

par the output of Gpar

when executed with an adversary A (note that GA
par is a random variable defined

over the randomness of both A and the challenger). We denote by Time
Gpar

A

the worst-case running time of Gpar when executed with an adversary A. An
adversary A participating in a game Gpar is said to win whenever GA

par = 1, and

the advantage of A in Gpar is defined as Adv
Gpar

A
def
= Pr

[
GA
par = 1

]
.

All security games in this paper are algebraic, which means that their public
parameters consist of a description G = (G, p, g) of a cyclic group G of prime order
p generated by the generator g (generally speaking, one can consider definitions
in which par may include additional parameters, but this will not be necessary
for our purposes). In actual instantiation of cryptographic primitives that rely on
cyclic groups, such a description G is usually generated via a group-generation
algorithm GroupGen(1λ), where λ ∈ N is the security parameter that determines
the bit-length of the prime p. However, we will abstract this fact away in the
paper, since our reductions hold for fixing of the security parameter or of the
underlying group.

Similarly to Fuchsbauer et al. we use boldface upper-case letters (e.g., Z)
to denote elements of the group G in algebraic games, in order to distinguish
them from other variables in the game. Figure 1 exemplifies the notion of an
algebraic game by describing the games associated with the Discrete Logarithm
problem and the q-Discrete Logarithm problem that we consider in Sections 4
and 5, respectively.
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DLOGA
G

1. x← Zp

2. X := gx

3. x′ ← A(X)
4. If x′ = x output 1, and

otherwise output 0

q-DLOGA
G

1. x← Zp

2. Xi := gx
i

for all i ∈ [q]
3. x′ ← A(X1, . . . ,Xq)
4. If x′ = x output 1, and other-

wise output 0

Fig. 1. Examples of algebraic games relative to a cyclic group G = (G, p, g) and an
adversary A. The game DLOGA

G (on the left) captures the Discrete Logarithm problem,
and the game q-DLOGA

G (on the right) captures the q-Discrete Logarithm problem
(note that setting q = 1 corresponds to the Discrete Logarithm problem).

Algebraic algorithms. Fuchsbauer et al. [FKL18] presented the following notion
of algebraic algorithms. In order to differentiate their notion from our extension
which captures algorithms in decisional security games as well, we will refer to
algorithms that satisfy their definition as computationally-algebraic ones. Roughly
speaking, an algorithm A is computationally algebraic if whenever it outputs a
group element Z, it also outputs a representation of this element in the basis
comprised of all group elements A has observed so far.

Definition 2.1 ([FKL18]). Let G = (G, p, g) be a description of a cyclic group.
An algorithm A participating in an algebraic game with parameters G is said to
be computationally algebraic if whenever A outputs a group element Z ∈ G, it
also outputs a vector ~z = (z0, . . . , zk) ∈ Zk+1

p such that Z =
∏k
i=0 Xzi

i , where
X1, . . . ,Xk are the group elements that A has received so far in the game and
X0 = g.

3 Our Framework: Algebraic Distinguishers

In this section we present our framework, extending that of Fuchsbauer et al.
[FKL18] to consider algebraic distinguishers. We start by defining decisional
algebraic games; then move on to present and discuss our notion of (fully-
)algebraic algorithms, which covers in particular algebraic distinguishers; and
finally, we observe that every generic algorithm is also an algebraic one within
our framework.

3.1 Decisional Algebraic Games

The game-based definitions presented in Section 2 are suitable for computational
games, which are aimed at capturing the hardness of computational problems
(e.g., the computational Diffie-Hellman problem) and computational security
properties of cryptographic primitives (e.g., unforgeability of signature schemes).

Decisional games on the other hand are aimed at capturing decisional cryp-
tographic problems (e.g., the decisional Diffie-Hellman problem) and indistin-
guishability based security properties of cryptographic primitives (e.g., semantic
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security of an encryption scheme). At the end of a decisional game, the adversary
outputs either the acceptance symbol Acc, in which case the output of the game
is 1, or the rejection symbol Rej, in which case the output of the game is 0. The
advantage of an adversary A in distinguishing between two decisional games Gpar

and G′par′ is defined as

Adv
Gpar,G

′
par′

A
def
=
∣∣∣Pr
[
GA
par = 1

]
− Pr

[
G′

A
par′ = 1

]∣∣∣ .
Typically, a decisional security definition will be obtained by a single decisional
game G with an additional parameter bit b, where the adversary needs to
distinguish between the cases b = 0 and b = 1. For brevity, we will refer to
the advantage of an adversary A in distinguishing between Gpar,0 and Gpar,1

simply as the advantage of A in Gpar, and we will use the notation Adv
Gpar

A
def
=

Adv
Gpar,0,Gpar,1

A . The running time of GA
par is defined as the maximum of the

running times of GA
par,0 and of GA

par,1.
Figure 2 exemplifies the notion of a decisional algebraic game by presenting the

game associated with the Decisional Diffie-Hellman problem that we consider in
Section 4. As discussed in Section 2, recall that we use boldface upper-case letters
(e.g., Z) to denote elements of the underlying group G in order to distinguish
them from other variables in the game.

DDHA
G,b

1. x, y, z ← Zp

2. X := gx,Y := gy,Z := gxy+(1−b)z

3. Sym← A(X,Y,Z)
4. If Sym = Acc then output 1, and otherwise output 0

Fig. 2. An example of a decisional algebraic game relative to a cyclic group G = (G, p, g)
and an adversary A. The game DDHA

G,b captures the Decisional Diffie-Hellman problem.

3.2 Extending the Notion of Algebraic Algorithms

In order to define (fully-)algebraic algorithms, we first introduce some additional
notation. For an algebraic game G, a group description G = (G, p, g) and an

algorithm A, we use ViewGG
A to denote the random variable which is the view of

A in the game GG . As is standard, the view of A consists of its randomness, its
input, and all incoming messages that it receives throughout the game (if any
such messages exist). Moreover, for an additional fixed vector ~w of elements in

Zp, we denote by
[
ViewGG

A

]
supp(~w)

the random variable obtained from ViewGG
A

by omitting all group elements whose corresponding entry in ~w is 0 (where the
ith group element observed by A is naturally associated with the ith entry of
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~w). That is, for a fixed vector ~w of k group elements, the distribution associated

with
[
ViewGG

A

]
supp(~w)

is defined by first sampling a view V according to ViewGG
A ;

and then for each i ∈ [min{k,m}] for which wi = 0, replacing the ith group
element in V with the unique erasure symbol ⊥, where m is the number of group

elements in V . Hence, fixing ~w, the random variable
[
ViewGG

A

]
supp(~w)

is defined

over the randomness of A and of the challenger in GG . For two random variables
X1 and X2, we use the notation X1 6≡ X2 to indicate that X1 and X2 are not
identically distributed.

Definition 3.1. Let G = (G, p, g) be a description of a cyclic group. An algorithm
A participating in an algebraic game with parameters G is said to be algebraic if
it is computationally-algebraic (per Definition 2.1) and in addition, whenever A
outputs either the Acc or the Rej symbols, it also outputs a vector ~w of elements
in Zp such that the following conditions hold:

1.
∏k
i=0 Xwi

i = 1G, where X1, . . . ,Xk are the group elements that A has received
so far in the game, X0 = g and 1G is the identity element of G.

2. For any two decisional algebraic games G and G′, there exists H ∈ {G,G′}
such that

Pr
~w

[[
ViewGG

A

]
supp(~w)

6≡
[
ViewG′G

A

]
supp(~w)

]
≥ ε

t2
,

where ε = AdvGG ,G
′
G

A , t = TimeHG
A , and the probability is taken over the

choice of ~w induced by a random execution of HG with A.

We clarify that the probability in the second condition of Definition 3.1 is
over the choice of vector ~w in a random execution of HG with A; meaning, it is
taken over the randomness of A and of the challenger in HG . The event inside the

probability means that for the chosen ~w, the random variable
[
ViewGG

A

]
supp(~w)

is distributed differently than the random variable
[
ViewG′G

A

]
supp(~w)

.

Intuitively, whenever an algebraic algorithm accepts or rejects in an algebraic
game, it also produces a zero test, defined by the vector ~w, which is passed by
the group elements that the algorithm has observed during the game. Of course,
such a zero test can always be produced by simply setting the vector ~w to be the
all zeros vector.

One possible way to mend this situation is by requiring that whenever an
algebraic algorithm accepts (by outputting the symbol Acc), the vector ~w which it
outputs has to be non-zero. Alas, this approach suffers from two caveats. Firstly,
this requirement is unrealistic, as an algorithm can always accept even without
“having knowledge” of such a non-zero vector ~w. Concretely, following Fuchsbauer
et al. [FKL18], we aim to have a definition which distills some fundamental
algebraic principle from many hardness results in the generic group model; while
simultaneously getting rid of the unrealistic assumption that algorithms are
oblivious to the concrete representation of group elements. Secondly, the intuition
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behind Definition 3.1 is that the vector ~w serves as a “witness” which explains
the adversary’s decision and differentiates between the two games (just like the
vector ~z in the definition of Fuchsbauer et al. – Definition 2.1 – serves as a
witness which explains how the algorithm has come up with the group element
Z). Therefore, it is not enough to ask that ~w 6= ~0, since even then it might be
that the joint distribution of the group elements in the support of ~w is identical
in both games, rendering the zero test associated with ~w useless in distinguishing
between them.

The second condition in Definition 3.1 accommodates these two lines of
reasoning. It is descriptive of generic group algorithms (see Section 3.3 for further
details; this also sheds light as to where the term t2 comes from), and it makes
sure that the views of the adversary in both games remain different even when
projected onto the support of ~w. Theoretically speaking, it still might be the case
that the zero test associated ~w passes with equal probabilities in both games,3

but we are not aware of a natural construction or assumption for which this is
the case, and in particular for the applications of the model presented in this
paper the second condition of Definition 3.1 is sufficient. Hence, we opted not to
strengthen our definition beyond that. We do believe however, that if one finds
an application for which it is necessary to require that the zero test associated ~w
passes with distinct probabilities in both games, then such a strengthening of
the definition is justifiable.

3.3 Generic Algorithms are Algebraic

Our definition of algebraic algorithms fits the intuition provided by Fuchsbauer
et al. [FKL18] according to which the algebraic group model “lies in between
the standard model and the generic group model”. Informally, the generic group
model captures algorithms that do not exploit the representation of the underlying
group in any way, and as such, they should perform identically among all groups
which are isomorphic to each other.

This intuition is typically formalized by withholding the group description from
the generic algorithm and supplying it only with the group order p. The concrete
representation of group elements is then replaced with some representation-
independent handle (a random label in Shoup’s model [Sho97] and an opaque
“pointer” in Maurer’s model [Mau05]). Group operations are performed via queries
to an oracle which curates the “true values” behind the handles.

Fuchsbauer et al. observed that any generic algorithm for a computational
problem is an algebraic algorithm according to their framework (recall Section

3 Consider for example a decisional game GG,b in which if b = 0, then the adversary A
receives as input the tuple (X,Xa,Y,Ya) for some distinct fixed X and Y and a
randomly chosen a, and if b = 1 then A receives as input the tuple (Y,Ya,X,Xa).
On the one hand, the witness ~w = (a,−1, a,−1) satisfies both of the conditions of
Definition 3.1. On the other hand, it is always the case that Xw1 · (Xa)w2 ·Yw3 ·
(Ya)w4 = 1G = Yw1 · (Ya)w2 ·Xw3 · (Xa)w4 , and hence the zero test induced by ~w
is not actually helpful in distinguishing GG,0 from GG,1.
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2). Here, we show that our framework enables in addition to capture generic
algorithms for decisional problems, thus providing a unified framework for relaxing
the somewhat too-strict generic group model. This is captured by the following
informal proposition.

Proposition 3.2 Let G = (G, p, g) be a description of cyclic group, and let
G0 and G1 be decisional algebraic games. Let Agen be a generic algorithm that
distinguishes between G0 and G1 with advantage ε = ε(p) in time t = t(p). Then,

there exists an algebraic algorithm Aalg such that Adv
G0,G ,G1,G
AAlg

≈ ε and AAlg runs
in time ≈ t.

The proof of Proposition 3.2 is based on the fact that the algebraic algorithm
Aalg can run the generic algorithm Agen and return the same output, while
simulating the generic group oracle to Agen. This simulation relies on the following
two well-established observations resulting from the fact that Agen is a generic
algorithm:

1. For any group element Y which Agen computes throughout the game, Aalg

can produce a representation of Y as
∏
i X

vi
i , where {Xi}i are the group

elements which Agen has observed so far and {vi}i are values in Zp known to
Aalg.

2. Since the access that Agen has to the group is representation independent,
the only useful information it acquires throughout the game is the equality
pattern among the group elements that it receives or produces during the
game. Hence, in order to distinguish between G0 and G1 with advantage
ε, there must exist an equality relation which occurs in one game with
probability which is greater by at least ε than the probability that this
equality relation occurs in the other game. In particular, such an equality
relation occurs with probability at least ε.

Once Agen terminates, Aalg can choose at random one pair of elements out of
all pairs of equal elements that arose throughout the computation, allowing
repetition (that is, Aalg may chose the same element twice, so there is always
at least one pair of equal elements). Let the representation of these two equal

elements be
∏
i X

vi
i and

∏
i X

v′i
i . The vector ~w which Aalg outputs together with

its decision symbol is then defined by wi = vi−v′i for each i. The fact that the two
group elements are equal guarantees that

∏
i X

wi
i = 1G (this guarantees the first

requirement of Definition 3.1). Moreover, there exists a bit b ∈ {0, 1}, such that
with probability at least ε the list of elements produced by Agen in Gb includes

a pair
∏
i X

vi
i and

∏
i X

v′i
i such that

[
View

G0,G
Aalg

]
supp(~w)

6≡
[
View

G1,G
Aalg

]
supp(~w)

(for

~w = ~v − ~v′). This is due to the fact that there exists b ∈ {0, 1} for which some
equality has to arise Gb with probability which is greater by ε than in G1−b.
Finally, conditioned on such a pair being present in the list of elements produced
by Agen, the probability that Aalg chooses it is at least 1/t2, since Agen produces
at most t group elements; meaning there are at most t2 pairs of elements (this
guarantees the second requirement of Definition 3.1).
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4 Warm-Up: The Algebraic Equivalence of DDH and
DLog

As a first example for the usefulness of our new framework, we show that the
hardness of the Decisional Diffie-Hellman problem with respect to algebraic
distinguishers is implied by that of the Discrete Logarithm problem. Recall
that the Discrete Logarithm and Decisional Diffie-Hellman problems are defined
via the computational algebraic game DLOGG and the decisional algebraic
game DDHG described in Figures 1 and 2, respectively. We prove the following
theorem:

Theorem 4.1. Let G = (G, p, g) be a description of a cyclic group . For any

algebraic algorithm A there exists an algorithm B such that AdvDLOGG
B ≥ ε/(4·t2)

and TimeDLOGG
B ≤ t+ poly(log p), where ε = AdvDDHG

A and t = TimeDDHG
A .

Note that Theorem 4.1 implies an equivalence between the algebraic hardness
of the Decisional Diffie-Hellman problem and the hardness of the Discrete Loga-
rithm problem. Informally, given as input (in addition to G) a triplet of group
elements (X,Y,Z) and (black-box) access to an algorithm ADLOG breaking
the Discrete Log problem, an algebraic distinguisher ADDH can be defined as
follows. First, it invokes ADLOG on X to retrieve its potential discrete logarithm
x, and then checks whether Z = Yx. If so, it accepts and outputs the vector
~w = (x,−1,−x, 1), and if not (or if ADLOG fails), it rejects and outputs ~w = ~0.
This straightforward algorithm satisfies our two requirements specified in Defini-
tion 3.1 (note that a similar algorithm that outputs the vector ~w = (0, 0,−x, 1)
instead of the vector ~w = (x,−1,−x, 1) would satisfy our first requirement but
not our second one).

Proof of Theorem 4.1. Let A be an algebraic algorithm participating in the
game DDHG,b for b ∈ {0, 1}. We construct an algorithm B participating in
DLOGG .

Algorithm B

Input: A group element X sampled uniformly at random by the challenger.

1. Sample b← {0, 1} and y, z ← Zp, and set Y := gy.
2. If b = 0:

(a) Set Z := gz.
(b) Invoke A(X,Y,Z) to obtain a decision symbol Sym ∈ {Acc,Rej} along

with a vector ~w = (w0, w1, w2, w3) ∈ Z4
p such that gw0 ·Xw1 ·Yw2 ·Zw3 =

1G.
(c) If w1 = 0 then output ⊥, and otherwise x∗ := −(w0 +w2 ·y+w3 ·z)/w1.

3. If b = 1:
(a) Set Z := Xy.

(b) Sample c← {0, 1} and set X̃ := X1−c ·Yc and Ỹ := Xc ·Y1−c.

(c) Invoke A(X̃, Ỹ,Z) to obtain a decision symbol Sym ∈ {Acc,Rej} along

with a vector ~w = (w0, w1, w2, w3) ∈ Z4
p such that gw0 ·X̃w1 ·Ỹw2 ·Zw3 =

1G.
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(d) If c = 0:
– If w1 + w3 · y = 0 then output ⊥, and otherwise output x∗ :=
−(w0 + w2 · y)/(w1 + w3 · y).

(e) If c = 1:
– If w3 = 0 then output ⊥, and otherwise output x∗ := −w1/w3.

Let ε := AdvDDHG
A and t := TimeDDHG

A . By our definition of an algebraic
algorithm, there exists a bit b∗ ∈ {0, 1} such that

Pr
~w

[[
View

DDHG,0
A

]
supp(~w)

6≡
[
View

DDHG,1
A

]
supp(~w)

]
≥ ε

t2
,

where the probability is taken over the choice of ~w induced by a random execution
of DDHG,b∗ with A. Say that the vector ~w outputted by A is good if 0 6∈
{w1, w2, w3}, where w1, w2, w3 are the entries of ~w which correspond to the three
group elements that A receives as inputs. The predicate inside the probability
is satisfied if and only if ~w is good; hence, Pr [~w is good] ≥ ε/t2 over a random
execution of DDHG,b∗ with A.

Denote by Hit the event in which the bit b = b∗, where b is the bit chosen
by B in Step 1. Regardless of the value of b∗, it holds that Pr [Hit] = 1/2, and
that Pr [~w is good|Hit] ≥ ε/t2 since conditioned on Hit, B perfectly simulates the
game DDHG,b∗ to A. Consider two cases:

1. If b∗ = 0: In this case, when ~w is good and Hit occurs, the linear equation
X · w1 + w0 + w2 · y + w3 · z = 0 in the indeterminate X has a unique
solution X = x∗ and this is the output of B. Moreover, by the requirement
gw0 ·Xw1 ·Yw2 · Zw3 = 1G, it holds that gx

∗
= X. Therefore,

AdvDLOGG
B = Pr

[
DLOGB

G = 1
]

≥ Pr
[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit

]
· Pr [~w is good ∧ Hit]

=
1

2
· Pr [~w is good|Hit]

≥ ε

2 · t2
.

2. If b∗ = 1: Let C be the random variable describing the bit c sampled by B in
Step 3(b), and let E denote the event in which w1 +w3 · ỹ = 0 in an execution
of DDHG,1 with A, where gỹ is the group element given as the second input
to A in the game. On the one hand, when ~w is good and E and Hit occur, the
linear equation X · (w1 +w3 · ỹ) +w0 +w2 · ỹ+w3 · z = 0 in the indeterminate
X has a unique solution X = x∗. Moreover, conditioned also on C = 0, this
is the output of B, and by the requirement gw0 · X̃w1 · Ỹw2 · Zw3 = 1G, it
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holds that gx
∗

= X. Hence,

Pr
[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit ∧ E

]
≥ Pr

[
DLOGB

G = 1 ∧ C = 0
∣∣∣~w is good ∧ Hit ∧ E

]
= Pr

[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit ∧ E ∧ C = 0

]
· Pr [C = 0] (1)

=
1

2
, (2)

where (1) follows from the fact that the bits b and c that B samples are
chosen independently, and since the view of A as invoked by B is independent
of the bit c, and hence the events E and ~w is good are independent of the
event C = 0.

On the other hand, when ~w is good, the linear equation X · w3 + w1 = 0 in
the indeterminate X has a unique solution X = x∗. Moreover, conditioned
on Hit and on C = 1, this x∗ is the output of B, and conditioned on E, it also
holds that gx

∗
= X. It follows that,

Pr
[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit ∧ E

]
≥ Pr

[
DLOGB

G = 1 ∧ C = 1
∣∣∣~w is good ∧ Hit ∧ E

]
= Pr

[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit ∧ E ∧ C = 1

]
· Pr [C = 1] (3)

=
1

2
, (4)

where (3) holds for the same reasons as (1).

Putting (2) and (4) together,

AdvDLOGG
B

= Pr
[
DLOGB

G = 1
]

≥ Pr
[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit

]
· Pr [~w is good ∧ Hit]

≥ ε

2 · t2
·
(

Pr
[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit ∧ E

]
· Pr [E|~w is good ∧ Hit]

+ Pr
[
DLOGB

G = 1
∣∣∣~w is good ∧ Hit ∧ E

]
· Pr

[
E
∣∣~w is good ∧ Hit

])
≥ ε

4 · t2
.

This concludes the proof of Theorem 4.1.
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5 The Algebraic Hardness of the Uber Family of
Decisional Problems

In this section we prove that the hardness of the Uber family of decisional problems
in bilinear groups [BBG05, Boy08] with respect to algebraic distinguishers is
equivalent to that of the computational q-discrete logarithm problem, for an
appropriate choice of q, in the source group (we formally define these assumptions
in Section 5.2).

5.1 Algebraic Algorithms in Bilinear Groups

Before presenting our main theorem for this section, we first need to extend our
framework to bilinear groups. We focus on symmetric bilinear groups for ease
of presentation, but the definitions in this section easily generalize to capture
asymmetric pairings as well. An algebraic game which is defined with respect to
a symmetric bilinear group is parameterized by a group description of the form
G = (G,GT , p, g, e), where G and GT are both cyclic groups of order p, g is a
generator of G, and e : G×G→ GT is a non-degenerate bilinear map. We will
often use the notation gT := e(g, g).

Mizuide et al. [MTT19] extended the definition of Fuchsbauer et al. [FKL18] of
computationally-algebraic algorithms to the setting of symmetric bilinear groups.
We start by reviewing their definition (with slight notational modifications).

Definition 5.1. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group. An algorithm A participating in an algebraic game with parameters G is
said to be computationally-algebraic if:

1. Whenever A outputs a group element Z ∈ G, it also outputs a vector ~z of
elements in Zp such that Z =

∏k
i=0 Xzi

i , where X1, . . . ,Xk are the elements
of G that A has received so far in the game and X0 = g.

2. Whenever A outputs a group element V ∈ GT , it also outputs vectors ~v and
~v′ of elements in Zp such that V =

∏
0≤i≤j≤k e (Xi,Xj)

vk·i+j ·
∏`
i=1 Y

v′i
i ,

where X1, . . . ,Xk are the elements of G and Y1, . . . ,Y` are the elements of
GT that A has received so far in the game and X0 = g.

Before defining fully-algebraic algorithms in bilinear groups, we introduce
some additional notation. The random variable ViewGG

A is defined analogously to

its definition in Section 3.2. For vectors ~v and ~v′, we denote by
[
ViewGG

A

]
supp(~v,~v′)

the random variable obtained from ViewGG
A by:

1. Omitting each element of G for which all of the corresponding entries in ~v
are 0. That is, we omit the ith element of G that A observes if for all j ≥ i it
holds that vk·i+j = 0 and for all 0 ≤ j < i it holds that vk·j+i = 0 (where k
is the number of elements of G that A observes in the game).

2. Omitting all elements of GT whose corresponding entry in ~v′ is 0 (where the
ith element of GT observed by A is naturally associated with the ith entry
of ~v′).
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Definition 5.2. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group. An algorithm A participating in an algebraic game with parameters G is
said to be algebraic if it is computationally-algebraic (per Definition 5.1) and in
addition, whenever A outputs either the Acc or the Rej symbols, it also outputs a
pair (~v, ~v′) of vectors of elements in Zp such that the following conditions hold:

1.
∏

0≤i≤j≤k e (Xi,Xj)
vk·i+j ·

∏`
i=1 Y

v′i
i = 1GT

, where X1, . . . ,Xk are the ele-
ments of G and Y1, . . . ,Y` are the elements of GT that A has received so far
in the game, and 1GT

is the identity element in GT .

2. For any two decisional algebraic games G and G′, there exists H ∈ {G,G′}
such that

Pr
(~v,~v′)

[[
ViewGG

A

]
supp(~v,~v′)

6≡
[
ViewG′G

A

]
supp(~v,~v′)

]
≥ ε

t2
,

where ε = AdvGG ,G
′
G

A , t = TimeHG
A , and the probability is taken over the

choice of
(
~v, ~v′

)
induced by a random execution of HG with A.

5.2 Algebraic Equivalence of the Uber and q-DLOG Problems

Before presenting the main reduction of this section, we first define the q-discrete
logarithm problem and the Uber family of decisional problems [BBG05, Boy08].
The q-discrete logarithm problem is a parameterized generalization of the discrete

logarithm problem, in which the adversary receives
(
gx

i
)
i∈{0,...,q}

and needs

to compute x. The “Uber assumption” is a family of decisional assumptions
in bilinear maps: It is parameterized by two tuples of m-variate polynomials
~r = (r1, . . . , rt) and ~s = (s1, . . . , st) and an m-variate polynomial f ; each choice of
~r,~s and f yields a specific assumption. Roughly, the assumption states that given

gr1(x1,...,xm), . . . , grt(x1,...,xm) and g
s1(x1,...,xm)
T , . . . , g

st(x1,...,xm)
T , it is difficult to

distinguish between g
f(x1,...,xm)
T and a uniformly-random element in GT for a

uniform choice of x1, . . . , xm in Zp. Both assumptions are formally defined via
the algebraic games q-DLOG and (~r,~s, f)-UBER in Figure 3.

Note that there are choices of ~r,~s and f for which the (~r,~s, f)-UBER game

can be easily won. If given access to g~r(X1,...,Xm) and to g
~s(X1,...,Xm)
T , one can

obtain g
f(X1,...,Xm)
T through a sequence of group operations and bilinear map

operations (where Xi is a indeterminate replacing xi), then one can distinguish

between the case where b = 0 and the case where b = 1 by comparing g
f(X1,...,Xm)
T

to Z. To rule out such trivial attacks, Boneh et al. introduced the following
definition.

Definition 5.3. Let p ∈ N be a prime, let t,m ∈ N, let ~r,~s ∈ (Fp[X1, . . . , Xm])
t

be t-tuples of polynomials such that r1 = s1 = 1, and let f ∈ F[X1, . . . , Xm]
be a polynomial. We say that f is dependent on (~r,~s) if there exist integers
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q-DLOGA
G

1. x← Zp

2. For i = 1, . . . , q: Xi := gx
i

.
3. x′ ← A(X1, . . . ,Xq)
4. If x′ = x output 1, and otherwise

output 0

(~r,~s, f)-UBERA
G,b

1. x1, . . . , xm, z ← Zp.
2. ~X := g~r(x1,...,xm).
3. ~Y := g

~s(x1,...,xm)
T .

4. Z := g
f(x1,...,xm)+(1−b)z
T .

5. Sym← A(~X, ~Y,Z).
6. If Sym = Acc output 1, and otherwise

output 0

Fig. 3. The game q-DLOGA
G (on the left) captures the q-Discrete Logarithm assump-

tion; and the game (~r,~s, f)-UBERA
G,b (on the right) defines the Uber assumption of

Boneh, Boyen and Goh [BBG05] parameterized by a triplet (~r,~s, f) where ~r and ~s
are vectors of m-variate polynomials and f is an m-variate polynomial. The notation
~X := g~r(x1,...,xm) is a shorthand for ~X := (gr1(x1,...,xm), . . . , grt(x1,...,xm)) and the nota-

tion ~Y := g
~s(x1,...,xm)
T is defined similarly. Both games are defined relative to a bilinear

group G = (G,GT , p, g, e) and an adversary A. The q-DLOG game in bilinear groups
is the same as the game defined in Section 2, when considering the discrete logarithm
to the source group.

{αi,j}0≤i≤j≤t and {βk}k∈[t] such that

f =
∑

0≤i≤j≤t

αi,j · ri · rj +
∑
k∈[t]

βk · sk.

If f is not dependent on (~r,~s), we say that it is independent of (~r,~s).

Observe, that we can only hope to reduce (~r,~s, f)-UBER to q-DLOG for
triplets (~r,~s, f) such that f is independent of (~r,~s). The following theorem, which
is the main result of this section, states that such a reduction in fact applies to
any such triplet (~r,~s, f).

Theorem 5.4. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group, let t,m ∈ N, let ~r,~s ∈ (Fp[X1, . . . , Xm])

t
be t-tuples of polynomials of

degree at most d, and let f ∈ F[X1, . . . , Xm] be a polynomial of degree at most d
which is independent of (~r,~s). Then, for any algebraic algorithm A there exists an

algebraic algorithm B such that Advq-DLOGG
B ≥ ε/(4 ·T 2)− d · (t2 + t+ 2)/(8 · p)

and Timeq-DLOGG
B ≤ T + poly(m, t, d, log p), where q = d · (t2 + t + 2)/2, ε =

Adv
(~r,~s,f)-UBERG
A and T = Time

(~r,~s,f)-UBERG
A .

As a first step towards proving Theorem 5.4, we define an intermediate
assumption which we call the “Randomized Univariate Uber Assumption”. This
assumption is obtained from (~r,~s, f)-UBER by the following modification:
Instead of sampling x1, . . . , xm uniformly at random from Zp, the challenger
samples a single x← Zp alongside m random polynomials c1, . . . , cm, and sets
xi := ci(x). The Randomized Univariate Uber assumption is formalized via the
game (~r,~s, f)-RUU described in Figure 4.



Algebraic Distinguishers 21

(~r,~s, f)-RUUA
G,b

1. x, z ← Zp.
2. c1, . . . , cm ←

{
c ∈ Zp[X]

∣∣deg(c) =
(
t2 + t+ 2

)
/2
}

3. For i = 1, . . . ,m: xi := ci(x).
4. ~X := g~r(x1,...,xm).
5. ~Y := g

~s(x1,...,xm)
T .

6. Z := g
f(x1,...,xm)+(1−b)z
T .

7. Sym← A(~c, ~X, ~Y,Z), where ~c = (c1, . . . , cm).
8. If Sym = Acc output 1, and otherwise output 0

Fig. 4. The game (~r,~s, f)-RUUA
G,b which captures our Randomized Univariate Uber

assumption. The assumption is parameterized by a triplet (~r,~s, f) where ~r and ~s are
vectors of m-variate polynomials and f is an m-variate polynomial. The game is defined
relative to a bilinear group G = (G,GT , p, g, e) and an adversary A.

The following lemma follows from the work of Ghadafi and Groth [GG17],
and reduces the security of the Uber assumption to that of the Randomized
Univariate Uber assumption.

Lemma 5.5 ([GG17]). Let G = (G,GT , p, g, e) be a description of a symmetric
bilinear group, let t,m ∈ N, let ~r,~s ∈ (Fp[X1, . . . , Xm])

t
be t-tuples of polyno-

mials of degree at most d, and let f ∈ F[X1, . . . , Xm] be a polynomial which is
independent of (~r,~s). Then, the following holds:

1. For any algebraic algorithm A there exists an algebraic algorithm B such that

Adv
(~r,~s,f)-RUUG
B = Adv

(~r,~s,f)-UBERG
A

and
Time

(~r,~s,f)-RUUG
B ≤ Time

(~r,~s,f)-UBERG
A + poly(m, t, log p).

2. With probability at least 1−d · (t2 + t+ 2)/(2 ·p) over the choice of c1, . . . , cm,

the univariate polynomial f(~c(X)) is independent of (~r′, ~s′), where ~c(X) =

(c1(X), . . . , cm(X)), ~r′ = (r1(~c(X)), . . . , rt(~c(X))) and ~s′ = (s1(~c(X)), . . . ,
st(~c(X))).

We note that there are some small technical differences between the theorem
proven by Ghadafi and Groth and Lemma 5.5. Ghadafi and Groth deal with a
computational variant of the Uber assumption, in which the adversary can choose
the polynomial f .4 Additionally, they do not consider algebraic adversaries. We
stress, however, that their reduction readily applies to imply Lemma 5.5.5

4 In fact, in their work the adversary can choose a rational (partial) function instead
of a polynomial.

5 Concretely, in their proof the adversary B simply forwards its input to A (without
the vector ~c of sampled polynomials); hence, B can simply output the same vector ~w
that is returned by A.
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The main part of the proof of Theorem 5.4 is consists of the following lemma
which reduces the security of the randomized univariate Uber assumption (against
algebraic adversaries) to the security of the q-DLOG assumption. Together with
Lemma 5.5, this immediately implies Theorem 5.4.

Lemma 5.6. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group, let t,m ∈ N, let ~r,~s ∈ (Fp[X1, . . . , Xm])

t
be t-tuples of polynomials of

degree at most d, and let f ∈ F[X1, . . . , Xm] be a polynomial of degree at most d
which is independent of (~r,~s). Then, for any algebraic algorithm A there exists an

algebraic algorithm B such that Advq-DLOGG
B ≥ ε/(4 ·T 2)− d · (t2 + t+ 2)/(8 · p)

and Timeq-DLOGG
B ≤ T + poly(d, t, log p), where q = d · (t2 + t + 2)/2, ε =

Adv
(~r,~s,f)-RUUG
B and T = Time

(~r,~s,f)-RUUG
B .

The proof of Lemma 5.6 can be found in the full version of this paper [RS20].
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